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Abstract

Plant extract is a mixture of diverse phytochemicals, and considered as an important

resource for drug discovery. However, large-scale exploration of the bioactive extracts has

been hindered by various obstacles until now. In this research, we have introduced and eval-

uated a new computational screening strategy that classifies bioactive compounds and

plants in semantic space generated by word embedding algorithm. The classifier showed

good performance in binary (presence/absence of bioactivity) classification for both com-

pounds and plant genera. Furthermore, the strategy led to the discovery of antimicrobial

activity of essential oils from Lindera triloba and Cinnamomum sieboldii against Staphylo-

coccus aureus. The results of this study indicate that machine-learning classification in

semantic space can be a highly efficient approach for exploring bioactive plant extracts.

Introduction

Plant extracts have been used to treat various diseases for thousands of years. In eastern medi-

cines, plant extracts have formed the basis for traditional medicine systems. In western medi-

cines, by contrast, the isolation of bioactive low-molecular-weight compounds such as

morphine (from opium), quinine (from cinchona tree), atropine (from Atropa belladonna) led

to the idea of chemical compounds as drugs [1]. Identification of the active ingredients acceler-

ated pharmacological researches, resulted in discovery of the target proteins and disentangle-

ment of the molecular mechanism of actions.

Knowledge accumulation on active compounds has come with the development of infor-

mation-rich approaches for efficient drug discovery. Quantitative structure-activity relation-

ship (QSAR) and machine learning have been introduced to the drug development [2]. With

the pharmacological reports increased, data resources for bioactive compounds such as MeSH,

PubChem [3] and ChEBI [4] were also made available.
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Universidad Autonoma de Chihuahua, MEXICO

Received: March 29, 2023

Accepted: April 28, 2023

Published: May 15, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0285716

Copyright: © 2023 Yabuuchi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: R scripts and

preprocessed literature data are available at https://

github.com/yabuuchi-hiroaki/webvs. All other

https://orcid.org/0000-0002-7353-0956
https://orcid.org/0000-0002-8086-3214
https://doi.org/10.1371/journal.pone.0285716
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285716&domain=pdf&date_stamp=2023-05-15
https://doi.org/10.1371/journal.pone.0285716
https://doi.org/10.1371/journal.pone.0285716
https://doi.org/10.1371/journal.pone.0285716
http://creativecommons.org/licenses/by/4.0/
https://github.com/yabuuchi-hiroaki/webvs
https://github.com/yabuuchi-hiroaki/webvs


Exploring novel medicinal plants is a major task in natural product research. In order to

predict biological activity of the plant extracts, a mathematical model called quantitative com-

position-activity relationships (QCAR) was proposed [5, 6]. QCAR accounts the relationship

of magnitude of the various chemical compositions of plant extracts with the bioactivity. How-

ever, its application to medicinal plant screening is limited because of (1) lack of the large-scale

open data treating relation between composition and bioactivity of plant extracts, (2) difficulty

in comprehensive compositional analysis covering diverse secondary metabolites in a plant

sample, (3) necessity of composition data for all plant extracts to be predicted.

To circumvent these limitations, we have shown that a new computational screening strat-

egy, word embedding-based virtual screening (WEBVS), has the potential to identify bioactive

plant extracts. The overview of WEBVS is shown in Fig 1. Word embedding is known to

encode semantic and syntactic similarity insofar as the embeddings for similar words will be

nearby one another in vector space [7]. The WEBVS method utilizes the word embedding and

a large amount of biomedical literature data to encode all known compounds and plants into a

semantic space. The compounds are labeled by the presence/absence (active/inactive) of bio-

logical annotation data, and the labels and vectors are learned to construct a classification

model. Finally, the labels of plants are predicted by the model in the semantic space. In this

research, WEBVS was applied to screening of antimicrobial plant extracts, and was evaluated

by statistical methods and antimicrobial assay against Staphylococcus aureus, a major human

pathogen that causes a wide range of clinical infections [8].

Materials and methods

Data

Biomedical literature data with automatic annotation of chemical compounds and species was

retrieved from Pubtator FTP site in September 2020 [9]. Biological annotation data of chemical

Fig 1. Overview of word embedding-based virtual screening (WEBVS).

https://doi.org/10.1371/journal.pone.0285716.g001
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compounds was retrieved from MeSH [3] and ChEBI [4] in September 2021. Plant taxonomic

data was retrieved from NCBI Taxonomy [3] in September 2021. A list of antibacterial plants

was retrieved from a systematic review conducted by Chassagne et al. [10] to evaluate predic-

tion performance of WEBVS.

