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Abstract

Sleep is an important indicator of a person’s health, and its accurate and cost-effective

quantification is of great value in healthcare. The gold standard for sleep assessment and

the clinical diagnosis of sleep disorders is polysomnography (PSG). However, PSG requires

an overnight clinic visit and trained technicians to score the obtained multimodality data.

Wrist-worn consumer devices, such as smartwatches, are a promising alternative to PSG

because of their small form factor, continuous monitoring capability, and popularity. Unlike

PSG, however, wearables-derived data are noisier and far less information-rich because of

the fewer number of modalities and less accurate measurements due to their small form fac-

tor. Given these challenges, most consumer devices perform two-stage (i.e., sleep-wake)

classification, which is inadequate for deep insights into a person’s sleep health. The chal-

lenging multi-class (three, four, or five-class) staging of sleep using data from wrist-worn

wearables remains unresolved. The difference in the data quality between consumer-grade

wearables and lab-grade clinical equipment is the motivation behind this study. In this

paper, we present an artificial intelligence (AI) technique termed sequence-to-sequence

LSTM for automated mobile sleep staging (SLAMSS), which can perform three-class

(wake, NREM, REM) and four-class (wake, light, deep, REM) sleep classification from activ-

ity (i.e., wrist-accelerometry-derived locomotion) and two coarse heart rate measures—both

of which can be reliably obtained from a consumer-grade wrist-wearable device. Our

method relies on raw time-series datasets and obviates the need for manual feature selec-

tion. We validated our model using actigraphy and coarse heart rate data from two indepen-

dent study populations: the Multi-Ethnic Study of Atherosclerosis (MESA; N = 808) cohort

and the Osteoporotic Fractures in Men (MrOS; N = 817) cohort. SLAMSS achieves an over-

all accuracy of 79%, weighted F1 score of 0.80, 77% sensitivity, and 89% specificity for

three-class sleep staging and an overall accuracy of 70-72%, weighted F1 score of 0.72-

0.73, 64-66% sensitivity, and 89-90% specificity for four-class sleep staging in the MESA

cohort. It yielded an overall accuracy of 77%, weighted F1 score of 0.77, 74% sensitivity,

and 88% specificity for three-class sleep staging and an overall accuracy of 68-69%,
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weighted F1 score of 0.68-0.69, 60-63% sensitivity, and 88-89% specificity for four-class

sleep staging in the MrOS cohort. These results were achieved with feature-poor inputs with

a low temporal resolution. In addition, we extended our three-class staging model to an

unrelated Apple Watch dataset. Importantly, SLAMSS predicts the duration of each sleep

stage with high accuracy. This is especially significant for four-class sleep staging, where

deep sleep is severely underrepresented. We show that, by appropriately choosing the loss

function to address the inherent class imbalance, our method can accurately estimate deep

sleep time (SLAMSS/MESA: 0.61±0.69 hours, PSG/MESA ground truth: 0.60±0.60 hours;

SLAMSS/MrOS: 0.53±0.66 hours, PSG/MrOS ground truth: 0.55±0.57 hours;). Deep sleep

quality and quantity are vital metrics and early indicators for a number of diseases. Our

method, which enables accurate deep sleep estimation from wearables-derived data, is

therefore promising for a variety of clinical applications requiring long-term deep sleep

monitoring.

Introduction

The quantity and quality of sleep are key indicators of human health [1]. Sleep is known to

restore energy [2], bolster the immune system [3], ward off infection [4], and impact cognition

and behavior [5]. Chronic disruptions in sleep patterns have been linked to cardiovascular dis-

ease [6], diabetes [7, 8], Alzheimer’s disease [9–11], depression [12], migraine [13], and many

other serious conditions. Monitoring of sleep and the subsequent analysis and characterization

of sleep patterns are, therefore, of long-standing interest to healthcare providers [14].

The gold standard for clinical sleep monitoring is overnight polysomnography (PSG),

which is a multiparametric assessment of sleep featuring several functional measurements,

including electroencephalography (EEG), electrocardiography (ECG), pulse oximetry, electro-

oculography (EOG), electromyography (EMG), and respiratory tracking (measurement of

nasal pressure, thoracic effort, and abdominal effort). Following a PSG, trained technicians

perform sleep scoring, which involves categorization of each 30-s sleep epoch into one of five

sleep stages, namely, wake (W), rapid eye movement (REM) sleep, and three distinct categories

of non-REM (NREM) sleep: N1, N2, and N3, as recognized by the American Academy of

Sleep Medicine (AASM) [15]. Despite its universality in the clinic, PSG has serious limitations:

It requires bulky equipment, is usually conducted in a clinical sleep laboratory by specialized

personnel, and is unsuitable for continuous and long-term sleep monitoring. Manual sleep

scoring following a PSG is a labor-intensive and expensive process that is limited by inter-rater

scoring variability [16]. The development of reliable alternatives to this setup, encompassing

both hardware (e.g., wearable devices for sleep monitoring) and software (automated tech-

niques for sleep staging), remains an open research problem of high significance in sleep medi-

cine and digital health [17–19].

Consumer-grade wearable devices are capable of continuous monitoring of sleep with the

advantages of scalability and low cost over PSG. AASM has approved several specialized acti-

graphy devices for sleep vs. wake categorization (two-class sleep staging) [20–23]. In fact, two-

class sleep staging is a well-established consumer technology beyond the clinic and a standard

feature in many consumer-grade wrist wearables, e.g., smartwatches [24, 25]. In comparison,

automated multi-class (i.e., three-, four-, or five-class) sleep staging from wearables-derived

data remains an active area of research. Three-class staging involves categorizing each epoch
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as wake, REM, or NREM, while four-class staging further splits NREM into light (N1 and N2)

and deep/slow-wave (N3) sleep categories. Methods for automated sleep staging have tradi-

tionally focused on EEG [26–29]. While portable EEG headbands exist, these are far from

being universally adopted as consumer electronics. Recently, there has been significant enthu-

siasm surrounding ECG-based sleep scoring [30–33]. While wrist-based consumer smartwatch

devices like the Apple Watch are capable of performing a single-lead ECG, this data cannot be

acquired passively (e.g., when the wearer is asleep) or in real time as it requires conscious

action on the wearer’s part (i.e., placing one’s finger on the sensor). Unlike ECG, heart rate is

passively and continuously measured in these devices using photoplethysmography (PPG). As

opposed to EEG- and ECG-based approaches which have limited on-the-go utility, an auto-

mated sleep staging technique that accepts activity and heart rate as the only two inputs will

have broad applicability across a wide range of consumer-grade wrist-based devices and can

be easily scaled to the fast-growing pool of smartwatch users.

It should be noted that four-class sleep staging is a more challenging machine learning

problem than three-class staging because the four sleep classes are inherently severely imbal-

anced, i.e., there are major differences in the occurrence of the classes in a typical night. Specif-

ically, among the three NREM sleep stages, N2 is the majority class and constitutes 45–55% of

the total sleep period, while deep sleep (N3) comprises only about 10–20% [34]. This class

imbalance problem curtails the performance of sleep staging algorithms and frequently leads

to under-/over-estimation of individual sleep stages as previously noted [35–37]. Methods

addressing class imbalance in machine learning are diverse and include the use of specialized

loss functions such as class-balanced loss [38], cost-sensitive learning [39], or focal loss [40]

and various forms of data augmentation such as synthetic minority oversampling (SMOTE)

[41] and adaptive minority oversampling [42]. Such traditional oversampling methods, how-

ever, are not well-suited for sleep staging as the temporal correlations of the input time series

must be maintained during the synthesis phase. The underrepresentation of deep sleep epochs

makes four-class staging even more challenging when working with information-poor data

from smartwatches and other wrist wearables compared to lab-grade ECG and EEG.

