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Abstract

Forests play a key role in the regional or global carbon cycle. Determining the forest carbon

budget is of great significance for estimating regional carbon budgets and formulating forest

management policies to cope with climate change. However, the carbon budget of Chinese

different forests and their relative contributions are not completely clear so far. We evaluated

the carbon budget of different forests from 1981 to 2020 in China through combining model

with remote sensing observation. In addition, we also determined the relative contribution of

carbon budget of each forest type to all forests in China. Eight forest types were studied:

evergreen coniferous forest (ECF), deciduous coniferous forest (DCF), coniferous and

broad-leaved mixed forest (CBF), deciduous broad-leaved forest (DBF), evergreen broad-

leaved forest (EBF), evergreen deciduous broad-leaved mixed forest (EDBF), seasonal rain

forest (SRF), and rain forest (RF). The results indicated that the Chinese forests were mainly

carbon sink from 1981 to 2020, particularly the annual average carbon budget of forest from

2011 to 2020 was 0.191 PgC�a-1. Spatially, the forests’ carbon budget demonstrated obvi-

ous regional differences, gradually decreasing from Southeast China to Northwest China.

The relative contributions of carbon budget in different forests to all forests in China were dif-

ferent. During 2011–2020, the ECF forests contributed the most carbon budget (34.45%),

followed by DBF forests (25.89%), EBF forests (24.82%), EDBF forests (13.10%), RF for-

ests (2.23%), SRF forests (3.14%) and CBF forests (1.14%). However, the DCF forests

were found mainly as carbon source. These results contribute to our understanding of

regional carbon budget of forests.

Introduction

Human activities lead to the increased carbon dioxide concentration in the atmosphere, and

changed climatic conditions [1]. Climate change, in turn, can change the carbon cycle, vegeta-

tion productivity and species distribution of ecosystems. The ecosystem carbon cycles include
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several processes and components: total amount of organic carbon fixed by green plants

through photosynthesis (gross primary productivity, GPP), released carbon by autotrophic

respiration (Ra) and soil heterotrophic respiration (Rh) [2]. The value of GPP minus Ra is

net primary productivity (NPP). The value of NPP minus Rh is net ecosystem productivity

(NEP), namely the carbon budget [3]. A clear regional NEP will be an important supple-

ment to reveal the global carbon cycle mechanisms and reduce the uncertainties in global

NEPs [4–6].

As an important part of terrestrial ecosystem, forest ecosystem has enormous carbon pool

and biodiversity [7]. Forest ecosystems can provide human livelihood, produce bioenergy, fix

carbon dioxide and slow down climatic change [8]. China has rich forest resources and diverse

forest types, with obvious zonal distribution characteristics. According to the results from Chi-

nese Ministry of Forestry [9], the global largest plantation is in China. Moreover, China has

two-thirds young forests with great carbon sequestration potentials [10]. In order to achieve

the carbon neutrality goal by 2060, China is required to vigorously promote carbon fixation

and emission reduction. Consequently, quantitatively evaluating the forests’ NEP at different

time and space scales is very crucial for formulating effective management strategies and pro-

viding important references for the realization of carbon neutrality in China.

The evaluation technologies of forests’ NEP are continuously improved over the past few

decades. At present, these methods mainly involve the positioning observation, carbon flux

observation and model simulation [10]. Generally speaking, in large scales, the traditional

methods of positioning observation and carbon flux observation are easily influenced by some

elements such as observation, survey, measurement, funds, and so on. That is because the

changes in carbon cycle of forests not only stride across seasons, years and decades, but also

vary spatially with regional climate, environments, and vegetation types [11]. Owing to the

complex mechanisms of carbon cycle process, the model simulation has become an irreplace-

able mean for estimating forests’ NEP in large spatial scale and long-term range [12].

More researchers have shifted their interests from individual ecosystems to larger

zones and even to the global scale. So far, many studies have applied ecosystem process

models to assess the large-scale forest carbon cycle [13–20]. For example, Caddeo et al. [15]

applied the CENTURY model to estimate the current and future soil organic carbon stocks

of the whole forests in Italy at 2005 and at 2095 under climate change. Derroire et al. [17]

developed a temporally-explicit and territory scale model of carbon balance and recom-

mend a mixed-strategy for improving long-term carbon balance and reducing short-term

emissions by combining selective logging in natural forests and plantations in French Gui-

ana. Then, Gong et al. [19] evaluated the carbon fluxes from contemporary forest distur-

bances in North Carolina based on a Grid-based Carbon Accounting (GCA) model.