Reagents

Acetone for gas chromatography was purchased from KISHIDA CHEMICAL Co., Ltd, Japan.

Dimethyl sulfoxide (DMSO) and thymol (special grade) were purchased from FUJIFILM

Wako Pure Chemical Corporation, Japan. A series of n-alkane standards (C9 to C40) was pur-

chased from GL Sciences Inc., Tokyo, Japan. Mueller-Hinton II broth was purchased from

Becton, Dickinson and Company, USA. Staphylococcus aureus (NBRC 12732) for antibacterial

activity tests were from the National Institute of Technology and Evaluation, Biological

Resource Center (NBRC), Japan.

Preprocessing text data

We selected natural compounds annotated by “pharmacological action” term with “anti-bacte-

rial agents” or “antifungal agents” or “fungicides, industrial” or “antitubercular agents” or

“antibiotics, antitubercular” or “anti-infective agents” from MeSH, and those annotated by

“has_role” relation with “antibacterial agent” or “antibacterial drug” or “antifungal agent” or

“antifungal agrochemical” or “antifungal drug” or “antiinfective agent” or “antimicrobial

agent” or “antiseptic drug” or “antitubercular agent” or “fungicide” from ChEBI. These com-

pounds (128 compounds, S1 Table) were regarded as “active compounds” in this research. The

other MeSH compounds were assumed to be “inactive compounds”.

The biomedical literature data consisted of 132962 PubTator articles which contain both a

bioactivity-related keyword (“activity”, “action”, “effect”, “property”, “efficacy” or “assess-

ment”) and a name of either active compounds or plants in their titles. The plant species, sub-

species and variants were grouped at the genus level. Low-frequent words (appeared in less

than 0.1% of the selected articles) and stop-words were removed from the abstracts of the

articles.

Word embedding

12356663 words appeared in the abstracts were inputted to word2vec embedding with contin-

uous bag of words (CBOW) [11] to encode 16381 unique words as numerical vectors. “word2-

vec” R package (version 0.3.4) was used for the embedding implementation. The number of

dimensions was set to 100, the window size was set to 5, and the number of negative samples

was set to 5.

Machine learning of antimicrobial activity of chemical compounds

The embedded vectors of 128 active and 6443 inactive compounds were inputted to machine

learning algorithms to classify the presence/absence of antimicrobial activity. As the labels of

inactive compounds were uncertain, we randomly selected the same number of inactive com-

pounds as that of active compounds. This selection was repeated ten times to avoid bias and

increase robustness. Support vector machine (SVM) with the radial basis function kernel [12],

random forest [13] and deep neural network [14] were tested by five-fold cross-validation with

hyper-parameter optimization. The machine learning algorithm which showed the best accu-

racy was chosen as the best classifier. The labels of all embedded compounds were predicted
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by the classifier, and were sorted by output probability of the presence of antimicrobial activity

(hereinafter referred to as “antimicrobial probability”).

Virtual screening of antimicrobial plants

In order to predict labels of the plants, 2534 plant genera encoded by the word embedding

were inputted to the classifier. The antimicrobial probability (classified as active if the value is

above 0.5) was checked against the list of antibacterial plants, and plotted as an enrichment

curve. “chemmodlab” R package (version 2.0.0) was used for plotting the curve with simulta-

neous plus-adjusted sup-t confidence bands [15]. Furthermore, two plants classified as active

were selected for essential oil extraction, gas chromatography/mass spectrometry (GC/MS)

analysis and antimicrobial assay.

Extraction of essential oils

Fresh plant samples of Lindera triloba (syn. Parabenzoin trilobum) were collected from Koya

town (Wakayama, Japan) in September 2021, and were separated into leaves and branches.

Fresh plant samples of Cinnamomum sieboldii (syn. Cinnamomum okinawense) were collected

from Tanabe city (Wakayama, Japan) in September 2021, and were separated into leaves,

branches and stem barks. After shade-dried for several weeks, the materials were submitted to

hydro-distillation for 3 hr with distilled water using a Clevenger-type apparatus. The obtained

essential oils were stored at 4˚C until further analysis.

