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Abstract

In natural environments, light intensities and visual contrasts vary widely, yet neurons have

a limited response range for encoding them. Neurons accomplish that by flexibly adjusting

their dynamic range to the statistics of the environment via contrast normalization. The effect

of contrast normalization is usually measured as a reduction of neural signal amplitudes, but

whether it influences response dynamics is unknown. Here, we show that contrast normali-

zation in visual interneurons of Drosophila melanogaster not only suppresses the amplitude

but also alters the dynamics of responses when a dynamic surround is present. We present

a simple model that qualitatively reproduces the simultaneous effect of the visual surround

on the response amplitude and temporal dynamics by altering the cells’ input resistance

and, thus, their membrane time constant. In conclusion, single-cell filtering properties as

derived from artificial stimulus protocols like white-noise stimulation cannot be transferred

one-to-one to predict responses under natural conditions.

Introduction

Due to the complexity of the natural environment, the sensory inputs animals receive can vary

by several orders of magnitude, ranging from the uniformity of an open field on an overcast

evening to the stark visual contrast of forest trees on a sunny day. The spectrum such inputs

can encompass is broad but individual neurons have only a limited response range to map

these inputs onto, be it the graded membrane potential or spike rates. Therefore, the range of

the responses has to be used efficiently to match the inputs [1]. For the visual system, that

means adapting not only to the mean light intensity of each of the scenes but also to the fluctu-

ations of these intensities around the mean, i.e. the image contrast. Neurons solve this problem

by contrast adaptation: they dynamically adjust their contrast sensitivity to the statistics of the

current environmental conditions [2]. This way, the sensitivity of the neuron increases at low

contrast, making the neuron more responsive to small changes, and decreases at high contrast

so that large changes in the stimulus do not lead to response saturation [3–6]. Thus, the

amount of information about the stimulus contained in the response is maximized [1, 2, 7].

Contrast adaptation in the vertebrate retina has also been shown to induce changes in the

dynamics of the signal, increasing the signal processing speed, making the signal more tran-

sient and, thus, improving the cell’s ability to encode fast temporal changes [3–5].
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The fruit fly Drosophila melanogaster is able to successfully navigate a variety of environ-

ments with variable visual statistics [8]. Motion vision is a critical sensory cue for the fruit flies’

course control system [9], where self-motion is estimated from the optic flow to respond to dif-

ferent environments reliably and robustly [10]. Drosophila’s visual system is well-studied, with

a large genetic toolbox allowing for interrogating individual neurons of interest. The visual sys-

tem of Drosophila starts at the retina and comprises four sequential neuropils, namely, lamina,

medulla, lobula, and lobula plate (Fig 1A). Visual signals are processed retinotopically in the

fruit fly’s optic lobe. From lamina cells onwards, processing runs in two parallel pathways: an

ON pathway processes light increments, an OFF pathway processes light decrements [11–13].

Neurons in the medulla have been previously described as either transient or tonic, based on

their filtering properties [14]. Medulla neurons themselves do not respond selectively to the

direction of visual motion but form the main inputs to the first direction-selective cells, T4 in

the ON pathway, and T5 in the OFF pathway [15–17]. Contrast information is crucial in sup-

porting robust behavior under various conditions, and lamina neurons are vital for distribut-

ing contrast information across the ON and OFF pathways [18]. Contrast normalization is

present in the early visual system of Drosophila and arises first in transient neurons of the

medulla [19]: a high-contrast grating presented in the visual surround outside the neuron’s

receptive field (RF) suppresses the amplitude of the response to a local stimulus presented in

the center of the cell’s RF. Contrast sensitivity is usually measured as the response of the cell as

a function of the local contrast (Fig 1B). When this measurement is taken with a grating

Fig 1. Contrast normalization in early visual system of Drosophila. (A) Schematic representation of early stages of the motion

detection circuit. Highlighted are contrast normalization-exhibiting neurons that provide major input to T4 and T5 cells, the first

direction-selective neurons in the ON and OFF pathways, respectively. (B) Contrast normalization experimental protocol and

contrast tuning curves for different medulla neurons: Mi1 (n = 20 cells/5 flies), Tm3 (n = 21 cells/8 flies), Tm1 (n = 21 cells/7

flies), and Tm2 (n = 20 cells/6 flies). Shaded areas around the curves show bootstrapped 68% confidence intervals. Adapted from

Drews et al. (2020) [19].

https://doi.org/10.1371/journal.pone.0285686.g001
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moving in the surround, contrast normalization shifts the response curve on a logarithmic

contrast axis to the right. This shift adjusts the steep part of the neuron’s response curve, i.e.

where the cell is the most sensitive, to the prevalent contrast in the surround. Drews et al.

(2020) [19] characterized the compressive, normalizing signal as fast, integrating spatially over

a large area and deriving from neural feedback. Functionally, it significantly improves the

robustness of motion detection in natural scenes [19]. The role of contrast adaptation in

improving motion estimates in natural scenes was also confirmed in a recent study by Matulis

et al. (2020) [20] who investigated contrast adaptation and its timescales in the early visual sys-

tem of Drosophila.

To understand the mechanism by which T4 and T5 cells become selective for the direction

of image motion, it is important to know the filtering properties of each of their input cells. To

characterize the response dynamics of visual interneurons in Drosophila, the following artifi-

cial stimuli were commonly employed in the past: a) gratings with defined spatial wavelength

and contrast moving at various velocities [15, 21–23]; b) moving edges of defined polarity [12,

24], i.e. either a dark edge on a bright background or the other way around; c) white noise sti-

muli consisting of statistically independent flickering pixels or bars [14, 25–27]; d) defined

luminance pulses or steps placed in the center of the RF of the cell [23, 28]. Importantly in the

present context, these stimuli differ from each other with respect to the amount of contrast

present in the surround.

As was already shown, the contrast of the surround can strongly suppress the amplitude of

the responses to the center stimulus [19]. In this paper, we asked whether contrast normaliza-

tion in the Drosophila visual system has an influence not only on the amplitude of the response

but also on its temporal dynamics, as was shown for the vertebrate retina [3–5]. This way, con-

trast normalization would affect the cell’s filtering properties and, therefore, might influence

its role in motion vision. We focused on four transient medulla neurons that have previously

shown to exhibit contrast normalization and to provide major input signals to the first direc-

tion-selective cells in the ON and OFF pathways in Drosophila [16, 17]. By combining artificial

stimuli widely used to characterize neuronal responses in Drosophila melanogaster, we aim to

untangle the effects of the local and global stimulus profile on the cells’ filtering properties.

Materials and methods

Data and code availability

Raw data from calcium imaging experiments, code to replicate the figures, and the modelling

code are available in the GitHub repository: https://github.com/nopirogova/paper_signal_

time-course/.

