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AbstractBackground

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hos-

pitals worldwide. We monitored a tertiary hospital in Changchun, Jilin Province, China, and

found that CRKP was the major species among the carbapenem-resistant isolates in sew-

age. Subsequently, we evaluated the drug susceptibility, resistance genes, virulence genes,

outer pore membrane protein-related genes (OmpK35 & OmpK 36), multi-locus sequence

typing and replicons, biofilm formation capabilities, and resistance to chlorine-containing dis-

infectants among KP isolates. Identification of drug sensitivity, multiple resistance profiles

were observed including 77 (82.80%) multidrug resistant (MDR), 16 (17.20%) extensive

drug resistant (XDR). Some antibiotic resistance genes were detected, the most prevalent

carbapenemase gene was blaKPC, and 16 resistance genes were associated with other anti-

biotics. In addition, 3 (3.23%) CRKP isolates demonstrated loss of OmpK-35 and 2 (2.15%)

demonstrated loss of OmpK-36. In the detection of multi-locus sequence typing (MLST), 11

ST11 isolates carried virulence genes. The most common replicon type was IncFII. Biofilm-

forming capabilities were demonstrated by 68.8% of the isolates, all of which were resistant

to chlorine-containing disinfectants. The results of the study showed that antibiotic-resistant

isolates, especially CRKP, could resist disinfectants in hospital wastewater, and improper

treatment of hospital wastewater may lead to the spread of drug-resistant bacteria and their

genes. Thus, these bacteria must be eliminated before being discharged into the municipal

sewage system.

Introduction

Klebsiella pneumoniae (KP) is a member of the ESKAPEE (Enterococcus faecium, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Entero-
bacter spp, and Escherichia coli) family organisms [1]. Among these organisms, carbapenem-
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resistant Klebsiella pneumoniae (CRKP) has become the most common carbapenemase-pro-

ducing species in hospitals [2] and is a major healthcare-associated pathogen worldwide.

Research has shown that the incidence of CRKP infections and associated deaths increased

6.16 times from 2007–2015 [3]. KP is intrinsically resistant to multiple antibiotics and can eas-

ily acquire antibiotic resistance determinants. Furthermore, KP has the potential to evolve into

multidrug resistance phenotypes and hypervirulent KP (HVKP). The ST11 KP strain is associ-

ated with a high drug resistance phenotype and high virulence [4].

Carbapenem antibiotics are the most effective against multidrug-resistant (MDR) gram-

negative bacteria [5] and are used as a last resort to treat critical patients. The most common

mechanism by which bacteria develop resistance to carbapenem antibiotics is the production

of carbapenemases. KPC-2 and NDM are dominant carbapenemases observed in clinical

CRKP cases in China. Pathogens producing KPC-2 are resistant to all β-lactams except ceftazi-

dime–avibactam, greatly limiting treatment options; additionally, NDM is a serious threat to

public health worldwide due to the rapid spread of NDM-expressing pathogens [6].

Hospitals play an important role in spreading antibiotic-resistant bacteria into the environ-

ment through sewage. Hospital sewage contains various antibiotic compounds, microorgan-

isms, metabolized drugs, disinfectants, and patient excreta [7]. Thus, hospital sewage is a key

reservoir for MDR microorganisms [8]. Hospital sewage analysis has emerged as a supplement

to traditional clinical bacterial resistance monitoring because a single sewage sample contains

bacteria from thousands of individuals [9].

In this study, we characterized the CRKP isolates in sewage from a tertiary hospital in

Changchun City located in northeast China, confirmed the antibiotic resistance patterns and

detection of some drug resistance genes, evaluated biofilm formation ability, and virulence

genes, and performed multi-locus sequence typing (MLST).

Materials and methods

Sample collection and bacterial isolation

We selected a comprehensive tertiary hospital with over 5,900 beds and over 9,600 employees.

It is one of the top 30 hospitals in China and is located in Changchun in the northeast Jilin

province. The hospital has a standard sewage treatment system.