With the emergence of artificial intelligence (AI), new approaches for automated sleep scor-

ing have become available. Unlike conventional approaches for EEG and ECG classification

that are heavily reliant on feature handcrafting, deep learning techniques, such as convolu-

tional neural networks (CNNs) and long short-term memory (LSTM) neural networks, can

learn features that are the most discriminative for the sleep staging task directly from the raw

data. In this paper, we present an AI technique that we coin sequence-to-sequence LSTM for

automated mobile sleep staging (SLAMSS), which can perform three-stage and four-stage

sleep classification using activity and two coarse heart rate measures (heart rate mean and

heart rate standard deviation). The input data types for SLAMSS are compliant with a wide

range of wrist wearables, which confers broad utility to our approach. The dependence on raw

data obviates the need for manual feature selection. For performance evaluation, instead of

relying solely on overall classification accuracy (which is often skewed in favor of the high-per-

forming majority class when there is class imbalance), our approach emphasizes the accurate

estimation of the duration of each sleep stage. A key focus of this work is the accurate compu-

tation of NREM sleep time, particularly the time spent in the N3 (or slow-wave/deep sleep)

stage, as reduced N3 sleep is implicated in a broad range of serious disorders. It should be

noted that the N3 staging is challenging and typically relies on EEG data—even efforts based

on lab-grade ECG have led to significant under- or overestimation of the N3 stage [32].

To train and test the SLAMSS network, we use activity and heart rate measures derived

from the Multi-Ethnic Study of Atherosclerosis (MESA) dataset [43, 44]. To show the broad

utility of our model, we also validate the model using another independent dataset, the
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Osteoporotic Fractures in Men (MrOS) cohort [43, 45]. The demographics of the two datasets

are summarized in Table 1. Activity measures from both MESA and MrOS are based on wrist

actigraphy, albeit based on different devices. MESA activity measures are available at 30-s

intervals, whereas MrOS activity measures were available at 60-s intervals. For mobile-grade

cardiac measures, we derived two coarse metrics from MESA and MrOS ECG: heart rate mean

and heart rate standard deviation over 30-s epochs. We use manual sleep scores from multi-

site PSG (but from a single central Sleep Reading Center for each cohort) as the ground truth

for model training and validation. In order to show the wide utility of the model, we also test

the model on an independent mobile dataset based on the Apple Watch [46]. Finally, we

address the significant challenge that class imbalance poses to N3 sleep staging through the

introduction of “real-world weighting” in the loss function that is minimized during the

model training phase. To the best of our knowledge, SLAMSS is the first example of an AI

technique that is able to work for three- and four-class sleep staging from wearables-grade

inputs and provides clinically relevant, accurate estimates of sleep-stage durations. What dis-

tinguishes our method is its ability to achieve good performance using coarse inputs with a

low temporal resolution.

Materials and methods

MESA dataset

This paper relies on the secondary use of publicly available de-identified data from the MESA

Sleep Study [43, 44]. MESA is a multi-center longitudinal investigation designed to research

the transition of sub-clinical to clinical cardiovascular disease [47]. The study comprises 6,814

asymptomatic men and women of black, white, Hispanic, and Chinese-American ethnicity, of

which 2,237 were also enrolled in the MESA Sleep Study. Participants of the sleep study wore

an actigraphy device for one week. They also underwent one full night of PSG while wearing

the actigraphy device, thus providing synchronous actigraphy and PSG data. Data analysis for

this study only included concurrently acquired actigraphy and PSG data. MESA sleep data

were collected from six field centers across the United States: Wake Forest University, Colum-

bia University, Johns Hopkins University, University of Minnesota, Northwestern University,

and University of California Los Angeles. MESA protocols were approved by the Institutional

Review Board at each field center, and all participants gave written informed consent as

described in prior publications [43, 44].

Actigraphic inputs. MESA actigraphy data were collected using the Actiwatch Spectrum

device from Philips Respironics. The device, fastened to a participant’s wrist, captures triaxial

acceleration signals and converts them to activity counts reflecting subjective upper limb

Table 1. MESA and MrOS participant demographics in this study.

Dataset MESA MrOS

Number of subjects 808 817

Age [mean(s.d.)] 69.27 (9.00) 72.93 (5.41)

Sex Male 373 817

Female 435 –

Race White Caucasian 327 762

Chinese American 82 18

Black African American 229 19

Hispanic 170 8

Other – 10

https://doi.org/10.1371/journal.pone.0285703.t001
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locomotion. An aggregate activity count for each 30-s epoch is available for synchronous com-

parison with PSG.

Cardiac inputs. Cardiac sensing is unavailable from the Actiwatch actigraphy device used

in the MESA study. We extracted a coarse-grained measure of heart rate from the ECG (with

bipolar leads) acquired as part of the PSG. The heart rate is derived from the consecutive R

point locations available for each subject. The reciprocal of the gap between two consecutive R

points is the instantaneous heart rate (IHR). We averaged the IHR over each 30-s epoch to

arrive at the heart rate mean (HRM) time series. The standard deviation of the IHR over each

30-s epoch generates the heart rate standard deviation (HRSD) time series, which can be

thought of as a simple heart rate variability (HRV) measure. These two coarse measures were

chosen as they can be easily derived from PPG heart rate data available in real time from most

consumer smartwatch devices and do not require an ECG.

PSG scoring. PSG was performed using a Compumedics Somte Sleep Monitoring System.

The sensors of the Compumedics PSG device used in the MESA study acquire multimodal

data in the form of bio-electrical potentials (EEG, EOG, EMG, and ECG), pressure measures

(respiratory bands), and oximetry [44]. The data were scored following AASM guidelines by

trained technicians with high levels of inter- and intra-scorer reliability with inter-class corre-

lation coefficients typically exceeding 0.85. Sleep scoring for the entire cohort was performed

at a central Sleep Reading Center. The PSG-based epoch-by-epoch sleep labels included in the

MESA dataset served as our ground truth for model training and testing.

Data preprocessing. For the purpose of this study, 808 subjects were selected among the

2, 237 participants based on the quality of the PSG and the availability of concurrent PSG and

actigraphy data. MESA provides indicators of PSG and actigraphy data quality determined by

the duration of artifact-free data across channels, with 1 being the worst quality score and 7

the best quality score. To ensure data integrity and sleep hypnogram precision, we used data

from all participants with a PSG quality rating� 6 and for whom there is concurrent actigra-

phy and PSG data with PSG-actigraphy overlap duration� 6.6 hours. We rectified any mis-

alignment between actigraphy and cardiac measures in the dataset using the cross-correlation

between the activity and heart rate time series with MATLAB’s cross-correlation function

(xcorr).

In MESA, R-points were detected using the Compumedics (Abbotsford, VIC, Australia)

Somte software Version 2.10. To obtain the IHR from the R-peaks, we first extracted the time

interval between consecutive R-peaks for each epoch. For any interval that was below 0.33 s

(which can result in a heart rate above 180 bpm during the night), we replaced it with the mid-

point of that interval and the previous interval. In contrast, for intervals longer than 1.33 s,

which could result in a heart rate of 46 bpm or lower (a rare occurrence), we uniformly divided

the space between the current and previous interval into T/Tmean chunks, where T is the cur-

rent interval and Tmean is the mean interval for that epoch. Next, we computed the mean and

standard deviation of the extracted heart rate values for each epoch. Any heart rate value that

was outside of two standard deviations from the mean was discarded to eliminate outliers.

MrOS dataset

For independent validation in a second cohort, we rely on the secondary use of publicly avail-

able de-identified data from the MrOS Sleep Study [43, 45]. MrOS, a study originally designed

to determine the epidemiology of osteoporotic fractures in men, has greatly broadened in its

scope over the years. This multi-site study features data from 5,994 community-dwelling men

65 years or older. The MrOS Sleep Study is an ancillary study in which actigraphy and/or PSG

data were collected from a subset of the cohort (N = 3058). 896 men in this sub-cohort had
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concurrent PSG and actigraphy recordings, of which N = 817 participants had a PSG-actigra-

phy overlap duration� 2 hours and were, therefore used in our analysis. MrOS sleep data

were collected across six clinical sites: University of Alabama at Birmingham, Oregon Health

and Science University, Stanford University, University of Minnesota, University of Pitts-

burgh, and University of California San Diego. Institutional Review Board approvals and writ-

ten informed consent were obtained from all participants at each of the six sites as described in

prior publications [43, 45].

Actigraphic inputs. MrOS actigraphy data were collected using the Sleepwatch-O acti-

graph (Ambulatory Monitoring, Inc, Ardsley, NY). This is a wrist-worn device which captures

and aggregates motion signals over 60-s epochs. The temporal resolution of MrOS actigraphy

measures is, therefore, lower than that for MESA, which reports activities at 30-s intervals.

Because PSG-derived sleep labels and HRM and HRSD measures are available for each 30-s

epoch, the activity counts were upsampled to match the 30-s temporal resolution of the

remaining time series by replicating the activity used for each 60-s epoch into two 30-s epochs.

