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Abstract

Objective

Conventional computer-aided diagnosis using convolutional neural networks (CNN) has lim-

itations in detecting sensitive changes and determining accurate decision boundaries in

spectral and structural diseases such as scoliosis. We devised a new method to detect and

diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent

space’s discriminative ability in the generative adversarial network (GAN) and a simple

multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs.

Materials and methods

Our model was trained and validated in a two-step manner. First, we trained a GAN using

CXRs with various scoliosis severities and utilized the trained network as a feature extractor

using the GAN inversion method. Second, we classified each vector from the latent space

using a simple MLP.

Results

The 2-layer MLP exhibited the best classification in the ablation study. With this model, the

area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal

and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the

model’s specificity was 0.697 in the internal and 0.646 in the external datasets.
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Conclusion

We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative repre-

sentation learning. Our model shows good AUROC under screening chest radiographs in

both the internal and external datasets. Our model has learned the spectral severity of AIS,

enabling it to generate normal images even when trained solely on scoliosis radiographs.

Introduction

Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity [1] and is defined

as a 10˚ or more spinal curvature of unknown etiology in persons 10 to 18 years old [2]. AIS

has an overall 0.47% to 5.2% prevalence [3]; thus, screening in school-aged adolescents is

imperative because early detection can reduce the need for surgery through non-surgical man-

agement such as bracing [4]. However, Cobb’s angle measurements conveyed a 4˚ to 8˚ intra-

and inter-observer variability [5, 6], with one study revealing a potential maximum inter-

observer measurement error up to 11.8˚ [7]. In addition, Cobb’s angle manual measurement is

labor-intensive and time-consuming [8]. Therefore, it would be conducive to authentic clinical

practice if Cobb’s angle was only measured in suspected scoliosis patients, which can be com-

pleted during health checkups.

Thus, many studies actively research AIS diagnosis using deep learning models with convo-

lutional neural networks (CNN). For example, one study developed an automated scoliosis

screening algorithm using a deep learning model for naked back photos [2]. Furthermore, as

several segmentation studies incorporate deep learning [9], some authors have developed an

automated Cobb’s angle measurement algorithm using the detection or segmentation pro-

vided by another deep learning model [10–12]. However, supervised learning will inevitably

function poorly with external dataset images. Moreover, CNN is affected by image textures

[13], so it may not be preferable for diagnosing spectrum disorders that affect the global spinal

structure, such as scoliosis. Therefore, a method that can withstand continuous or spectral pro-

gression would complement the clinical field’s discriminative diagnosis tendency, which inevi-

tably binarizes patients with borderline symptoms into the ‘normal’ category.

In this regard, we noticed an alternative machine learning field trend: finding a lower

dimensional data representation with preferable properties such as discernibility through data

learning distribution. Specifically, we developed a deep learning AIS diagnosis model with

classification features that are latent vectors acquired from query images extracted using GAN

inversion. In this feature-extracting process, we incorporated GAN trained from an imbal-

anced dataset that does not include standard counterpart samples to maximize the differentiat-

ing ability. Therefore, we conducted an ablation study to find and evaluate a model that

exhibits optimal performance and diagnostic power. The primary purposes of the study are:

• Empirically proving GAN’s ability to generate normal images through partial normality,

provided in training, set with symptoms.

• Developing a novel method for differentiating given data using GAN as a feature extractor.

Our method is expected to detect spectral disease progressions with high sensitivity.

Literature review

Representation learning is a machine learning method allowing a system to learn feature iden-

tification from a substantial amount of unlabeled data [14–16]. While most works learn data

PLOS ONE Screening of adolescent idiopathic scoliosis using GAN inversion method in CXR

PLOS ONE | https://doi.org/10.1371/journal.pone.0285489 May 22, 2023 2 / 16

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0285489


distribution representation using a discriminative objective, some studies have utilized a gen-

erative learning approach that generates or models pixels in the input space [17–19]. Multiple

investigations have attempted to interpret the relationship between data and its latent repre-

sentations in generative models. Arora et al. [20] proposed that using a generative adversarial

network (GAN) as a feature learner is a practical approach due to its low support in GANs-

learned distribution; they also provided a theoretical background for this approach. Salimans

et al. [21] proposed semi-supervised learning through discriminator modification to classify

K-classes and a virtual class for detecting fake samples. On the other hand, Srinivasu et al. [22]

injected information from the generative model in tackling discriminative tasks by using auto-

generated images reconstructed using variational autoencoders [18] as additional data for

model training. He et al. proposed a novel unsupervised learning approach using masked auto-

encoders to reconstruct inputs from partially masked versions of themselves [23]. This allows

the model to learn suitable representations for downstream tasks, particularly in computer

vision applications. While their approach is purely unsupervised in the upstream phase, our

proposed method leverages semi-supervised learning on a dataset with abnormal labels, mak-

ing it somewhat similar to He et al.’s approach.