Gas chromatography-mass spectrometry (GC/MS) analysis

Chemical characterization was performed by gas chromatograph coupled with mass spectrom-

eter model QP2010 (Shimadzu, Kyoto, Japan). Essential oils were dissolved in acetone (2 μL/

mL). This solution (1 μL) was injected in split mode (1:50 ratio) onto a DB-5MS column (30

m × 0.25 mm i.d. × 0.25 μm film thickness, Agilent, USA). The injection temperature was set

at 270˚C. The oven temperature was started at 60˚C for 1 min after injection and then

increased at 10˚C/min to 180˚C for 1 min, increased at 20˚C/min to 280˚C for 3 min followed

by an increase at 20˚C/min to 325˚C, where the column was held for 20 min. Mass spectra

were obtained in the range of 20 to 550 m/z. Essential oil components were identified based on

a search (National Institute of Standards and Technology, NIST 14), the calculation of reten-

tion indices relative to homologous series of n-alkane, and a comparison of their mass spectra

libraries with data from the mass spectra in the literature [16, 17].

Antimicrobial assay

Broth microdilution assay was performed according to standard method of Japan Society of

Chemotherapy [18] with slight modification. A stock solution of each essential oil (dissolved

to a concentration of 40 mg/mL in DMSO) was diluted to 4 mg/mL by Mueller-Hinton II

broth medium, followed by serial dilution by the medium to lower concentrations (2, 1, 0.5,

0.25, 0.125, 0.0625, 0.0313, 0.0156 and 0.0078 mg/mL). Thymol, a known antimicrobial agent,

was dissolved and diluted in the same way to ensure microbial susceptibility (positive control).

The oils were all tested in triplicate. Staphylococcus aureus NBRC 12732 was inoculated onto

normal agar plates, and cultured for 24 hr at 35±1˚C. The bacterial suspensions were diluted

by saline to obtain 0.5 McFarland turbidity equivalent (ca. 108 colony forming units per mL

(CFU/mL)), and were further diluted 10 times (ca. 107 CFU/mL). 0.1 mL of essential oil-con-

taining medium and 5 μL inoculum were added to sterile micro-titre plates. 10% (v/v) DMSO

in the medium was used to determine if the solvent exhibited any antimicrobial effect (negative

PLOS ONE Virtual screening of antimicrobial plant extracts by machine-learning classification in semantic space

PLOS ONE | https://doi.org/10.1371/journal.pone.0285716 May 15, 2023 4 / 12

https://doi.org/10.1371/journal.pone.0285716


control). The micro-titre plates were incubated for 18 to 24 hr at 35±1˚C. Based on the opacity

and color change in each well, minimum concentration capable of inhibiting the growth was

determined.

Results

Machine learning of antimicrobial activity of chemical compounds

The classification models for antimicrobial compounds were successfully constructed in the

semantic space. All machine learning algorithms showed good accuracies ranged from 84.3 to

85.4% in the five-fold cross-validation (S2 Table). In the following sections, SVM was adopted

for further evaluations because it showed the best average accuracy.

The constructed model classified 726 MeSH compounds as active even though they were

assumed to be inactive in the learning process. The top 10 MeSH compounds ranked by anti-

microbial probability were shown in Table 1. Among the compounds, perillyl alcohol [19],

daphnoretin [20], xanthohumol [21], rhodomyrtone [22], galbanic acid [23] and alpha-

hederin [24] were previously reported to show antimicrobial activities. These compounds are

potentially active, although they are not annotated as active compounds in the databases.

Virtual screening of antimicrobial plants

Out of 2534 plant genera, 561 were predicted as active by the classifier (S3 Table). Among

them, 164 were overlapped with antimicrobial plants listed in the review [10]. On the other

hand, 265 genera in the review were predicted as inactive (sensitivity = 38.2%). The results

were also shown as enrichment curve (Fig 2). The closer the curve is to the ideal curve, the

higher the predictive performance of the model is. In the top 1% ranked plant genera (25 gen-

era), WEBVS model correctly predicted 9 active genera, while 4.2 (1% of 429) active genera

were expected to be included at random sampling (Table 2).

Plant selection and extraction of essential oil

Lindera is a genus predicted as active (antimicrobial probability = 0.910), although it is not

listed in the systematic review [10]. In fact, various pharmacological and biological properties

of Lindera plants have been focused in many studies [25]. In this study, Lindera triloba, an

endemic species in Japan, was selected for antimicrobial bioassay. The essential oils from

branch and leaf of Lindera triloba were obtained by hydrodistillation with yields (v/w % on dry

weight basis) of 0.36% and 0.46%, respectively (S4 Table).

Table 1. The top 10 ranked compounds with higher antimicrobial probability.

