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Abstract

Introduction

Parkinson’s disease (PD) is the most common movement disorder, and its prevalence is

increasing rapidly worldwide with an ageing population. The UK Biobank is the world’s larg-

est and most comprehensive longitudinal study of ageing community volunteers. The cause

of the common form of PD is multifactorial, but the degree of causal heterogeneity among

patients or the relative importance of one risk factor over another is unclear. This is a major

impediment to the discovery of disease-modifying therapies.

Methods

We used an integrated machine learning algorithm (IDEARS) to explore the relative effects

of 1,753 measured non-genetic variables in 334,062 eligible UK Biobank participants,

including 2,719 who had developed PD since their recruitment into the study.

Results

Male gender was the highest-ranked risk factor, followed by elevated serum insulin-like

growth factor 1 (IGF-1), lymphocyte count, and neutrophil/lymphocyte ratio. A group of fac-

tors aligned with the symptoms of frailty also ranked highly. IGF-1 and neutrophil/lympho-

cyte ratio were also elevated in both sexes before PD diagnosis and at the point of

diagnosis.

Discussion

The use of machine learning with the UK Biobank provides the best opportunity to explore

the multidimensional nature of PD. Our results suggest that novel risk biomarkers, including

elevated IGF-1 and NLR, may play a role in, or are indicative of PD pathomechanisms. In

particular, our results are consistent with PD being a central manifestation of a systemic
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inflammatory disease. These biomarkers may be used clinically to predict future PD risk,

improve early diagnosis and provide new therapeutic avenues.

Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative disease affecting

over 6 million people worldwide, and has seen a 3-fold increase in the last 30 years [1]. It is a

movement disorder associated with a high level of disability for individual sufferers and a sig-

nificant burden for caregivers. To prospectively screen for PD and better elucidate the disease

mechanism, there is a need to identify blood-borne biomarkers, as well as environmental and

genetic factors that are associated with greater risk or are protective. This is critical because

neurodegenerative processes in dopamine neurons of the midbrain start many years before

PD diagnosis. Thus, there is a need to identify future risks, enabling early interventions to be

offered, which may take the form of beneficial lifestyle changes or the development of novel

neuroprotective agents.

Exposure to pesticides, consumption of dairy products, melanoma and traumatic brain

injury are thought to increase the likelihood of PD diagnosis [2], while smoking, caffeine

intake, high serum and urate concentrations, physical activity and the use of ibuprofen and

other medications are considered protective [3, 4]. There has also been some recent interest in

the link between increased insulin like growth factor (IGF-1) and inflammation in the early

phase of PD [5–7], whilst higher cholesterol levels are thought to cause a reduction in PD risk

[8]. However, most studies that have examined PD risk to date consist of univariate hypothesis

tests controlling for confounder variables of known risk factors. There have been few studies

considering the associations from a wide range of variables together without a priori assump-

tion. Employing machine learning to consider a complete set of candidate risk factors enables

the significance of both established and novel risk factors to be evaluated in an unbiased man-

ner and, significantly, does not require any prior knowledge of PD risk factors.

The UK Biobank (UKB) is the largest deeply phenotyped epidemiological study globally. A

study has looked at the interaction between genetics and established risk factors in predicting

PD [9]. A separate study has confirmed the importance of anxiety, depression, family history

of PD, excessive daytime sleepiness, pesticide exposure and being underweight, using logistic

regression [10]. The association between lower lymphocyte count and PD has also been dem-

onstrated in the UKB [11]. The methods applied in these studies were limited to logistic regres-

sion, Cox Proportional Hazards Survival Analysis and univariate approaches controlling for

known risk factors. While these determine individual odds or hazard ratios associated with a

small set of predictor variables, they neglect interaction and non-linear effects between vari-

ables. They cannot model more than a handful of variables. They, therefore, cannot take full

advantage of the breadth of studies like the UKB. Cutting-edge machine learning techniques

have already been applied to the UKB to determine risk factors for cardiovascular disease [12].

The ADNI dataset has been used with gradient boosting and SHAP to model APOE4 [13], and

neuroimaging data in those with mild cognitive impairment (MCI) [14].