These studies displayed the data distribution and learned latent space correlation, thus sug-

gesting a similar correlation in a specific data sample-latent vector pair. However, the above-

mentioned methods are limited as they require extra architectural modules or modifications.

Thus, methods that manipulate the latent vector were introduced. StyleGAN [24] introduced

intermediate latent space W, which is more disentangled semantically, further boosting latent

vector investigations. SeFa [25] provided an unsupervised algorithm to identify dominant

directions in the latent space.

The present study uses the GAN inversion method for generative representation learning

on a relatively small-sized image dataset. GAN inversion discovers a code in the GAN-trained

latent space, generating the best reconstruction of a given query image. The most direct and

intuitive GAN inversion method is the optimization-based method proposed by Abdal et al.

[26]. This optimization-based method tries to find z,* which satisfies the following Eq (1):

z∗ ¼ argminz ‘ðGðzÞ; xÞ; ð1Þ

where ℓ(image, image) is a predefined similarity metric, x is the given query image, and G(z) is

the latent vector generated image. z* corresponds to the latent manifold vector that resembles

the given query image the most. In this sense, we propose an alternative novel method utilizing

features embedded in an intermediate manifold. Specifically, the vector acquired using the

generative adversarial network (GAN) inversion [26] is equivalent to the discriminative

method’ extracted feature as the inherent information about the given images is embedded in

the acquired vector. This feature extraction differs from conventional models that utilize

CNNs as CNN models craft features by accumulating information acquired from convolution

operations on image patches. In contrast, our method extracts more general, large-scale fea-

tures from the whole image.

Materials and methods

1 Dataset and preparation

This retrospective study followed the Declaration of Helsinki principles [27]. The study proto-

col was approved by our institution’s (Center 1) Institutional Review Board Committees and

other institutions (Center 2), which waived the need for written informed patient consent.

1.1 Dataset. Fig 1 depicts a data collection and split schematic. We chronologically split

the training and validation datasets by using a portion of the data obtained between 1997 and
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2017 as the training data and all data obtained in 2018 as the validation data. When composing

the training dataset, all chest X-rays (CXRs) with AIS were used, and some normal counterpart

CXRs were randomly selected to form a balanced dataset. As our model requires two-stage

training, we randomly split the collected CXRs with AIS into two datasets: upstream GAN and

downstream multi-layer perceptron (MLP). The diagnostic threshold was set as 20 degrees

considering that close observation is generally recommended for patients with an initial

Cobb’s angle of fewer than 20 degrees [28]. An orthopedic surgeon with eight years of clinical

experience did the angle measurement. The exclusion criteria were cases post-spine surgery or

of younger children. As a result, we obtained three datasets.

The first dataset collected 2,913 CXRs of young adults with scoliosis to train the upstream

GAN, which was used for feature extraction. The second dataset comprised 1,024 CXRs of

young adults collected at Center 1 with a 1:1 normal-to-scoliosis ratio for training the

Fig 1. A schematic diagram of collected data.

https://doi.org/10.1371/journal.pone.0285489.g001
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downstream MLP to detect scoliosis. The final dataset constituted 8,223 CXRs of young adults

collected at Center 1; 261 had scoliosis, and 7,962 had no noticeable disease. For external vali-

dation, we collected 53 CXRs with scoliosis and 147 CXRs without scoliosis from Center 2 in

2021. In addition, after the study began, the most recent 200 cases were selected retrospectively

and externally validated. More detailed demographic information about the collected dataset

is provided in Table 1.