Kimberley et al. [20] used the Coarse Woody Debris (CWD) carbon stock model to com-

pare the measured and modelled changes in CWD carbon stocks in New Zealand’s natural

forest. The above researches further show the model method has become very feasible and

can improve the simulation results of large-scale forest carbon cycles. However, so far, some

uncertainties are still existed in estimating forests’ NEP in China. There are few national

level studies on the NEPs and their relative contributions of different forests to all forests in

China. Clarifying regional NEP of different forest types is crucial for sustainable develop-

ment in China.

Here, we investigated the NEP of different forest types in China through the individual-

based model and remote sensing products. We also explored the NEP of Chinese different for-

ests and their relative contributions with long time series data. Our study was designed to pro-

vide scientific supports for reasonably evaluating on regional NEP of different forest types.
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Materials and methods

Main distributions of Chinese forests

In general, the forests on the earth can be divided into coniferous forest, coniferous broad-

leaved mixed forest, deciduous broad-leaved forest and evergreen broad-leaved forest. These

forests are distributed in different regions according to different climatic factors. However,

due to the combination difference of water and heat, the forests in various regions show great

differences. With vast territory and complex natural climatic conditions, China has rich forest

resources and diverse forest types, with obvious zonal distribution characteristics. Chinese for-

ests according to their generic characteristics and habitats are divided into eight types: (1) ever-

green coniferous forest (ECF), (2) deciduous coniferous forest (DCF), (3) coniferous and

broad-leaved mixed forest (CBF), (4) deciduous broad-leaved forest (DBF), (5) evergreen

broad-leaved forest (EBF), (6) evergreen deciduous broad-leaved mixed forest (EDBF), (7) sea-

sonal rain forest (SRF) and (8) rain forest (RF).

Coniferous forests are widely distributed in China. Northern coniferous forest and subal-

pine coniferous forest, which are high latitude horizontal zonal vegetation and low latitude

subalpine vegetation types respectively, differing greatly in distribution and geographical envi-

ronment. Generally speaking, they all belong to the sub cold zone type, with similar appear-

ance, composition and structure. The coniferous forests in warm temperate are mainly in

Liaodong Peninsula and North China. There are many types of subtropical coniferous forests.

Tropical coniferous forest has few tree species, which are scattered and not forested. The conif-

erous broad-leaved mixed forests include Korean pine broad-leaved mixed forests and Hem-

lock broad-leaved mixed forest. Pinus koraiensis broad-leaved mixed forests are zonal types in

temperate regions of China, mainly distributed in the Changbai Mountain and Xiaoxing’an

Mountain in Northeast China. Hemlock broad-leaved mixed forests are mainly distributed in

the mountainous subtropical areas of China. Deciduous broad-leaved forests are widely dis-

tributed in temperate zone, warm temperate zone and subtropical zone. Evergreen broad-

leaved forests are zonal types in humid subtropical forest area of China. The monsoon rain for-

ests are the representative vegetations of monsoon tropics in China, and most of them are dis-

tributed in the arid hilly tableland, basin and valley areas. Rain forest is mainly distributed in

the mountains above 500m-700m above sea level in tropical areas of China.

Brief introduction of FORCCHN model

The FORCCHN (FORest ecosystem Carbon budget model for CHiNa) model was applied in

this study, and was used to estimate forests’ NEP under changing environments, obviously

improving the evaluation abilities of forests’ NEP [21]. This model with spatial resolution of 10

km×10 km is based on individual tree. It consists of five modules: initialization submodule,

carbon balance submodule, ecoclimatic submodule, soil carbon and nitrogen budget submo-

dule, and tree growth submodule [21]. The FORCCHN model calculates the NEP of each tree

on a certain patch one by one, and obtains the NEP of the ecosystem per unit area by summing

and coupling the soil NEP calculated by the soil carbon cycle model.

The FORCCHN model runs in daily or annual process step. For daily step, the photosyn-

thesis, continuous respiration, litter, and nitrogen absorption of each tree are computed daily.