The Integrated Disease Explanation and Risk Scoring platform (IDEARS) is an automated

data processing, machine learning and visualisation platform that combines hospital inpatient

data, clinical assays and questionnaire data and applies feature engineering, classification mod-

els and feature importance methodologies to develop; an automated risk score and model per-

formance metrics; a ranking of variables with the most significant associations with a disease
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using the novel kernel SHAP methodology to infer feature importance [14, 15] and; visualiza-

tion of disease risk profiles for specific variables. This study applies the IDEARS platform to

determine individual PD risk for those aged 50–70. It validates this by comparing it to a model

derived from well-established risk factors from previous studies. Through this process, we

present a novel ordered set of PD risk factors for consideration, split by gender.

Materials and methods

Ethics approval

UK Biobank has approval from the North West Multi-centre Research Ethics Committee

(MREC) as a Research Tissue Bank (RTB) approval. This approval means that researchers do

not require separate ethical clearance and can operate under the RTB approval. All methods in

this study were performed in accordance with the relevant guidelines and regulations of

MREC. Participants signed an informed consent with the UKB for the data to be accessed by

external researchers in order to undertake research studies such as this. All UKB data used in

this study was fully anonymised and non-identifable prior to us gaining access.

Sample selection

The UKB study recruited 502,253 subjects aged 37–73 years in the United Kingdom between

2006–2010, performing a raft of clinical measurements and assays, including clinical pathology

screens, genotyping, neuroimaging and cognitive testing, as well as medical information,

health records and self-reported demographic and wellness data [16]. “Baseline” was defined

as the first date each participant attended a UKB assessment centre. At that point, the data

relating to predictor variables for each participant in the study were collected (Fig 1).

To establish our cohort, we defined those diagnosed with Parkinson’s as having ICD10

code G20 recorded in their hospital inpatient records, dated 2 or more years after baseline as

“PD cases”. We excluded those who died within 10 years of baseline of something other than

PD and those younger than 50 or older than 70 at baseline, due to the much lower risk of idio-

pathic PD before age 50 and the small number of participants over 70. For the main analysis,

we further excluded those participants who were already diagnosed with PD at baseline, based

Fig 1. UK Biobank timeline and case/control inclusion/exclusion criteria. In this case participant 1 would be

selected in our analysis as they attended the assessment centre and did not fulfil any exclusion criteria, nor were they

ever diagnosed with PD. Participant 2 is included as a case, with a past disease coded as an independent variable as it

was diagnosed before their attendance at the assessment centre, and they were diagnosed with PD over 2 years after

their attendance. Participant 3 is excluded as they received a PD diagnosis before attending the 2 years post baseline

assessment centre.

https://doi.org/10.1371/journal.pone.0285416.g001
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either on an ICD10 code or the UKB derived data field “date of parkinson’s disease report”, or

who developed PD within 2 years of baseline to avoid skewing the predictions with the imme-

diate pre-symptomatic phase of the disease. This left 336,781 participants in the cohort, 2,719

of whom developed PD within an average of 8.0 years from baseline. For the stratification, by

gender analysis, the same data was considered but in this case all individuals who were

assigned the G20 ICD10 code at any point between 5 years before first attendance at the assess-

ment centre and 10 years after attendance were also included.

IDEARS platform

The IDEARS platform was developed by the authors of this paper (Fig 2). IDEARS applies

machine learning to health-related questionnaire data, longitudinal inpatient data (ICD10),

blood assays, genetic and neuroimaging data. It can be applied to any disease categorized by a

set of ICD10 codes and with a large enough number of cases (typically n>500). The complete

codebase can be accessed at https://github.com/binfnstats/idears_orig.

Data integration layer (data processing and feature engineering)

The most recent inpatient data received (release date: September 2021) was used to identify

the complete set of ICD10 codes corresponding to any condition for which the number of

cases across our cohort exceeded 200 and a diagnosis was given before baseline. This consists

of the distinct primary/main diagnosis codes recorded for each participant across all their hos-

pital inpatient records. This resulted in 1,101 binary features corresponding to a participant

having (1) or not having (0) a given disease at baseline. We derived a variable for the total

number of conditions each participant had at baseline as well as the total number of conditions

within 20 illness groups defined through the ICD10 package in python.

Blood assay, clinical and self-reported questionnaire data were merged, and all variables

which had greater than 80% non-missing observations were selected for the subsequent analy-

sis. Feature engineering–which involved one-hot encoding and conversion of variables with a

natural order to a numeric ordinal score–was performed as part of the IDEARs platform.