1.2 Image preprocessing. As our task focused on global skeletal orientation and not fine

features on soft tissues, image preprocessing was to enhance the bone area and preserve the

aspect ratio. First, we checked the image spacing information to preserve the image aspect

ratio if the image was distorted due to different vertical/horizontal spacing ratios. Then, we

applied CLAHE [29, 30], an equalizing histogram technique to improve contrast on image

patches, with a 2.0 clipLimit and (8,8) tileGridSize on input images to differentiate vertebral

bones from soft tissues, especially in the lumbar vertebral area. To introduce the CXR into the

model, resizing to 512 × 512 resolution was required. However, naive resizing would change

the aspect ratio, unintendedly altering Cobb’s angle, which is the gold standard for indicating

scoliosis. Therefore, we added padding to the image so the original image’s aspect ratio would

not change, even when resized. Next, we stacked the processed black-and-white image chan-

nel-wise to mirror the same shape as natural RGB images.

2 Methods

2.1 Training GAN with the diseased dataset. Fig 2 illustrates our proposed method. The

training dataset usually includes a natural distribution for maximum generated-image diver-

sity for the training GAN. However, data scarcity results in low-quality images with minimal

intra-class variation. Shahbazi et al. noted that this tendency depreciates the conditional train-

ing [31]. Considering our objective and dataset size, we trained our network using only CXRs

expressing some scoliosis degree. Using the scoliosis classification criteria set by Goldstein

[32] and Cruickshank [33], curve patterns were determined by observing where the curve apex

exists. From this standard, we noted that even in severe scoliosis cases, some parts could be

diagnosed as normal in focal view. For example, local thoracic spine observation could deter-

mine little difference in a CXR with severe scoliosis on the lumbar spine from the thoracic

spine without scoliosis. Therefore, we hypothesized that we could more effectively embed the

Table 1. Detailed demographic information of the collected datasets.

Center 1 Center 2

Upstream GAN Downstream MLP Internal validation External validation

Radiograph quantity 2,913 1,024 8,223 200

Scoliosis 2,913 512 261 53

Normal - 512 7,962 147

Age 14.40 ± 2.25 14.90 ± 2.26 14.40 ± 2.68 18.64 ± 4.17

Scoliosis 14.40 ± 2.25 14.45 ± 2.23 14.59 ± 2.01 22.42 ± 3.29

Normal - 15.34 ± 2.21 14.39 ± 2.70 17.27 ± 3.58

Sex (M/F/O) 754/1473/686 354/407/263 4720/3481/22 69/131/0

Scoliosis 754/1473/686 135/262/115 63/197/1 10/43/0

Normal - 219/145/148 4657/3284/21 59/88/0

Collection year(s) 1997–2017 1997–2017 2018 2021

M, Male; F, Female; O, Others (anonymized data). Age is presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0285489.t001
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disease axis into the model feature space without degrading the normal distribution too much

by using an imbalanced dataset. An empirical analysis justifying our method is provided in the

discussion section.

2.2 GAN inversion for feature extraction. We conducted optimization-based method

experiments considering data scarcity and embedded our vector into the original W space

instead of the extended W+ space. Karras et al. [24] and Yang et al. [34] established that differ-

ent semantics are hierarchically determined from different resolution layers. Therefore,

embedding vectors in a fine-grained manner would benefit fine feature reconstruction, which

was not the primary goal of this study. Next, we suspected embedding into W+ space would

bring excessive computational cost as it has a much higher dimension than W space.

2.3 Evaluation. Supervised learning combined latent codes (through GAN inversion-

extracted features) and scoliosis presence based on the original image. The projection head

evaluated GAN’s latent space discriminative ability [35], similar to the widely used linear prob-

ing method [36] in self-supervised learning evaluations. The projection head is a 2-layer MLP;

hidden MLP layers were 512 dimensions and used ReLU [37], and output MLP layers were

one dimension with a sigmoid. None of the MLP layers contained batch normalization [38].

First, each performance was analyzed using a likelihood value threshold between 0 and 1

extracted by the MLP layers. We evaluated the 95% confidence interval (CI) and the area

under the receiver operating characteristics curve (AUROC) to determine whether the model

performance was significantly better. Since this study aimed to screen AIS in a real-world set-

ting, we fixed the sensitivity at 0.9 and calculated the true-positive (TP), false-positive (FP),

true-negative (TN), and false-negative (FN) values. In addition, the quantitative classification

assessment included accuracy, sensitivity, specificity, positive predictive value (PPV), and neg-

ative predictive value (NPV). Finally, an orthopedic surgeon with eight years of clinical experi-

ence visually analyzed the FP/FN cases to evaluate the method’s performance. We calculated

Fig 2. Training strategy for developing sensitive classification networks using GAN inversion as a feature-extracting method. The first step

is an upstream task that trains the generative adversarial network (GAN). The second step classifies through linear probing and projection

combination using GAN inversion.

https://doi.org/10.1371/journal.pone.0285489.g002
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the accuracy, sensitivity, specificity, PPV, and NPV to evaluate the method’s efficiency in a

clinical AIS diagnosis scenario. We compared performance by adjusting our model’s threshold

relative to screening purposes.