Soil moisture, soil organic matter decomposition and nitrogen mineralization are computed

daily. Furthermore, in any time of day, the rate of maintenance respiration in each tree, litter

of leaf and fine-root, soil organic matter decomposition and nitrogen mineralization are

assumed to be the same. For annual step, the changes in assimilate, tree height, diameter at

breast height, and litter are be calculated. Specifically, the annual structure growth carbon and
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the fruit litter of each tree are computed through accumulated NEP every day. Then, the tree

growths in height and diameter are be calculated every year. Finally, increased and stored car-

bon are assigned to each component. The main processes in FORCCHN model are displayed

in Fig 1. The input, output and main characteristics of the FORCCHN model are shown in

Table 1.

Main formulas for calculating NEP are as follows:

(1) Gross primary productivity:

GPPd ¼ minðGPPm � Fc � Fw � Ft; a� NsÞ ð1Þ

where GPPd is the daily gross primary productivity (kgC�m-2�d-1); GPPm is the daily maxi-

mum gross primary productivity (kgC�m-2�d-1); Fc is the effect of atmospheric CO2 concen-

tration on gross primary productivity; Fw is the effect of soil water on gross primary

productivity; Ft is the effect of air temperature on gross primary productivity; a×Ns

is the effect of soil available nitrogen on gross primary productivity; a is the carbon

nitrogen ratio parameter of assimilation, with a value of 150; Ns is the soil available nitrogen

(kgN�m-2�d-1).

GPPm ¼
2� Am � D

K
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K � S� PAR=Am

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K � S� PAR� expð� K � LAIÞ=Am

p

" #

ð2Þ

Fig 1. Primary processes and flow chart of the FORCCHN model.

https://doi.org/10.1371/journal.pone.0285790.g001
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where GPPm is the daily maximum gross primary productivity (kgC�m-2�d-1); Am is the pos-

sible maximal photosynthesis of leaves (kgC�m-2�h-1); D is the sunshine hours (h); K is the

extinction coefficient; S is the initial slope of light intensity and photosynthesis; PAR is the

canopy photosynthetic active radiation at noon (W�m-2); LAI is theleaf area index.

Fc ¼ 1þ
Ct � C0

Ct þ 2� C0

ð3Þ

where Fc is the effect of atmospheric CO2 concentration on gross primary productivity; Ct

is the average CO2 concentration of the year (ppm); C0 is the reference CO2 concentration

of the year (ppm).

Fw ¼
min½1;Ws=Wf þmaxðRh � 0:5; 0:1Þ�

W

� �1=2

ð4Þ

where Fw is the effect of soil water on gross primary productivity; Ws is the soil water con-

tent (cm); Wf is the soil field capacity (cm); Rh is the air relative humidity; W is the drought

tolerance of trees.

Ft ¼
Tmax � T

Tmax � Topt

 !Tmax � Topt
Tmax � Tmin

�
T � Tmin

Topt � Tmin

 ! T� Tmin
Topt � Tmin

ð5Þ

where Ft is the effect of air temperature on gross primary productivity; Tmax is the maxi-

mum temperature for photosynthesis (˚C); T is the average temperature of the day (˚C);

Topt is the optimum photosynthetic temperature (˚C); Tmin is the minimum temperature at

which photosynthesis (˚C).

Table 1. Main characteristics of the FORCCHN model.

Characteristic Detailed description

Initial conditions Field water holding capacity, soil carbon storage, soil nitrogen storage, and

remote sensing LAI data.

Boundary variables Daily maximum temperature, minimum temperature, average temperature,

precipitation, relative air humidity, total radiation, average wind speed,

average air pressure, and atmospheric CO2 concentration.

Material balance scheme Complete carbon balance, and nitrogen and water in the atmospheric-soil-

forest ecosystem

Time step and scheme Daily carbon and nitrogen uptake, litter flux and respiration flux per tree;

Daily soil carbon, nitrogen, and water are imported and exported; Daily

forest carbon and nitrogen uptake and litter flux in patches; Calculations of

carbon accumulation per tree, flower, and fruit litter flux, and tree DBH;

and growth, tree height growth, and subbranch height growth year by year.

Carbon and nitrogen budget module

per tree per day

Considering total photosynthesis, maintenance respiration, growth

respiration, distribution, and the litter of photosynthate, the photosynthate

buffer pool scheme was adopted to enhance resistance to extreme climatic

conditions.