A set of variables to represent risk factors with known associations to PD were developed;

these included age, gender, neuroticism score, constipation, coffee intake, smoking status,

exposure to pesticides, urban/rural living, depression, level of activity, a family history of PD,

use at baseline of beta-blockers, ibuprofen and non-steroidal anti-inflammatories.

Risk scoring and model explanation layer

Two variable sets were used for modelling–VA which included all variables selected through

the data integration layer (total variables = 1,753) and VC which included only the consensus

Fig 2. Integrated disease explanation and risk scoring platform (IDEARs). An automated platform to facilitate the

data integration of large health datasets, transforming data fields into useful features, performing risk scoring, and

determining ranked feature importance for any disease.

https://doi.org/10.1371/journal.pone.0285416.g002
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of risk factors derived from high-quality meta-analyses [3, 4]. To avoid data leakage, data was

first split into a training dataset, DT, and a holdout dataset, DH, with DT containing a random

sample of 80% of cases and 80% of controls, with the remaining 20% of each selected for DH

and reserved for validation. Mean imputation of missing values was performed separately on

both DT and DH.

The full risk-scoring and model explanation layer was applied to DT with 100 resamples,

thus enabling each control participant in DT to be used in the analysis at least 6 times.

The resampled data was prepared by: 1) Building 100 observational subsets dT� DT which

each consisted of all PD cases in DT and 40 age matched controls sampled from DT without

replacement until all were used. 2) Further splitting each dT at random into a training dataset

(dTtrain− 70% of records) and a testing dataset (dTtest− 30% of records); 3) Applying mean

imputation of missing values on both dTtest and dTtrain.

Three classification model types were applied to the first 10 dTtrain with the AUC value cal-

culated on the corresponding dTtest for each iteration. XGBoost [17] (mean AUC = 0.67) out-

performed Support Vector Machines (mean AUC = 0.66), random forest (mean AUC = 0.65)

and logistic regression (mean AUC = 0.59) and was therefore selected for the subsequent

analysis.

Hyper-parameter tuning was performed using a grid search with the following hyperpara-

meters: learning rate, minimum child weight, maximum depth, and positive weighting scale

which determine the structure of the XGBoost algorithm. The set of hyperparameters which

generated the highest AUC values for the model were selected to define model M which was

trained on each dataset in the subsequent analysis.

Model M was then trained on each dTtrain and the mean SHAP [15] score was calculated on

each corresponding dTtest. The variables with the top 50 total SHAP score across all 100 itera-

tions were then selected for the subsequent analysis. The process was repeated for male and

female subsets of DT. All of these variables were put together for subsequent modelling, with

the total number comprising 108 independent variables (VS).

For male only, female only and a combined cohort, Model M was then further trained on

each dTtrain for the new candidate features VS alongside known associations VC (MSC) and just

the known associations VC (MC). For MSC the mean SHAP score was calculated for each vari-

able on the holdout dataset DH. The AUC metric was calculated on the holdout dataset DH for

trained models MSC and MC to determine the discriminative performance of the model with

just known associations (MC) with the model on known associations and all others (MSC).

AUC was sampled for each model iteration and an unpaired 2-sample t-test was used to evalu-

ate whether there were statistical differences in mean AUCs between MSC and MC. For a list of

the variable sets VS and VC see S1 File.

Stratification by gender and disease progression for key variables

The variables with the highest SHAP score in the above analysis were manually grouped into

‘biometric’, ‘blood biomarkers’, ‘cardiovascular’, ‘demographic’, ‘frailty’ and ‘inflammation’

categories. For the variables in each group, we examined the data and reintroduced those who

already had been diagnosed with PD at baseline to determine the difference in value of each

variable when summarised by “Years of PD”. This variable was calculated for each participant

as the date at which the participant attended the assessment centre (baseline) minus the date at

which they had the PD ICD10 code reported. A “No PD” group was formed of participants

that never had a PD ICD10 code reported. For both the male and female cohorts unpaired

2-sample t-tests were performed to compare the means for each variable in the non-PD group

with the means of each variable at each disease stage: 5–10 years before disease diagnosis, 0–5
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years before disease diagnosis and 0–5 years post disease diagnosis respectively. A Benjami-

Hochberg correction [18] was performed on the resulting p values to correct for multiple com-

parisons. All p values presented are the adjusted p values.