Compound Probability Biological annotation

perillyl alcohol 0.975 antineoplastic agents, enzyme inhibitors

hydrazones 0.944 –

daphnoretin 0.938 antiviral agent, antineoplastic agent

xanthohumol 0.938 apoptosis inducer, antineoplastic agent, antiviral agent, diacylglycerol O-acyltransferase inhibitor, anti-HIV-1 agent

rhodomyrtone 0.918 –

calomel 0.917 –

dehydroabietinol 0.915 –

galbanic acid 0.901 –

naphthoquinones 0.895 –

alpha-hederin 0.890 anti-inflammatory agent

https://doi.org/10.1371/journal.pone.0285716.t001
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Cinnamomum is one of the genera with the most species investigated for antibacterial activ-

ity [10], and was also predicted as active (antimicrobial probability = 0.614) in this study. Cin-
namomum sieboldii, a species grown wild in Japan, was also selected for antimicrobial assay.

The essential oils from branch, leaf and stem bark of Cinnamomum sieboldii were obtained by

hydrodistillation with yields of 0.80%, 0.64% and 0.58%, respectively (S4 Table).

Chemical composition of selected essential oils

The chemical profile of investigated essential oils determined via GC/MS analysis, was pre-

sented in Table 3 and S4 Table. The main constituents of Lindera triloba branch oil were α-

cadinol (9.4%), epi-α-muurolol (9.3%), camphor (9.1%), whereas those of the leaf oil were δ-

cadinene (14.7%), α-cadinol (11.3%) and epi-α-muurolol (10.8%).

The main constituents of Cinnamomum sieboldii leaf oil were linalool (24.8%), cinnamalde-

hyde (19.1%), geranial (12.1%), whereas those from the other parts were linalool (branch:

51.2%, stem bark: 41.4%) followed by cinnamaldehyde (21.0%, 19.0%).

Antimicrobial assay

The minimum inhibitory concentration (MIC) values against S. aureus were 1 mg/mL for Lin-
dera triloba branch oil and 4 mg/mL for the leaf oil. The MIC value of Cinnamomum sieboldii

Fig 2. Enrichment curve obtained by WEBVS. The simultaneous 95 percent plus-adjusted sup-t confidence bands

are colored in gray.

https://doi.org/10.1371/journal.pone.0285716.g002
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oils from leaf, branch and stem bark were all 1 mg/mL (Table 4). These values are considered

to be active with reference to Gibbons’ paper which defined the essential oils having significant

activity if the MIC is equal to or less than 5 μL/mL [26]. MIC for thymol (positive control) was

0.25 mg/mL, which was equivalent to literature data (0.03 v/v % [27]). No inhibition of bacte-

rial growth was observed in the negative control.

Table 2. The top 1% ranked plants with higher antimicrobial probability.

Genus Probability

Casearia 0.965

Lithospermum 0.956

Syngonanthus 0.956

Forsythia 0.938

Daphne 0.930

Biancaea 0.924

Ruta 0.918

Chelidonium 0.916

Sophora 0.914

Peganum 0.913

Spatholobus 0.911

Lindera 0.910

Ecballium 0.907

Carapa 0.901

Humulus 0.899

Garcinia 0.898

Alisma 0.897

Copaifera 0.895

Zanthoxylum 0.893

Boesenbergia 0.891

Kaempferia 0.890

Gardenia 0.890

Buddleja 0.888

Croton 0.887

Pentanema 0.886

Polygonum 0.886

Gray background indicates antimicrobial plants reviewed by Chassagne et al. [10]

https://doi.org/10.1371/journal.pone.0285716.t002

Table 3. Major components of essential oils from Lindera triloba and Cinnamomum sieboldii.

Species Parts Major compounds identified (%)*
Lindera triloba leaf δ-cadinene (14.7), α-cadinol (11.3), epi-α-muurolol (10.8), α-muurolene (6.1),

alloaromadendrene (6.0), β-bisabolene (6.0)

branch α-cadinol (9.4), epi-α-muurolol (9.3), camphor (9.1), limonene (8.3), bornyl

acetate (7.5), δ-cadinene (7.1)

Cinnamomum
sieboldii

leaf linalool (24.8), cinnamaldehyde (19.1), geranial (12.1)

branch linalool (51.2), cinnamaldehyde (21.0), 1,8-cineole (11.8)

stem

bark

linalool (41.4), cinnamaldehyde (19.0), 1,8-cineole (10.3)

Values in parentheses are the percentage of the total peak area obtained from the total ion current chromatogram.

https://doi.org/10.1371/journal.pone.0285716.t003
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Discussion

Drug discovery and development is a long and costly process that takes years with an average

cost of over $1–2 billion to be approved as a new drug [28]. Various technologies for miniatur-

ization, lab automation and robotics have enabled pharma to perform bioassay targeting mas-

sive chemical compounds by means of high-throughput screening (HTS) [29]. However,

application of HTS for identification of biologically active natural products remains a relatively

uncommon activity because of requirement of expensive equipment and a variety of experi-

mental obstacles such as sample unavailability (restricted season or location), degradation, pre-

cipitation and non-specific/off-target effects [30]. Therefore, computational approach is of

great help in understanding the bioactivity of plant extracts composed of complex mixtures of

phytochemicals. In this research, WEBVS method successfully classified antimicrobial plant

extracts by capturing local context similarity between bioactive compounds and plant extracts.