Daily soil carbon and nitrogen

budget module

An improved CENTURY model suitable for forest soils is adopted so that

the decomposition and respiration of forest soils can be temporarily

considered as valid in the absence of validation data.

Annual tree growth Calculations of annual photosynthate distribution, flower and fruit litter,

tree DBH, tree height, under-branch height, and potential maximum leaf

volume in the buffer pool.

https://doi.org/10.1371/journal.pone.0285790.t001
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(2) Annual net primary productivity:

NPP ¼
X365

d¼1
ðGPPd � Rm � RgÞ ð6Þ

where GPPd is the daily gross primary productivity (kgC�m-2�d-1); Rm is the daily mainte-

nance respiration (kgC�m-2�d-1); Rg is the daily growth respiration (kgC�m-2�d-1).

Rm ¼
1

24
D� e0:069315�ðTd � 15Þ� 0:009�ðTd � 15Þ2 þ 24 � Dð Þ � e0:069315�ðTn � 15Þ� 0:009�ðTn � 15Þ2
h i

� Rk

� Ck ð7Þ

where Rm is the daily maintenance respiration (kgC�m-2�d-1); D is the sunshine hours (h);

Td is the daytime average temperature(˚C); Tn is the average temperature at night (˚C); Rk

is the relative respiration rate of leaves, trees and roots at 15˚C (d-1); Ck is the amount of

corresponding carbon pool. When k represents leaves and fine roots, CK is the amount of

leaves and fine roots; and when k represents branches, stems and roots, CK is the amount of

sapwood (kgC).

Rg ¼ rg � ðGPPd � RmÞ ð8Þ

where Rg is the daily growth respiration(kgC�m-2�d-1); rg is the growth respiration coeffi-

cient, with the valued of 0.25; GPPd is the daily gross primary productivity (kgC�m-2�d-1);

Rm is the the daily maintenance respiration (kgC�m-2�d-1).

(3) Annual soil heterotrophic respiration:

Rs ¼
X10

u¼1
Pu � Su � GT � GW � e� b�Ls � Cu ð9Þ

where Rs represents the annual soil heterotrophic respiration (kgC�m-2�a-1); Pu is the propor-

tion of respiration in the uth carbon pool; Su is the reference relative decomposition rate of the

uth carbon pool; Gt is the influence coefficient of temperature on decomposition process; Gw is

the influence coefficient of water on decomposition process; b is a constant, with a value of 5.0;

Ls represents the lignin content of structural litter pool; Cu is the difference between soil carbon

pool and lignin in the uth carbon pool (kgC�m-2); u is the uth soil carbon pool.

Gt ¼ e
3:36�ðTs � 40Þ

Tsþ31:79 ð10Þ

where Gt is the influence coefficient of temperature on decomposition process; Ts is the soil

temperature(˚C).

GW ¼ 1 �

 
Ws

e�Wf
� 1

!2

ð11Þ

where Gw is the influence coefficient of water on decomposition process; Ws is the soil water

content (cm); e is a constant, with a value of 0.6; Wf is the Field capacity (cm).

The reference relative decomposition rates of soil carbon pool in this study are shown in

the Table 2.

(4) Annual carbon budget:

NEP ¼ NPP � Rs ð12Þ

PLOS ONE Carbon budget of different forests in China estimated by an individual-based model and remote sensing

PLOS ONE | https://doi.org/10.1371/journal.pone.0285790 October 9, 2023 6 / 16

https://doi.org/10.1371/journal.pone.0285790


where NEP represents the annual carbon budget of tree (kgC�m-2�a-1); NPP represents the

annual net primary productivity (kgC�m-2�a-1); Rs represents the annual soil heterotrophic res-

piration (kgC�m-2�a-1).

Yan and Zhao [21] and Zhao et al. [19] previously provided descriptions on the building

strategy, structure, and parameters of FORCCHN model. Here, we focused on verifying

FORCCHN model and investigating the NEP dynamics of different forest types and their con-

tributions to forest’s total NEP in China.

Data

Meteorological data. We collected 2423 meteorological station data from 1981 to 2020

from the National Meteorological Information Centre in China. The details of these daily

meteorological data were mainly average temperature (˚C), minimum temperature (˚C), maxi-

mum temperature (˚C), precipitation(mm), sunshine hours (h), longitude (˚) and latitude (˚).