Results

A cohort of 334,062 UKB participants met the inclusion criteria, of which 2,719 received a clin-

ical diagnosis of Parkinson’s disease during the observation period (Table 1).

The IDEARS model, applied to VA (the full set of variables) had the best performance

(Mean AUC = 0.672), compared to VC, a comprehensive set of known risk factors identified

from several high-quality meta-analyses (0.620). The AUROC graphs demonstrate superior

performance of the IDEARS model in the total dataset, as well as when dividing the dataset by

gender (Fig 3). A statistically significant performance advantage of the IDEARS model evalu-

ated on holdout dataset DH is demonstrated based on 100 resamples of the training dataset

compared to known associations (P<0.001, Fig 3A). The significant performance advantage is

maintained with male and female datasets, with mean AUCs of 0.646 (P<0.001, Fig 3B) and

0.630 (P<0.001, Fig 3C), compared to 0.575 and 0.567 respectively.

Top features

The top features from the IDEARS model are shown in Fig 4A. Variables from the meta-analyses

which did not feature in our list of most important features, by average SHAP score, were smok-

ing status, traumatic brain injury and caffeine consumption. Male gender was the feature with the

highest mean SHAP score, in line with expectations given the known association with PD.

IGF-1 (3rd) stood out as a novel biomarker associated with an increased risk of PD. Whilst,

features indicative of overall frailty were also associated with greater risk of PD, with a self-

reported overall health rating from poor through to excellent (2nd), usual walking pace (4th),

number of treatments/ medications taken (5th) and hand grip strength (Right, 27th). Features

relating to inflammation were important, with increased neutrophil/lymphocyte ratio (NLR)

(15th) and neutrophil percentage (18th) being associated with PD, and increased C-reactive

protein (7th) and lymphocyte count (10th) being protective. Moreover, taking of non-steroidal

anti-inflammatories was protective (21st). Cardiovascular and body fat variables appear to

impact the risk of PD, with larger waist circumference (14th) being causative and elevated total

cholesterol being protective (16th).

The top features from the IDEARS model for 1,698 males and 1,021 females are shown in

Fig 4B & 4C, and the comparison of relative risk for each feature between males and females is

Table 1. Population characteristics.

Controls Cases Total Mean age at baseline Mean time to diagnosis (years) Mean Age at diagnosis
Male 148,283 1,698 149,981 60.4+/-5.1 8.1+/-2.8 71.7+/-5.2

Female 185,779 1,021 186,800 60.0+/-5.1 8.0+/-2.9 71.2+/-5.2

Total 334,062 2,719 336,781 60.2+/-5.1 8.0+/-2.9 71.5+/-5.2

White 318,852 2,619 321,471 60.2+/-5.1 8.1+/-2.9 71.5+/-5.2

Black 3,713 22 3,735 58.3+/-5.5 8.3+/-2.6 71.3+/-5.3

South Asian 5,270 40 5,310 59.0+/-5.3 7.9+/-2.6 71.0+/-5.4

Chinese 832 1 833 58.0+/-4.9 12.0 69.0

Mixed 1,330 8 1,338 58.5+/-5.3 6.9+/-3.4 66.9+/-6.7

Other 4,065 29 4,094 59.2+/-5.2 7.8+/-3.2 71.1+/-6.1

Total 334,062 2,719 336,781 60.2+/-5.1 8.0+/-2.9 71.5+/-5.2

https://doi.org/10.1371/journal.pone.0285416.t001
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shown in Fig 4D. The removal of gender as a feature in the model leads to a relative increase in

some feature’s importance and the appearance of some additional features in the gender segre-

gated lists. In males elevated IGF-1 (1st) appeared to be a more important risk factor than in

females (3rd). Urate (7th males and 9th females) and alanine aminotransferase (ALT) were pro-

tective in both sexes (17th males, 24th females), and frailty-related features were mostly of equal

importance in both sexes. Neutrophil percentage (6th), NLR (9th) and having a parent with PD

(20th) were more associated with PD in males, whilst cholesterol (12th) and triglycerides (5th)

were more protective of PD, suggesting inflammation, cardiovascular and genetic factors may

be more important in males. In females, vitamin D (5th), C-reactive protein (6th), glycated hae-

moglobin, (HbA1c), a marker of elevated blood sugar in the last 3 months, (13th) and forced

vital capacity (18th) were protective, whilst chest pain or discomfort (7th), self-reported nervous

feelings (8th) and bilirubin (12th) were associated with increased PD risk.