Flies

Flies were raised and kept on standard cornmeal-agar medium on a 12h light/12h dark cycle at

25˚C and 60% humidity. The genetically-encoded calcium indicator GCaMP6f [29] was

expressed using the Gal4-UAS system [30], resulting in the following genotypes:

L1>GC6f: w+; VT027316-AD/UAS-GCaMP6f; R40F12-DBD/UAS-GCaMP6f

Mi1>GC6f: w+; R19F01-AD/UAS-GCaMP6f; R71D01-DBD/UAS-GCaMP6f

Tm1>GC6f: w+; R41G07-AD/UAS-GCaMP6f; R74G01-DBD/UAS-GCaMP6f

Tm2>GC6f: w+; R28D05-AD/UAS-GCaMP6f; R82F12-DBD/UAS-GCaMP6f

Tm3>GC6f: w+; R13E12-AD/UAS-GCaMP6f; R59C10-DBD/UAS-GCaMP6f
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The transgenic fly line driving split-Gal4 expression in L1 cells is courtesy of A. Nern, Jane-

lia Research Campus; lines for Mi1 and Tm3 cells were generated and described in Strother

et al. (2017) [23], for Tm1 and Tm2 in Davis et al. (2020) [31].

Two-photon imaging

Fly preparation. The flies were taken 2–5 days after eclosion and prepared as previously

described [15, 23]. In short, flies were anesthetized on ice, their backs, legs, and wings were

fixed onto an acrylic glass holder, and the back of the head was exposed in a chamber filled

with Ringer’s solution. The cuticle behind the right eye was cut with a fine hypodermic needle

and removed, along with muscles and air sacks, uncovering the optic lobe.

Image acquisition. Two-photon imaging [32] was performed on a custom-built micro-

scope as described by Maisak et al. (2013) [15], controlled with the ScanImage software (ver-

sion 5.1) in MATLAB [33]. Imaging was performed at an acquisition rate of 11.8 Hz with an

image resolution of 128×128 pixels. As described by Arenz et al. (2017) [14], imaging stacks

were automatically registered in a custom-written software to correct for the movement of the

brain.

Regions of interest (ROIs) were drawn manually on the average raw image to extract

responses of individual neurons. For ON pathway medulla cells, Mi1 and Tm3, ROIs were

drawn in the medulla layer M10, for the OFF pathway medulla neurons, Tm1 and Tm2, in

lobula layer Lo1, and for the lamina neuron, L1, in the medulla layer M1. Fluorescence changes

(ΔF/F values) were then calculated using a standard baseline algorithm over the ROI [34].

Visual stimulation

Arena. Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter

3000) onto a custom-built cylindrical arena, as previously described by Arenz et al. (2017)

[14]. Stimuli covered 180˚ in azimuth and 105˚ in elevation of the visual field of the fly.

The projectors had a refresh rate of 180 Hz (at 8-bit color depth), their medium brightness

was set to the value of 50 on an 8-bit grayscale, corresponding to a medium luminance of 55

±11 cd/m2. Stimuli were rendered using custom-written software in Python 2.7 and Panda3D

framework.

Gaussian noise stimulus. The stochastic noise stimulus used to determine the location of

a cell’s receptive field was pre-rendered and generated as previously described in Arenz et al.

(2017) [14]. Briefly, the 3-minute-long stimulus consisted of 64×52 pixels that covered the

whole screen, one pixel corresponding to a visual angle of around 2.8˚. The intensities of each

pixel were drawn from a Gaussian distribution at 100% contrast and low-pass filtered using a

Gaussian window with a standard deviation of approximately 90 ms, corresponding to a

binary noise with the temporal cut-off frequency of 1 Hz.

The response of an individual cell, as imaged within an ROI, was used to reconstruct the

cell’s spatiotemporal receptive field as described by Arenz et al. (2017) [14]. The obtained coor-

dinates of its position on the screen were used to center the step stimulus as described below.

Visual stimulation of the medulla neurons. The coordinates of a cell’s receptive field,

obtained from its response to the Gaussian noise, were used to position the step stimulus.

Before presenting the stimulus, we verified that the RF center was sufficiently distant from the

border of the screen so that a significant part of the surround of the stimulus could be

displayed.

The center of the stimulus comprised a 5˚ circular window, in which a 1-second-long step

of luminance was presented. The contrast polarity of the step corresponded to the preference

of the cell [25], i.e. for Mi1 and Tm3, the luminance of the center increased from 0% to 50%,
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75%, or 100% during the step, and vice versa, the luminance of the center decreased from

100% to 50%, 25%, or 0% for L1, Tm1, and Tm2. The center window was surrounded by a 30˚

gray annulus (medium luminance), intended to cover the surround of the receptive field of the

cell and prevent the stimulus surround from leaking into the cell’s RF.

Beyond the annulus, one of the four surround conditions was shown, all with the same

mean luminance. Each surround condition was shown 3 s before the luminance step in the

center and remained on screen for 2 s after the step. In the cases when the surround condition

was dynamic, the dynamics of the surround started 1 s before the luminance step in the center.

The four surround conditions were as follows: 1. uniformly gray (contrast 0%); 2. 20˚-wave-

length stationary grating (contrast 100%); 2. 20˚-wavelength grating moving at 1 Hz (contrast

100%); 4. stochastic stimulus, (here, a binary noise with the temporal cut-off frequency of 10

Hz, further properties as described in Gaussian Noise Stimulus).

All stimuli were repeated 3 times in randomized order to prevent adaptation to any stimu-

lus features.

Data analysis

Data analysis was performed offline using custom-written routines in Matlab and Python 2.7

and Python 3.7 (with the SciPy and OpenCV-Python Libraries).

Data evaluation. Relative fluorescence change (ΔF/F) was calculated using a standard

baseline algorithm over an individual ROI as described in Jia et al. (2011) [34]. Briefly, raw sig-

nal was smoothed with a Gaussian window with FWHM of 1 s, the minima in a 90 second-

long sliding window were extracted, and the trace was smoothed with a Gaussian window with

FWHM of 4 min, resulting in the dynamic baseline, F0. To better compare the time-course of

the signals to different stimuli, response curves were also normalized to their maximum, i.e.

divided by the peak value reached during the stimulation period.

To filter out the cells for which the variance in responses between trials was caused by

movement artifacts, a signal-to-noise ratio (SNR) criterion was introduced. Here, only the

recordings, in which the inter-trial variance was smaller than the average cell response, were

taken, i.e. the standard deviation of the averaged signal had to be at least 115% of the mean

standard deviation over trials. On average, over 90% of all cells measured passed the SNR

criterion.

Data visualization. For all experiments, responses for each cell were averaged over trials,

normalized to the cell’s maximum, and further averaged over the cells. Additionally, to illus-

trate the temporal dynamics of the responses, responses of each cell type for every condition

were normalized to the condition’s maximum for the respective cell type.

