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Abstract

We developed an oral Salmonella-based vaccine that prevents and reverses diabetes in

non-obese diabetic (NOD) mice. Related to this, the gastrointestinal tract harbors a complex

dynamic population of microorganisms, the gut microbiome, that influences host homeosta-

sis and metabolism. Changes in the gut microbiome are associated with insulin dysfunction

and type 1 diabetes (T1D). Oral administration of diabetic autoantigens as a vaccine can

restore immune balance. However, it was not known if a Salmonella-based vaccine would

impact the gut microbiome. We administered a Salmonella-based vaccine to prediabetic

NOD mice. Changes in the gut microbiota and associated metabolome were assessed

using next-generation sequencing and gas chromatography-mass spectrometry (GC-MS).

The Salmonella-based vaccine did not cause significant changes in the gut microbiota com-

position immediately after vaccination although at 30 days post-vaccination changes were

seen. Additionally, no changes were noted in the fecal mycobiome between vaccine- and

control/vehicle-treated mice. Significant changes in metabolic pathways related to inflam-

mation and proliferation were found after vaccine administration. The results from this study

suggest that an oral Salmonella-based vaccine alters the gut microbiome and metabolome

towards a more tolerant composition. These results support the use of orally administered

Salmonella-based vaccines that induced tolerance after administration.

Introduction

Type 1 diabetes (T1D) is characterized by autoimmune-mediated destruction of insulin-

secreting pancreatic β-cells. Preproinsulin (PPI) is likely one of the diabetes-initiating self-anti-

gens in mice [1] and humans [2–4]. We developed an oral antigen-specific vaccine using live

attenuated Salmonella [5–7]. The Salmonella-based delivery system comprised PPI fused with

effector (sseF) and expressed and secreted under control of the SPI2 promoter of the
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Salmonella pathogenicity island 2-encoded type-3 secretion system (SPI2-T3SS) [8–10]. This

was combined with the immunomodulators TGFβ and IL10 expressed and secreted under

control of a cytomegalovirus (CMV) promoter [5]. The vaccine combined with low dose anti-

CD3 mAb prevented and reversed diabetes in non-obese diabetic (NOD) mice [5–7, 11]. Sal-
monella genus belongs to Enterobacteriaceae (family), Enterobacterales (order), Gammaproteo-
bacteria (class), and Proteobacteria (phylum) [12] and offers several advantages over the other

methods of antigen delivery. Salmonella are taken up and internalized by gut antigen present-

ing cells (APCs) and remain alive in intracellular vacuoles where they pass proteins and genetic

information to the host cells [13, 14]. Inside the cells, especially dendritic cells (DCs) and mac-

rophages, the SPI2-T3SS passes proteins directly to the host cytoplasm. Self-antigens fused

with SPI2 proteins that are passed directly into the cytosol of APCs can be processed and then

presented to immune cells within the gut mucosa [8, 15–18]. Bypassing the expression of anti-

gen in the intestinal lumen has the advantage of avoiding degradation and unwanted immune

responses. Salmonella can influence host APCs by carrying mammalian expression plasmids

and this feature was exploited to develop DNA vaccines [19, 20]. The same feature can be

employed to carry tolerogenic cytokines that are directly expressed by the host cell, and hence

can create a local immune-privileged microenvironment. Of clinical relevance, a Salmonella
vaccine for typhoid fever is approved by the FDA.

Since the live Salmonella vaccine is orally administered it may alter the microbiota. The gas-

trointestinal tract microbiota consists of over a 1000 microbial species [21]. The microbiota

exists in a state of homeostasis maintained by the action of gut-associated lymphoid tissues

(GALTs) that generate regulatory T (Tregs) and effector T cells, B cells, and others. The cross

talk between the microbiome and immune cells promotes tolerance. A balanced diverse micro-

biota was linked to improved digestion, metabolism, and an appropriate immune response to

pathogens [22]. Microbiota imbalance, low diversity, and disproportionality are termed dys-

biosis. Dysbiosis is associated with various diseases including inflammatory bowel, metabolic,

and autoimmune diseases [22, 23].

Imbalance in the gut microbiota was linked to the development of T1D, type 2 diabetes

(T2D), and obesity [24]. Moreover, lipopolysaccharide (LPS), as part of the outer membrane

of Gram-negative bacteria, possibly derived from gut microbiota, may act as a molecular link

between the gut microbiota, inflammation, and T1D. We showed that vaccination using Sal-
monella-based vaccine in combination with sub-therapeutic doses of anti-CD3 antibody

reduced the development of diabetes and the severity of insulitis, preserved beta cell mass, and

prevented glucose intolerance in mice [5, 6]. Furthermore, combination therapy was capable

of reversing ongoing diabetes [7]. In both the prevention and reversal of diabetes, the vaccine

significantly increased the number of Tregs in the spleen, mesenteric lymph nodes (MLN),

Peyer’s patches (PP) and pancreatic lymph nodes (PLN) [7].

Still, the oral Salmonella-based vaccine introduces live bacteria into the gut microbiota.

This might have negative consequences on the native intestinal flora. Herein, we explored the

effect of the vaccine on the composition and proportions of the gut microbiome and related

metabolites in non-diabetic NOD mice.

Materials and methods

Salmonella vaccine

The attenuated strain of Salmonella typhimurium was employed for oral vaccination as

described [5–7, 25]. Bacteria were cultured overnight in liquid growth media containing

50 μg/ml kanamycin or carbenicillin. The cultured bacteria were washed and suspended in 5%

sodium bicarbonate for oral administration.
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Animal experiments

Seven-week-old female NOD/ShiLtJ (NOD) mice (Jackson Laboratories, Bar Harbor, ME)

were maintained under pathogen-free conditions and housed at the animal care facility at City

of Hope National Medical Center. The study was approved by the Institutional Animal Care

and Use Committee (IACUC# 18017). Eight-week-old mice were orally vaccinated with Sal-
monella containing plasmid for the expression of IL10 and TFGβ and Salmonella expressing

autoantigen PPI in 200 ml of 5% sodium bicarbonate on days 0 and 7. Vaccinated animals

were also treated with anti-CD3 mAb for five consecutive days (days -1 to 3). The control

(vehicle) treatment was 200 ml of 5% sodium bicarbonate given orally. Stools were collected

from vaccine-, and control- treated animals at pre, 3-, 7-, 14-, 30-day post-vaccination.

DNA extraction

DNA was extracted from feces using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden,

Germany) [26]. The quality and purity of the isolated genomic DNA were confirmed by gel

electrophoresis and quantitated with a Qubit2.0 fluorometer using the Qubit dsDNA HS

Assay (Thermo Fisher Scientific, Waltham, MA). DNA samples were stored at -20˚C.