IGF-1, AST:ALT ratio, hba1c, Urate and Creatine levels

Fig 5 shows IGF-1, AST:ALT ratio and HbA1c in the 10 years preceding and 5 after a PD diag-

nosis in males and females compared to the non-PD group. IGF-1 was significantly elevated at

both -10 to -5 years (22.87 +/- 5.74, P<0.001) and -5 to 0 years before diagnosis (23.46 +/- 6.14,

Fig 3. Boxplots of AUC results from 100 resamples on the combined set of features from the IDEARS model (VS—set of features with highest mean SHAP

score) compared to all known associations based on current meta-analysis (VC) for A) the entire cohort, B) males and C) females. In each case, the mean

IDEARS model AUC was statistically higher (***P<0.001) than the mean Known Associations model based on an unpaired 2-sample t-test.

https://doi.org/10.1371/journal.pone.0285416.g003
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P<0.001) and 0–5 years after diagnosis in males (24.78 +/- 7.68, P<0.001) compared to non-PD

(21.47+/-5.33, Fig 5A). In females, IGF-1 was significantly elevated at both -10 to -5 years (21.04

+/- 5.86, P<0.001) and -5 to 0 years before diagnosis (20.89 +/- 6.38, P<0.05) and 0–5 years

after diagnosis (21.87 +/- 6.27, P<0.01) compared to non-PD, (20.13 +/- 5.40, Fig 5B).

On the basis of ALT being protective in both sexes we investigated the common clinical

indicator of liver disease, the AST:ALT ratio which was significantly elevated at both -10 to -5

years (1.20 +/- 0.40, P<0.05) and -5 to 0 years before diagnosis (1.29 +/- 0.41, P<0.001) and

0–5 years after diagnosis in males (1.39 +/- 0.55, P<0.001) compared to non-PD (1.17 +/-

0.39, Fig 5C). In females, the AST:ALT ratio was not significantly increased compared to non-

PD in any of the breakdowns. Therefore, IGF-1 and the AST:ALT ratio are all elevated in

males prior to diagnosis, whereas in females this only applies to IGF-1. According to the

SHAP chart HbA1c showed a protective association with the risk of PD in females. However,

Fig 4. Box plots indicating the mean SHAP score of the top features from the IDEARS model for the entire cohort (A), males only (B) and female only (C).

Those for which a higher value had a positive impact on the model output (i.e. making a PD diagnosis more likely) are coloured red. Those for which a higher

value had a negative impact (making PD less likely) are coloured blue. (D) Scatter chart with SHAP feature importance for males versus females. Variables are

colour coded in groups, and Δ denotes a causative association with PD,r denotes a protective association.

https://doi.org/10.1371/journal.pone.0285416.g004
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looking at the values over time, HbA1c was significantly elevated in males 10 to 5 years before

diagnosis (37.32 +/- 8.27, P<0.05) compared to non-PD (36.77 +/- 7.26), but was significantly

reduced 5 to 0 years before diagnosis (35.88 +/- 6.85, P<0.05). For females there were no sig-

nificant group differences.

Urate levels were significantly reduced at both -10 to -5 years (343.00 +/- 74.22, P<0.001),

-5 to 0 years before diagnosis (326.51 +/- 67.86, P<0.001) and 0–5 years after diagnosis in

males (320.91 +/- 78.97, P<0.001) compared to non-PD (354.63 +/- 70.96, Fig 5G) in males. In

females, Urate levels were significantly reduced at both -5 to 0 years before diagnosis (266.11

+/- 71.64, P<0.05) and 0–5 years after diagnosis (250.14 +/- 75.82, P<0.001) compared to

non-PD (274.48 +/- 67.69, Fig 5H). Creatinine (enzymatic) levels in urine were significantly

elevated at both -10 to -5 years prior to diagnosis (11133.64 +/- 6211.47, P<0.05 and 0–5 years

after diagnosis in males (11956.21 +/- 5857.89, P<0.05) compared to non-PD (10600.11 +/-

5892.15, Fig 5I) in males. In females, creatinine levels were significantly elevated at both -5 to 0

years before diagnosis (7884.78 +/- 5547.44, P<0.01) and 0–5 years after diagnosis (8102.24

+/- 4592.67, P<0.05) compared to non-PD (6885.28 +/- 4669.08, Fig 5J).