These daily station data were interpolated into grid data (10 km×10 km) according to the

reverse distance and nearest field methods, in order to be consistent with the resolution of the

FORCCHN model [21]. According to the principle of reverse distance, the influence of a mea-

sured value on the interpolation target point decreased with the increase of the spatial distance

between the target point and the measured value. According to the nearest field principle, a

given observation value was inversely proportional to the spatial density of observation values

in its surrounding action area (the interpolation influence area) and its local space. In other

words, the higher the density of observation values in a spatial area, the smaller the effective

influence area of each measurement value. Finally, all the meteorological elements in China

used in this study (10 km×10 km) were acquired, including daily temperature, precipitation

and sunshine hours. In order to calculate the solar radiation every day, the algorithm estimat-

ing the solar radiation attenuation by computing the atmosphere transparency was used [22].

Moreover, this algorithm also considered the effects of snow cover and snowmelt on solar radi-

ation in the winter and in the spring.

Soil data. We collected 1:14 million soil quality maps provided by the Institute of Soil Sci-

ence, Chinese Academy of Sciences. These data mainly consist of soil organic matter parame-

ters and soil physical parameters. The parameters of soil organic matter are soil carbon pool

(kgC�m-2) and soil nitrogen pool (kgN�m-2). The parameters of soil physics are soil field capac-

ity (cm), sand content (%), silt content (%), clay content (%), bulk density (KgC�m-3) and soil

water content (cm) at wilting point. In this study, the soil data in 1981 were interpolated into

grid data (10 km×10 km), in order to be consistent with the resolution of the FORCCHN

model.

Vegetation data. The parameters of forests are composed of forest types, coverage rate

(ratio of forest area to total land area), and maximum LAI. The vegetation classification of

China was from the 1:1 million vegetation map of China provided by Institute of Geographic

Sciences and Natural Resources Research, Chinese Academy Sciences (https://www.resdc.cn/

Table 2. Reference relative decomposition rates of soil carbon pool (d-1).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.021 0.1 0.027 0.13 0.01 0.002 0.002 0.042 0.001 3.5×10−5

Note: S1 represented the above-ground metabolic litter pool; S2 represented the above-ground structural litter pool; S3 represented the below-ground metabolic litter

pool; S4 represented the below-ground structural litter pool; S5 represented the fine woody litter pool; S6 represented the coarse woody litter pool; S7 represented the

below-ground coarse litter pool; S8 represented the active soil organic matter pool; S9 represented the slow soil organic matter pool; S10 represented the resistant soil

organic matter pool.

https://doi.org/10.1371/journal.pone.0285790.t002
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data.aspx?DATAID=122). At the same time, the coverage rates of the forest grids were also

referred to the existing research result [23]. In addition, the LAI data in 1981 used in this study

were obtained through remote sense image inversion method [24]. Considering that it was

impossible to directly obtain the regional forest LAI, the forest LAI at initial field was calcu-

lated through the remote sensing model based on the normalized difference vegetation index

(NDVI) dataset. NDVI data were from NASA’s Pathfinder AVHRR NDVI land data sets, with

the 16km×16 km spatial resolution, compressed text record format, and Goode projection

coordinate system. Part parameters in different forest types are showed in Table 3.

Running the FORCCHN model

In this study, all data in the year of 1981 were run in FORCCHN model (10 km×10 km) several

times until the initialization equilibrium (spin-up) state was reached in order to remove the

effects of initial value of hypothetical variable in ecosystem on dynamic simulation. After that,

we used all the daily data during 1981–2020 to drive the FORCCHN model for simulation. We

mainly focused on the dynamics in NEP of different forest types during 2011–2020.

Data processing and analysis

We used ArcGIS10.6, SPSS20, and Microsoft Excel 2019 for handing data, statistical analysis

and visualization mapping in this study.

Model accuracy evaluation

The model validation is to compare the simulation results with the actual observation qualita-

tively and quantitatively. The simulation results of FORCCHN model had been tested by actual

observations from 690 sample plots based on forest inventory [21], it was considered to be

valid.