Second, we conducted an ablation study to classify performance relative to MLP stack num-

bers. In addition, a data stress test was conducted to confirm classification performance rela-

tive to latent code numbers used for the downstream training phase.

Third, we investigated whether different pre-trained weights affected the feature extraction

performance using the GAN inversion method by evaluating the downstream classification

performances corresponding to different weights.

Fourth, while we hypothesized that normal images could be embedded well into the latent

space formed by learning the abnormal image distribution, it is against AnoGAN’s widely-

accepted philosophy [39]. Therefore, to determine that our trained latent space has expanded

enough to generate normal images, we conducted qualitative and quantitative analyses on our

approach’s ability to embed normal images.

2.4 Training configurations. We utilized StyleGAN-ADA [40] architecture for training

the upstream GAN network. We inherited implementation details concerning Pytorch [41]

implementation without modifications from the study’s authors [40]. The training data was

preprocessed following the method mentioned in Section 3.1.2. The input data augmentation

to the discriminator during styleGAN2-ADA training was performed with maximal provided

pipeline combinations. However, we excluded some augmentations not applicable to medical

deep learning, such as horizontal flip or cutout. We used a non-saturating loss [19] with R1

regularization [42], utilizing 6.5536 as the coefficient value for the loss function. Finally, we

used the ADAM [43] optimizer with a 0.002 learning rate. Next, we used the Frechet inception

distance (FID) [44] on the total training dataset to evaluate the upstream network’s conver-

gence. We selected epochs with the lowest FID value after training for 1 million iterations, so

the FID conveys convergence.

We used a simple loss for feature extraction that minimizes the L2 norm of the given query

and generated images with a noise regularization term. Then, we iterated 1000 times to extract

the final vector without weight update to the GAN generator. For classifying the extracted vec-

tors, we used binary cross-entropy as a loss to train the binary classifier. The downstream

training set’s normal-to-abnormal ratio was set to 1:1, and the training data in each dataset

started from 32 and doubled up to 1024. The model was trained for 200 epochs with complete

batch learning, and the learning rate was set to 0.001 in the Adam optimizer.

Results

1. Classification result

The threshold was set at a 0.9 sensitivity in the screening setting, and our model’s internal and

external validation results are organized in Table 2. When the sensitivity was set to 0.9 in the

internal and external datasets, the specificity was 0.697 and 0.646, respectively. There were 25

FN cases of our model in the internal test dataset and 5 FN cases in the external test dataset,

which are shown in Fig 3.

2. Ablation study

The AUROC evaluation results relative to the layer numbers in the projection head and down-

stream training samples are summarized in Fig 4. This evaluation incorporated a linear proto-

col to evaluate the classification performance. As sample quantities increased, the AUROC

tended to improve. When the projection head layer number was 2 and the downstream
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Table 2. Our final model’s scoliosis classification performance.

Test dataset Performance measure

AUROC ACC SEN SPE PPV NPV

Internal 0.850 0.704 0.9* 0.697 0.096 0.995

External 0.847 0.715 0.646 0.480 0.950

AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative

predictive value

https://doi.org/10.1371/journal.pone.0285489.t002

Fig 3. False-negative case examples in the (A) internal test and (B) external validation datasets.

https://doi.org/10.1371/journal.pone.0285489.g003

PLOS ONE Screening of adolescent idiopathic scoliosis using GAN inversion method in CXR

PLOS ONE | https://doi.org/10.1371/journal.pone.0285489 May 22, 2023 8 / 16

https://doi.org/10.1371/journal.pone.0285489.t002
https://doi.org/10.1371/journal.pone.0285489.g003
https://doi.org/10.1371/journal.pone.0285489


training sample was 1024, internal and external AUROCs were 0.850 and 0.847, respectively,

indicating the highest classification performance.