PCR amplification

Amplification of the 16S rRNA and 5.8S rRNA genes were performed using 16S-804 (50-(TCC
TACGGGAGGCAGCAGT-30), 16S-515 (50-GGA CTACCA GGG TATCTAATCCTG-30), ITS1

(50-TCC GTAGGTGAACCTGCGG-30), and ITS4 (50-TCC TCCGCTTATTGATATGC-30)
primers. For identification of fungi, the ITS region was amplified using ITS1 and ITS4 primers

and the 16S rRNA gene (V3-V4) was used for bacteria. The PCR mixture was composed of Q5

High-Fidelity Master Mix (New England Biolabs) at a 1x concentration, along with a double

volume of molecular grade water and 0.05 μL/mM of each primer. Undiluted DNA (1.5 mL)

was added to each 50 mL reaction. Thermocycling conditions included an initial denaturation

step (3 minutes at 98˚C), followed by 30 cycles of denaturation (10 seconds at 98˚C), annealing

(10 seconds at 55˚C for the16S primers and 20 seconds at 58˚C for the ITS primers), extension

(10 seconds at 72˚C), and a final extension step of 3 minutes at 72˚C. PCR products were sepa-

rated using gel electrophoresis on 1.5% agarose gel.

Library preparation and sequencing

The amplicon library was cleaned and barcoded, followed by emulsion PCR using the Ion Tor-

rent next-generation sequencing data analysis workflow (Thermo Fisher Scientific). Equal vol-

umes of bacterial 16S rRNA and fungal ITS amplicons were pooled, cleaned with AMPure XP

beads (Beckman Coulter, Brea, CA) to remove unused primers, and then exposed to end-

repair enzyme for 20 minutes at room temperature. After an additional AMPure cleanup, liga-

tion was performed at 25˚C for 30 minutes using Ion Torrent P1 and a unique barcoded “A”

adaptor per pooled sample. After AMPure removal of residual adaptors, samples were concen-

trated to one quarter volume for 1 hour using a vacuum (Labconco, Kansas City, MO) under

heat. All separate barcoded samples were then pooled in equal amounts (10 μL) and size-

selected for the anticipated 16S and ITS range (200 to 800 bp) using Pippin Prep (Sage Biosci-

ence, Beverly, MA). The library was amplified for 7 cycles and quantitated on a StepOne qPCR

instrument (Thermo Fisher Scientific) ahead of proper dilution to 300 pM going into the Ion-

Sphere templating reaction on the Ion Chef (Thermo Fisher Scientific). Library sequencing

was completed on an Ion Torrent S5 sequencer (Thermo Fisher Scientific), and barcode-sorted

samples were analyzed in our custom pipeline based on GreengenesV13_8 and Unite database
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V7.2, designed for the taxonomic classification of 16S rRNA and ITS sequences, respectively.

Sequencing reads were clustered into operational taxonomic units (3% distance), described by

community metrics and taxonomically classified within the Qiime bioinformatics pipeline

(ver. 1.9)

Metabolomics profiling

Metabolomic profiling was performed as published [27]. Feces (20 mg) was mixed with metha-

nol: chloroform (1:1) and vortexed for 15 minutes. Samples were centrifuged at 10,000 RPM

for 10 minutes and the filtrates were collected and dried using a rotatory evaporator (Buchi,

Germany). The metabolite extracts were derivatized by adding 50 μL of N-trimethylsilyl-N-

methyl trifluoroacetamide and trimethylchlorosilane (MSTFA + 1% TMS) mixture followed

by incubation at 50˚C for 30 minutes prior to gas chromatography-mass spectrometry

(GC-MS) analysis as described [28]. GC-MS measurements were carried out using an Agilent

Model 7683 Autosampler, 6890 Gas Chromatograph and 5975 Inert Mass Selective Detector in

the Electron Impact (EI) mode. EI energy was set to 70 eV. Separation was carried out on an

Agilent HP5-MS column with dimensions 30 m x 250 μm x 0.25 μm. Ultra-High Purity Grade

He (Airgas) was used as the carrier gas with the flow set to 0.8 mL/minute in constant flow

mode. The initial oven temperature was set to 45˚C for 1 minute followed by a 30˚C/minute

ramp to a final temperature of 300˚C, which was maintained for 3 minutes. A 3.2-minute sol-

vent delay was used. The injector temperature was set at 220˚C. The MSD was set to scan the

40–1050 m/z range. Data collection and analysis were performed using MSD Enhanced Chem-

station software (Agilent). Product spectra were identified by comparison of the measured

fragmentation patterns to those found in the NIST 08 Mass Spectral Library.

Differential metabolite expression was calculated as the fold-change from day 0 (before vacci-

nation) by employing Ingenuity Pathway Analysis (IPA, Qiagen, version 84978992) core analysis

with metabolomics analysis by expression Log Ratio using default settings and no cutoffs. Assess-

ment between timepoints was created using the comparison analysis tool in IPA. Analyzed path-

way data was exported into CSV (comma-separated values) files and graphed in Prism.

Statistical analysis

A custom pipeline based on the Greengenes V13_8 database designed for the taxonomic classi-

fication of 16S rRNA sequences was employed. Downstream data analysis was performed

using Qiime Platform (ver. 1.9) [29]. The Dunnett’s multiple comparisons test and Dunn’s

multiple comparisons test (non-parametric) were used to analyze the differences in the percent

abundance of gut microbiome within the same cohorts before and after vaccination (paired

for longitudinal analysis). Bonferroni’s and Mann-Whitney multiple comparisons tests were

used to compare differences between vaccinated and vehicle-treated groups at different time

points. Multiple paired t tests with adjusted p-values using the two-step Benjamini, Kreiger,

and Yekutiele procedure were used to compare differences in post-vaccinated metabolite con-

centrations in animals on day 3, 7, 14, and 30 with pre-vaccinated levels. For all tests, a

p< 0.05 was considered significant. Statistics were performed using Graphpad Prism

software.

Results

Microbiota analysis

Fifty fecal samples were collected from vaccine- (n = 25) and control (vehicle)-treated NOD

mice. The total number of bacteriome and mycobiome reads was 3.7 million. Annotated
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sequences were used to study the microbial community using the phylotype approach.

Sequences were assembled in operational taxonomic units (OTUs) at the lowest annotation

level (genus). The relative abundance for each OTU was calculated. The resulting abundance

matrix was used to calculate the community alfa diversity indexes. Relative abundances of bac-

terial and fungal phyla, genera, and species are represented in S1 and S2 Figs.

Effect of oral Salmonella-based combination therapy on gut bacteriome

To answer the question if the oral bacterial vaccine alters the gut bacterial community compo-

sition, the difference between vaccine- and vehicle-treated groups was assessed before and

after vaccination on days 3, 7, 14, and 30 post-vaccination. The dynamics of the murine gut

microbiota was studied at the levels of phylum and genus.