Cardiac inputs. We extracted coarse-grained HRM and HRSD measures at 30-epoch

intervals from the ECG acquired as part of the PSG.

PSG scoring. PSG was performed using a Compumedics Safiro Sleep Monitoring System.

Sleep staging was performed in 30-s scoring epochs by scorers, who were blinded to the sleep-

wake status from the actigraphy device. It should be noted that PSG scoring for MrOS was per-

formed at the same central Sleep Reading Center used for the MESA cohort.

Data preprocessing. The 817 subjects used in our study constitute the subset of MrOS

participants with concurrent actigraphy and PSG data with PSG-actigraphy overlap

duration > 2 hours. A time-series cross-correlation metric was used to rectify any misalign-

ment between actigraphy and cardiac measures.

Apple Watch dataset

This paper relies on the secondary use of publicly available de-identified data from an Apple

Watch study conducted at the University of Michigan [46]. The Apple Watch dataset was col-

lected from 2017 to 2019 with approval by the University of Michigan Institutional Review

Board and made publicly available via PhysioNet [48, 49]. This cohort consists of 31 subjects

(21 female) with ages ranging from 19 to 55 years. The subjects wore an Apple Watch (Series 2

or 3) to acquire PPG-derived heart rate and raw accelerometry data simultaneously with a PSG

recording. The PSGs were scored by professional technicians following AASM guidelines.

The raw accelerometer data from the Apple Watch has x, y, and z components that corre-

spond to different wrist movement directions, with the z-component being the most sensitive

to the activity [50]. To convert raw data into counts, only the z-component of the accelerome-

try data was used, and a band-pass filter was applied to remove the gravitational rotation sig-

nal. The signal was then divided into 128 bins and summed over 15-s windows to obtain one

count value per 15-s epoch.

Overview of SLAMSS

The SLAMSS network receives as inputs activity, HRM, and HRSD time series provided as

fixed-length sequences of epochs as shown in Fig 1 and generates as outputs sleep stage labels

(wake, REM, and NREM for three-stage classification and wake, light, deep, and REM for four

stage classification). The network uses a sequence-to-sequence (Seq2Seq) architecture [51]

combined with a CNN. The CNN layers extract linear convolutional features and pass them

through a nonlinear activation function. CNN-derived features are fed into the Seq2Seq

model, which consists of an encoder and a decoder, each composed of LSTM units that capture
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the long short-term contextual correlations between inputs and targets. A hidden state gener-

ated by the encoder is fed to the decoder through an attention layer. Intuitively, the attention

mechanism creates an attention vector by combining features from all epochs that have been

witnessed by the network at a given point of the sequential processing setup. The decoder out-

put passes through a softmax layer, which computes the probability of a particular epoch

belonging to a given sleep stage. The model is trained in a supervised manner with the PSG

sleep stage labels for each epoch as the target.

Network architecture

The SLAMSS classifier utilizes a Seq2Seq architecture consisting of an LSTM combined with a

CNN. A rough schematic of the network architecture is shown in Fig 1. The CNN comprises

three consecutive one-dimensional convolutional layers, with a kernel size of 9, padding 4, and

stride 1 followed by leaky rectified linear units (leaky ReLUs). The generated features are sub-

sequently utilized as inputs for the Seq2Seq model, which employs an encoder-decoder struc-

ture equipped with attention. In the Seq2Seq model, both the encoder and decoder are

composed of LSTM units that can extract and capture long-term and short-term contextual

relationships between the input and target. The attention mechanism constitutes a hidden

representation created by the encoder, which integrates features from all epochs. This hidden

state undergoes an attention-focused optimization process [52]. This method generates an

alignment score by comparing the encoder’s hidden state with the decoder’s hidden state.

Attention weights are determined by applying a softmax activation function to these alignment

scores. Finally, a context vector, which is a weighted sum of the attention weights and encoder

hidden states, is generated. Attention-based optimization ensures that the model learns the

most relevant parts of an incoming sequence. It prevents the model from overemphasizing the

last element of the sequence as is often the case with non-attention-driven decoders [52].

SLAMSS employs a 12-epoch (6-min) long sliding window with the stride set to 1 epoch. In

other words, a given 12-epoch input sequence has 11 of its epochs overlapping with its prede-

cessor. As a result of this overlap, every epoch is labeled 12 times by the classifier except for the

first 11 and the last 11 epochs in the full time series (i.e., the data from one participant in one

Fig 1. Network overview. SLAMSS network architecture showing sample activity, heart rate mean (HRM) and heart rate standard deviation (HRSD)

time series that are the model inputs and sleep stage labels Wake (W), REM (R), and NREM (N) that are the model outputs. Our SLAMSS network

implementation operates on 12-epoch input sequences that are passed into a set of CNNs (epoch duration = 30 s). The CNN features go through an

attention-guided encoder-decoder system that generates the output labels.

https://doi.org/10.1371/journal.pone.0285703.g001
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full night/day). The final output label is determined by computing the mode (i.e., the most fre-

quently occurring value) of the 12 assigned labels.

Network training

The network was implemented and trained on PyTorch using an NVIDIA GTX 2080 graphics

card. All data were divided subject-wise into independent training, validation, and test data-

sets. The hyperparameters learning rate and batch size were set at 0.00015 and 50 respectively.

Using the Adam optimizer, the model was trained for 200 optimization epochs. The validation

dataset was used to identify the best set of model parameters. These model parameters were

then used to generate our final reported results from the test dataset. Different loss functions

were used for different classification tasks, as explained below.

Loss function for three-class sleep staging. The categorical cross-entropy loss is a well-

accepted loss function for multi-class classification. Three-class sleep staging trisects sleep data

into wake, NREM, and REM stages. The three classes are mildly imbalanced. To address this

imbalance, we weight the standard cross-entropy loss by the inverse of the frequency for each

stage. The inverse frequency (IF) weighted loss, denoted below as JIF, is given by:

JIF ¼ �
1

M

XM

m¼1

XK

k¼1

wkykm logðhk
y
ðxmÞÞ; ð1Þ

where M is the number of training examples, K is the number of classes, ykm is the target label

for the mth training sample belonging to class k, xm is the input for the mth training sample,

wk is the IF weight corresponding to the kth class, hθ refers to the parametric (neural network)

model, and θ is the set of model parameters (i.e., neural network weights).

Loss function for four-class sleep staging. Four-class sleep staging assigns each epoch of

sleep into wake, light (N1+N2), deep (N3), and REM stages. This classification task requires

more aggressive mitigation of class imbalance due to the severe underrepresentation of the

deep sleep stage. Though IF weighting helps address class imbalance, for the four-class sleep

staging task, it increases minority class accuracy/sensitivity at the expense of erroneous overes-

timation of the minority class. The latter could lead to a gross overestimation of deep sleep

time and deep sleep fraction. To avoid deep sleep overestimation, it is essential that the classi-

fier can correctly identify the true positives without increasing the number of false positives.

To accomplish that, we adopted a novel weighting scheme for the loss function referred to as

real-world (RW) weighting [53], which weights the cross-entropy loss function in a way so as

to penalize both the actions of missing a positive and misidentifying a negative as a positive.

The RW-weighted function denoted below as JRW, is formulated as:

JRW ¼ �
1

M

XM

m¼1

XK

k¼1

wk
fny

k
m logðhk

y
ðxmÞÞ þ

XK

k¼1

XK

l ¼ 1

l 6¼ k

wkl
fp ykm logð1 � hl

y
ðxmÞÞ

2

6
6
4

3

7
7
5; ð2Þ

where M is the number of training examples, K is the number of classes, ykm is the target label

for the mth training sample belonging to class k, xm is the input for the mth training sample,

wk
fn is the marginal cost of a false negative over a true positive, wkl

fp is the marginal cost of a false

positive of class l over a true negative, when the true positive is class k, hθ refers to the paramet-

ric (neural network) model, and θ is the set of model parameters (i.e., neural network weights).

The parameters wkl
fp can be thought of as the elements of a matrix with zeros for the diagonal

elements and with the off-diagonal terms expressing the penalty imposed on the model for
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generating false positives. This set of parameters is determined and defined heuristically based

on the underlying constraints of the data distribution in a given dataset. The idea is that a net-

work trained using this weight matrix may use the same rules of thumb to predict other data-

sets. To populate these elements, we used the square root of the relevant pair of inverse

frequencies of the sleep stages from the training dataset, as shown in S1 Fig.