To visualize response traces when a cell responded identically to several stimuli, an artificial

gap was introduced by offsetting one of the responses vertically. In these cases, the figure leg-

end specifies for which conditions the offset was introduced.

Statistical tests. Shaded areas around the response curves and error bars show boot-

strapped 68% confidence intervals around the mean (estimated as corresponding distribution

percentiles after resampling the data 1,000 times). All statistical tests were two-tailed and per-

formed at a 5% significance level. Sample sizes are given in each figure legend. The experi-

menters were not blinded to genotypes or conditions during data gathering and analysis.

Modelling

The model comprised three stages through which an input, a step function, was sequentially

processed. The input was a 1 s pulse at either full amplitude or an amplitude of 0.2.
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The processing cascade was as follows: a (1) band-pass filter, followed by either a (2.1) static

or a (2.2) dynamic nonlinearity, followed by a (3) low-pass filter.

(1) The first stage of the model, a band-pass filter, simulated the response of a cell mem-

brane to a luminance step received in the center of its RF. The band-pass filter was constructed

as a combination of a low- and a high-pass filter (LP and HP) with τLP = 200 ms and τHP =

300ms.

(2) At the second stage, the response was transferred through a divisive nonlinearity, as

often used to describe “contrast normalization” i.e. the saturating contrast dependency.

(2.1) The stationary nonlinearity was constructed as follows:

y tð Þ ¼
x tð Þ

x tð Þ þ k
;

where x was the input and y the output signal amplitude, and k the parameter controlling the

amount of saturation. k values of 0.2 and 1.0 were used to simulate the static and dynamic sur-

round experimental conditions, respectively.

(2.2) The dynamic nonlinearity was constructed as follows:

y tð Þ ¼
x t � Dtð ÞEexc þ y t � Dtð ÞC=Dt

x t � Dtð Þ þ k þ C=Dt
;

where x was the input and y the output signal amplitude, Eexc was set to 1.0, C/Δt to 100.0, and

k was the parameter controlling the amount of saturation. k values of 0.2 and 1.0 were used to

simulate the static and dynamic surround experimental conditions, respectively.

This corresponds to:

V tð Þ ¼
gexcEexc þ V t � Dtð ÞC=Dt

gexc þ gleak þ C=Dt
;

where gexc is the conductance of the excitatory current, V is the membrane potential, Eexc is the

reversal potential of the excitatory current, C is the membrane capacitance, Δt is the time-step,

and gleak is the conductance of the leak current.

For an electrically passive membrane, the following equation states that the sum of all cur-

rents across the membrane equals zero:

� C
dV tð Þ
dt
¼ gexc V tð Þ � Eexcð Þ þ gleak V tð Þ � Eleakð Þ:

(3) At the last stage, to account for the calcium indicator (GCaMP6f) dynamics, the signal

was processed through a low-pass filter with τCa = 200 ms.

Finally, the responses were normalized as described in “Data Evaluation” so that the model

output was comparable to the experimental data.

Results

We performed in vivo 2-photon calcium imaging from axon terminals of Mi1 and Tm3 neu-

rons in layer M10 of the medulla, and from axon terminals of Tm1 and Tm2 neurons in layer

Lo1 of the lobula. These recording sites correspond to the locations where the respective neu-

rons synapse onto the dendrites of the first direction-selective cells: Mi1 and Tm3 onto T4

cells, and Tm1 and Tm2 onto T5 cells (see Fig 1A).

As we were interested in the effects that contrast normalization has on single cells, our stim-

ulus protocol included a stochastic noise stimulus to determine the location of the cell’s RF.
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This location was then used to project further stimuli to specific screen locations relative to the

cell’s RF (Fig 2A).

All of our stimuli followed the same pattern: a 1-second luminance step with a 100% ampli-

tude was shown in a 5˚ circular window positioned in the center of the cell’s receptive field.

This step consisted of a luminance increase from 0 to 1 for Mi1 and Tm3, and a luminance

decrease from 1 to 0 for Tm1 and Tm2. The window was surrounded by a 30˚ annulus at an

intermediate luminance level that covered most, and often the entirety, of the cell’s receptive

field. The annulus ensured that the surround of the stimuli was not spilling over into the recep-

tive field of the cell avoiding a direct stimulation of the neuron. The size of 30˚ of the annulus

was based on the average full width at half maximum (FWHM) for the imaged cells: this value

(rounded to the nearest integer) was previously determined to be 29˚ for Mi1 cells, 12˚ for

Tm3 cells, 27˚ for Tm1 cells, and 31˚ for Tm2 cells [14]. Covering the rest of the screen (hereaf-

ter referred to as “surround”), sparing the center and the annulus, one of four different

Fig 2. Dynamic surround affects response amplitude and kinetics. (A) Experimental procedure: (1) white noise

stimulus, (2) receptive field (RF) reconstruction from single-neuron calcium signals, (3) experimental stimuli centered

on RF. (B) Stimulus protocol. Luminance step in RF center with 4 surround conditions. (C) Average Tm3 response to

luminance step in RF center with gray, stationary, moving grating, and stochastic stimulus surround; n = 23 cells/6

flies. Luminance step happened during the gray-shaded period. Left: Amplitudes of cell responses. Shaded areas

around the curves show bootstrapped 68% confidence intervals. Right: Kinetics of cell responses. Responses during

each condition are normalized to the condition’s maximum. Artificial gap is created between responses to static

conditions for easier visualization. See also S1 Fig.

https://doi.org/10.1371/journal.pone.0285686.g002
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surround stimuli was presented (Fig 2B): (i) uniformly gray, i.e. medium luminance, (ii) sta-

tionary grating at full contrast; (iii) 20˚-wavelength full-contrast grating moving at 1 Hz; (iv)

full-contrast stochastic binary pixel noise. This selection of stimulus conditions ensured that

we had both a static (conditions i and ii) and a dynamic (conditions iii and iv) surround. The

two different dynamic surround conditions further differentiated between temporal dynamics

containing motion (moving grating in condition iii) and no motion component (stochastic

noise in condition iv).

Effect of visual surround on response amplitude and kinetics

First, we wanted to probe the cells of interest to determine which features of the stimulus sur-

round affected the response of the cell to stimulation of its receptive field center. To this end,

our stimulus consisted of a luminance step in the center and one of the four conditions in the

surround. Fig 2C shows responses of Tm3 neurons to the four stimulus conditions. For all the

surround conditions, the cells responded to the luminance step with a fast signal increase that

began decaying while the step was still present. However, the amplitudes of the response and

the kinetics of the signal decay varied depending on the dynamics of the surround. Stationary

grating in the surround had no visible effect on the signal, making the responses to the two

static surround conditions, uniformly gray and stationary grating, virtually identical (Fig 2C).