The murine gut microbiota was dominated by two bacterial phyla Firmicutes and Bacteroi-
detes that accounted for over ~ 95% of sequence reads at all time points (S3A Fig). The

remaining diversity was attributed to Verrucomicrobia, Tenericutes, Actinobacteria, and Pro-
teobacteria that accounted for ~ 4% of the remaining microbiota abundance. The phyla with

abundance less than 1% were combined and designated “other” (S3A Fig). Longitudinal analy-

sis of the fecal bacterial composition was conducted. At the phylum level, a significant decrease

in Firmicutes on days 14 and 30 (p = 0.005) (Fig 1B) was observed for vaccine-treated mice,

while no change in the Firmicutes was found in vehicle-treated mice (Fig 1A). Bacteroidetes
was decreased on day 3 and significantly increased on day 30 (p = 0.009) (Fig 1B) in vaccine-

treated mice, but not in vehicle-treated mice (Fig 1A). Actinobacteria was significantly

increased in vaccine-treated mice on days 3, 7 and 30 (p = 0.01, p = 0.02, and p = 0.02, respec-

tively) (Fig 1B), while a significant increase in Actinobacteria on day 30 (p = 0.028) was

observed in vehicle-treated mice (Fig 1A). No change was detected in fecal Protobacteria in

Fig 1. Boxplots of changes in abundance percentage of the gut bacteria at the phylum level within the same treated cohorts at different time points. The

longitudinal analysis of 4 most abundant phyla including Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria are shown within vehicle cohorts (A),

and vaccine cohorts (B). Each time point represents the mean ± SD of 5 samples. The Dunnett’s multiple comparisons test was used to analyze the significance

between different time points using asterisks, *p< 0.05 and **p< 0.01.

https://doi.org/10.1371/journal.pone.0285905.g001
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vaccine-treated mice (Fig 1B), while in vehicle-treated mice a significant decrease in Protobac-
teria (p = 0.011) was noted (Fig 1A).

The genera levels of microbial dynamics are displayed in S3B Fig. Ten genera with abun-

dance>1% are presented. The genera with abundance <1% were combined and designated

“other” (S3A Fig). There genera dominated, Lactobacillus, Oscillospira, and Akkermansia
accounting for ~ 75%. In longitudinal analysis, Lactobacillus was significantly increased on

day 3 (p = 0.043) in vaccine-treated mice (Fig 2B) and significantly increased on days 7

(p = 0.007) and 30 (p = 0.034) in vehicle-treated mice (Fig 2A). The genus Oscillospira was sig-

nificantly decreased on day 14 (p = 0.012) (Fig 2B) in vaccine-treated animals and little

changed in vehicle-treated mice (Fig 2A). The genus Ruminococcus was significantly decreased

on days 3 (p = 0.04) and 30 (p = 0.007) (Fig 2B) but decreased without significance in vehicle-

treated mice (Fig 2A). No change in the abundance of Akkermansia in any of the mice was

observed (Fig 2).

At the phylum level, changes over the 5 time points for the 6 most abundant fecal bacteria

in vaccine-treated mice compared with the vehicle-treated mice are illustrated in Fig 3. The

relative abundance of the phylum Bacteroidetes was significantly increased in the gut of vac-

cine-treated mice on day 30 (p = 0.024) and on day 7 (p = 0.03) for Proteobacteria compared

with vehicle-treated mice (Fig 3). In contrast, the abundances in the bacterial phyla Firmicutes
and Actinobacteria in vaccine-treated mice were significantly decreased on day 30 (p = 0.023,

and p = 0.008) compared with vehicle-treated mice (Fig 3). No changes were observed in the

relative abundance of the bacterial phyla Verrucomicrobia and Tenericutes between vaccine-

and vehicle-treated groups at any time points (Fig 3).

No significance changes occurred in the 6 most abundant fecal bacterial compositions at

the genus level over any time points except a significant increase in the genus Anaeroplasma
on day 7 (p = 0.008) and Coprococcus on day 14 (p = 0.03) in vaccine- compared with vehicle-

treated mice (Fig 4).

Fig 2. Boxplots of changes in abundance percentage of the gut bacteria at the genus level within the same treated cohorts at different time points. The

longitudinal analysis of the 4 most abundant genera including Lactobacillus, Oscillospira, Akkermansia, and Ruminococcus are shown within vehicle cohorts

(A), and vaccine cohorts (B). Each time point represents the mean ± SD of 5 samples. The Dunnett’s multiple comparisons test was used to analyze the

significance between different time points using asterisks, *p< 0.05, and **p<0.01.

https://doi.org/10.1371/journal.pone.0285905.g002
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There is a relation between Salmonella and phylum Protobacteria. Thus, a closer look into

this was done. A significant increase in the phylum Protobacteria (relative abundance 0.5%) on

day 7 (p = 0.029) occurred in vaccine-treated mice compared to vehicle-treated mice (Fig 5).

The class Gammaproteobacteria (~0.3%) significantly increased on day 7 in vaccine- compared

to vehicle-treated mice (p = 0.019) (Fig 5). Analyzing the class Gammaproteobacteria including

families Enterobacteriaceae (0.3%) and Pseudomonadaceae (0.1%) revealed a relative abun-

dance of fecal bacteria from Enterobacteriaceae with a significant increase noted in vaccine-

compared to vehicle-treated on day 7 (p = 0.022) (Fig 5). Also, a significant increase in the rel-

ative abundance of the bacterial family Pseudomonadaceae was noted in vaccine- compared to

vehicle-treated mice on days 7 (p = 0.008) and 30 (p = 0.008) (Fig 5).

Effect of oral Salmonella-based combination therapy on the gut

mycobiome

The mouse gut mycobiome is dominated by the fungal phylum Ascomycota that accounted for

over 99% of sequence reads (S4A Fig). The remaining detected phyla included Basidiomycota,

Zygomycota, and Glomeromycota. No significant difference in the fecal fungal phyla between

vehicle- and vaccine-treated animals at any time points (S4A Fig). No statistically significant

differences in the 4 most abundant fecal fungi at the phylum level were noted across any time

points between vaccine- and vehicle-treated mice (S5A Fig).

The composition of gut fungal genera of mouse feces was dominated by 4 genera. Galacto-
myces, Eurotium, Candida, and Geotrichum accounted for ~90% (S4B Fig). No statistically sig-

nificant differences in the 4 most abundant fecal fungal genera were noted across all time

points between vaccine- and vehicle-treated mice (S5B Fig).

Fig 3. Boxplots of changes in abundance percentage of the gut bacteria at the phylum level. The 6 most abundant phylum including Firmicutes,
Bacteroidetes, Verrucomicrobia, Tenericutes, Actinobacteria, and Proteobacteria are shown. Each time point represents the mean ± SD of 5 samples. Mann-

Whitney with Holm-Sidak correction for multiple comparisons test was used to report significance between groups at each time point using asterisks,

*p< 0.05.

https://doi.org/10.1371/journal.pone.0285905.g003
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In summary, vaccination had no significant effect on gut microbiota composition immedi-

ately after initiation of treatment. The effects were noted at later times and were characterized

by the increased abundance of the phylum Bacteroidetes and decreased abundance in Firmi-
cutes and Actinobacteria.

