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Abstract

Micro- and nanoplastics are widespread throughout the world. In particular, polyethylene
(PE) and polyethylene terephthalate or polyester (PET) are two of the most common poly-
mers, used as plastic bags and textiles. To analyze the toxicity of these two polymers, oligo-
mers with different numbers of units were used as models. The use of oligomers as
polymeric templates has been used previously with success. We started with the monomer
and continued with different oligomers until the chain length was greater than two nm.
According to the results of quantum chemistry, PET is a better oxidant than PE, since itis a
better electron acceptor. Additionally, PET has negatively charged oxygen atoms and can
promote stronger interactions than PE with other molecules. We found that PET forms sta-
ble complexes and can dissociate the guanine-cytosine nucleobase pair. This could affect
DNA replication. These preliminary theoretical results may help elucidate the potential harm
of micro- and nanoplastics.

Introduction

Microplastics (< 5 mm in size) and nanoplastics (< 100 nm diameter) come from fragmenta-
tion of plastic particles through biological (metabolism), chemical (oxidation or hydrolysis)
and physical degradation (UV interaction, mechanical processes) [1-6]. Micro- and nanoplas-
tics are consumed by humans and animals. Previous research suggests that humans ingest an
amount of plastics equivalent to one credit card per year [7, 8]. Micro- and nanoplastics are
everywhere, but the question is whether they are really toxic.

There are many studies to determine possible danger of plastics in the environment and
animal life [9-27]. Some indicate a relationship with oxidative stress. Others report that micro-
plastics are ingested and evacuated without producing biochemical changes [22]. Recent inves-
tigations with Positron Emission Tomography to visualize biodistribution of radioplastics in
mice reveal that most radioplastics remain in the gastrointestinal tract and, after 48 hours of
consumption, they are eliminated through the feces [24]. While there is information for

PLOS ONE | https://doi.org/10.1371/journal.pone.0285515 March 6, 2024

1/12


https://orcid.org/0000-0002-0515-1946
https://doi.org/10.1371/journal.pone.0285515
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285515&domain=pdf&date_stamp=2024-03-06
https://doi.org/10.1371/journal.pone.0285515
https://doi.org/10.1371/journal.pone.0285515
https://doi.org/10.1371/journal.pone.0285515
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

Microplastics: Chemical reactivity theory to analyze possible toxicity

Competing interests: The authors have declared
that no competing interests exist.

humans and also for other species, all experiments reported so far used large concentrations of
nanoplastics to test the effects [14]. The problem is that these concentrations cannot occur in
the environment. Long-term exposure of environmental amounts is needed to understand the
toxicity of nanoplastics in humans and other organisms. With all the information reported so
far, the damage that micro- and nanoplastics can cause in humans or animals is still uncertain.

Polyethylene is the most common and cost-effective polymer, used as plastic bags and films
[28-31]. Many kinds of polyethylene are known [28], with most having the chemical formula
(C,Hy)y. The most common polyester is polyethylene terephthalate (PET). This has been
extensively used in textiles. The demand of PET is increasing due to the extreme “use and
waste” economy of clothing, promoted many times by fashion [29-31]. PET is also one of the
most common polymers identified in samples of drinking water [11]. Nano- and microplastics
of polyester and polyethylene could be dangerous.

Despite all the information we have about micro- and nanoplastics in different environ-
ments and about the effect that these particles can have on health, there is a lot of uncertainty
about their harmful properties. There is also no theoretical research on potential toxicity of
these polymers. There are some publications on molecular simulations to determine the effect
of nanometric polystyrene particles [32] and the theory of chemical reactivity has been used to
study the environmental risk [33-35] of different substances. There are also studies on oxida-
tive stress and nanoplastics [36-39] but there are not theoretical studies on oxidative stress or
the direct interactions of nanoplastics with DNA nitrogen bases. For this reason, the main idea
of this investigation is to theoretically study different oligomers as models of polyethylene and
polyester (polyethylene terephthalate, PET) using Density Functional Theory and different
chemical reactivity indices (see Fig 1 for molecular formulas). Since polymers are difficult to
optimize, oligomers with different numbers of units are used as models for polyethylene and
polyester. Oligomers as models of polymers have been used previously with success [40, 41].
The results of this research can help to understand possible health effects of micro- and nano-
plastics, and may determine which of these two plastics is potentially more dangerous.