Fig 6 shows inflammatory variables in the 10 years preceding and 5 after a PD diagnosis in

males and females compared to the non-PD group. Neutrophil count was significantly elevated

-10 to -5 years (4.38 +/- 1.36, P<0.05), 0–5 years prior to diagnosis (4.53 +/- 1.45, P<0.001)

compared to non-PD in males (4.27 +/- 1.38, Fig 6A). In females, neutrophil count was signifi-

cantly elevated 0 to 5 years after diagnosis (4.60 +/- 1.44, P<0.01) compared to non-PD (4.10

+/- 1.32). Lymphocyte count was significantly reduced at 10–5 years before diagnosis (1.80 +/-

1.31, P< 0.05), 0–5 years prior to diagnosis (1.69 +/- 0.63, P<0.01) and 0–5 years after diagno-

sis (1.71 +/-0.68, P<0.01) in males compared to non-PD (1.90 +/- 1.31, Fig 6C). In females,

lymphocyte count was significantly decreased 0–5 years after diagnosis (2.03 +/- 0.98, P<0.05)

compared to non-PD (2.04 +/-1.12, Fig 6D).

NLR, a common marker of stress and inflammation, was significantly elevated -10 to -5

years (2.72 +/- 1.32, P<0.001), 0–5 years before diagnosis (2.93 +/- 1.31, P<0.001) and 0–5

years after diagnosis in males (2.84 +/- 1.34, P<0.01) compared to non-PD (2.48 +/- 1.25, Fig

6E), with a similar pattern in females; -10 to -5 years (2.37 +/- 2.10, P<0.001), 0–5 years before

diagnosis (2.47 +/- 1.11, P<0.001) and 0–5 years after diagnosis (2.96 +/- 1.57, P<0.001 and

non-PD (2.19 +/- 1.08, Fig 6F). The relative risk of PD increases significantly with an elevated

NLR, but that risk is reduced when you compare those that were taking ibuprofen at baseline

to those that weren’t (Fig 7). Whilst ibuprofen shows a strong protective effect at all NLRs, it is

most apparent in those with the highest NLR ratio, suggesting inflammation plays an impor-

tant role in the disease mechanism.

According to the IDEARS model C-reactive protein, demonstrated a protective relationship

with PD with a relatively high SHAP score (8th in males, 16th in females); however, no time-

points significantly decreased compared to non-PD in either sex (Fig 6G & 6H).

In summary, inflammatory features in males were most consistently different to non-PD at -10

to -5 years diagnosis and after diagnosis. In contrast, the only predictive inflammatory biomarker

in females was the NLR which was increased at -10 to -5 years before, and 0 to 5 years after diag-

nosis. NLR appears to be the most consistent inflammatory biomarker associated with PD, and

ibuprofen consumption appears to mitigate the negative effects of an elevated an NLR ratio.

Fig 5. Box plots showing blood levels of IGF-1 levels, AST:ALT ratio, glycated haemoglobin, Urate and Creatinine for

(A, C, E, G, I) males and females (B, D, F, H, J) in the 10 years preceding and 5 after a PD diagnosis in 2,036 males and

1,242 females compared to the non-PD group. AST: aspartate aminotransferase; ALT: Alanine transaminase. Mean +/-

SD. An unpaired 2-sample t-test was used for statistical comparisons, with Benjami-Hochberg correction for multiple

comparisons used to calculate the adjusted p values, *P<0.05, **P<0.01 and ***P<0.001.

https://doi.org/10.1371/journal.pone.0285416.g005
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Frailty

The IDEARS model revealed overall health rating, usual walking pace and total treatment/

medications as being highly associated with the development of PD. Therefore we investigated

several frailty-related variables in the years preceding and following diagnosis (Fig 8). Total

ICD10 diagnoses were significantly increased at -10 to -5 years (3.47 +/- 4.66, male, p<0.001;

Fig 6. Box plots showing blood inflammatory markers for (A, C, E, G) males and females (B, D, F, H) in the 10 years

preceding and 5 after a PD diagnosis in 2,036 males and 1,242 females compared to the non-PD group. Mean +/- SD.