Evaluation metrics

To assess the performance of our SLAMSS classifier, we use a set of model performance met-

rics commonly accepted in the machine learning community as well as a set of clinical sleep

metrics. The most detailed indicator of a model’s performance is the confusion matrix. The

diagonal elements of this matrix capture the accuracy of the model. For three-class sleep stag-

ing, the confusion matrix captures the model’s effectiveness at trisecting the dataset into the

categories wake, NREM sleep, and REM sleep. The diagonal and off-diagonal elements respec-

tively represent the proportions of correct and incorrect classification. Apart from sensitivity

and specificity, we compute metrics that simultaneously account for precision and recall for

the algorithm. The first of these is the F1 score, which is the harmonic mean of precision and

recall. The efficacy of the F1 score is constrained by the fact that it ignores true negatives. This

leads us to compute the Matthews Correlation Coefficient (MCC), the only metric that simul-

taneously captures all the entries in the confusion matrix to create a single scalar measure. The

MCC computes the correlation between observed and predicted binary classes and thus is

symmetric to positive and negative class definitions. In our multi-class scenario, we calculate

the MCC for each class, as “one vs. the rest” and provide the macro-averaged MCC as a single

representative number.

The above-mentioned metrics provide a quantitative assessment of the performance of the

classifier model. However, the ultimate clinical relevance of a sleep staging model is deter-

mined by its accuracy at computing sleep metrics that rely on the stage label assignment. To

assess the clinical impact of our method, we, therefore, calculate a series of sleep metrics that

are well-defined in the literature, e.g., sleep efficiency, sleep onset latency, sleep fragmentation,

and total sleep time in hours. We also report the fractional time spent in each sleep stage. In

addition, we have computed a sleep metric termed sleep transition index [23, 54–56]. This

index measures the time spent in transitions after sleep onset over the course of the night nor-

malized by the time spent sleeping after the sleep latency period. Probabilistic rates of transi-

tion between sleep stages have been used as markers of sleep continuity for the purpose of

sleep quality assessment [54]. Higher probabilities of sleep transitions are known to be

associated with disorders such as chronic fatigue syndrome [57]. The transition metric, that

we define here has value in enumerating the shifts in sleep stages and could be used as an indi-

cator of sleep organization. The definitions of all evaluation metrics are provided in S1 and

S2 Tables.

Results

Three-class sleep staging using the MESA dataset

We trained and tested the SLAMSS network on data from N = 808 MESA participants who

had concurrent PSG and actigraphy. 608 participants (75%) were randomly assigned to a

training subset, 100 (12.5%) to a validation subset, and the remaining 100 (12.5%) to an inde-

pendent test subset. Network parameters were computed in the training phase by minimizing

a cross-entropy loss function with inverse frequency weighting for each sleep stage. We com-

pared the performance of the SLAMSS architecture for three-class sleep staging with that of a

conventional LSTM. Fig 2 shows the three-class confusion matrices for the SLAMSS and

PLOS ONE AI-Driven sleep staging from actigraphy and heart rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0285703 May 17, 2023 9 / 29

https://doi.org/10.1371/journal.pone.0285703


LSTM models receiving the full set of inputs, i.e., activity, HRM, and HRSD (abbreviated as

SLAMSS-Act-HR and LSTM-Act-HR, respectively). SLAMSS-Act-HR correctly identifies

78.0% of wake epochs, 81.8% of NREM epochs, and 70.9% of REM epochs, with a notable

accuracy margin of 15.3% over LSTM-Act-HR for NREM and smaller improvements for

wake. We have also examined the performance of SLAMSS with HRM and HRSD as inputs

Fig 2. MESA three-class sleep staging. Confusion matrices for four classifiers: SLAMSS with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR),

and SLAMSS with an activity input (SLAMSS-Act). Each box shows % epochs at the top and the number of epochs below. Columns sum to

100%. Expert manual sleep staging by PSG is used as the ground truth. It should be noted that, for three-class staging, category assignment

by random chance would lead to a value of 33.33% for the diagonal elements of these matrices.

https://doi.org/10.1371/journal.pone.0285703.g002
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(SLAMSS-HR) and SLAMSS with activity as the only input (SLAMSS-Act). While SLAMSS-

HR is more accurate for all classes than SLAMSS-Act (which, as expected, yields low accuracy

overall, with the lowest number being that for NREM sleep), the combination of activity and

heart rate inputs simultaneously boosts accuracy for all three classes. In addition, we also

trained SLAMSS-Act-HR with various input window widths, and the comparison result is

shown in S2 Fig.

For reference, we have included the accuracies reported in other papers for three- and four-

class sleep staging on activity and cardiac data in Table 2. This table excludes methods that are

dependent on clinical-grade ECG [32] or an extensive array of hand-crafted ECG features [31,

58]. In principle, the SLAMSS network performance could substantially improve with the

introduction of information-rich, handcrafted ECG features. However, we purposefully

restrict ourselves to simple HRM and HRSD inputs as these can be reliably computed from a

smartwatch PPG signal. We note that available consumer smartwatches, while capable of gen-

erating a single-lead ECG on demand, cannot acquire an ECG in the background in real time,

e.g., when a subject is sleeping. It is noteworthy that Zhai et al. [59] reported severely dimin-

ished performance for the minority class (i.e., REM for three-class staging and deep sleep for

four-class staging), a challenge that SLAMSS is able to overcome. SLAMSS also shows substan-

tially better accuracies for all classes than Boe et al. [60], despite the fact that the latter utilizes

real-time ECG and temperature signals that are typically not available through a consumer

smartwatch device.

Additional metrics for assessing the classifier performance are listed in Table 3. SLAMS-

S-Act-HR outperforms LSTM-Act-HR for all five model performance metrics. SLAMSS-Act-

HR not only outperforms the other models in the oft-cited sensitivity, specificity, and precision

measures, but its considerable performance margins in the more balanced F1 score and MCC

Table 2. Performance comparison of SLAMSS with other publications performing three or four-class sleep staging on activity (Act) and heart rate or heart rate vari-

ability (HRV) data.

Reference Modalities Needs real-time ECG for cardiac

features?

Classifier Nights 3-Class Sensitivity 4-Class Sensitivity

Wake NREM REM Wake Light Deep REM

This paper Act, HRM, HRSD No SLAMSS 808 78.0% 81.8% 70.9% 78.7% 66.3% 55.9% 63.0%

Zhai et al., 2020 Act, 8 ECG features Yes CNN+LSTM 1, 743 75.0% 84.0% 42.0% 77.0% 80.0% 4.0% 55.0%

Walch et al.,

2020

Act, HRM, HRV No Neural

Network

31 60.0% 62.2% 62.5% - - - -

Boe et al., 2019 Act, ECG,

Temperature

Yes Bagging 11 73.3% 59.0% 56.0% 72.0% 56.0% 30.4% 31.6%

https://doi.org/10.1371/journal.pone.0285703.t002

Table 3. MESA three-class sleep staging. Comparison of classifier performance metrics for four classifiers: SLAMSS with activity, HRM, and HRSD inputs (SLAMS-

S-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and SLAMSS with an activity input

(SLAMSS-Act). PSG is used as the ground truth for the computation of all metrics. Subject-wise values are reported as mean(s.d.).

Metric SLAMSS-Act-HR LSTM-Act-HR SLAMSS-HR SLAMSS-Act

Overall Accuracy 0.79 0.71 0.71 0.56

Sensitivity/Recall 0.77 0.71 0.71 0.61

Specificity 0.89 0.86 0.86 0.81

Precision 0.74 0.66 0.66 0.59

Weighted F1 score 0.80 0.72 0.73 0.59

Subject-wise 0.80 (0.01) 0.72 (0.02) 0.73 (0.02) 0.59 (0.02)

Weighted MCC 0.66 0.56 0.57 0.44

Subject-wise 0.66 (0.02) 0.56 (0.03) 0.56 (0.03) 0.37 (0.02)

https://doi.org/10.1371/journal.pone.0285703.t003
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are indicative of the overall macro-level superiority of the model. To provide a clear effect size,

we have also computed the Mean Absolute Error (MAE) for clinical metrics and the results are

shown in Table 4. SLAMSS-Act-HR outperforms LSTM-Act-HR in all clinical sleep metrics

except total sleep time. In addition, compared to LSTM-Act-HR, all SLAMSS variants exhibit

lower error values for sleep onset latency and sleep transition index.