The samples were taken from sewage treatment stations and had not been subjected to

digestion treatment. We used a 500-mL stainless steel barrel sampler to collect 200-mL sewage

every two months four times from March to September 2021. The sampling procedure was

approved by Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sci-

ences. The samples were stored on ice, transported to the laboratory, and processed within 6 h

at 4˚C. One hundred microliters of each collected sewage sample was spread on MacConkey

agar (Haibo Biotech, Qingdao, China) plates containing 4 mg/L imipenem and 2 mg/L vanco-

mycin (to inhibit gram-positive bacteria) and incubated for 20 h at 37˚C. The 16S rDNA gene

was amplified and sequenced by the Comate Biosciences Co., Ltd. (Changchun, China), and

biochemical identificationwas determined using a BD PhoenixTM-100 System.

String testing and virulence gene detection

The hypermucoviscous phenotype was identified by string test. All isolates were inoculated on

agar plates containing 5% sheep blood and incubated at 37˚C for 20 h. The string test was per-

formed as previously described [10]. Virulence genes rmpA, rmpA2, iucA, and iroB were

amplified by PCR as previously described [11].
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Multi-locus sequence typing

MLST was performed on all isolates by PCR of seven standard housekeeping genes (gapA,

infB, mdh, pgi, phoE, rpoB, and tonB) listed on the PubMLST website (http://www.pasteur.fr/

recherche/genopole/PF8/mlst/Kpneumoniae.html). The sequence types (STs) were deter-

mined using the MLST database.

Antimicrobial susceptibility testing

The susceptibility of the isolates to amikacin, gentamicin, imipenem, meropenem, cefazolin,

ceftazidime, cefotaxime, cefepime, aztreonam, ampicillin, piperacillin, amoxicillin–clavula-

nate, ampicillin–sulbactam, piperacillin–tazobactam, colistin, trimethoprim–sulfamethoxa-

zole, chloramphenicol, ciprofloxacin, levofloxacin, moxifloxacin, and tetracycline was

determined using a BD PhoenixTM-100 System. The minimum inhibitory concentration

(MIC) of imipenem was determined using the broth microdilution method according to 2020

Clinical and Laboratory Standards Institute (CLSI). E. coli ATCC 25922 was used as the quality

control for the susceptibility test. The isolates found to be resistant to at least three different

classes of antimicrobial agents were classified as MDR bacteria, and resistant to at least one

agent in all but two or fewer antimicrobial agents were classified as XDR bacteria [12].

Detection of antimicrobial resistance genes

The presence of several drug resistance-associated genes was assessed by conventional single

PCR. The template DNA consisted of boiled lysates prepared from the isolates. Carbapenem

resistance genes (blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA–48), β-lactam resistance genes

(blaCTX–M, blaSHV, blaTEM), plasmid-mediated quinolone resistance (PMQR) genes (aac(60)-
Ib-cr, qnrA, qnrB, qnrC, qnrD, and qnrS), tetracycline resistance genes (tet(A), tet(B), tet(C), tet
(D), and tet(X)), sulfonamide resistance genes (sul1, sul2, sul3), chloramphenicol resistance

genes cmlA, floR, aminoglycoside resistance genes (armA, rmtB, aac(3)-II, aac(60)-Ib) and inte-

grase genes intI1 (for class 1 integrons), intI2 (for class 2 integrons), and intI3 (for class 3 inte-

grons) were evaluated. Furthermore, a single PCR assay targeting two outer membrane pore

protein genes (OmpK-35 and OmpK36) was also performed [13]. The PCR primers and condi-

tions are shown in S1 Table.

Replicon typing

A PBRT kit (DIATHEVA, Italy) was used to identify the 25 different replicons (HI1, HI2, I1,

I2, X1, X2, L/M, N, FIA, FIB, FIC, FII, FIIS, FIIK, W, Y, P, A/C, T, K, U, R, B/O, HIB-M, and

FIB-M) in eight multiplex PCRs following the manufacturer’s instructions [14]. PCR products

were visualized using QuickGel 6100 system (Monad Biotech CO., Ltd.)