In the presence of a dynamic surround, however, the amplitude of the response was dramati-

cally reduced. For a stochastic noise surround, the maximum signal amplitude was signifi-

cantly reduced, only reaching 48% of the peak response value observed in the static surround

condition (for precise values and statistical tests, see S3 Fig). When a moving grating was pre-

sented in the surround, the signal was suppressed even more strongly, with the maximum

amplitude of the response reaching only 24% of the peak response value observed for the static

surround condition.

In addition to suppressing the amplitude, the dynamic surround affected the kinetics of the

responses (Fig 2C, right panel). As best seen after normalizing cell responses to their peaks,

Tm3 responses to the two static conditions had virtually identical kinetics, with a rather slow

decay of the signal during the luminance step. In the presence of a dynamic surround, how-

ever, responses decayed visibly faster and, by the end of the luminance step (arrows in Fig 2C),

decreased to 36% and 49% of their peak amplitudes in the stochastic noise and moving grating

surround conditions, respectively. These values correspond to a significantly stronger decay in

the signal, when compared to the response in the presence of a static surround that decayed

only to 86% of its peak value (for precise values and statistical tests, see S3 Fig). Interestingly,

the temporal profiles of the responses in the two conditions with dynamic surround were vir-

tually identical, as were the signals in the two static surround conditions.

These phenomena, i.e. response amplitude suppression and faster response decay caused by

the dynamic but not the static surround, as well as extremely similar temporal profiles of the

responses within the two static and the two dynamic surround conditions, were also observed

in Mi1 (S1 Fig). Curiously, in the specific case of Mi1, a certain level of response was present

already before the luminance step and was subsequently suppressed by the dynamic surround.

We conclude that dynamic, but not static, surround has an effect on both the response ampli-

tude and its kinetics.

Because of the high level of similarity of response time courses within the static and

dynamic surround conditions, and as we were interested specifically in the effect of contrast

normalization on the kinetics of the signal, we focused on one stimulus per condition category.

Thus, in further experiments, we used the uniformly gray surround to represent the stationary

and the moving grating for the dynamic surround condition.
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Response kinetics of transient medulla and transmedulla neurons

With this stimulus protocol, we probed the other cells, i.e. Mi1, Tm1, and Tm2, that had previ-

ously shown to exhibit contrast-normalizing properties [19]. Here, a similar picture arose (Fig

3, also see S4 Fig for extended traces). Firstly, all the cells tested responded to the luminance

step in the center of their receptive field, regardless of the surround. Contrast normalization

had a dramatic effect on the amplitude of the cells’ responses, strongly decreasing the size of

the response in the presence of moving grating in the surround (Fig 3A). Here, the response of

Tm3 was suppressed the most: under dynamic surround conditions, the maximum amplitude

of the response corresponded to 24% of the maximum reached when presented with a static

surround. In comparison to the uniformly gray surround condition, the peak amplitude in the

dynamic surround condition was also significantly decreased for the other cell types, constitut-

ing 67% for Mi1, 59% for Tm1, and 48% for Tm2 cells (for precise values and statistical tests,

see S3 Fig).

The dynamic surround also had a pronounced effect on the temporal profile of the

responses (Fig 3B), with the signal decaying faster when a moving grating was present in the

surround. Numerically, when comparing the level of signal decay reached by the end of the

Fig 3. Contrast normalization affects response amplitude and kinetics. Average responses of contrast normalization-exhibiting neurons to

luminance step in the RF center with gray and moving grating surround. Mi1 (n = 98 cells/25 flies); Tm1 (n = 24 cells/9 flies); Tm2 (n = 22

cells/7 flies), and Tm3 (n = 65 cells/16 flies). Mi1 and Tm3 datasets include the data from Figs 2 and 5. Luminance step happened during the

gray-shaded period. (A) Amplitudes of cell responses. Shaded areas around the curves show bootstrapped 68% confidence intervals. (B)

Kinetics of cell responses. Responses during each condition are normalized to the condition’s maximum.

https://doi.org/10.1371/journal.pone.0285686.g003
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luminance step in the two conditions, Mi1 response decreased to 89% of its own maximum

response amplitude in the dynamic condition, corresponding to a significantly stronger

change than in the static surround condition, that decreased to 98% (for precise values and sta-

tistical tests, see S3 Fig). For the rest of the cells the signal also decayed significantly stronger in

the presence of a moving grating than when a gray surround was present. The decay values for

the dynamic and the static surround constituted, respectively, 67% and 88% for Tm1, 23% and

38% for Tm2, and 44% and 82% for Tm3 cells.

We conclude that, in all the transient medulla cells that had previously been reported to

exhibit contrast normalization, the dynamic surround not only suppresses their response

amplitude but also has a pronounced effect on their temporal profile.

Modelling effects of dynamic surround

How can we explain that a moving stimulus in the surround, outside the receptive field of a

neuron, affects both the amplitude and the time-course of the response? Classically, the phe-

nomenon of contrast normalization is attributed to a divisive nonlinearity. The saturating con-

trast dependency of the response to a stimulus within the receptive field is well described by

the following formula [2]:

y tð Þ ¼
xðtÞ

xðtÞ þ k
ð1Þ

with x being the input and y the output signal amplitude, and k the parameter which controls

the amount of saturation: for small values of k with respect to x, y strongly saturates with

increasing x (Fig 4A). This corresponds to the situation of a static surround. Conversely, for k
being large with respect to x, y grows in a rather linear way with increasing x. This corresponds

to the situation where a grating is moving in the surround.

Consider the following signal processing cascade (Fig 4A). It consists of a band-pass filter

(Fig 4A, left), the above-mentioned nonlinearity (Fig 4A, middle), and a final low pass filter

(Fig 4A, right) to account for the calcium indicator dynamics. The nonlinearity is shown for

two values of k, 0.2 (blue, representing static surround) and 1.0 (red, representing moving sur-

round). If we stimulate the cell with a 1s pulse of light (Fig 4B, left), the signal amplitude will

be different after the nonlinearity, depending on whether the surround is static or moving (Fig

4B, middle). However, the shape of the signal is also slightly different, as can be seen after the

output signals are normalized to their maximum amplitude (Fig 4B, right). Thus, a stationary

nonlinearity of the kind shown in formula (1) will affect not only the signal amplitude but also

the signal dynamic.

If this explains the phenomenon shown in Fig 3, we should obtain the same signal ampli-

tude and time-course for a static surround that we observed for a moving surround by simply

reducing the stimulus amplitude accordingly (Fig 4C). A stimulus amplitude of 0.2 for a static

surround resulted in a signal that is identical in amplitude and shape to the one resulting from

a stimulus amplitude of 1.0 for a moving surround (Fig 4C, middle to right).