Effects of an oral Salmonella-based combination therapy on the gut

metabolome

Gut metabolic profiling was conducted on feces collected from NOD mice at pre- and post-

vaccination days 3, 7, 14, and 30. Metabolomic profiling showed variation in the metabolites

between samples (Table 1). The major metabolites identified were fatty acids such as palmitic

Fig 4. Boxplots of changes in the abundance percentage of the fecal bacteria at the genus level. The 6 most abundant genera including Lactobacillus,
Oscillospira, Akkermansia, Ruminococcus, Anaeriplasma, and Coprococcus are shown. Each time point represents the mean ± SD of 5 samples. Mann-Whitney

with Holm-Sidak correction for multiple comparisons test was used to report significance between groups at each time point using asterisks, *p< 0.05.

https://doi.org/10.1371/journal.pone.0285905.g004

Fig 5. Boxplots of the changes in abundance percentage of the fecal selected phylum Proteobacteria. The percentage of class Gammaproteobacteria, families

Enterobacteriaceae and Pseudomonadaceae, and genus Pseudomonas. Each time point represents the mean ±SD of 5 samples. Group of vaccinated mice

compared with vehicle-treated at different time points. Mann-Whitney with Holm-Sidak correction for multiple comparisons test was used to report

significance between groups at each time point using asterisks, *p< 0.05.

https://doi.org/10.1371/journal.pone.0285905.g005
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Table 1. Metabolites detected in the faces of NOD mice before and after vaccination using GC-MS.

Metabolite Before

vaccination

After vaccination

PRE Day 3 Day 7 Day 14 Day 30

Average ±SD Average ±SD P # Average ±SD P # Average ±SD P # Average ±SD P #

Urea ND - 0.06 0.02 - 13.99 0.83 - 0.62 0.22 - 12.32 0.41 -

Uracil 0.87 0.03 0.34 0.08 0.011 0.24 0.06 <0.001 1.38 2.25 0.019 0.42 0.06 0.004

L-Leucine 0.37 0.12 0.26 0.11 0.454 0.56 0.07 0.225 0.59 0.16 0.553 0.44 0.10 0.062

L-Isoleucine 0.47 0.19 0.29 0.05 0.274 0.52 0.08 0.944 0.52 0.09 0.807 0.39 0.08 0.358

L-Tyrosine 0.43 0.07 0.37 0.01 0.238 0.52 0.11 0.325 0.66 0.13 0.110 0.45 0.05 0.748

L-Valine 0.38 0.05 0.19 0.07 0.101 0.43 0.09 0.309 0.55 0.09 0.052 0.42 0.04 0.165

Glycine 0.05 0.02 0.05 0.06 0.942 0.03 0.01 0.626 0.03 0.02 >0.999 0.02 0.01 0.374

DL-Alanine 1.415 0.22 0.10 0.08 0.117 0.83 0.24 0.245 1.24 0.17 0.449 1.07 0.18 0.509

L-Phenylalanine 0.36 0.07 ND - - 0.47 0.08 0.321 0.52 0.08 0.075 0.48 0.07 0.152

5-Oxoproline (Pyroglutamic acid) 0.99 0.15 0.46 0.11 0.078 0.51 0.07 0.266 0.79 0.13 0.218 0.43 0.06 0.013

Butanedioic acid (Succinic acid) 0.50 0.10 0.41 0.07 0.093 0.39 0.07 0.363 0.51 0.11 0.371 0.37 0.06 0.190

Oxalic acid 0.10 0.09 0.14 0.03 0.775 0.07 0.01 0.517 0.31 0.40 0.960 0.08 0.01 0.658

Glycolic acid (hydroacetic acid) 0.58 0.09 0.59 0.26 0.762 0.55 0.05 0.500 0.81 0.12 0.123 0.59 0.15 0.461

Butanoic acid (Ethyl acetic acid) 0.43 0.20 0.83 0.25 0.232 ND - - 0.82 0.04 0.088 0.14 0.04 0.350

5-Aminovaleric (Propylacetic) acid 0.32 0.24 0.52 0.11 0.106 1.20 0.27 0.034 0.88 0.14 0.046 0.69 0.17 0.087

3-Hydroxybutyric acid (BHBA) 0.52 0.01 0.25 0.15 0.439 0.06 0.01 0.175 0.09 0.01 0.475 ND - -

Lactic (2-Hydroxypropanoic) acid 2.72 0.58 7.18 0.89 0.004 2.80 0.55 0.299 4.68 0.71 0.060 2.54 0.59 0.735

3-Hydroxypropanoic (Ethylene lactic) acid 0.57 0.24 0.41 0.12 0.246 0.42 0.10 0.361 0.77 0.13 0.200 0.45 0.07 0.365

Hexadecanoic acid, ethyl ester (Palmitic) acid 0.66 0.04 0.79 0.16 0.656 0.51 0.11 0.395 0.96 0.12 0.076 0.94 0.18 0.334

Palmitic Acid 8.95 1.92 9.75 1.22 0.325 5.49 1.65 0.035 9.27 1.07 0.368 12.58 1.22 0.161

Myristic acid 1.30 0.33 1.00 0.25 0.602 ND - - 0.71 0.12 0.043 0.69 0.19 0.024

Octanoic acid (Caprylic acid) 0.24 0.06 0.15 0.04 0.075 ND - - 0.30 0.14 0.462 0.22 0.06 0.960

Pentadecanoic acid 0.58 0.13 0.81 0.19 0.238 0.72 0.04 0.097 0.67 0.16 0.449 0.78 0.16 0.085

Stearic acid 1.66 0.49 2.12 0.46 0.086 1.24 0.33 0.299 1.81 0.43 0.993 2.37 0.44 0.025

Heptadecanoic (Margaric) acid 0.51 0.31 0.280 0.06 0.206 0.20 0.04 0.166 0.24 0.08 0.256 0.29 0.06 0.258

1-Tetradecanol 0.45 0.27 0.683 0.09 0.162 0.30 0.12 0.889 0.50 0.06 0.747 0.50 0.06 0.693

10-Undecynoic acid 0.88 0.11 0.663 0.15 0.342 0.58 0.06 0.038 0.10 0.01 0.042 0.66 0.09 0.190

Oleic Acid 1.10 0.07 0.170 0.06 0.007 1.20 0.56 0.214 1.11 0.13 0.959 0.54 0.04 0.005

α -Linolenic acid ND - 1.070 0.06 ND - - ND - - 0.92 0.42 -

9,12-Octadecadienoic (Linoleic) acid 4.82 0.68 4.880 0.46 0.931 3.14 0.24 0.268 2.24 0.66 0.079 5.12 0.75 0.620