Fig 3 showcases clinical sleep metrics computed for each classifier with the corresponding

PSG-derived ground-truth numbers provided for reference. A key observation from this figure

is that SLAMSS-Act-HR’s estimate of NREM sleep time (4.98 ± 1.16 hrs.) is especially close to

that suggested by PSG (4.99 ± 1.05 hrs.). SLAMSS-Act-HR also produces REM sleep time esti-

mates that are the closest to PSG. While LSTM-Act-HR generates a more accurate total sleep

time measure and thereby could be sufficient for binary sleep-wake classification, it underesti-

mates NREM time by around 20% and overestimates REM time by 101% on average. SLAMS-

S-Act-HR estimates sleep fragmentation more accurately than other approaches. All compared

classifiers underestimated sleep onset latency. It must be noted here that the estimation of this

metric using coarse actigraphic measures is notoriously challenging, and many previous

papers have reported severe underestimation of this metric [61]. Our findings suggest that a

coarse heart rate feature is even less effective than actigraphy alone, and the combination of

activity and heart rate (i.e., SLAMSS-Act-HR) leads to intermediate accuracy for this metric. It

must be noted here that, while many competing definitions of sleep onset latency exist in liter-

ature as reported in [62], we defined this metric here as the first detected period of three conse-

cutive sleep epochs, which is the most stringent and popular definition. All versions of

SLAMSS led to comparable estimates for the sleep transition index, with SLAMSS-HR produc-

ing the most accurate result. The measurement of sleep transitions is intricately linked to tem-

poral correlations in the data [63]. The notable performance margin for this metric between

the SLAMSS variants and LSTM suggests that SLAMSS is more effective at learning temporal

correlations than LSTM.

Three-class sleep staging using the MrOS dataset

We trained and tested the SLAMSS network on data from N = 817 MrOS participants who

had concurrent PSG and actigraphy. 617 participants (75%) were randomly assigned to a

training subset, 100 (12.5%) to a validation subset, and the remaining 100 (12.5%) to an inde-

pendent test subset. As with MESA three-class sleep staging, a cross-entropy loss function with

IF weighting for each sleep stage was employed. A comparison of confusion matrices for

three-class sleep staging in the MrOS cohort using SLAMSS-Act-HR, LSTM-Act-HR,

Table 4. MESA three-class sleep staging. Comparison of MAE for clinical sleep metrics for four classifiers against PSG: SLAMSS with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and SLAMSS with an activity

input (SLAMSS-Act). MAE values are provided in the format: mean (s.d.).

Metric SLAMSS-Act-HR LSTM-Act-HR SLAMSS-HR SLAMSS-Act

Sleep efficiency 0.08 (0.07) 0.07 (0.06) 0.09 (0.08) 0.10 (0.09)

Sleep onset latency (min.) 59.21 (94.06) 82.09 (105.29) 74.47 (99.49) 61.34 (100.42)

Sleep fragmentation 0.20 (0.44) 0.22 (0.24) 0.24 (0.39) 0.25 (0.35)

Sleep transition index 0.03 (0.02) 0.09 (0.05) 0.03 (0.03) 0.04 (0.03)

NREM time (hrs.) 0.73 (0.64) 1.18 (0.98) 1.30 (1.06) 1.99 (1.23)

REM time (hrs.) 0.55 (0.46) 1.19 (1.00) 1.05 (0.94) 2.02 (1.35)

Total sleep time (hrs.) 0.72 (0.70) 0.68 (0.62) 0.84 (0.74) 0.95 (0.99)

NREM fraction 0.08 (0.07) 0.19 (0.15) 0.16 (0.13) 0.31 (0.17)

REM fraction 0.08 (0.07) 0.19 (0.15) 0.16 (0.13) 0.31 (0.17)

https://doi.org/10.1371/journal.pone.0285703.t004
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SLAMSS-HR, and SLAMSS-Act is shown in Fig 4. The average accuracies of all methods are

comparable across the MESA and MrOS cohorts. In the MrOS cohort, SLAMSS-Act-HR cor-

rectly identifies 82.5% of wake epochs, 74.0% of NREM epochs, and 65.7% of REM epochs. It

has an 11.9% margin over LSTM-Act-HR at wake epoch identification. Additional metrics for

assessing the classifier performance in the MrOS cohort are provided in Table 5. SLAMS-

S-Act-HR outperforms reference approaches in terms of all five model performance metrics.

Clinical sleep metrics for the MrOS participants are shown in Fig 5, and a comparison of

MAE for clinical sleep metrics is reported in Table 6. SLAMSS-Act-HR outperforms

LSTM-Act-HR in all clinical sleep metrics except NREM time. In addition, compared to

LSTM-Act-HR, all SLAMSS variants exhibit lower error values for sleep onset latency and

sleep fragmentation. The most notable difference in the MrOS cohort between the classifiers is

in REM sleep time estimation. While LSTM-Act-HR, SLAMSS-HR, and SLAMSS-Act overes-

timate REM time by 87%, 89%, and 272% respectively, the corresponding number is only 42%

for SLAMSS-Act-HR. NREM sleep estimation is comparable between the top contenders—

SLAMSS-Act-HR, LSTM-Act-HR, and SLAMSS-HR. But the high performance of SLAMS-

S-Act-HR at wake epoch classification contributes to a clear improvement in NREM fraction

Fig 3. MESA three-class sleep staging. Comparison of clinical sleep metrics for four classifiers: SLAMSS with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and

SLAMSS with an activity input (SLAMSS-Act). The orange dotted line corresponds to the PSG (assumed ground truth) value of each metric.

https://doi.org/10.1371/journal.pone.0285703.g003
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Fig 4. MrOS three-class sleep staging. Confusion matrices for four classifiers: SLAMSS with activity, HRM, and HRSD inputs (SLAMSS-Act-HR),

LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and SLAMSS with an activity

input (SLAMSS-Act). Each box shows % epochs at the top and the number of epochs below. Columns sum to 100%. Expert manual sleep staging by

PSG is used as the ground truth. It should be noted that, for three-class staging, category assignment by random chance would lead to a value of 33.33%

for the diagonal elements of these matrices.

https://doi.org/10.1371/journal.pone.0285703.g004
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Table 5. MrOS three-class sleep staging. Comparison of classifier performance metrics for four classifiers: SLAMSS with activity, HRM, and HRSD inputs (SLAMSS-Act-

HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and SLAMSS with an activity input (SLAMS-

S-Act). PSG is used as the ground truth for the computation of all metrics. Subject-wise values are reported as mean(s.d.).

Metric SLAMSS-Act-HR LSTM-Act-HR SLAMSS-HR SLAMSS-Act

Overall Accuracy 0.77 0.72 0.68 0.56

Sensitivity/Recall 0.74 0.69 0.68 0.61

Specificity 0.88 0.86 0.84 0.81

Precision 0.70 0.66 0.63 0.59

Weighted F1 score 0.77 0.73 0.70 0.59

Subject-wise 0.77 (0.02) 0.73 (0.02) 0.71 (0.02) 0.58 (0.05)

Weighted MCC 0.63 0.57 0.52 0.44

Subject-wise 0.63 (0.03) 0.56 (0.03) 0.52 (0.03) 0.42 (0.04)

https://doi.org/10.1371/journal.pone.0285703.t005

Fig 5. MrOS three-class sleep staging. Comparison of clinical sleep metrics for four classifiers: SLAMSS with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and

SLAMSS with an activity input (SLAMSS-Act). The orange dotted line corresponds to the PSG (assumed ground truth) value of each metric.

https://doi.org/10.1371/journal.pone.0285703.g005
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using this approach (76% vs. 84% for the PSG ground truth, 68% for LSTM-Act-HR, 66% for

SLAMSS-HR, and 34% for SLAMSS-Act).