Disinfectant resistance test

Method for determining the MIC value in CLSI, the MIC value of the disinfectant NaClO was

determined by micro-broth dilution. The concentration gradients were set as 1600 μg/ml,

800 μg/ml, 400 μg/ml, 200 μg/ml, 100 μg/ml, 50 μg/ml, and 25 μg/ml. E. coli ATCC 25922 was

used as the quality control. Because the effective concentration of NaClO solution reported in

the manufacturer’s instructions was 300–500 μg/ml, an isolate with a MIC value greater than

or equal to 400 μg/ml was defined as resistant in this research.
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Biofilm formation assay

We modified routine methods to determine the biofilm formation capability of the isolates

[15]. Briefly, the isolate to be tested was cultured in Mueller-Hinton broth (bioMérieux,

Marcy-l’Étoile, France) at 37˚C for 20 h; then the concentration was adjusted to 0.5 McFar-

land, the suspension was diluted 100 times, and 200 μL of the resulting suspension was inocu-

lated into a sterile flat-bottomed 96-well polystyrene microplate. After a 20-h incubation at

37˚C, the non-adherent cells were removed, and the plate was washed three times with 300 μl

of 1% sterile phosphate-buffered saline (PBS) per well. Biofilms were fixed with methanol for

15 min, the remaining methanol was removed, and the well was air-dried. Subsequently,

220 μl 1% crystal violet was added per well and incubated for 10 min. The well was then rinsed

with PBS, air dried, and 200 μl 75% ethanol was used to dissolve the dyed biofilm. Finally, the

optical density (OD) of the dissolved biofilm was measured with a microplate reader at a wave-

length of 460 nm. Three repeat tests were conducted for each strain. Sterile Mueller-Hinton

Broth medium (Solarbio, Beijing, China) was used as a negative control. The cut-off for bio-

film formation was defined as three standard deviations above the mean of the negative control

OD (ODc). The criteria were as follows: OD<ODc, no biofilm forming ability;

ODc<OD<2ODc, weak biofilm forming ability; 2ODc<OD<4ODc, moderate biofilm form-

ing ability, and 4ODc< ODc, strong biofilm formation ability.

Statistical analyses

Chi-square test scores were used to assess statistically significant differences in biofilm forma-

tion ability and antibiotic resistance. All statistical analyses were performed using IBM SPSS

Statistics for Windows version 26.0. International Business Machines Corporation, Armonk.

A probability (p) value < 0.05 was considered statistically significant.

Results

Bacterial Isolation and Identification

A total of 121 carbapenem-resistant isolates were isolated from four hospital sewage samples,

including 1 strain of Enterobacter kobei (0.83%), 2 isolates of E. coli (1.65%), 4 isolates of Citro-
bacter frazier (3.31%), 14 isolates of strain of Raoultella ornithinolytica (11.57%), 2 isolates of

Aeromonas spp. (1.65%), 5 isolates of Enterobacter cloacaestrain (4.13%) and 93 isolates of

Klebsiella pneumoniae (76.86%) (Fig 1). All isolates were confirmed by 16S rDNA gene analysis

and the BD PhoenixTM-100 System. Since KP accounted for the majority of the isolates, we

subsequently focused on the characteristics of KP isolates. Among the 93 KP isolates, 2 were

isolated in March 29 May, 23 in July, and 39 in September.