Azelaic acid 0.49 0.01 0.342 0.11 0.006 0.35 0.09 0.135 0.74 0.12 0.105 0.44 0.08 0.605

Ethanolamine 2.00 0.34 1.125 0.21 0.112 0.65 0.09 0.007 ND - - 0.81 0.11 0.011

4-Hydroxybenzeneacetic acid 0.64 0.17 0.533 0.06 0.498 0.547 0.09 0.336 0.74 0.26 0.823 0.56 0.07 0.497

3-(3-Hydroxyphenyl) propanoic acid 1.57 0.46 3.203 0.13 0.025 1.51 0.31 0.934 2.39 0.97 0.244 2.33 0.80 0.163

Phloretic (3-(4-Hydroxyphenyl) propanoic)

acid

0.34 0.02 0.587 0.15 0.330 0.22 0.05 0.170 0.55 0.10 0.085 0.37 0.09 0.747

Eicosane 0.43 0.11 0.964 0.14 <0.001 0.84 0.06 <0.001 1.98 0.63 0.005 0.59 0.07 0.001

Heptadecane 0.43 0.09 0.246 0.04 0.028 0.22 0.06 0.068 0.62 0.11 0.078 0.16 0.03 0.011

Cholesterol 0.36 0.04 0.630 0.08 0.061 0.50 0.06 0.088 0.56 0.11 0.154 0.58 0.07 0.022

Cholestan-3-ol (Coprostanol) 0.13 0.02 0.158 0.04 0.020 0.13 0.01 0.580 0.10 0.06 0.625 0.15 0.03 0.011

24-Ethyl-.delta.(22)-Coprostenol 0.04 0.01 0.080 0.01 0.060 0.05 0.01 0.423 0.24 0.21 0.235 0.08 0.02 0.082

Stigmastanol 0.24 0.06 0.166 0.04 0.067 0.15 0.01 0.019 0.25 0.02 0.547 0.23 0.03 0.724

Campesterol 0.24 0.05 0.182 0.05 0.123 0.19 0.02 0.242 0.30 0.05 0.218 0.26 0.03 0.949

Stigmasterol 0.12 0.04 0.095 0.01 0.369 0.07 0.02 0.344 0.15 0.03 0.286 0.08 0.01 0.306

β.-Sitosterol 0.10 0.02 0.120 0.01 0.074 0.09 0.02 0.500 0.12 0.01 0.321 0.09 0.01 0.184

(Continued)
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acid, myristic acid, oleic acid, stearic acid, 6-octadecenoic acid (petroselaidic acid), α-linolenic

acid, 1,4-butanediol, 1-pentadecanol, butanoic acid, pentadecanoic acid, and heptadecanoic

acid; amino acids such as L-leucine, L-isoleucine, L-valine, L-tyrosine, L-alanine, and phenyl-

alanine; and sugars such as β-D-(+)-xylopyranose, glycerol, L-rhamnose, D-ribose, α-d-gluco-

pyranoside, in addition to urea, and 3,5-dihydroxybenzoic acid (Table 1).

Some of these metabolites showed specific patterns following vaccination. L-leucine was

significantly decreased in the feces following vaccination on days 3 and 7 and then significantly

increased on day 14 and dropped again on day 30 while L-5-oxoproline (pyroglutamic acid)

was decreased after vaccination and more so on day 30. Other amino acids including L-isoleu-

cinem, L-valine, L-alanine, L-tyrosine, glycine, and phenylalanine were varied (Fig 6).

The short-chain fatty acids (SCFA) derivative 5-aminovaleric acid (propylacetic acid) was

significantly increased on days 7 and 14 while L-lactic acid (2-hydroxypropanoic acid) was sig-

nificantly increased (day 3) after vaccination then returned to normal. No effect was noted on

glycolic acid (hydroacetic acid) and 3-hydroxypropanoic (ethylene lactic) acid while

3-hydroxybutyric acid was decreased after vaccination (Fig 6).

Saturated fatty acids (SFA) including myristic acid on days 14 and 30 and palmitic acid at

day 7 were significantly decreased in feces following vaccination. On the other hand, stearic

acid was significantly increased on day 30 in feces following vaccination while other SFA such

as hexadecanoic acid ethyl ester (palmitic acid), pentadecanoic acid, and heptadecanoic acid

(margaric acid) varied but without significant changes (Fig 6).

Unsaturated fatty acids (UFA) such as 10-undecynoic acid (at days 7 and 14) and oleic acid

(on days 3 and 30) were significantly decreased following vaccination while α-linolenic acid

was detected only on days 3 and 30 following vaccination (Fig 6). Interestingly, azelaic acid as

Table 1. (Continued)

Metabolite Before

vaccination

After vaccination

PRE Day 3 Day 7 Day 14 Day 30

Average ±SD Average ±SD P # Average ±SD P # Average ±SD P # Average ±SD P #

D-Ribose 0.65 0.20 0.540 0.21 0.568 ND - - ND - - 0.76 0.04 0.933

L-Rhamnose 0.49 0.42 1.020 0.06 0.012 ND - - 0.23 0.01 0.431 0.80 0.34 0.298

Xylose 0.21 0.03 0.243 0.05 0.529 0.18 0.09 0.795 0.25 0.04 0.156 0.23 0.05 0.423

β- D-(+)-Xylopyranose 0.94 0.57 0.958 0.08 0.951 ND - - 0.65 0.08 0.503 0.90 0.10 0.920

D-(+)-Talofuranose 0.29 0.06 0.275 0.12 0.971 0.27 0.05 0.950 0.26 0.06 0.701 0.29 0.05 0.669

Levoglucosan 1.68 0.65 0.267 0.04 0.184 0.88 0.04 0.315 0.32 0.08 0.216 0.16 0.04 0.170

Glucopyranose 1.00 0.09 0.724 0.17 0.082 0.86 0.12 0.012 0.44 0.07 0.008 0.76 0.18 0.056

Methyl α.-D-glucofuranoside 2.14 0.55 2.475 0.47 0.122 1.16 0.26 0.007 1.29 0.30 0.023 1.11 0.41 0.010

N-Acetyl-D-galactosamine 0.30 0.09 0.437 0.05 0.267 0.31 0.05 0.858 0.60 0.10 0.050 0.26 0.03 0.203

Glyceric acid 0.81 0.10 1.026 0.28 0.454 0.76 0.34 0.907 0.97 0.50 0.482 1.18 0.44 0.041

Glycerol 0.85 0.22 1.047 0.33 0.590 4.84 1.86 0.110 ND - - 2.29 0.67 0.022

1-Monooleoylglycerol 0.26 0.09 ND - - 0.16 0.05 0.336 0.15 0.07 0.089 ND - -

Glycerol monostearate 1.78 0.28 1.880 1.16 0.928 1.24 0.10 0.006 1.59 0.47 0.829 1.61 0.36 0.351