Three-class sleep staging using smartwatch data

To assess the broad utility of the model across devices and specifically test its accuracy for

smartwatch data, we conducted an independent validation of our model on a smartwatch data-

set made available by Walch et al. [46]. This dataset consists of PPG-derived heart rate and raw

accelerometry data obtained from the Apple Watch. The data size of 31 subjects by itself is

small for training the parameter-heavy SLAMSS model. So, alongside attempting to directly

train this model using the Apple Watch dataset, we also pursued a transfer learning approach

using MESA, wherein a MESA-pretrained model’s entire structure was fine-tuned using the

Apple Watch dataset by reducing the value of the learning rate from 0.00015 to 0.00001. The

reason for excluding MrOS in pretraining is the fact that the MrOS dataset included only male

subjects and its activity was measured per minute rather than per 15 s, which could potentially

compromise the consistency of the Apple Watch data and pretraining cohort. We set aside 21

data samples for training and fine-tuning and 10 for independent testing. In addition, because

the Apple Watch dataset is small, we performed 5-fold cross-validation without pretraining

using SLAMSS.

Confusion matrices for the direct training (i.e., no MESA pretraining) and transfer learning

(i.e., with MESA pretraining) are shown in Fig 6. While the SLAMSS network has a higher

“model capacity” and more degrees of freedom for learning, training it on smartwatch data

without any pretraining results in only slightly higher accuracy compared to the 4-layer fully-

connected neural network classifier described in [46]. This minor improvement is not unex-

pected, given that a higher model capacity may lead to overfitting when trained on a smaller

dataset. In comparison, the MESA-pretrained model led to a more prominent boost in model

performance, especially in the wake category. The cross-validation experiments for the model

without pretraining led to a mean overall accuracy of 0.61 with a standard deviation of 0.04 for

the model without pretraining. This mean value is similar to the result reported in Fig 6.

Four-class sleep staging using the MESA dataset

Given the promising performance of SLAMSS for three-class staging, we next attempted the

more challenging four-class staging task. We trained and tested the SLAMSS network to per-

form four-class sleep staging on the MESA cohort. The training and validation dataset sizes

Table 6. MrOS three-class sleep staging. Comparison of MAE for clinical sleep metrics for four classifiers against PSG: SLAMSS with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), LSTM with activity, HRM, and HRSD inputs (LSTM-Act-HR), SLAMSS with HRM and HRSD inputs (SLAMSS-HR), and SLAMSS with an activity

input (SLAMSS-Act). MAE values are provided in the format: mean (s.d.).

Metric SLAMSS-Act-HR LSTM-Act-HR SLAMSS-HR SLAMSS-Act

Sleep efficiency 0.07 (0.06) 0.11 (0.10) 0.16 (0.17) 0.10 (0.09)

Sleep onset latency (min.) 44.07 (79.58) 67.89 (103.80) 59.25 (87.88) 56.42 (100.53)

Sleep fragmentation 0.33 (0.54) 0.43 (0.59) 0.41 (0.57) 0.41 (0.62)

Sleep transition index 0.05 (0.11) 0.07 (0.11) 0.07 (0.14) 0.06 (0.11)

NREM time (hrs.) 0.70 (0.72) 0.69 (0.75) 1.03 (1.01) 1.96 (1.37)

REM time (hrs.) 0.54 (0.63) 0.84 (0.84) 0.89 (0.75) 2.21 (1.49)

Total sleep time (hrs.) 0.46 (0.46) 0.74 (0.65) 1.11 (1.24) 0.73 (0.78)

NREM fraction 0.11 (0.11) 0.21 (0.21) 0.19 (0.16) 0.51 (0.21)

REM fraction 0.11 (0.11) 0.21 (0.21) 0.19 (0.16) 0.51 (0.21)

https://doi.org/10.1371/journal.pone.0285703.t006
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were the same as those used for three-class staging. We report in Fig 7 the four-class confusion

matrix for SLAMSS trained using a cross-entropy loss function with IF weighting, the same

loss function that was used for three-class staging. This model correctly identified 78.7% of

wake epochs, 66.3% of light sleep (N1+N2) epochs, 55.9% of deep sleep (N3) epochs, and

63.0% of REM sleep epochs. With a MESA data distribution consisting of 33% wake epochs,

47% light sleep (N1+N2) epochs, 9% deep sleep (N3) epochs, and 11% REM sleep epochs,

there is a severe underrepresentation of the deep sleep category. Although REM epochs consti-

tute 11% of the total epochs, our coarse feature set appears to be more sensitive to the differ-

ence between REM and NREM and less discriminative of NREM sub-classes. IF weighting of

the loss function mitigates this effect to some extent, as reflected by the 55.9% accuracy of the

deep sleep stage (random chance would lead to a 25% accuracy for the four-class problem).

This result also uses the clock time (raw value from the actigraphy device) as an input in addi-

tion to activity, HRM, and HRSD. In addition, we also incorporate the clock time for three-

class staging, and the result is shown in S3 Fig. This inclusion was based on the insight that

long deep sleep cycles occur in the first half of the night and become rarer as the night pro-

gresses. Thus, a temporal correlation exists between clock time and deep sleep, one that may

be utilized by the network to differentiate between sleep stages. In comparison with our results,

prior work by others on four-class sleep staging led to deep sleep accuracies of 4% [59] and

30.4% [60]. Relative to these past efforts (both of which used handcrafted ECG features), our

deep sleep accuracy is a significant improvement. However, it should be noted that, for the IF-

weighted loss function, 16.2% of light sleep epochs got misclassified as deep sleep. Light sleep,

being the majority class, corresponds to a high number (8, 763) of false positive epochs in the

deep sleep category compared to 3, 930 true positives. In other words, despite the reasonable

deep sleep classification accuracy, this method ends up greatly overestimating the deep sleep

class.

To mitigate class imbalance and further improve the classifier performance for the minority

class (deep sleep), we used an RW-weighted loss function. A comparison of SLAMSS four-

class sleep staging performance with the IF-weighted cross-entropy loss (henceforth referred

to as SLAMSS-IF) and with the RW-weighted cross-entropy loss (henceforth referred to as

SLAMSS-RW) is shown in Fig 7. With SLAMSS-RW, only 4, 860 light sleep epochs get

Fig 6. Confusion matrices for the SLAMSS model without MESA pretraining (i.e., direct training) and with MESA pretraining (i.e., transfer

learning) with activity, HRM, and HRSD inputs for the Apple Watch dataset. The corresponding accuracies reported in [46] are provided for

reference.

https://doi.org/10.1371/journal.pone.0285703.g006
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misclassified as deep sleep compared to the much higher corresponding number of 8, 763 for

SLAMSS-IF. SLAMSS-RW classifies 2, 539 actual deep sleep epochs as deep sleep compared to

the number 3, 930 for SLAMSS-IF, leading to a drop in deep % accuracy. One should note,

however, that while overall % accuracy is important, it does not offer the full picture. As shown

in Table 7, the overall performance of SLAMSS-RW is comparable to (or perhaps slightly bet-

ter than) SLAMSS-IF. A comparison of MAE for clinical sleep metrics against PSG is reported

in Table 8. Light sleep time and deep sleep time results based on SLAMSS-RW outperform

corresponding results from SLAMSS-IF by a large margin. The drop in the diagonal term of

the confusion matrix accounts for the slightly lower sensitivity (64%) of SLAMSS-RW (com-

pared to 66% for SLAMSS-IF). However, SLAMSS-RW has an improvement over SLAMSS-IF

Fig 7. MESA four-class sleep staging. Confusion matrices for four-class sleep staging using SLAMSS with an inverse-frequency-weighted cross-

entropy loss function (SLAMSS-IF) and SLAMSS with a real-world-weighted cross-entropy loss function (SLAMSS-RW). It should be noted that, for

four-class staging, category assignment by random chance would lead to a value of 25% for the diagonal elements of these matrices.

https://doi.org/10.1371/journal.pone.0285703.g007

Table 7. MESA four-class sleep staging. Comparison of classifier performance metrics for four-class sleep staging

using SLAMSS with an inverse-frequency-weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a

real-world-weighted cross-entropy loss function (SLAMSS-RW). PSG is used as the ground truth for the computation

of all metrics. Subject-wise values are reported as mean(s.d.).

Metric SLAMSS-IF SLAMSS-RW

Overall Accuracy 0.70 0.72

Sensitivity/Recall 0.66 0.64

Specificity 0.89 0.90

Precision 0.61 0.61

Weighted F1 score 0.72 0.73

Subject-wise 0.72 (0.01) 0.73 (0.01)

Weighted MCC 0.56 0.58

Subject-wise 0.57 (0.02) 0.58 (0.02)

https://doi.org/10.1371/journal.pone.0285703.t007

PLOS ONE AI-Driven sleep staging from actigraphy and heart rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0285703 May 17, 2023 18 / 29

https://doi.org/10.1371/journal.pone.0285703.g007
https://doi.org/10.1371/journal.pone.0285703.t007
https://doi.org/10.1371/journal.pone.0285703


for the three metrics: 1% improvement in specificity, 1% in the weighted F1 score, and 2% in

the MCC.