Model parameter acquisition

Generally, model parameters can be obtained by three different means: (a) using control

experiments to measure the parameters of simple physical and chemical processes; (b) the vari-

ous composite parameters of physical characteristics can be fitted by replacing the observed

variable values into the mode; (c) the parameters can be obtained from relevant literatures; (d)

there might be a few parameters that can only be fitted by multiple simulations. Among the

above approaches, the method (b) and the method (c) were used in this study [21]. Because in

ecological research, there are little possibilities of controlling experiments.

Results

Applicability of FORCCHN model for Chinese forests at different scales

Here, we forced FORCCHN model and compared the simulated total NEP of Chinese forests

with previous simulations and observations at the national level (Fig 2). These results from the

Table 3. Part parameters in different forest types.

Forest types NDVImax NDVImin LAIv

Evergreen coniferous forest 0.687 0.033 8.0

Deciduous coniferous forest 0.687 0.033 8.0

Deciduous broad-leaved forest 0.687 0.033 7.0

Coniferous and broad-leaved mixed forest 0.687 0.033 7.5

https://doi.org/10.1371/journal.pone.0285790.t003

PLOS ONE Carbon budget of different forests in China estimated by an individual-based model and remote sensing

PLOS ONE | https://doi.org/10.1371/journal.pone.0285790 October 9, 2023 8 / 16

https://www.resdc.cn/data.aspx?DATAID=122
https://doi.org/10.1371/journal.pone.0285790.t003
https://doi.org/10.1371/journal.pone.0285790


forest inventory data and the model simulation all showed the Chinese forests in the past few

decades were obvious carbon sink. Average annual NEP of forests was 0.115 PgC�a-1~0.145

PgC�a-1 during 1981–2000 [25], 0.159 PgC�a-1 during 1990–2007 [13], 0.187 PgC�a-1 during

1999–2012 [26], 0.152 PgC�a-1 during 2003–2008 [27], 0.177 PgC�a-1 during 2010–2015 [28]

and 0.194 PgC�a-1 during 2020–2050 with the steadily increasing quality and rapidly growing

of young forests [27]. Our results simulated by FORCCHN model showed the Chinese forests

from 2011 to 2020 were also carbon sink, with 0.191 PgC�a-1 annual average NEP. Our results

were consistent with existing research conclusions [13,25–27].

Net ecosystem carbon exchange (NEE) refers to the CO2 flux between land and atmosphere,

which is consistent with the observed CO2 flux of ecosystems. Generally, NEE and NEP are

equal. Therefore, this study compared the simulated NEP with the observed NEE of Chinese

forests. The NEE and NEP in 2003 were selected for comparative analysis, mainly considering

that the data in 2003 were relatively complete. The monthly simulated NEP in 2003 and

observed NEE from the four ecosystem flux stations in Dinghu Mountain of Guangdong,

Xishuangbanna of Yunnan, Qianyanzhou of Jiangxi and Changbai Mountain of Jilin were

compared and analyzed. Fig 3 shows the comparison between simulated and observed values

of NEP in forest ecosystem at station scales. It was found that except for individual months,

the results of this study could generally reflect the monthly change characteristics of forests’

NEP. It can be seen from the above analysis that the FORCCHN model could well simulate the

spatiotemporal dynamics of NEP in Chinese forests.

Distribution pattern of carbon budget of Chinese forests

Over the past 40 years, Chinese forests were mainly carbon sinks. The spatial distributions of

forests’ NEP demonstrated distinct spatial differences, with gradual decreasing from Southeast

China to Northwest China. In particular, the higher NEP of forest during 2011–2020 appeared

in Southwest China, followed in Southeast China and Northeast China, and lower higher NEP

Fig 2. Comparison between NEP simulated by FORCECHN model and other research results on the countrywide scale.

https://doi.org/10.1371/journal.pone.0285790.g002
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of forest per unit area appeared in Northwest China (Fig 4). The forest in the southwestern

region had the highest NEP and the strongest carbon sink capacity. In particular, from 2011 to

2020, the NEP of forest in Yunnan Province was 500.1 gC�m-2�a-1 ~ 992.1gC�m-2�a-1. The for-

ests’ NEP in Southeast China was higher, and the NEP in most areas ranged from 200

gC�m2�a-1 to 400 gC�m2�a-1. However, some forests in the Northeast China and Northwest

China played the roles of carbon source. The forests’ NEP per unit area in some scattered areas

of Inner Mongolia and Heilongjiang Province was less than 0. The most carbon released into

the atmosphere was mostly found in the northern Heilongjiang Province.