Determination of antibiotic susceptibility of the isolated CRKP

The MIC values of imipenem in the 93 CRKP isolates were determined, with 2 (2.15%) at

256 μg/ml, 18 (19.35%) at 128 μg/ml, 21 (22.58%) at 64 μg/ml, 22 (23.66%) at 32 μg/ml, 15

(16.13%) at 16 μg/ml, and 15 (16.13%) at 8 μg/ml (Fig 2). Furthermore, we performed suscepti-

bility testing for 21 antibiotics and all isolates showed reduced susceptibility to at least 10 or

more antibiotics. The resistance rates to imipenem and meropenem were 100% and 98.92%,

respectively. The resistance rates to cefazolin, ceftazidime, cefotaxime, cefepime, aztreonam,

piperacillin–tazobactam were 100%, 81.72%, 63.44%, 98.92%, 98.92%, and 98.92%, respec-

tively. All of the CRKP isolates were resistant to ampicillin, piperacillin, amoxicillin–clavula-

nate, and ampicillin–sulbactam. The resistance rates to trimethoprim–sulfamethoxazole,

chloramphenicol, ciprofloxacin, levofloxacin, moxifloxacin and tetracycline were 77.42%,
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30.11%, 22.58%, 17.20%, 21.51% and 25.81%, respectively (S2 Table). All CRKP isolates were

sensitive to colistin (Fig 3). Among the isolates, 32 different resistance patterns were observed.

It was worth noting that 77 (82.80%) were MDR isolates, and 16 (17.20%) were XDR isolates.

The most (18.28%, 17/93) common MDR pattern was

Fig 1. Distribution of 121 carbapenem-resistant isolates.

https://doi.org/10.1371/journal.pone.0285730.g001

Fig 2. MIC of 93 Klebsiella pneumoniae isolates against imipenem. Note. Rows represent imipenem concentration

gradients, and columns represent percentages of isolates.

https://doi.org/10.1371/journal.pone.0285730.g002
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IMP-MEM-CFZ-CAZ-CTX-FEP-AZT-AMP-PIP-AMC-SAM-TZP-SXT. Among the 13 XDR

CRKP isolates, 10 (76.92%) isolates had the same drug resistance pattern (AMK-GEN-IMP-

MEM-CFZ-CAZ-CTX-FEP-AZT-AMP-PIP-AMC-SAM-TZP-SXT-CIP-LVX-MXF-TET)

and 2 (15.38%) isolates were only sensitive to amikacin, with a resistance pattern (GEN-IMP-

MEM-CFZ-CAZ-CTX-FEP-AZT-AMP-PIP-AMC-SAM-TZP-SXT-CIP-LVX-MXF-TET)

(Table 1). Only one (7.69%) strain was resistant to all tested antibiotics except colistin.

Multi-locus sequence typing of the isolated CRKP

Multiple site sequencing was performed on 93 isolates of CRKP, of which 55 isolates detected

ST type. Among the isolates, 55 strains were detected with ST type, of which ST 11 type 12.9%

(12/93) and ST 197 type 12.9% (12/93) were the main ST types. Other detailed results are

shown in the S3 Table.

Antibiotic resistance genes and integrons of the isolated CRKP

Three carbapenemase resistance genes, blaKPC, blaNDM, and blaIMP, were detected. The blaKPC

was carried by 85 (91.4%) isolates, blaNDM by 9 (9.68%) isolates, and blaIMP by 4 (4.3%) iso-

lates. No isolates carried blaVIM or blaOXA-48. ESBLs genes were also detected, including 32

(34.4%) carrying blaCTX-M, 30 (32.26%) carrying blaSHV, and 53 (56.99%) carrying blaTEM. The

detection rates of the fluoroquinolone resistance genes qnrA, qnrB, qnrS, and aac(6’)-Ib-cr
were 3.22% (3/93), 36.56% (34/93), 25.8% (25/93) and 12.9% (12/93), respectively, qnrC and

qnrD were not detected. The detection rates of the sulfonamide resistance genes sul1 and sul2
were 60.22% (56/93) and 39.78% (37/93), respectively, sul3 was not detected. The detection

rates of the chloramphenicol resistance genes cmlA and floR were 9.68% (9/93) and 3.22% (3/

93), respectively. The detection rates of the tetracycline resistance genes tet(A) and tet(B) were

25.8% (24/93) and 3.23% (3/93), respectively. No tet(C), tet(D) and tet(X) genes were detected.