The real benefit of SLAMSS-RW over SLAMSS-IF is evident when we examine clinical

sleep metrics. As shown in Fig 8, while, for a number of these metrics, the two models have

comparable performance, there is a striking difference in how the two methods quantify the

two deep sleep metrics: deep sleep time and deep sleep fraction. SLAMSS-RW leads to highly

accurate average values for both metrics: deep sleep time 0.61 hrs. (ground truth 0.60 hrs. from

PSG) and deep sleep fraction 0.09 (ground truth 0.09 from PSG). The corresponding numbers

for SLAMSS-IF are 1.16 hrs. (93% overestimation in the deep sleep time) and 0.17 (89% over-

estimation in the deep sleep fraction).

Four-class sleep staging using the MrOS dataset

We compared the performance of SLAMSS-IF and SLAMSS-RW in the MrOS cohort. In this

cohort, the data distribution consists of 45% wake epochs, 38% light sleep (N1+N2) epochs,

7% deep sleep (N3) epochs, and 10% REM sleep epochs. Both the deep and REM categories

are underrepresented. As shown in Fig 9, SLAMSS-IF correctly identified 76.1% of wake

epochs, 67.5% of light sleep (N1+N2) epochs, 45.8% of deep sleep (N3) epochs, and 63.0% of

REM sleep epochs. In comparison, SLAMSS-RW correctly identified 85.1% of wake epochs,

60.4% of light sleep (N1+N2) epochs, 43.1% of deep sleep (N3) epochs, and 52.3% of REM

sleep epochs. Relative to SLAMSS-IF, SLAMSS-RW led to drastic reductions in the off-diago-

nal terms in the confusion matrices under the deep and REM sleep categories. The two meth-

ods were roughly comparable in terms of standard metrics for assessing classifier performance

listed in Table 9.

A comparison of clinical sleep metrics obtained from SLAMSS-RW over SLAMSS-IF with

PSG-based metrics as reference is shown in Fig 10, and a comparison of MAE for clinical sleep

metrics is reported in Table 10. In terms of deep time, SLAMSS-RW performs better than

SLAMSS-IF. SLAMSS-RW mitigates overestimation of both deep and REM sleep time relative

to SLAMSS-IF. As in MESA, SLAMSS-RW is especially accurate at measuring both deep sleep

time and REM sleep time: deep sleep time 0.53 hrs. (ground truth 0.55 hrs. from PSG) and

REM sleep time 0.71 hrs. (ground truth 0.80 hrs. from PSG). The corresponding numbers for

SLAMSS-IF are 0.64 hrs. (16% overestimation in the deep sleep time) and 1.05 hrs. (31%

Table 8. MESA four-class sleep staging. Comparison of MAE for clinical sleep metrics for four-class sleep staging

using SLAMSS with an inverse-frequency-weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a

real-world-weighted cross-entropy loss function (SLAMSS-RW) against PSG. MAE values are provided in the format:

mean (s.d.).

Metric SLAMSS-IF SLAMSS-RW

Sleep efficiency 0.08 (0.07) 0.07 (0.08)

Sleep onset latency (min.) 28.57 (47.85) 24.46 (40.43)

Sleep fragmentation 0.19 (0.30) 0.19 (0.26)

Sleep transition index 0.04 (0.03) 0.04 (0.03)

Light time (hrs.) 0.98 (0.70) 0.88 (0.73)

Deep time (hrs.) 0.83 (0.75) 0.63 (0.65)

REM time (hrs.) 0.50 (0.38) 0.52 (0.51)

Total sleep time (hrs.) 0.77 (0.68) 0.76 (0.82)

Light fraction 0.13 (0.09) 0.12 (0.10)

Deep fraction 0.12 (0.10) 0.10 (0.09)

REM fraction 0.07 (0.06) 0.08 (0.07)

https://doi.org/10.1371/journal.pone.0285703.t008

PLOS ONE AI-Driven sleep staging from actigraphy and heart rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0285703 May 17, 2023 19 / 29

https://doi.org/10.1371/journal.pone.0285703.t008
https://doi.org/10.1371/journal.pone.0285703


Fig 8. MESA four-class sleep staging. Comparison of clinical sleep metrics for four-class sleep staging using SLAMSS with an inverse-frequency-

weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a real-world-weighted cross-entropy loss function (SLAMSS-RW). The orange

dotted line corresponds to the PSG (assumed ground truth) value of each metric.

https://doi.org/10.1371/journal.pone.0285703.g008
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overestimation in the REM sleep time). Similar improvements were also observed in the deep

and REM sleep fractions.

Discussion

Sleep staging outcomes from MESA were successfully replicated in the MrOS cohorts. The two

independent study populations have very different demographics: Compared to MESA, the

MrOS cohort is older, all male, and predominately white. Whereas the MESA actigraphy

device outputs activity counts at a 30-s-epoch temporal resolution, the MrOS device provides

coarser activity reads with a 60-s-epoch temporal resolution. The small differences in accura-

cies between the two cohorts are therefore attributable not only to demographic differences

but also to the use of different actigraphy devices.

Fig 9. MrOS four-class sleep staging. Confusion matrices for four-class sleep staging using SLAMSS with an inverse-frequency-weighted cross-

entropy loss function (SLAMSS-IF) and SLAMSS with a real-world-weighted cross-entropy loss function (SLAMSS-RW). It should be noted that, for

four-class staging, category assignment by random chance would lead to a value of 25% for the diagonal elements of these matrices.

https://doi.org/10.1371/journal.pone.0285703.g009

Table 9. MrOS four-class sleep staging. Comparison of classifier performance metrics for four-class sleep staging

using SLAMSS with an inverse-frequency-weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a

real-world-weighted cross-entropy loss function (SLAMSS-RW). PSG is used as the ground truth for the computation

of all metrics. Subject-wise values are reported as mean(s.d.).

Metric SLAMSS-IF SLAMSS-RW

Overall Accuracy 0.69 0.68

Sensitivity/Recall 0.63 0.60

Specificity 0.89 0.88

Precision 0.60 0.61

Weighted F1 score 0.69 0.68

Subject-wise 0.69 (0.01) 0.69 (0.01)

Weighted MCC 0.56 0.52

Subject-wise 0.56 (0.01) 0.54 (0.02)

https://doi.org/10.1371/journal.pone.0285703.t009
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Fig 10. MrOS four-class sleep staging. Comparison of clinical sleep metrics for four-class sleep staging using SLAMSS with an inverse-frequency-

weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a real-world-weighted cross-entropy loss function (SLAMSS-RW). The orange

dotted line corresponds to the PSG (assumed ground truth) value of each metric.

https://doi.org/10.1371/journal.pone.0285703.g010
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A key contribution of this paper is the accurate estimation of NREM sleep time (in three-

class staging) and N3/deep/slow-wave sleep time (in four-class staging). This capability allows

us to go beyond the simple sleep-wake scoring functionality offered by current smartwatches.

A number of serious disorders are heralded by or associated with a reduction of slow-wave

sleep. For example, there is increasing evidence that sleep disturbances, including features

such as reduced NREM slow-wave activity at 1–2 Hz and disruption of NREM slow oscilla-

tion-spindle phase coupling, might be the earliest observable symptoms of Alzheimer’s disease

(AD) and tend to surface before or soon after the diagnosis of cognitive impairment [64, 65].

Routine monitoring of N3 sleep time has the potential to identify subjects at risk of disorders

such as AD.

While overall accuracy is the most popular benchmark for assessing the performance of a

machine learning model, this metric has some limitations. Firstly, it fails to capture the effect

of all terms of the confusion matrix. Secondly, being a frequency-weighted average measure

across different classes, it can be especially misleading for imbalanced multi-class problems.