The most important advantage of WEBVS is unnecessity of manual data curation that is

costly and time-consuming process. Although recent studies [31, 32] showed good perfor-

mance of QCAR-based model at predicting antimicrobial activity of essential oils, they have

limitations in collecting new training data. WEBVS consists of simple and automated pro-

cesses with public literature data which is regularly updated, indicating that the classification

model is easily constructed and updated. Furthermore, WEBVS is suitable for large-scale

exploration because it is applicable to all plants that appeared in literature data.

WEBVS also fits the idea of drug repositioning [33] that identifies new therapeutic uses for

already-available drugs including approved, shelved and withdrawn drugs. To our knowledge,

this is the first report on antimicrobial activity of Lindera triloba and Cinnamomum sieboldii.
Lindera triloba is a deciduous shrub distributed on the Pacific side of the islands (Honshu, Shi-

koku and Kyushu) in Japan [34], and was reported to show insect anti-feeding activity [35]. In

this research, GC/MS analysis of the essential oils revealed the presence of various sesquiter-

pene alcohols including α-cadinol and epi-α-muurolol (τ-cadinol). These alcohols were deter-

mined to be active by Su et al. [36], and are considered to contribute to the antimicrobial

activity of Lindera triloba. Cinnamomum sieboldii is an evergreen arbor that used to be culti-

vated as a substitute for cassia (Cinnamomum cassia), and was used as traditional Japanese

medicine in the 19th century. Watanabe and Goto reported that quantity of the essential oil

compares favorably with that of cassia [37]. However, Cinnamomum sieboldii was removed

from Japanese Pharmacopoeia (7th edition) in 1962 because the increasing import of low-cost

cassia rendered it unnecessary as a substitute [38]. Both linalool and cinnamaldehyde, detected

as main constituents of the essential oil in this study, were reported to show antimicrobial

activity against S. aureus [27]. Further researches including clinical studies are needed to

reconsider the medicinal use of Cinnamomum sieboldii.
Literature-based discovery, a text mining technique used to discover new knowledge

implicitly present in scientific literature, has become widespread as scientific literature is grow-

ing at an exponential rate [39]. However, it has not been systematically explored in context

with natural products [40]. Our WEBVS strategy can also be considered as an automated

Table 4. Antimicrobial activity of essential oils from selected plants against Staphylococcus aureus.

Lindera triloba Cinnamomum sieboldii
leaf branch leaf branch stem bark

MIC (mg/mL) a 4 1 1 1 1

a MIC: Minimum inhibitory concentration

https://doi.org/10.1371/journal.pone.0285716.t004
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literature-based discovery trying to build a knowledge bridge from chemistry area to the natu-

ral product area. Development of different literature-based models such as co-occurrence

models and semantic models may also support the drug discovery and drug repositioning for

natural products as well.

Finally, WEBVS has potential limitations. The first is that WEBVS cannot predict for a

plant which has never been reported before. Approximately 13500 plant genera have been

identified worldwide [41], but just 19% of them (2534 genera) were targeted in this study

because of the lack of literature data. Combining WEBVS with phylogenetic analysis may be a

promising approach because secondary metabolites of the plants are often similar within

members of a clade [42]. The second limitation concerns the quantitativity. Any values in the

text data did not influence the embedding, indicating that WEBVS is not suitable for quantita-

tive prediction. However, it is generally difficult to combine quantitative activity data from

multiple studies because the method and experimental conditions differ among them. Devel-

opment of a relation extraction technique could help for integration and prediction of the

quantitative activity data from full-text, tables and figures of the articles. The third limitation

concerns chemical and bioactive variation due to environmental conditions. Various factors

including temperature, carbon dioxide, lighting, ozone, soil water, soil salinity and soil fertility

are known to affect plants’ physiological and biochemical responses [43]. These factors may

cause prediction error of WEBVS.

In conclusion, WEBVS is an efficient approach for exploring antimicrobial plant extracts.

Application of WEBVS for other biological activities will be evaluated in future research.
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