3. Pre-trained weight effect of the upstream task

We evaluated performance relative to pre-trained weights, and the results are summarized in

Fig 5 and Table 3. Internal and external AUROCs were 0.850 and 0.847 for scratch training,

respectively; AUROCs with Flickr-Faces-HQ (FFHQ) [24] pre-training weights were 0.868

and 0.828, and medical transfers were 0.858 and 0.845, respectively. When considering scratch

and FFHQ pre-trained weights, the downstream classification result differences were not sta-

tistically significant. For FFHQ, internal AUROC increased by 0.028 compared with scratch,

whereas external AUROC decreased by 0.019. Lastly, scratch training and medical transfer

pre-trained weights were used to analyze the downstream AUROC. Internal AUROC

increased by 0.008, and external AUROC decreased by 0.002. Similarly, there was no statisti-

cally significant difference.

4. Quantitative analysis for method validation

We calculated query and projected image peak signal-to-noise ratios (PSNR), structural simi-

larity index measures (SSIM) [45], and root mean square errors (RMSE) to quantitatively com-

pare how well images embedded into the latent space. Based on the ground truth, we

calculated these three metrics on every sample in the downstream training set. Table 4 shows

the average image-reconstruction quality metric values measured on scoliosis and the normal

Fig 4. Scoliosis classification performance within the number of projection head layers and downstream training samples.

https://doi.org/10.1371/journal.pone.0285489.g004

Fig 5. Downstream validations relative to upstream pre-trained weight type.

https://doi.org/10.1371/journal.pone.0285489.g005
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downstream training set. Images with scoliosis were better reconstructed according to SSIM

and RMSE metrics, whereas images without scoliosis were better reconstructed with PSNR

metrics. Finally, we selected a well-reconstructed normal image example using vectors from

the GAN inversion method to further corroborate these results (Fig 6).

Discussion

This study evaluated a novel deep learning model’s AIS diagnosing accuracy using latent vec-

tors acquired from query images using GAN inversion as features. Based on the best perfor-

mance in the dataset, internal and external dataset AUROCs were 0.850 and 0.847,

respectively. Furthermore, we provide internal and external dataset ROC curves in Fig 5a. Our

method indicated good generalizability because the AUROC value did not degrade drastically

when tested on an external dataset. Therefore, our model is a potential tool in practical AIS

screening. In the results depicted in Table 2, the sensitivity was fixed at 0.9 because this model’s

primary purpose was for AIS screening. Despite the specificity result being inevitably lower

than sensitivity, the internal and external dataset specificities were 0.697 and 0.646, respec-

tively. Thus, we believe this model may be preferable for real-world use.

We used a toy comparison experiment using a balanced dataset to justify using an imbal-

anced dataset as the training dataset. Fig 7 illustrates the generated CXR images that only differ

in the training dataset composition, indicating that samples generated from the model trained

Table 3. Performance metric comparison under a fixed 0.9 sensitivity and statistical analysis using independent t-test among different feature extractor weights.

Scratch FFHQ Medical

Internal External Internal External Internal External

95% CI 0.842–0.858 0.789–0.894 0.833–0.849 0.768–0.878 0.825–0.841 0.787–0.892

AUROC 0.850 0.847 0.868 0.828 0.858 0.845

Sensitivity (fixed) 0.903 0.906 0.904 0.906 0.897 0.906

Specificity 0.585 0.646 0.581 0.503 0.580 0.585

PPV 0.066 0.480 0.066 0.397 0.065 0.440

NPV 0.995 0.950 0.995 0.937 0.994 0.945

Statistical analysis (P values of independent t-test)

Scratch vs. FFHQ Scratch vs. Medical FFHQ vs. Medical

Internal 0.636 0.383 0.447

External 0.534 0.950 0.588

CI: confidence interval, AUROC: area under the receiver operating characteristic curve, PPV = positive predictive value. NPV = negative predictive value.

Scratch refers to training without pre-trained weight. FFHQ refers to training pre-trained weight using Flickr Faces HQ Dataset. Medical refers to training pre-trained

weight using chest radiograph.

https://doi.org/10.1371/journal.pone.0285489.t003

Table 4. Image-reconstruction quality metrics of scoliosis and normal downstream training sets.

Data

Metrics PSNR SSIM RMSE

Scoliosis 19.048 ± 2.110 0.464 ± 0.108* 8.659 ± 0.742*
Normal 19.398 ± 1.313* 0.432 ± 0.059 8.887 ± 0.505
†P value 0.002 <0.001 <0.001

†Paired t-test for comparing image reconstruction quality metric among disease presence.