1-Monopalmitin (Glyceryl palmitate) 0.40 0.06 0.610 0.06 0.088 0.21 0.05 0.004 0.35 0.05 0.396 0.38 0.07 0.714

1,3-Propanediol 0.15 0.05 0.150 0.03 0.500 0.09 0.02 0.053 0.02 0.01 0.025 0.10 0.03 0.597

2,6-Bis (tert-butyl) phenol 2.59 0.40 1.616 0.27 0.017 ND - - 1.63 0.59 0.132 1.72 0.30 0.028

The amount represents the relative percentage of a metabolite in relation to total metabolites detected in the fecal pellet for 5 mice before and on days 3, 7, 14, and 30

post-vaccination ± SD. The statistical significance was calculated using multiple paired t test with Benjamini, Kreiger, and Yekutiele corrected significance level

indicated (p value < 0.05). Red p value means significant increase and blue p value means significant decrease in comparison to the pre-treated group.

https://doi.org/10.1371/journal.pone.0285905.t001
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Fig 6. Heatmap comparing the metabolites extracted from feces of NOD mice at different times point pre- and

post-vaccination using GC-MS. Feces collected from mice before and after vaccination at days 3, 7, 14, and 30. The

amount represents the relative percentage of a metabolite in relation to total metabolites detected in a fecal pellet.

Metabolite average relative percentages of 5 mice at each time point are displayed as blue bars. The statistical

significance was calculated using multiple paired t test with Benjamini, Kreiger, and Yekutiele corrected significance

level indicated asterisks (*p< 0.05, **p<0.01, ***p<0.005, ****p<0.001). Red asterisks mean a significant increase

and black asterisks mean a significant decrease in comparison to the pre-treated group. SCFA (short-chine fatty acid);

SFA (saturated fatty acid); UFA (unsaturated fatty acid); MUFA (monounsaturated fatty acid); PUFA (polyunsaturated

fatty acid); TCA (tricarboxylic acid cycle); nd (not detected).

https://doi.org/10.1371/journal.pone.0285905.g006
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a product of oleic acid was significantly decreased in the feces on day 3 following vaccinations

while no changes were noted in the 9,12-octadecadienoic acid (linoleic acid) (Fig 6).

Other acids such as 3-(3-hydroxyphenyl) propanoic acid (3-hydroxycinnamic acid) was signifi-

cantly increased in the feces at day 3 following vaccination and then returned to normal levels on

day 30. Other metabolites such as phloretic acid (3-(4-hydroxyphenyl) propanoic acid) and

4-hydroxybenzeneacetic acid were not changed in the feces after vaccination while ethanolamine

was significantly decreased on days 7 and 30 after vaccination. Eicosane, a saturated hydrocarbon,

was significantly increased after vaccination while heptadecane was significantly decreased (Fig 6).

Sugar metabolites including levoglucosan (on day 30), and glucopyranose, and methyl

alpha-D-glucofuranoside were significantly decreased in the feces following the vaccination,

while D-ribose, D- (+)-talofuranose, xylose, beta-D-(+)-xylopyranose and N-acetyl-D-galac-

tosamine did not change in the feces after vaccination. L-rhamnose was significantly increased

on day 7 in the feces after vaccination (Fig 6).

Glycerol monostearate (2-monostearin) and glyceryl palmitate (1-monopalmitin) were sig-

nificantly decreased on day 7 following vaccination and returned to normal on day 14, and

1,3-propanediol was significantly decreased on day 14. Glycerol and glyceric acid were

increased after vaccination and become significantly increased on day 30 (Fig 6).

Steroid metabolites detected in feces such as cholesterol (on day 30) and cholestane-3-ol

(coprostanol) were significantly increased on days 3 and 30 after vaccination while stigmasta-

nol was significantly decreased on day 14. Others such as stigmasterol, β-sitosterol, and cam-

pesterol 24-ethyl-delta (22)-coprostenol were not changed after vaccination (Fig 6).

Fecal metabolites such as succinic acid (butanedioic acid) and oxalic acid were not changed fol-

lowing vaccination (Fig 6). Urea was detected in the feces of the animal on day 3 then sharply

increased on day 7 followed by a decrease on day 14 and then a final increase on day 30 post-vac-

cination while uracil (a nucleic acid) was significantly decreased following vaccination (Fig 6).

To understand the significance of the metabolomic changes, we utilized Ingenuity Pathway

Analysis (IPA). Metabolite data (Table 1) were entered as fold change in relation to data col-

lected from day 0 (pre-vaccine). The predicted disease and functions pathways identified within

molecular functions showed an overall decrease in the ATP production, as seen in the pathways

‘Release of ATP’, ‘Concentration of ATP’, and ‘Synthesis of ATP’ (Fig 7A). Upregulated path-

ways involved cell death (Apoptosis, Necrosis) on days 3, 14, and 30 post-vaccines but these

decreased on day 7 (S6A Fig). A potential activation of immune cell functions (Endocytosis by

eukaryotic cells, Engulfment of cells) was noticed with an increased activity at all days post vac-

cination. Other pathways showed a trending decrease in ‘Release of reactive oxygen species’ and

‘Generation of superoxide’ or a trending increase in ‘Synthesis of carbohydrate’, ‘Concentration

of cholesterol’, ‘Synthesis of D-glucose’, and ‘Biosynthesis of hydrogen peroxide’ (S6A Fig).

Further analysis of immune-focused diseases and functions was performed (Fig 7B). The

‘Activation of leukocytes’ was increased on days 3, 7, and 14 post-vaccines but decreased on

day 30. Other pathways, such as ‘Inflammatory response’, ‘Activation of phagocytes’, ‘Activa-

tion of macrophages’, ‘Activation of myeloid cells’ and ‘Proliferation of CD4+ T-lymphocytes

were increased on all days except day 7. Finally, in the first 14 days, ‘Leukopoiesis’ (formation

of white blood cells) and ‘Inflammation of organ’ were decreased. This suggests a vaccine-asso-

ciated activation of the immune system (S6B Fig).