The detection rates of the aminoglycoside resistance genes rmtB, aac(3)-II, and aac(60)-Ib were

13.98% (13/93), 35.48% (33/93), 18.28% (17/93), respectively. ArmA, rmtB and rmtC were not

detected (Fig 4). Only class 1 integron was detected in 72 (61.0%) of the 93 CRKP isolates. The

outer membrane pore protein genes were analyzed; 3 (3.23%) isolates did not carry OmpK-35,

and 2 (2.15%) isolates did not carry OmpK36.

Fig 3. Resistance rates of Klebsiella pneumoniae isolates to 21 antibacterial drugs.

https://doi.org/10.1371/journal.pone.0285730.g003
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Detection of virulence genes of the isolated CRKP

Four virulence genes were detected in 11 of the 93 isolates. 6 (6.45%) isolates carried rmpA,

and 11 (11.83%) isolates carried rmpA2. The iron uptake system genes iucA, iroB were both

carried by 10 isolates, accounting for 10.75% of the isolates. Importantly, 6 isolates carried all

four virulence genes, accounting for 6.45% of the isolates. Among these 11 isolates, 1 was an

MDR isolates, and the others 10 isolates were MDR isolates (S4 Table). These 11 CRKP isolates

carrying virulence genes were all ST11.

Table 1. 32 drug resistance patterns in the 93 Klebsiella Pneumoniae isolates in this study.

No. Resistance patterns No. of

strains

1 IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP 6

2 GEN IMP CFZ CAZ AMP PIP AMC SAM SXT CHL TET 1

3 IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP SXT 2

4 IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP 2

5 GEN IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP 2

6 IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP SXT 3

7 GEN IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP SXT 1

8 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP 5

9 GEN IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP 1

10 GEN IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP SXT 4

11 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT 17

12 GEN IMP MEM CFZ CTX FEP AZT AMP PIP AMC SAM TZP CHL 1

13 GEN IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP SXT CHL 3

14 GEN IMP MEM CFZ FEP AZT AMP PIP AMC SAM TZP SXT CIP 1

15 IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP SXT CHL 3

16 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP 1

17 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP CHL TET 1

18 GEN IMP MEM CFZ CAZ FEP AZT AMP PIP AMC SAM TZP SXT CHL 5

19 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL 3

20 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT TET 1

21 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT 4

22 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT MXF TET 1

23 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP CHL TET 1

24 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP CIP MXF 1

25 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL 4

26 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL CIP TET 1

27 GEN IMP MEM CFZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL CIP MXF TET 1

28 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CIP MXF TET 1

29 IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL CIP LVX MXF TET 3

30 GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CIP LVX MXF TET 2

31 AMK GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CIP LVX

MXF TET

10

32 AMK GEN IMP MEM CFZ CAZ CTX FEP AZT AMP PIP AMC SAM TZP SXT CHL CIP

LVX MXF TET

1

Abbreviations: amikacin, AMK; gentamicin, GEN; impenem, IMP; meropenem, MEM; cefazolin, CFZ; ceftazidime,

CAZ; cefotaxime, CTX; cefepime, FEP; amtrinan, ATM; ampicillin, AMP; piperacillin, PIP; amoxicillin/clavulanic,

AMC; ampicillin/Sulbactam, SAM; piperacillin/tazobactam, TZP; colistin, CST; trimethoprim/sulfamethoxazole,

SXT; chloramphenicol, CHL; ciprofloxacin, CIP; levofloxacin, LVX; moxifloxacin, MXF; tetracycline, TET.

https://doi.org/10.1371/journal.pone.0285730.t001
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Various replicon types of the isolated CRKP

The results of PBRT revealed 12 replicon types. 44 (47.31%) isolates harbored two replicons,

and 24 (25.8%) harbored one replicon. Twelve (12.9%) isolates harbored three replicons, 2

(2.15%) harbored four replicons, and 3 (3.23%) harbored five replicons. One isolate harbored

six replicons. The most common replicon type was IncFII, which was harbored by 50 (53.76%)

isolates, followed by IncR and IncIB, harbored by 35 (37.63%) and 31 (33.33%) isolates, respec-

tively. No replicon types were found in 7 (7.53%) isolates. Among the isolates, the most com-

mon type of replicon combination was IncFII and IncR, accounting for 11 (11.83%), followed

by the combination of IncFIB and IncFIA, accounting for 10 (10.75%) (S5 Table).