This is due to the fact that the mean value tends to not be reflective of the performance of the

underrepresented class when there is class imbalance. We, therefore, report full confusion

matrices for individual cases and supplement them with the F1 score and MCC as scalar per-

formance measures. The MCC, in particular, is regarded as a balanced measure that is useful

even where the class imbalance is severe. We refrain from the use of Cohen’s κ in light of

recent literature that indicates its unsuitability for imbalanced multi-class classification prob-

lems [66]. In severely imbalanced scenarios, a worse classifier (i.e., one with more false posi-

tives and true negatives) could have a higher κ value. This means that this performance

measure could significantly diverge from the MCC, a measure that accounts for all elements of

the confusion matrix.

A key weakness of this work is the fact that the heart rate data for MESA and MrOS is

derived from lab-grade devices. However, we would like to emphasize that, although the heart

rate measures for both MESA and MrOS were obtained from lab-grade ECG, we coarsened

the temporal resolution to 30 s, a figure that PPG-based heart rate tracking devices can easily

outperform, ensuring our method’s broader applicability to smartphone-derived heart rate

measures. As our future work, therefore, we plan to train and test SLAMSS on data from wrist-

worn devices that can generate both activity and heart rate measures.

Table 10. MrOS four-class sleep staging. Comparison of MAE for clinical sleep metrics for four-class sleep staging

using SLAMSS with an inverse-frequency-weighted cross-entropy loss function (SLAMSS-IF) and SLAMSS with a

real-world-weighted cross-entropy loss function (SLAMSS-RW) against PSG. MAE values are provided in the format:

mean (s.d.).

Metric SLAMSS-IF SLAMSS-RW

Sleep efficiency 0.08 (0.08) 0.11 (0.13)

Sleep onset latency (min.) 24.90 (44.14) 27.09 (42.55)

Sleep fragmentation 0.30 (0.47) 0.46 (0.74)

Sleep transition index 0.09 (0.11) 0.08 (0.11)

Light time (hrs.) 0.74 (0.65) 0.82 (0.88)

Deep time (hrs.) 0.50 (0.68) 0.40 (0.45)

REM time (hrs.) 0.45 (0.53) 0.38 (0.38)

Total sleep time (hrs.) 0.58 (0.54) 0.83 (1.17)

Light fraction 0.16 (0.14) 0.15 (0.18)

Deep fraction 0.12 (0.12) 0.01 (0.11)

REM fraction 0.09 (0.10) 0.08 (0.08)

https://doi.org/10.1371/journal.pone.0285703.t010
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Deep sleep classification is generally recognized to be a challenging task. Class imbalance,

i.e., the underrepresentation of deep sleep, is a major reason for this. Additionally, thresholds

for deep/light feature discrimination could be dependent on demographic variables, such as

age and sex, further compounding the challenge [67]. Moreover, cardiac and actigraphic values

lie on a continuum for light and deep sleep, which are both associated with the relaxed move-

ment of muscles and slowing of the heart rate, making binarization difficult. It is well-known

that deep sleep occurs for longer uninterrupted periods in the first half of the night. Our analy-

sis showed that deep sleep, at a population level, largely occurred between 9 pm and 11 pm in

the training dataset. To exploit this information, we utilized the raw clock time, which boosted

deep sleep staging accuracy as shown in S4 Fig. This feature is ubiquitous among nearly all

sleep-sensing devices and could be an inexpensive feature to help discern deep sleep.

Whereas three-class sleep staging suffers from some class imbalance with the underrepre-

sentation of REM (11% REM, 33% wake, and 56% NREM epochs in the MESA dataset; 10%

REM, 45% wake, and 45% NREM epochs in the MrOS dataset), IF weighting seems sufficient

for addressing this imbalance. The relative ease of three-stage classification could also be due

to the fact that activity and heart rate features are sufficiently discriminative for the three clas-

ses. REM sleep has cardiac measures similar to wakefulness and yet low activity counts (due to

muscle atonia) [68, 69], making it discernible from both wake and NREM categories from

coarse activity and heart rate measures. Thus, SLAMSS, which relies on coarse activity and

heart rate inputs, demonstrates robust REM/NREM classification despite the underrepresenta-

tion of REM. Notably, while modified clock-based features have been reported by others to

facilitate three-class staging [46], we observed no similar corresponding gain for the three-

class case with our raw clock-time input, as shown in S3 Fig.

While all SLAMSS variants outperformed LSTM at estimating sleep onset latency, this met-

ric’s deviation from the ground truth remained substantial. We note here that we have used

the most stringent definition for this metric, which is based on the first detected period of

three consecutive sleep epochs. This definition leads to reliable measures with an information-

rich modality such as the EEG. But severe underestimation of sleep onset latency has been

reported when calculated from actigraphy.

In current literature, the sleep fragmentation metric is used to capture the discontinuity of

sleep. Sleep fragmentation depends on the binary classification of sleep and wake stages. For a

more nuanced picture of sleep discontinuities, we defined a new metric known as the sleep

transition index. Unlike sleep fragmentation, this index captures shifts between the individual

stages of sleep and depends on multi-class sleep staging. It computes, for the post-sleep-onset

period, the ratio of the time spent in sleep transitions to the total sleep time. It is reflective of

the incidence of sleep stage shifts and captures the underlying sleep dynamics, particularly the

instability of sleep stages across a person’s sleep span. For future work, we will investigate new

transition metrics for individual sleep stages, e.g., a deep sleep transition index or a REM sleep

transition index. Such stage-specific transition indices would be useful for detecting the onset

of disorders that manifest as changes in specific sleep stages.

Overall, SLAMSS represents a significant advance toward a fully automated, clinically rele-

vant, and objective approach for computing sleep stages from heart rate and movement data

derived from smartwatches or other wrist wearables. It could enable long-term and popula-

tion-scale sleep assessment and is therefore clinically promising.

Conclusion

We have demonstrated the ability of the SLAMSS platform to perform multi-class (i.e., three-

and four-class) sleep staging based on feature-poor actigraphic and cardiac inputs that can be
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easily obtained from a wide variety of smartwatch devices. The majority of AI-based sleep stag-

ing techniques thus far have focused on feature-rich EEG and ECG datasets [27, 30, 32], nei-

ther of which are available from wrist-based metrics generated in real time by consumer

smartwatches. While some smartwatches offer a single-lead ECG functionality, the data acqui-

sition requires the active engagement of the user and is not suited for continuous monitoring.

By focusing on input modalities that are commonly available, we ensure the scalability and

broad utility of our method. Traditionally, EEG and ECG-based sleep scoring has relied on

extensive handcrafting of time-series features. Our reliance on a representation learning para-

digm, i.e., a deep neural network that simultaneously optimizes the feature sets and parame-

ters, obviates the need for manual feature selection. The SLAMSS architecture proposed here

uses front-end convolutional layers but ultimately relies on an attention-guided Seq2Seq net-

work that is able to learn temporal correlations. Whereas standalone CNNs have been success-

fully used for sleep staging from ECG-based instantaneous heart rate data with high temporal

resolution in [32], we have found that in a setting such as ours where the temporal resolution

is low (i.e., 30-s long epochs), CNN features alone are not sufficiently informative for accurate

classification.

Supporting information

S1 Table. Definitions of metrics for assessing classifier performance.

(TIF)

S2 Table. Definitions of clinical sleep metrics.

(TIF)

S1 Fig. RWL false-negative and false-positive weight matrices (Wfn and Wfp respectively).

w is the ratio of wake epochs to all epochs. l is the ratio of Light epochs to all epochs. d is the

ratio of deep epochs to all epochs. l is the ratio of REM epochs to all epochs.

(TIF)

S2 Fig. Confusion matrices for three-class sleep staging using SLAMSS-Act-HR (based on

a standard IF-weighted cross-entropy loss function) with epoch lengths of 9, 12, and 15.

(TIF)

S3 Fig. Confusion matrices for three-class sleep staging using SLAMSS (based on a stan-

dard IF-weighted cross-entropy loss function) with activity, HRM, and HRSD inputs

(SLAMSS-Act-HR), and SLAMSS with activity, HRM, HRSD, and raw clock time inputs

(SLAMSS-Act-HR-Clock) with PSG being used as the ground truth.

(TIF)

S4 Fig. Confusion matrices for four-class sleep staging using SLAMSS-RW with activity,

HRM, and HRSD inputs (SLAMSS-RW-Act-HR), and SLAMSS-RW with activity, HRM,

HRSD, and raw clock time inputs (SLAMSS-RW-Act-HR-Clock) with PSG being used as

the ground truth.

(TIF)
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