The metabolite data were processed to determine if the changes of global regulators could

be predicted. Using IPA Upstream Regulator Analysis, we identified proteins that are pre-

dicted to be activated or inhibited (Fig 7C). Of note, the anti-inflammatory cytokine IL-37

[30] is predicted to be activated days 3, 7, and 30 post-vaccination. Also, different regulators of

mitochondria and metabolism were predicted to be upregulated on day 7 including NAD(P)

transhydrogenase (NNT: mitochondria redox) [31], lipid-sensing peroxisome proliferator-
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activated receptor delta (PPARD) [32], and long-chain fatty acid transport carnitine palmitoyl-

transferase I (CPT1B) [33]. While both NNT and PPARD were downregulated on days 3 and

30. Other transcriptomic co-factors and regulators, such as ARNT (aryl hydrocarbon receptor

nuclear translocator) [34], MYC [35] and PPARGC1 (Peroxisome proliferator-activated recep-

tor gamma coactivator 1) [36], were predicted to be upregulated on days 3, 14 and 30 post-vac-

cination. Uncoupling protein 1 (UCP1) [37] growth factor and fatty acid binding protein 4

(FABP4) [38] were upregulated on days 3 and 30 but downregulated on days 7 and 14 post-

vaccination. Matrix metalloproteinase 11 (MMP11) [39], an inflammatory mediator, and

stearoyl-CoA desaturase (SCD) [40], an enzyme that participates in the synthesis of UFA from

SFA, were downregulated on days 3 and 30 post-vaccination (S6C Fig). Overall, this analysis

indicated a significant change in metabolism, inflammation and proliferation following vac-

cine administration.

Discussion

An oral antigen-specific vaccine using live attenuated Salmonella prevented and reversed T1D

in NOD mice [5–7]. To better understand possible effects of the vaccine, changes in the

Fig 7. IPA pathway analysis of fecal metabolites pre- and post-vaccination. Identified Disease and Functions pathways for Molecular Functions (A) and

Immune (B) pathways are shown to be significantly changed on days 3, 7, 14, and 30 post-vaccines. A z-score above 1.3 indicates significant upregulation

(orange) when compared to day 0 (pre-vaccine). Conversely, a z-score below -1.3 indicates significant down regulation (blue). Upstream Regulators (C)

identifies predicted global regulators that have been activated (orange) or inhibited (blue) which may explain the observed changes in metabolites.

https://doi.org/10.1371/journal.pone.0285905.g007
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composition of the gut microbiota were determined at different time points following vaccina-

tion. This is important because the microbiota can protect the host against microbial patho-

gens [41] while effects of Salmonella infection on the gut microbiota may lead to inflammation

that favors the growth of pathogens [42, 43]. And while the Salmonella strain employed in the

vaccine was attenuated, it still retained some infectious capacity.

Changes in the gut microbiota were implicated in altering diabetes susceptibility in NOD

mice [44, 45]. Related to this, changes in the gut microbiome were seen between healthy and

diabetic individuals mimicking to an extent data from NOD mice [46]. In this study, we com-

pared the gut microbiome in vaccine- and vehicle-treated prediabetic mice. We found no

changes in the composition of gut microbiota on the phylum level after vaccine administration

except for a decrease in Firmicutes, and Actinobacteria on day 30 and increase in Bacteroidetes
on day 30. Furthermore, no changes in the composition of bacteria genera between vaccine-

and vehicle-treated mice were noted at any time points except an increase of Anaeroplasma
and Corprococcus on days 7 and 14, respectively. Our vaccine combination caused an increase

in the gut phylum Proteobacteria, the class Gammaproteobacteria, and the families Pseudomo-
nadaceae, and Enterobacteriaceae. Salmonella genus belongs to Enterobacteriaceae (family),

Gammaproteobacteria (class), and Proteobacteria (phylum) [12]. This could be important for

the changes seen after vaccination. Overall, the data indicate that administration of the Salmo-
nella-based vaccine altered the balance of the gut microbiota in prediabetic NOD mice. How-

ever, the modest changes noted before and after treatment within the same treatment-group

(either vaccine group or vehicle group) were likely due to other factors such as type of food,

handling, temperature, and age. The slight increase in family Pseudomonadacea may be attrib-

uted to an imbalanced gastrointestinal environment due to temporary changes in the composi-

tion of the gut microbiome [47].

Studying the changes in the composition of gut microbiota at short (7–14 days post vaccina-

tion) and longer times (30 days post-vaccination) reflects the expected lifecycle of the vaccine.

Short term, there was an increase in only a few taxa by the vaccine, suggesting a successful

infection and proliferation of the vaccine within the GALT. At day 30, the composition of

microbiota mostly returned to its pre-vaccinated state except for an increase in the Bacteroi-
detes phylum and decrease in the Firmicutes and Actinobacteria. Narratively, this aligns with

our data on the approximate 3-week clearance time of the vaccine. This suggests that the

microbiota may have assumed a more tolerant state. When the vaccine successfully infiltrated

the GALT, Treg abundance was increased throughout several lymphatic tissues especially on

day 30 post-vaccination and this was associated with less beta cell injury [6, 7]. Of some possi-

ble relevance, gut Bacteroidetes were associated with increased Tregs [22]. Based on our data,

we postulate that the microbiota responded to the vaccine and participated in immune regula-

tion and induction of tolerance by increasing Tregs and regulatory cytokines and decreasing

inflammatory cytokines [6, 7]. The intestinal epithelium plays an important role as a filter that

translocates water, nutrients, and bio-reactive compounds from the intestine to the circulation

[48]. Inflammation can increase the intestinal permeability to permit antigens to induce auto-

immune response and promote the development of diabetes [49, 50].

In this study, the metabolic profiling of the vaccine-treated animals was determined and

identified. Of the 60 identified metabolites, almost a third was associated with diabetes. The

rest of the common metabolites were associated with digestion and were expected based on

the diet of the mice. For example, amino acids (AA) including glycine and alanine are associ-

ated with glucose metabolism through promoting insulin secretion [51, 52]. Furthermore, ele-

vated levels of valine, isoleucine, leucine, tyrosine, and phenylalanine are correlated with

insulin intolerance and secretion suppression [53, 54]. Throughout, the levels of most of AAs

showed high variance from day to day. However, by day 30 most of the AAs returned to pre-
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vaccination levels. Of note, multiple predicted Upstream Regulators were up or down regu-

lated based on the combination of changes in amino acid concentrations (Fig 7C). For exam-

ple, CPT1B was predicted to be upregulated because of the increase in leucine and valine, and

the decrease in alanine, glycine, and uracil (S6C Fig). When MMP11 is active, it could up-reg-

ulate amino acids such as alanine, glycine, isoleucine, tyrosine, phenylalanine, and ethanol-

amine. Also, due to the combined effects of alanine and glycine, in association with butyric

acid and succinic acid, the anti-inflammatory protein IL37 is predicted to be activated on all

days observed except day 14 (S6C Fig).

Lactate is produced by gut bacteria under anaerobic conditions and is metabolized in the

colon by lactate-utilizing bacteria to produce beneficial short-chain fatty acids (SCFAs) includ-

ing butyrate and propionate. Lactate metabolites play an important role in the stability of the

gut microbiome [55]. SCFA metabolites generated by gut microbiota exert systemic anti-

inflammatory effects through involvement in the production of immunoglobulin A and immu-

nosuppressive cytokines [56]. These SCFAs may have an effect on metabolic and immune

response, and inflammatory disease [57, 58]. For example, changes in the ‘Biosynthesis of

hydrogen peroxidase are due, in part, to the changes in butyric and succinic acids (S6A Fig).