Disinfectant resistance testing and biofilm formation of the isolated CRKP

All isolates were resistant to disinfectant. The NaClO MIC value of 67 (72.04%) isolates was

400 μg/ml, and that of the other isolates was 800 μg/ml. Regarding biofilm formation, 63

(67.74%) isolates exhibited biofilm formation capabilities; among them, 58 (63.4%) isolates

were weak film-forming, and 5 (5.4%) were moderate. The other 30 (31.2%) isolates were

unable to form biofilms (S6 Table). Among the 63 biofilm producers, 14 (22.22%) were XDR

and 49 (77.78%) were MDR. Among the 30 CRKPs that could not form biofilms, 2 (6.67%)

were XDR, and 28 (93.33%) were MDR. Regarding drug resistance among CRKP isolates, the

biofilm-forming ability of CRKP was significantly different from the resistance of different

classes of antibiotics(p = 0.019).

Discussion

The source of hospital sewage is very complex, including medical and domestic sewage. Hospi-

tal sewage contains highly resistant microorganisms and is a suitable niche for bacterial hori-

zontal gene transfer. We conducted this study to understand the characteristics of highly

resistant bacteria in hospital sewage.

CRKP was the most common species of carbapenem-resistant bacteria isolated from the

sewage samples. This finding is probably because the temperature in the Northern Hemisphere

begins to increase in May, and July to September are the hottest months of the year; K.

Fig 4. The heat map of drug resistance gene detection in the 93 Klebsiella Pneumoniae isolates in this study.

https://doi.org/10.1371/journal.pone.0285730.g004
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pneumoniae survives better at higher temperatures and humidity levels, and the incidence of

KP bloodstream infections varies seasonally [16], this is also consistent with our research.

Antibiotic resistance has always been a key and difficult issue of global concern, and hospi-

tal sewage is a key reservoir for MDR microorganisms. Except for β lactam antibiotics, CRKP

isolates also have different degrees of resistance to other antibiotics, and the antimicrobial

spectrum is complex.

In addition, the biofilm formation ability of CRKP isolates not only makes it easier for these

isolates to colonize in the sewers [17], but also shows significant differences in antibiotic resis-

tance. And regarding the drug resistance pattern, biofilm-producing isolates were more resis-

tant than non-biofilm-producing isolates, consistent with previous reports [11]. Biofilm-

forming CRKP is more dangerous because these isolates can colonize the respiratory, gastroin-

testinal, and urinary tracts and can lead to invasive infections (especially in immune-deficient

patients) [18]. With the increasing prevalence of multidrug-resistant KP, effective manage-

ment of infections caused by biofilm-producing microorganisms is essential in healthcare

settings.

In addition, all of these CRKP isolates were resistant to chlorine-containing disinfectants,

potentially because the sewage contained disinfectants from the operating rooms and wards

that had been diluted to sublethal concentration by domestic sewage and other water; bacteria

living in this sublethal concentration environment might develop resistance [19]. Further-

more, it has been reported that bacteria with biofilm growth patterns can develop resistance to

disinfectants [20]. Further research is required to explain why these KP isolates survive in sew-

age. Fortunately, when we tested the samples from the outlet, no live bacteria were detected,

indicating that the sewage digestion tank eliminated these isolates.