Computational details

Gaussian09 was used for all electronic calculations [42]. Geometry optimizations of initial
geometries were obtained at M062x/6-311g+(2d, p) level of theory without symmetry con-
straints [43-45]. Harmonic analyses verified local minima (zero imaginary frequencies). Con-
ceptual Density Functional Theory is a chemical reactivity theory founded on Density
Functional Theory based concepts [46-53]. Within this theory there are response functions
such as the electro-donating (w-) and electro-accepting (w+) powers, previously reported by

polyehtilene (PE) polyethylene terephthalate (PET)
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Fig 1. Schematic representation of PE and PET.
https://doi.org/10.1371/journal.pone.0285515.9001
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Fig 2. Electron Donor-Acceptor Map (DAM).
https://doi.org/10.1371/journal.pone.0285515.9002

Gazquez et al. [48, 49] The propensity to donate electrons or w- is defined as follows:

o— = (314+ A)*/16(1 — A) (1)
whereas the propensity to accept electrons or w+ is equal to

o+ = (1+3A)*/16(1 — A) (2)

I and A are vertical ionization energy and vertical electron affinity, respectively. They are
obtained as follows:

A— A" +1le T=E(A")—E(A) (3)

A" — A+le A=E(A)-E(A™) (4)

Lower values of w- indicate good electron donor molecules. Higher values of w+ are for
good electron acceptor molecules. w- and w+ refer to charge transfers, not necessarily from
one electron. With these parameters it is possible to determine the Electron Donor-Acceptor
Map (DAM, see Fig 2) [54]. Systems located down to the left are considered good electron
donors whilst those situated up to the right are good electron acceptors. It can expect that elec-
trons will be transferred from molecules considered good electron donors to those considered
good electron acceptors. These chemical descriptors have been used successfully in many dif-
ferent chemical systems [55-59].

Results and discussion

Different oligomers of polyester and polyethylene are used as models to investigate the elec-
tronic characteristics of polymers-like structures. This approach was previously used with suc-
cess to study conducting polymers [40, 41]. Polymer biodegradation consists of several steps
that break down large polymers to form the monomer, and then the monomer is mineralized
to carbon dioxide and water [6, 60, 61]. Therefore, it is important to know the electronic prop-
erties as the size of the system decreases. For this reason, we started from the monomer and
continued with different oligomers until the chain length was greater than 2 nm. In Figs 3 and
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Fig 3. Optimized structure of different models of polyethylene (PE). Numbers represent chain length in nm.

https://doi.org/10.1371/journal.pone.0285515.g003

4 the optimized structures of the models that investigated are shown. The correspondent

length of the oligomer is also reported.

To investigate possible oxidative stress caused by micro- and nanoplastics, electro-donating
and electro-accepting powers of all the systems under study were calculated. Good electron
acceptors will take electrons from other systems. Good electron donors will donate electrons.
The DAM for these oligomers is reported in Fig 5. Systems located down to the left are good
electron donors. Therefore, they donate electrons producing the reduction of other molecules
that gain these electrons. Systems located up the right are good electron acceptor. They accept

electrons, oxidizing other species.

The results of Fig 5 show interesting patterns. For oligomers of polyethylene, the ability to

donate and also the ability to accept electrons decreases as the size of the system increases.

They become more reductant molecules and probably they are not capable of oxidizing other
systems. For PET’s oligomers the results are similar. The ability to accept or donate electrons

of the three systems is different and there is also a correspondence with the size of the
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Fig 4. Optimized structure of different models of polyester (PET). Numbers represent chain length in nm.
https://doi.org/10.1371/journal.pone.0285515.g004

oligomer. The bigger the system, the better electron acceptor it will be. They are located at the
top right, so they are better electron acceptors and worse electron donors than the polyethyl-
ene’s oligomers. This result is as expected, since the electron affinity of oxygen is greater than
that of carbon. The more oxygen atoms the molecule has, the better electron acceptor it will
be. This means that PET s oligomers are better oxidants than those of polyethylene and may
produce oxidative stress oxidizing other molecules. Polyethylene ‘s oligomers are better elec-
tron donors and they may reduce other molecules. To investigate the importance of being a
good oxidant or good reductant, it is necessary to compare with molecules of interest, as
nucleobases.

To investigate the capability of oligomers to interact with nucleobases through electron
transfer processes, we optimized geometries of adenine, thymine, cytosine and guanin, and we
calculated the electron transfer properties. Adenine-thymine and cytosine-guanine pairs are
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Fig 5. DAM of system under study. Values in eV.
https://doi.org/10.1371/journal.pone.0285515.9005
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also investigated. In order to compare the electron donor acceptor capacity of all systems.
Results are reported in Fig 5. All nucleobases are located down to the left in the DAM. They
are good electron donors and poor electron acceptors. Comparing with polyethylene s oligo-
mers, it can be seen that both are ubicated in the same region of the DAM. Electron donor
capability is quite similar, being nucleobases slightly better electron acceptors. Therefore, no
electron transfer is expected between polyethylene and nucleobases. With polyester the results
are different. Nucleobases are located down to the left of the PET s oligomers and electron
transfer from nucleobases to these oligomers could be possible. Polyester can oxidize nucleo-
bases and therefore, microplastics of PET can be harmful. More investigations are needed to
corroborate this idea.