There is, however, another explanation for the phenomenon taking into account the bio-

physics of a neuron. The following equation describing an electrically passive membrane states

that the sum of all currents across the membrane equals zero:

� C
dVðtÞ
dt
¼ gexc V tð Þ � Eexcð Þ þ ginh V tð Þ � Einhð Þ þ gleak V tð Þ � Eleakð Þ ð2Þ

Here, V(t) is the membrane potential, C the membrane capacitance, gexc, ginh, gleak are the

conductances and Eexc, Einh, Eleak the reversal potentials of the excitatory, the inhibitory and
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the leak currents, respectively. The excitatory conductance is controlled by the signal within

the neuron’s receptive field, the inhibitory conductance is controlled by the stimulus presented

within the background, outside the neuron’s receptive field. Under steady-state conditions, i.e.

dV(t)dt = 0, assuming Einh = Eleak (silent or shunting inhibition) and considering V(t) relative

to Eleak (i.e. Eleak = 0), this equation becomes:

V tð Þ ¼
gexc

gexc þ ginh þ gleak
Eexc ð3Þ

With gexc being the signal driving V(t), the correspondence to Eq (1), i.e. contrast normali-

zation, is obvious: ginh becomes the factor controlling the amount of saturation. Under non-

Fig 4. Model with dynamic nonlinearity reproduces dynamic surround effect on response amplitude and kinetics. (A) Model schematic: input step

is sequentially passed through band-pass filter (BP), nonlinearity (NL), and low-pass filter (LP). NL with k = 1 corresponds to moving grating surround

condition, k = 0.2 to gray surround condition. (B) Model cascade with stationary nonlinearity. (C) Model cascade with stationary nonlinearity and

varying input amplitudes. (D) Model cascade with dynamic nonlinearity and varying input amplitudes. (B-D) For easier visualization, an artificial gap is

created between model responses to moving grating and gray surround conditions.

https://doi.org/10.1371/journal.pone.0285686.g004
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steady-state conditions, however, ginh, together with C, affects the membrane time-constant

and thus the dynamic of the membrane voltage. In other words: taking into account the bio-

physics of a neuron’s membrane, contrast normalization will alter the dynamic of the output

signal, in addition to the effect described above, by altering the membrane time constant.

Rewriting Eq (2) as a difference equation results in the following equation:

V tð Þ ¼
gexcEexc þ V t � Dtð Þ C

Dt

gexc þ ginh þ gleak þ C
Dt

ð4Þ

With the capacitive current being small relative to the leak and excitatory current, Eq (4)

degenerates to Eq (3), i.e. it describes the membrane voltage under steady-state conditions.

Can we still observe the same time-course for a small stimulus amplitude with a static sur-

round and a large stimulus amplitude with a moving surround? As is shown in Fig 4D, the

answer is ‘No’. Given a sufficiently large value of membrane capacitance, the two conditions

cannot be interchanged with any combination of stimulus amplitudes: for both stimulus

amplitudes, the responses with a moving surround are always faster than the responses with a

static surround.

Dynamic nonlinearity in the model recapitulates temporal effects of

contrast normalization

In order to test which of the two explanations describes our data best, i.e. whether contrast

normalization also affects the membrane time constant, we repeated the experiments on Tm3

and Mi1 cells, this time using three different stimulus amplitudes: 50%, 75%, and 100% (Fig

5A).

With decreasing input amplitude, the amplitude of the response also decreased, scaling,

however, in a non-linear way (Fig 5B and 5C). In Tm3, inputs of 75% and 100% in the

dynamic surround condition yielded virtually identical response amplitudes, while the ampli-

tude of the response to a 50% luminance step was significantly lower (Fig 5B, left). Mi1 exhib-

ited similar behavior in the static surround condition (Fig 5C, left).

However, inspection of the temporal profile of the responses (Fig 5B and 5C, right) reveals

that the kinetics of the signals remained the same within the static and the dynamic surround

conditions, independent of the input amplitude, with responses decaying visibly faster in the

presence of a dynamic surround. Here, by the end of the luminance step, Mi1 responses to

100%, 75%, and 50% input amplitudes decayed similarly to 91%, 91%, and 86% of their respec-

tive maximum if a moving grating was present in the surround (for precise values and statisti-

cal tests, see S3 Fig). In contrast, if the surround was uniformly gray, the responses to all three

input amplitudes also decayed similarly to each other, to 97–99% of the respective maximum,

significantly less than the decay seen in the dynamic surround condition. Similarly, for Tm3,

the signal also decayed equally in response to the 100%, 75%, and 50% input amplitudes,

reaching, respectively, 52%, 42%, and 40% of its maximum in the dynamic surround condition

and 80–82% if the surround was static.

Additionally, we used the same stimulus protocol and imaged the response of the lamina

neuron L1 (S2 Fig), previously shown not to exhibit contrast normalizing properties [19].

Here, the amplitude of the response showed a clear dependence on the amplitude of the input

step while the temporal kinetics of the signal remained the same, independent of the properties

of the surround or the amplitude of the input.

Taken together, our results demonstrate that the amplitude of the input stimulus does not

have a pronounced effect on the temporal properties of the response. The results also show

that the differences in the signal time course are purely linked to the presence or absence of a
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dynamic surround. Therefore, the change in the response dynamics cannot be explained as

resulting from a static saturation nonlinearity. Conversely, the results are in line with changes

in the membrane time constant that depend on the properties of the surround, thus supporting

a model with a dynamic nonlinearity (Fig 4D).

Discussion

Characterizing the temporal filter properties of visual interneurons, we have shown that con-

trast normalization has a large influence not only on the amplitudes of the cells’ responses but

also on their temporal dynamics. This effect was present in all medulla neurons that had

Fig 5. Luminance step amplitude has no effect on response kinetics. (A) Spatial and temporal stimulus profile. Left:

3 luminance step amplitudes with gray surround. Right: 3 luminance step amplitudes with moving grating surround.

(B) Tm3 responses to 50%, 75%, and 100% luminance steps with gray surround; and to 50%, 75%, and 100%

luminance steps with moving grating surround; n = 21 cells/4 flies. Luminance steps happened during the gray-shaded

period. Left: Amplitudes of cell responses. Shaded areas around the curves show bootstrapped 68% confidence

intervals. Right: Kinetics of cell responses. Responses during each condition are normalized to the condition’s

maximum. An artificial gap is created between responses to 100% and 75% steps for easier visualization. (C) Mi1

responses to 50%, 75%, and 100% luminance step with gray surround; and to 50%, 75%, and 100% luminance step with

moving grating surround; n = 26 cells/8 flies. Luminance step happened during the gray-shaded period. Left and right

as in (B). See also S2 Fig.

https://doi.org/10.1371/journal.pone.0285686.g005
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previously been shown to possess contrast normalization properties (Fig 3) and was exerted

only by dynamic, but not by stationary stimuli present in the visual surround of the cells. We

considered two models to explain this effect, one with a stationary, the other with a dynamic

nonlinearity (Fig 4). By demonstrating that the temporal profile of the response was only influ-

enced by the stimulus surround (Fig 5) and was not a simple consequence of response satura-

tion, we could exclude the model with a stationary nonlinearity. The results were in line with

our hypothesis that contrast normalization affects the membrane time constant. The results,

thus, favor the model with a dynamic nonlinearity.