*superior data among scoliosis or normal dataset.

PSNR, peak signal to noise ratio; SSIM, structural similarity index measure; RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0285489.t004
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with an imbalanced dataset have much more diversity regarding scoliosis severity and location.

Furthermore, a sample that can be diagnosed as normal (red box in Fig 7) was also included in

generated samples, further supporting our hypothesis that the latent space can be expanded to

generate normal samples even when trained on a scoliosis-only dataset. On the other hand,

Fig 6. Example of a well-reconstructed normal sample. (Left) original chest X-ray. (Right) Reconstructed image using the GAN inversion technique.

The encoding generator was only trained with chest X-ray images with scoliosis.

https://doi.org/10.1371/journal.pone.0285489.g006

Fig 7. Generated CXR samples. (Left) Samples from a model trained on an imbalanced dataset (our method). (Right) Samples from a

model trained on a balanced dataset. Red box: a sample radiograph that can be diagnosed as a normal spine in generated samples.

https://doi.org/10.1371/journal.pone.0285489.g007
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samples generated from the model trained on a balanced dataset express little to no diversity

in scoliosis scope, where all generated samples have “straight” spines.

The internal 25 FN out of 261 scoliosis case validation analysis demonstrated that 36% of

cases were levoscoliosis (Fig 3). In addition, an American Academy of Family Physicians

review estimated that 10 to 15% of adolescents with scoliosis had left curves or levoscoliosis

[46]. Therefore, the FN cases are assumed as incorrect because levoscoliosis radiographs were

rarely included during training. Since levoscoliosis can be recognized as a negative Cobb’s

angle from the SeFa factorization perspective [25], where we theorize dextroscoliosis progres-

sion as the prominent data distribution variation, they occupy a part of the supernormal, not

both scoliosis and normal. However, it is postulated that these false cases occurred because

dextroscoliosis and levoscoliosis were not distinguished.

We also checked FP cases and found that some external devices were visible in 1,838 of the

3,297 cases, including Hickman catheters, chemo ports, vital sign monitor lines, and cardiovas-

cular devices, such as cardiac pacemakers or implantable cardioverter-defibrillators. We

assume that tube curves were incorrectly precepted as a bent spine since we designed our

model to be sensitive to structural changes. Therefore, we manually excluded all cases with

external devices from the test dataset and calculated the metrics again. As a result, the AUROC

increased from 0.850 to 0.894in the internal test dataset, and the specificity increased from

0.585 to 0.697 when the sensitivity was fixed at 0.9. However, these metrics’ significance could

not be verified as data sample quantities differed.

According to Fig 4, the best classification performance was achieved when the projection

head layers were two instead of three, and the downstream training sample quantity was 1024.

Previous studies did not have a promised projection head structure [35, 47, 48]. However,

Chen et al. conducted a data stress test with projection head layers ranging from two to four

and noted that a larger layer quantity was associated with higher representation performance

[49]. This trend seems stronger with a smaller downstream data volume, but the above charac-

teristic did not appear as our downstream data set is a very small scale of only 1024 samples.

From the data stress test results in Fig 4, when linear probing was performed with 256 labeled

samples, the internal and external AUROCs expressed sufficiently high performance within a

0.828 and 0.831 data limitation, respectively. Although the labeled data amount was reduced

by a quarter, the best-performing internal and external AUROC difference was only 0.022 and

0.016, a notable advantage of our method.

As for the ablation study represented by Table 3, we examined whether providing prior

knowledge on training upstream GAN boosts model performance, specifically on training

upstream GAN. We evaluated fine-tuning pre-trained weights effects [50] compared with

upstream training networks from randomly initialized settings. We used FFHQ pre-trained

weights [40] and a trained weight on a private 200,000 CXR images dataset from Center 1.

Since FID demonstrated the best delegate diversity measure in the generated image set [44],

better quality FID-generated images from fine-tuned GAN could not be applied to our task.

Furthermore, to demonstrate that even normal images are embedded in the latent space, we

manipulated images using the “scoliosis direction” found by navigating the latent space in an

unsupervised manner [25]. As a result, we confirmed normal images generated from vectors

in the latent space. Fig 8 shows plausible normal image examples generated from image

manipulation from scoliosis images.

Conclusion

We developed a classifier for AIS through generative representation learning. Our model

shows good AUROC under screening chest radiographs in both the internal and external
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datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal

images even when trained solely on scoliosis radiographs.
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