Carbon budget of different forests and their contribution to Chinese

forests

Our results showed that the most forest types in China played carbon sink roles. In particular,

from 2011 to 2020, the total NEP of ECF forests, DBF forests, CBF forests, EDBF forests, RF

forests, SRF forests and CBF forests were 65.95 TgC (1Tg = 1012g), 49.56 TgC, 47.52 TgC,

25.08 TgC, 4.26 TgC, 6.01 TgC and 2.19 TgC, respectively. On the contrary, only the DCF for-

ests were carbon sources, and the total amount of carbon released to the atmosphere during

2011–2020 was 9.13 TgC (Fig 5). In addition, the relative contributions of NEP in different for-

est types to all forests in China were different. From 2011 to 2020, the ECF forests contributed

the most NEP (34.45%), followed by DBF forests (25.89%), EBF forests (24.82%), EDBF forests

(13.10%), RF forests (2.23%), SRF forests (3.14%) and CBF forests (1.14%).

Fig 3. Comparison of monthly variations between simulated NEP with observed NEE in four ecosystem flux stations in 2003.

https://doi.org/10.1371/journal.pone.0285790.g003

PLOS ONE Carbon budget of different forests in China estimated by an individual-based model and remote sensing

PLOS ONE | https://doi.org/10.1371/journal.pone.0285790 October 9, 2023 10 / 16

https://doi.org/10.1371/journal.pone.0285790.g003
https://doi.org/10.1371/journal.pone.0285790


Fig 4. Average distribution of NEP of forests in China from 2011 to 2020 (gC�m-2�a-1).

https://doi.org/10.1371/journal.pone.0285790.g004

Fig 5. Total NEP of different forest types and their relative contributions to forest carbon budget in China from 2011 to 2020.

https://doi.org/10.1371/journal.pone.0285790.g005
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Discussion

Carbon budget and its regional difference of Chinese forests

NEP represents the net absorbed carbon by ecosystems from atmosphere, in other words, car-

bon budget. NEP is vegetation biomass growth subtracting vegetation autotrophic respiration

and soil heterotrophic respiration [29]. In other words, NEP indicates the carbon accumula-

tion rate. The forests are the main body of the terrestrial ecosystem, storing about 45% organic

carbon of the terrestrial ecosystem [10], which are characterized by high carbon sink capacity.

Cui et al. [30] showed that the forests’ NEP was relatively high in tropical region with good cli-

matic conditions. They also found that forests within same biome also had diverse NEP rates

in different regions, which were caused by climate, site location, soil, and so on [31]. By analyz-

ing the simulation results, we found there were distinct spatial changes in NEP of Chinese for-

ests, with a decreasing NEP from Southeast China to Northwest China. Our simulated forests’

NEP with the value of mostly 100 gC�m2�a-1 ~200 gC�m2�a-1 in the northeastern China, was

basically consistent with the published measurement value of 169 gC�m2�a-1~187 gC�m2�a-1 by

eddy covariance in the Changbai Mountains [32]. Our simulated NEP of forests in Sichuan

Basin of Southwest China, mostly 200 gC�m2�a-1~300 gC�m2�a-1, was basically consistent with

the measurement NEP of 279 gC�m2�a-1 in Southwest China [33].

Carbon budget of different forests

NEP contributions of different forest types to all forests in China were found to vary greatly in

this study. High spatial heterogeneities existed in NEP of different forests. The highest NEP

was found in the ECF forests which tended to provide carbon sinks all year round. There are

several main reasons for this difference: climate, forest structure, vegetation types, phenology,

succession stages and environment condition. First, the climate variables are the important

factors dominating the NEP variabilities from regional scale to global scale. A study showed

that the increased temperature in winter or early spring was conducive to the early maturity

and assimilation of the forest, finally affecting the NEP [6]. Second, the forest structures are

critical factors determining NEP of forest ecosystems, because different forest types have dif-

ferent age compositions. Tilman et al. [34] demonstrated that younger forests usually had

higher net photosynthesis, faster growth and stronger carbon absorption potential than old

forests. At the same time, human disturbance made forests young and in early vegetation suc-

cession. Thirdly, different forest types have different distribution patterns. Corresponding,

their carbon sequestration capacities vary greatly. The evergreen forests have longer growth

season and grow in poorer soil, compared with deciduous forest, and the deciduous broad-

leaved forests are mainly in 30˚N–50˚N temperate regions [19]. Jolly et al. [35] pointed out the

phenological status significantly affected carbon exchange and NEP of forests, especially in

some high latitudes with temperature seasonality and limited photoperiod. Finally, other envi-

ronmental factors on landscape or regional scales, for instance, geology, topography, surface

slope, might important in dominating the variabilities in forests’ NEP, especially in mountain-

ous regions. This is another possible reason for regional difference in NEP.