In Drews et al. (2020) [19], the presence of contrast normalization in Drosophila’s optic

lobe and its suppressive effect on the gain of the response has been established. Here, we dem-

onstrate the effect of contrast normalization on the temporal kinetics of the responses. Our

results parallel the findings from the vertebrate retina, where cells’ processing has also been

shown to speed up, leading to their responses becoming more transient at higher contrasts [3–

5]. At the same time, our findings seem to be, at first sight, hard to reconcile with a study by

Matulis et al. (2020) [20] who investigated temporal contrast adaptation in the Drosophila
optic lobe. They found different cells to be affected by the visual contrast than the current

study as well as what was described in Drews et al. (2020) [19]. Furthermore, in electrophysio-

logical recordings, contrast adaptation had no effect on the temporal dynamics of the signal,

while, in two-photon calcium recordings from the same cells’ dendrites, higher contrasts were

found to slow the signals down—a finding that is opposite to the results from the vertebrate

retina [3–5] and from our study. Whatever the explanation of the latter differences between

voltage and calcium signals may be, these discrepancies may be partly attributed to the differ-

ences in the stimuli applied. In order to study contrast adaptation, i.e. the change in the cell’s

signal in response to the contrast of the entire visual scene, Matulis et al. (2020) [20] used full-

field stimuli consisting of stochastic binary noise that switched between periods of low and

high contrast. Hence, the change in stimulus contrast applied to both the cells’ receptive field

as well as the overall surround simultaneously. Our goal was to study contrast normalization,

i.e. the influence of the surround stimulus on the response of the cell to the stimulus within its

receptive field. Therefore, we as well as Drews et al (2020) [19] designed the stimulus such as

to stimulate the cells’ receptive field and the surround separately. Taken together, for most of

the cells, the effects of contrast normalization on the amplitude and the dynamics of the

response to stimuli delivered within the receptive field of the neurons, as found in Drews et al.

and in this paper, seem to be distinct from the effects of contrast adaptation, as found by Matu-

lis et al.(2020) [20]. For Mi1, however, Matulis et al. (2020) [20] also used local stimulation as a

part of the stimulus set. The local stimulus elicited contrast adaptation but had no effect on the

temporal profile of the response [20] so the discrepancy in the stimulus protocol cannot fully

account for the difference in the results.

Implications for characterizing filter properties of visual interneurons

In order to characterize the filter properties of single cells, a variety of different artificial stimuli

are typically used, amongst them stochastic pixel noise, bars, and gratings, to name only a few.

These stimuli offer numerous advantages for systematic studies: they are easy to parametrize

by their mean luminance, contrast, and spatial wavelength, and the resulting response is read-

ily evaluated in terms of the cell’s impulse response, receptive field size, and frequency spec-

trum. However, the visual system has evolved as an adaption to complex natural images.

Therefore, the results obtained from the simplified artificial stimuli may not be transferable to

a cell’s responses to naturalistic stimuli. Unlike natural environments, many of the stimuli

used to characterize response properties of visual interneurons are tailored to the receptive
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field of the cell under study. However, as we have shown above, the presence or absence of

dynamic stimuli in the visual surround, far outside of the receptive field of a cell, has a pro-

nounced influence not only on the response amplitude but also on the temporal response

properties of the cell.

This has immediate implications for the interpretation of results obtained from visual inter-

neurons in general, and for neurons involved in motion vision in particular. Here, the various

models proposed to account for this computation [35, 36], although different in detail, all

share the principle that a direction-selective output is achieved by a non-linear operation per-

formed on differentially filtered signals derived from adjacent image points. In the fly visual

system, T4 and T5 cells are known to be the first direction-selective neurons [15]. While con-

trast normalization has indeed been demonstrated in a number of columnar neurons provid-

ing input to T4 and T5 cells [19], their specific contributions to motion vision were derived

from their temporal filtering properties which, in turn, were determined using stochastic pixel

noise [14]. However, depending on the specific cell under study, the temporal response prop-

erties might be quite different whether the cell is stimulated by a full-field grating or by a local

contrast step. To avoid this dilemma and in order to feed the model with faithful signals, input

neurons should ideally be measured under stimulus conditions identical to those used to char-

acterize the motion-sensitive neurons. Interestingly, this exact path has been chosen in a recent

study on T4 cells [37].

Functional consequences of contrast normalization

We focused on the visual interneurons with band-pass filtering properties [14], that provide

excitatory input onto direction-selective T4 and T5 cells [17], exhibit contrast normalization

[19], and are often used as input signals of various motion detector model simulations [14, 26].

Incorporating spatial contrast normalization into correlation-based models of motion vision

has already been demonstrated to drastically improve the models’ performance [19]. Here, we

show that, in addition to the suppressive effect on the amplitude of the response, contrast nor-

malization also alters the temporal dynamics of the signal and, thus, the filtering properties of

the neurons. This change in the time course of the inputs has potential implications for the

temporal dynamics of T4 and T5 neurons by adjusting the cells’ speed tuning to the prevailing

speed in the surround. To determine the influence that visual surround has on temporal filter-

ing properties and velocity tuning of the neurons, the motion vision circuit needs to be

scanned with a set of dynamic global stimuli at varying frequencies.

Contrast normalization does not alter the amplitude and the temporal dynamics of all the

cells it affects by an equal amount. Consequently, the relative contribution of the different

inputs to the T4 and T5 cells will vary depending on the global structure of the stimulus. In the

ON pathway, in the presence of a global visual surround, Tm3 responses are suppressed and

sped up to a higher degree than the responses of Mi1 neurons (Fig 3). As these two cells consti-

tute a large portion of T4 input [17, 38], the unequal effects of contrast normalization, depend-

ing on the presence of a local or a global stimulus, would skew the ratio of the neurons’ outputs

onto T4. To emphasize, this has severe implications for the resulting output of the computation

because the composition of the inputs varies, depending on the profile of the visual stimulus.

Mechanism of contrast normalization

The contrast normalization mechanism relies on neural feedback. At least part of this feedback

comes from one or more medulla neurons [19]. The feedback does not solely rely on the out-

put of the neuron itself, as blocking the cell’s output is not enough to completely abolish con-

trast normalization of its response.
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Even though the normalizing cell has not yet been identified, the search can be focused, as

we can determine a number of characteristics that describe the feedback cell. Firstly, the nor-

malizing feedback neuron has temporal band-pass filtering properties, as a stimulus with a

high-contrast but static surround elicits the same response as a purely local stimulus (Fig 2).