In vivo uptake and transport of nanoplastics depend on their own structure and properties,
such as chemical composition [62]. Due to the differences in electronegativity of C and O, neg-
ative atomic charge in oxygen and carbon atoms can be anticipated. Mulliken Atomic Charges
of CigHjsg and C,3H ;305 as models of both nanoplastics corroborate this idea (see Fig 6). All
oxygen atoms of PET oligomer are negatively charged whilst polyethylene oligomer presents
negative carbon atoms. One possible risk of nanoplastics in the body is the interaction with
important biomolecules as nucleobases for example. Both oligomers can form hydrogen bonds
with nucleobases. PET can interact via oxygen atoms, while polyethylene can form hydrogen
bonds with hydrogen atoms, since the carbons are sterically less accessible. The atomic charge
of the hydrogens of polyethylene s oligomer is smaller than the atomic charge of the oxygen
atoms of PET ’s oligomer. Stronger hydrogen bonds are expected with PET than with
polyethylene.

To corroborate this idea and analyze possible harmful effects of nanoplastics, we investi-
gated interactions of nucleobases with oligomers of polyethylene or polyester. The dissociation
energies of X-guanine and X-guanine-cytosine (X is oligomers of polyethylene or PET) are
analyzed to mimic possible interactions with DNA. The interactions of nanoplastics” oligo-
mers and guanine or guanine-cytosine base pair allow us to investigate possible effects of
nanoplastics on these two nucleobases that are bonded in DNA. We used oligomers of
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Fig 6. Mulliken atomic charges of C,3H;5 and C,0H,30s.
https://doi.org/10.1371/journal.pone.0285515.g006
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polyethylene and polyester, with ten and twenty carbon atoms respectively. Dissociation ener-
gies are calculated considering guanine or guanine-cytosine as products and following Eqs 5
and 6.

E,;. = {|[E(X) + E(guanine)] — E(X — guanine)} (5)

E,. = {|[E(X) 4 E(guanine — cytosine)] — E(X — guanine — cytosine) } (6)

X is oligomers of polyethylene or PET. The results are reported in Fig 7. It is possible to see
that different hydrogen bonds are formed. With polyethylene, the N and O of guanine form
hydrogen bonds, with bond length of 2.2 to 2.8 A. The hydrogen atoms of polyethylene form
H-H bonds with cytosine and there is also one hydrogen bond with the oxygen atom of cyto-
sine. The bond length of hydrogen bonds of cytosine is 2.0-2.6 A. All PET- guanine and PET-
guanine-cytosine hydrogen bonds are with an oxygen atom, either from PET, guanine or cyto-
sine. The bond length of these hydrogen bonds is 2.0 to 2.3 A. These results corroborate the
idea that arises from the Mulliken atomic charges. Hydrogen atoms of polyethylene and oxy-
gen atoms of PET form hydrogen bonds. As expected, oxygen atoms of guanine and cytosine
also form hydrogen bonds with H atoms of polyethylene or PET. Due to the bond distance, it
is expected that hydrogen bonds of nucleobases with PET are stronger than those of nucleo-
bases with polyethylene. This conclusion is also obtained from the dissociation energies. Nega-
tive dissociation energies represent stable dissociated systems. Complexes with polyethylene s
oligomers are less stable than the dissociated system, i.e. stable complexes are not formed.
With guanine, the binding energy is small (4.2 kcal/mol) and within the limits of the calcula-
tions, so the formation of a stable compound cannot be considered. For PET s oligomers, the
dissociation energy is positive and the complexes are more stable than the dissociated struc-
tures. PET’s oligomer interacts with guanine, forming a 12.3 kcal more stable complex than
the dissociated system. PET-guanine-cytosine complex is more stable than the dissociated sys-
tem by 21.3 kcal/mol.

This could be related with the toxicity of micro- and nanoplastics. PET could be more dan-
gerous than polyethylene since the interaction of correspondent oligomers with nucleobases is
more stable for the first than for the second. Polyester forms stable complexes and can promote
the dissociation of guanine-cytosine pairs. This possible interaction may be related to the tox-
icity of nanoplastics made from polyester. Polyethylene is expected to be less dangerous since
the interaction with guanine and guanine-cytosine pair is not stable, so these nanoplastics will
not interfere with DNA replication.

Conclusions

Micro- and nanoplastics have long-term stability under environmental conditions, an impor-
tant factor that increases the potential for living organisms to be exposed to these materials. So
far, no clear toxic effects of micro and nano- have been observed. Based on the results reported
here, it is possible to state that PET can be expected to be more harmful than PE for three rea-
sons: PET is better electron acceptor and therefore a better oxidant than polyethylene; PET has
negatively charged oxygen atoms and can promote stronger interactions than PE with other
molecules; PET forms stable complexes and can dissociate the guanine-cytosine nucleobase
pair. These first results contribute to understand potential dangerous of these two
microplastics.
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Fig 7. Optimized structures and dissociation energies (in kcal/mol) of oligomers of polyethylene (C;oH,,) and PET (C»oH;305s) interacting with
guanine and guanine-cytosine pair. Dissociation Energies (Eg;; Kcal/mol) and corresponding chemical equation indicated with the optimized structures.

https://doi.org/10.1371/journal.pone.0285515.9g007
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