Limitations and implication

Some caveats remain that should be examined and paid attention to in future researches when

assessing NEP of Chinese forests. As for spatial data, the interpolation accuracies and the spa-

tial resolutions of soil data and meteorological data in China should be constantly increased

and improved. In this study, the meteorological station data and soil data were interpolated

into grid data (10 km×10 km). On a provincial scale or smaller regional scale, the spatial
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resolutions of data were needed to be further improved. In addition, the forest succession was

not taken into account in this simulation. The next step was to add corresponding modules

and enhance the application ability of FORCCHN model in quantitative assessment on the

impact of forest succession on NEP of Chinese forests. The used remote sense image data were

also led to certain uncertainties in the results. Now, the remote sensing inversion techniques

are widely applied for vegetation parameter, making up for ground observation deficiencies

[20]. Nevertheless, remote sensing can indirectly monitor the processes of carbon cycle. There

are still certain uncertainties of vegetation parameters between retrieved values and indirectly

simulation value [36].

According to the statistics from FAO and UNEP, more than half of the global forests were

distributed in the Russian, Brazil, Canada, America and China, and the forests in China cov-

ered 5% of the land surface in the world [7]. Regrettably, in the second half of the 20th century,

human activities severely damaged China’s forests, with an average deforestation of 3.02%

every year [37]. In the past few decades, China has implemented many ecological projects and

protection laws of forests [38], the forests in China have high carbon sequestration rates and

great carbon sink growth potentials, and thus play more and more important roles in emission

reduction and regional environment improvement. Nevertheless, at present, the regional dif-

ferences of forests’ NEP are significant. As the ecological security barrier and important posi-

tion for developing carbon sink in China, Northwest China still has relatively small NEP

values compared with other regions, and even the forests in some forest areas in Northwest

China play carbon source roles. In short, in order to slow down climate warming, it is urgent

to enhance forest carbon sink through better forest tending and scientific management, for

improving the carbon absorption capacity in some forest areas of Northwest China.

Conclusions

We made use of the FORCCHN model and remote sensing observation data to appraise the

NEPs of different forest types and their relative contributions to all forests in China from

1981 to 2020. Several conclusions were drawn as follows. The FORCCHN model had good

ability of simulating the NEP of Chinese forests at spatiotemporal scales. Chinese forests

were mainly carbon sinks over the past 40 years. The spatial distribution of forests’ NEP

demonstrated obvious regional differences, gradually decreasing from Southeast China to

Northwest China. It was important to note that the highest values of forests’ NEP from 2011

to 2020 appeared in Southwest China. The values of forests’ NEP in Northeast China and

Southeast China were higher. However, the lower NEPs occurred in Northwest China. Rela-

tive contributions of NEP in different forest types to all forests in China varied greatly.

From 2011 to 2020, the ECF forests contributed the most NEP (34.45%), followed by DBF

forests (25.89%), EBF forests (24.82%), EDBF forests (13.10%), RF forests (2.23%), SRF for-

ests (3.14%) and CBF forests (1.14%). Nevertheless, only the DCF forests were considered to

be carbon sources, and their released total carbon to the atmosphere from 2011 to 2020 was

9.13 TgC on the whole.

Our research results can provide important information for supporting sustainable devel-

opment and realizing carbon neutralization target of China, and also offer scientific basis for

climate change research. Our results exhibit that carbon absorbed by different forest types in

China has played key roles in emission reduction and regional environment improvement

over the past several decades. Future work should focus on the accurate dynamic process and

mechanism of carbon fixation of different forest types. Consequently, some comprehensive

researches should be further conducted through multidisciplinary theories and practices com-

bined multiple methods at the same time, such as modeling and field research.
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