Secondly, the normalizing feedback cell is not selective for the direction of motion, as a sur-

round with purely temporal dynamics is enough to reproduce the normalizing effects of a

global stimulus that contains spatial motion. Thirdly, the normalizing feedback neuron either

has a large receptive field or is a part of an interconnected network of the same cell type with

smaller receptive fields, as the strength of the normalization increases as the surround grows in

size, extending well beyond 50˚ [19].

We also make a clear prediction about the mechanism, via which the normalization is

achieved in the neuron that exhibits the contrast normalization properties. The effects of con-

trast normalization on amplitude and kinetics of the signal are not a result of a simple satura-

tion (Fig 4), instead, we can reproduce these effects by altering the cell’s input resistance. We

hypothesize that the input resistance of the cell should drop significantly in the presence of a

global stimulus with a dynamic surround. However, measuring such a drop in the input resis-

tance in the presence of the global dynamic surround at varying speeds might be a complicated

experiment to perform. The contrast normalization effect described here is seen when imaging

at the axon terminals of the cells, at the site of their synaptic output onto the first direction-

selective cells, i.e. T4 and T5 cells. In the ON pathway, this corresponds to medulla layer M10.

Input resistance measurements of these cells, however, are only possible at the soma, which, in

the case of ON-pathway interneurons, is located outside of the medulla. Supposing that the

neuronal computations are compartmentalized and local to the axons and dendrites, the drop

in the input resistance might not reach the soma and thus not be measurable there.

To uncover the physiological mechanism underlying contrast normalization, one could

start by focusing on octopamine, as the application of the octopamine receptor agonist chlordi-

meform (CDM) has been shown to significantly speed up response of Drosophila visual inter-

neurons [14], and stimulus-dependence has been demonstrated to elicit changes in the shape

of the response similar to those produced by octopamine [27]. The effect we observed here

might be of a similar nature, mimicking the shift toward higher frequencies that occurs in the

cells when the fly is in active locomotion [21], a state, in which it receives an abundance of

global visual cues from the environment. Exploring the connection between the activation of

octopamine receptors and the drop in the input resistance of the neuron in the presence of a

global dynamic stimulus might shed further light on the mechanism of contrast normalization.

In summary, we built on the work in contrast normalization in the motion vision circuitry of

Drosophila melanogaster and demonstrated the dramatic effect that contrast normalization has

on the temporal characteristics of the interneurons’ responses. Our findings illustrate the limita-

tions of using simplified artificial stimuli with varying spatial profiles to probe the filtering prop-

erties of single cells and the constraints in transferring these results onto naturalistic conditions.

Supporting information

S1 Fig. Dynamic surround affects response amplitude and kinetics. Mi1 responses to a

luminance step in the RF center with gray, stationary, moving grating, and stochastic stimulus

surround; n = 48 cells/11 flies. Luminance step occurred during the gray-shaded period. Left:

Amplitudes of cell responses. Shaded areas around the curves show bootstrapped 68% confi-

dence intervals. Right: Kinetics of cell responses. Responses during each condition are normal-

ized to the condition’s maximum.

(TIF)
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S2 Fig. Dynamic surround and input amplitude do not affect L1 response kinetics. (A)

Schematic representation of early stages of the motion detection circuit. Highlighted is a lam-

ina neuron in the ON pathway that doesn’t exhibit contrast normalization properties and pro-

vides major input to contrast normalization-exhibiting neurons. (B) Contrast tuning curves

for lamina neuron L1 (n = 14 cells/4 flies). Shaded areas around the curves show bootstrapped

68% confidence intervals. Adapted from Drews et al. (2020) [19]. (C) Spatial and temporal

stimulus profile. Left: 3 luminance step amplitudes with gray surround. Right: 3 luminance

step amplitudes with moving grating surround. (D) L1 responses to luminance steps of differ-

ent amplitudes with gray and moving grating surround. Luminance step happened during

gray-shaded period. Left: Amplitudes of cell responses. Shaded areas around the curves show

bootstrapped 68% confidence intervals. Right: Response kinetics. Responses during each con-

dition are normalized to condition’s maximum.

(TIF)

S3 Fig. Visual surround dynamics significantly suppress signal amplitude and increase its

kinetics. (A-I) Left: Maximum signal amplitude reached in each condition as a percentage of

peak signal amplitude reached in gray surround condition. Right: Level of signal decay reached

by the end of the luminance step (between 0.9 and 1.1 seconds from the start of stimulation) in

each condition, as a percentage of the peak signal amplitude reached in that condition. (A) Sta-

tistics for Tm3 responses in Fig 2. Left: Amplitudes of cell responses. In comparison to the

gray surround condition, response amplitude is the same in stationary grating surround con-

dition (Mann-Whitney U: 2357, NS p = 0.46), and is suppressed when a moving grating

(Mann-Whitney U: 121, ***p < 0.001) or a stochastic stimulus (Mann-Whitney U: 535,

***p< 0.001) is presented in the surround. Right: Kinetics of cell responses. In comparison to

the gray surround condition, the signal decays to the same level in the stationary grating sur-

round condition (Mann-Whitney U: 2347, NS p = 0.44), and decays significantly stronger if a

moving grating (Mann-Whitney U: 777, ***p< 0.001) or a stochastic stimulus (Mann-Whit-

ney U: 499, ***p < 0.001) is presented in the surround. (B) Statistics for Mi1 responses in S1

Fig. Left: Amplitudes of cell responses. In comparison to the gray surround condition, the

amplitude of the signal is the same in stationary grating surround condition (Mann-Whitney

U: 10345, NS p = 0.49), and is suppressed when a moving grating (Mann-Whitney U: 6210,

***p< 0.001) or a stochastic stimulus (Mann-Whitney U: 6223, ***p < 0.001) is presented in

the surround. Right: Kinetics of cell responses. In comparison to the gray surround condition,

the signal decays to the same level in the stationary grating surround condition (Mann-Whit-

ney U: 10266, NS p = 0.44), and decays stronger if a moving grating (Mann-Whitney U: 8101,

***p< 0.001) or a stochastic stimulus (Mann-Whitney U: 8545, **p = 0.005) is presented in

the surround. (C) Statistics for Mi1 responses in Fig 3. Left: Amplitudes of cell responses. In

comparison to the gray surround condition, the amplitude of the signal is suppressed when a

moving grating (Mann-Whitney U: 24770, ***p< 0.001) is presented in the surround. Right:

Kinetics of cell responses. In comparison to the gray surround condition, the signal decays

stronger if a moving grating (Mann-Whitney U: 34725, ***p< 0.001) is presented in the sur-

round. (D) Statistics for Tm1 responses in Fig 3. Left: Amplitudes of cell responses. In compar-

ison to the gray surround condition, the amplitude of the signal is suppressed when a moving

grating (Mann-Whitney U: 1065, ***p< 0.001) is presented in the surround. Right: Kinetics

of cell responses. In comparison to the gray surround condition, the signal decays stronger if a

moving grating (Mann-Whitney U: 1954, **p = 0.005) is presented in the surround. (E) Statis-

tics for Tm2 responses in Fig 3. Left: Amplitudes of cell responses. In comparison to the gray

surround condition, the amplitude of the signal is suppressed when a moving grating (Mann-