SCFAs such as acetate and propionate can influence insulin sensitivity and glucose tolerance via

glycemic-mediated response. Propionate can decrease the fasting blood glucose, reduce gluco-

neogenesis, promote the utilization of glucose, and elevate glucagon-like peptide [59].

Butyrate maintains the integrity of the gut epithelium by inducing mucin synthesis [57].

NOD mice had lower abundance of SCFAs, especially butyrate, when compared to non-dia-

betic mice [60]. Significant elevations in 3-hydroxybutyric acid (β-hydroxybutyric acid,

BHBA) is an indicator of diabetic ketoacidosis in T1D [61, 62]. In this study, our vaccine was

associated with a decrease in BHBA (Table 1). However, in general, the Salmonella-based vac-

cine increased the levels of SCFAs in the feces of NOD mice.

Myristic, palmitic, and stearic acid are saturated fatty acids (SFAs) commonly found at high

levels in individual with T1D [53]. SFAs stimulate the Toll-like receptor 4 (TLR-4) to increase

pro-inflammatory cytokine expression [63]. Conversely, dicarboxylic acids with fatty acid sub-

stituents like succinic acid stimulated insulin biosynthesis [64], increased the secretion of pro-

inflammatory cytokines such as TNFα and IL1β, and activated T cells [65, 66]. Herein, we

found that vaccinated mice had decreased succinic acid (butanedioic acid). Medium and long

chain unsaturated fatty acids such as azelaic, linoleic, oleic, octanoic, and pentadecanoic acid

promote insulin secretion [67–70]. Also, these SFAs (succinic, palmitic, oleic, linoleic acids)

were indirectly regulated by MYC (S6C Fig). Of note, inhibiting the medium and long chain

fatty acid β-cell receptor (GPR40) impaired insulin secretion [71].

An increase in glutamate and a decrease in TCA metabolites were observed in diabetic

NOD mice [72]. Our vaccinated mice showed a significant decrease in L-5-oxoproline (pyro-

glutamic acid) (Table 1). Vaccination was not associated with a change in the TCA metabolite,

oxalic acid. Monoacylglycerol increased the glucagon-like peptide-1 (GLP-1) and gastric

inhibitory polypeptide (GIP) levels following administration to the small intestine [73]. Our

vaccine did not show effect on the abundance of monoacylglycerol (Table 1). Steroid metabo-

lites in the gut of NOD mice were changed as a result of Salmonella-induced inflammation

[74]. Steroids (cholesterol, coprostanol, stigmasterol, and campesterol) and eicosanoid can

impact wound healing, sugar metabolism, and immune system regulation [74]. In fact,

changes in cholesterol influenced multiple Disease and Functions pathways such as ‘Concen-

tration of ATP’, ‘Biosynthesis of amide’, ‘Synthesis of lipid’ (S6A Fig), and ‘Activation of leu-

kocytes’, ‘Activation of phagocytes’, and ‘Inflammation of organ’ (S6B Fig). Many of the

metabolites assessed in the feces of vaccine-treated mice were altered over time. However,
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analysis was not obtained on samples from unvaccinated mice. Hence, it is unknown if the

changes in the metabolome were secondary to the vaccine alone.

In summary, we demonstrated that an oral Salmonella vaccine did not adversely alter gut

microbiota diversity and proportions. At 30 days post-vaccination, the results suggested a tran-

sition in microbiota towards a more tolerant composition as the Tregs increased in mucosal

tissues. Metabolic analysis indicated that after vaccination changes in metabolism, inflamma-

tion, and proliferation occurred and this was associated with immune activation and increased

regulatory and decreased inflammatory cytokines. These results support the oral administra-

tion of Salmonella vaccines as carriers for autoantigens and immunomodulators against T1D.

Further studies to understand the mechanistic role of the microbiota in immune function and

to relate the composition of the microbiota to oral vaccines are required.

Supporting information

S1 Fig. Variation in fecal bacteria between vaccinated and vehicle-treated NOD mice.

Abundance percentage of the fecal bacteria at the phylum level (A), genus level (B), and species

level (C) in vaccine- (n = 25) and vehicle-treated (n = 25) mice.

(TIF)

S2 Fig. Variation in fecal mycoses between vaccinated and vehicle-treated NOD mice.

Abundance percentage of the fecal mycoses at the phylum level (A), genus level (B), and spe-

cies level (C) in vaccine- (n = 25) and vehicle-treated (n = 25) mice.

(TIF)

S3 Fig. Variation in fecal bacteria between vaccinated and vehicle-treated NOD mice.

Abundance in percentage of the fecal bacteria at (A) the phylum level, and (B) genus level in

the feces of NOD mice at time points pre-, 3-, 7-, 14-, and 30-days post-vaccination with oral

Salmonella-based vaccine.

(TIF)

S4 Fig. Variation in fecal mycoses between vaccinated and vehicle-treated NOD mice.

Abundance percentage of the fecal mycoses at (A) the phylum level, and (B) the genus level in

NOD mice at different time points pre and 3-, 7-, 14-, and 30-days post-vaccination with oral

Salmonella-based vaccine.

(TIF)

S5 Fig. Boxplots of changes in abundance percentage of the fecal mycoses at the phylum

and genus levels. (A) The 4 most abundant phyla including Ascomycota, Basidiomycota, Zygo-
mycota, and Glomeromycota. (B) The 4 most abundant genera included Galactomyces, Euro-
tium, Candida, and Geotrichum. Each time point represents the mean ± SD of 4–6 samples.

Group of vaccinated mice compared with vehicle treated at different time points. Mann-Whit-

ney with Holm-Sidak correction for multiple comparisons test was used to report significance

between groups at each time point using asterisks, *p< 0.05.

(TIF)

S6 Fig. The predicted pathways after vaccine administration. For each analysis, relevant

metabolite measurements are located on the outside of the circle. The spokes leading to the

center are the predicted relationship to the pathway which is in the center. Arrows on the

spokes indicate that metabolite activates the pathway whereas bars indicate inhibition. A) Dis-

ease and Functions: Molecular Functions. Relative changes on days 3, 7, 14, and 30 in path-

ways Concentration of ATP, Biosynthesis of amide, Biosynthesis of hydrogen peroxide, and

Synthesis of lipid. Legend of predicted measurements. B) Disease and Functions: Immune.
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Relative changes on days 3, 7, 14, and 30 are indicated in pathways Activation of leukocytes,

Activation of phagocytes, and Inflammation of organ. Legend of predicted measurements. C)

Upstream Regulators. Relative changes in CPT1B, IL37, MYC, and MMP11 on days 3, 7, 14,

and 30 are indicated. Legend of predicted measurements.

(ZIP)
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