The MIC value of imipenem for most CRKP isolates is 32 μg/mL and 64 μg/mL, and blaKPC
is the most common carbapenem resistant gene in this study. In the national surveillance

report of Chinese clinical carbapenem-resistant Enterobacteriaceae (CRE) strains isolated

from 2012 to 2016, the detection rate of blaKPC was 77.1%, that of blaNDM was 11.3%, and that

of blaIMP was 1.8% [21]. However, in north China, the incidence of blaKPC was higher than the

average level, reaching 90.32%, a detection rate consistent with our results [22, 23]. Among the

93 isolates, 4 CRKP isolates did not carry any carbapenemase genes. The MIC value was 8 μg/

mL for imipenem in two of these isolates and 16 μg/mL in the other two, both representing

low carbapenem resistance levels. This finding may be due to other rare carbapenem resistance

genes; ESBL and/or AmpC production and changes in the cell membrane may also be respon-

sible [24, 25]. ESBLs and AmpCs can hydrolyze carbapenems at very low levels; when com-

bined with reduced membrane impermeability or increased drug efflux, these strains can

demonstrate resistance. Notably, in the present study, four CRKP isolates without deletion of

Ompk-35 or Ompk-36 protein were observed. We hypothesize that, in addition to Ompk-35,

Ompk-36 outer membrane pore protein deletion, the deletion of other outer membrane pore

proteins, or alterations in the exopump system may be involved in conferring increased

resistance.

Plasmids play an important role in spreading antibiotic resistance [26]. In our study, IncFIB

and IncFII were dominate replicons, and these types of plasmids were also popular vectors for

carbapenem resistance genes such as blaNDM, blaKPC, and ESBL genes blaCTX–M, and blaOXA

[27, 28]. The wide variety of replicon types increases drug-resistant gene transmission and the

genetic evolution of drug-resistant bacteria.

Among highly drug-resistant isolates of CRKP, ST11 was the most common sequence type,

which is characterized by high virulence and high drug resistance [29]. ST11 is one of the most

important hospital-acquired carbapenem-resistant K. pneumoniae (HA-CRKP) clones [30]. In

our study, all 11 ST11 XDR isolates harbored the HVKP -related molecular marker genes iroB,
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iucA, rmpA, and rmpA2 [11]. Research has shown an association between rmpA and purulent

liver abscesses [31]; overproduction of capsule regulator genes (rmpA or rmpA2), salmochelin

(iroBCDN) and aerocin (iucABCD) siderophore gene clusters leads to higher virulence, as

shown in a neutrophil killing assay (NKA) and in Galleria mellonella infection model infection

assays [32]. These virulence genes have been suggested to be present in virulence plasmids

[33]. ST11-type CR-HVKP has been reported to cause severe infection in relatively healthy

people in China due to the acquisition of the virulence plasmid pLVPK, making infection diffi-

cult to treat with antibiotics [32]. Hybrid-binding virulence plasmids have been shown to be

transferable by conjugation to other CRKP isolates, transforming ST11 CRKP strains into Hv-

CRKP strains [4]. Thus, the ST11 CRKP isolates in this study had high drug resistance and the

potential for high virulence and transmission.

Conclusions

In this study, CRKP was the most Carbapenem drug-resistant bacteria isolated from hospital

sewage, the resistance of some antibiotics may be related to the ability of biofilm formation.

CRKP isolates were all tolerant to chlorine-containing disinfectants, which may be related to

disinfectants used in the environment for a long time. In this study, blaKPC was the major Car-

bapenem gene, and some virulence genes were also detected. The Multilocus sequence typing

of CRKP isolates were diverse, and ST11 was closely related to hv-CRKP. Although we exam-

ined the replication subtype in CRKP isolates, however, further studies are needed to clarify

whether the resistance and virulence characteristics of these isolates are influenced by mobile

genetic factors, such as plasmids, and whether they pose a risk of transmission. Improper treat-

ment of hospital sewage may lead to the spread of drug-resistant bacteria and antibiotic-resis-

tant genes, which may become a substantial threat to public health.
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