Whitney U: 900, ***p < 0.001) is presented in the surround. Right: Kinetics of cell responses.
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In comparison to the gray surround condition, the signal decays stronger if a moving grating

(Mann-Whitney U: 1578, **p = 0.003) is presented in the surround. (F) Statistics for Tm3

responses in Fig 3. Left: Amplitudes of cell responses. In comparison to the gray surround con-

dition, the amplitude of the signal is suppressed when a moving grating (Mann-Whitney U:

1138, ***p < 0.001) was presented in the surround. Right: Kinetics of cell responses. In com-

parison to the gray surround condition, the signal decays stronger if a moving grating (Mann-

Whitney U: 6433, ***p < 0.001) is presented in the surround. (G) Statistics for Tm3 responses

in Fig 5. Left: Amplitudes of cell responses. For the gray surround condition, in comparison to

the response to 100% luminance step, the amplitude of the signal is the same in response to

75% luminance step (Mann-Whitney U: 1668, NS p = 0.06) and is suppressed in response to

50% luminance step (Mann-Whitney U: 1668, ***p < 0.001). In comparison to the response

to 100% luminance step in gray surround condition, the amplitude of the signal is suppressed

in the moving grating surround condition in response to 100% (Mann-Whitney U: 273,

***p< 0.001), 75% (Mann-Whitney U: 38, ***p < 0.001), and 50% (Mann-Whitney U: 4,

***p< 0.001) luminance steps. In the moving grating surround condition, in comparison to

the response to 100% luminance step, the amplitude of the signal is suppressed in response to

75% (Mann-Whitney U: 1512, *p = 0.011) and 50% (Mann-Whitney U: 995, ***p < 0.001)

luminance steps. Right: Kinetics of cell responses. In gray surround condition, in comparison

to the response to 100% luminance step, the signal decays to the same level in response to 75%

(Mann-Whitney U: 1963, NS p = 0.46) and 50% (Mann-Whitney U: 1712, NS p = 0.09) lumi-

nance steps. In comparison to the 100% luminance step in gray surround condition, the signal

decays stronger in moving grating surround condition in response to 100% (Mann-Whitney

U: 957, ***p < 0.001), 75% (Mann-Whitney U: 789, ***p< 0.001), and 50% (Mann-Whitney

U: 713, ***p < 0.001) luminance steps. In the moving grating surround condition, in compari-

son to the 100% luminance step, the signal decays to the same level in response to 75% (Mann-

Whitney U: 1747, NS p = 0.12) and 50% (Mann-Whitney U: 1769, NS p = 0.44) luminance

steps. (H) Statistics for Mi1 responses in Fig 5. Left: Amplitudes of cell responses. In gray sur-

round condition, in comparison to 100% luminance step, the amplitude of the signal is the

same in response to 75% (Mann-Whitney U: 2955, NS p = 0.38) and is suppressed in response

to 50% (Mann-Whitney U: 2321, **p = 0.005) luminance steps. In comparison to 100% lumi-

nance step in gray surround condition, the amplitude of the signal is suppressed in moving

grating surround condition in response to 100% (Mann-Whitney U: 1582, ***p< 0.001), 75%

(Mann-Whitney U: 1056, ***p< 0.001), and 50% (Mann-Whitney U: 633, ***p< 0.001) lumi-

nance steps. In the moving grating surround condition, in comparison to 100% luminance

step, the amplitude of the signal is suppressed in response to 75% (Mann-Whitney U: 2355,

**p = 0.007) and 50% (Mann-Whitney U: 1617, ***p < 0.001) luminance step. Right: Kinetics

of cell responses. In gray surround condition, in comparison to 100% luminance step, the sig-

nal decays to the same level in response to 75% (Mann-Whitney U: 3042, NS p = 0.5) and 50%

(Mann-Whitney U: 3035, NS p = 0.5) luminance steps. In comparison to 100% luminance step

in gray surround condition, the signal decays to the same level in moving grating surround

condition in response to 75% luminance step (Mann-Whitney U: 2603, NS p = 0.06), and

decays stronger in response to 100% (Mann-Whitney U: 2539, *p = 0.037) and 50% (Mann-

Whitney U: 2370, **p = 0.009) luminance steps. In the moving grating surround condition, in

comparison to 100% luminance step, the signal decays to the same level in response to 75%

(Mann-Whitney U: 3034, NS p = 0.5) and 50% (Mann-Whitney U: 2720, NS p = 0.13) lumi-

nance steps. (I) Statistics for L1 responses in S2 Fig. Left: Amplitudes of cell responses. In the

gray surround condition, in comparison to 100% luminance step, the amplitude of the signal

is suppressed in response to 75% (Mann-Whitney U: 572, **p = 0.003) and 50% (Mann-Whit-

ney U: 381, ***p < 0.001) luminance steps. In comparison to 100% luminance step in the gray
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surround condition, the amplitude of the signal in moving grating surround condition is the

same in response to 100% luminance step (Mann-Whitney U: 778, NS p = 0.18), and is sup-

pressed in response to 75% (Mann-Whitney U: 609, **p< 0.007), and 50% (Mann-Whitney

U: 393, ***p < 0.001) luminance steps. The amplitude of the signal is the same in response to

75% luminance step in the gray surround condition and in the moving grating surround con-

dition (Mann-Whitney U: 867, NS p = 0.45). The amplitude of the signal is the same in

response to 50% luminance step in the gray surround condition and in the moving grating sur-

round condition (Mann-Whitney U: 828, NS p = 0.32). Right: Kinetics of cell responses. In

comparison to 100% luminance step in gray surround condition, the signal decays to the same

level in the gray surround condition in response to 75% (Mann-Whitney U: 853, NS p = 0.4)

and 50% (Mann-Whitney U: 801, NS p = 0.24) luminance steps, as well as in the moving grat-

ing surround condition in response to 100% (Mann-Whitney U: 874, NS p = 0.47), 75%

(Mann-Whitney U: 812, NS p = 0.27), and 50% (Mann-Whitney U: 783, NS p = 0.19) lumi-

nance step.

(TIF)

S4 Fig. Visual surround outside cell’s RF does not elicit a response from the cell. Extended

traces of Fig 3 average responses of contrast normalization-exhibiting neurons to luminance

step in the RF center with gray and moving grating surround. Mi1 (n = 98 cells/25 flies);

Tm1 (n = 24 cells/9 flies); Tm2 (n = 22 cells/7 flies), and Tm3 (n = 65 cells/16 flies). Lumi-

nance step happened during the gray-shaded period. The dashed lines denote the time when

the surround was on screen. Shaded areas around the curves show bootstrapped 68% confi-

dence intervals.

(TIF)
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