An unpaired 2-sample t-test was used for statistical comparisons, with Benjami-Hochberg correction for multiple

comparisons used to calculate the adjusted p values, *P<0.05, **P<0.01 and ***P<0.001.

https://doi.org/10.1371/journal.pone.0285416.g006
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3.51 +/- 4.96, female, p<0.001), -5 to 0 years (3.70 +/- 4.83, male, p<0.001; 4.32 +/- 5.31,

female, p<0.001) and 0–5 years after diagnosis (7.24 +/- 6.77, male, p<0.001; 7.56 +/- 6.48,

female, p<0.001) compared to non-PD (2.47 +/- 3.81, male; 2.65 +/- 3.90, female, all compari-

sons P<0.001, Fig 8A & 8B).

Total treatment/medications was similarly correlated with a greater risk of PD, being signif-

icantly increased at -10 to -5 years (3.18 +/- 2.87, male; 3.38 +/- 2.91, female), -5 to 0 years

(4.22 +/- 3.16, male; 4.67 +/- 3.24, female) and 0–5 years after diagnosis (5.56 +/- 3.62, male;

6.31 +/- 3.29, female) compared to non-PD (2.45 +/- 2.62, male; 2.74 +/- 2.75, female, all com-

parisons P<0.001, Fig 8C & 8D).

Considering that PD is a movement disorder, it was unsurprising that grip strength in both

hands (Fig 8E–8H), and usual walking pace were significantly reduced for both sexes at all

timepoints (P<0.001 for all comparisons). Perhaps the most interesting observation is that

these decreases are apparent at up to 10 years before diagnosis occurs.

Greater forced vital capacity was demonstrated be protective particularly in females, how-

ever a significant reduction was seen in both sexes. Forced vital capacity was significantly

reduced at -10 to -5 years in females (2.91 +/- 0.61, p<0.001), -5 to 0 years (4.16 +/- 0.86, male,

p<0.05; 2.88 +/- 0.73, female, p<0.01) and 0–5 years after diagnosis (2.81 +/- 0.68, female,

p<0.001) compared to non-PD (4.29 +/- 0.89, male; 3.03 +/- 0.67, female, Fig 8I & 8IJ). Over-

all, these frailty-related features show very strong associations with PD risk in both sexes even

from 10 years before diagnosis.

Cardiovascular features and body adiposity

Fig 9 shows a range of cardiovascular features at timepoints before and after PD diagnosis.

Decreased total cholesterol correlated with a lower risk of PD in both sexes, cholesterol was

Fig 7. Line graph showing the relationship between the relative risk of being diagnosed with PD and the

neutrophil: Lymphocyte ratio (NLR) quintiles, between those taking the non-steroidal anti-inflammatory,

ibuprofen at baseline. Black line—no ibuprofen, grey line–ibuprofen. A test for equality of regression coefficients was

used for statistical comparisons, *P<0.05, **P<0.01 and ***P<0.001.

https://doi.org/10.1371/journal.pone.0285416.g007
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significantly reduced at both -10 to -5 years (5.19 +/- 1.11, P<0.001), -5 to 0 years (5.12 +/-

1.06, P<0.001) and 0–5 years after diagnosis in males (5.01 +/- 1.15, P<0.001) compared to

non-PD (5.47 +/- 1.13, Fig 9A). In females, cholesterol was significantly decreased compared

to non-PD (6.04 +/- 1.13) at -5 to 0 years (5.77 +/- 1.15, P<0.001). Given the protective effect

of total cholesterol we investigated HDL and LDL cholesterol. For HDL there was a significant

reduction at -5 to 0 years (1.55 +/- 0.40, P<0.05) in females compared to non-PD (1.62 +/-

0.38), with all other levels consistent across groups (Fig 9C & 9D). A reduction in LDL was

apparent a multiple timepoints for both sexes. LDL was significantly reduced at -10 to 5 years

(3.26 +/- 0.85, P<0.001) and -5 to 0 years before diagnosis (3.20 +/- 0.83, P<0.001) and 0–5

years after diagnosis (3.17 +/- 0.92, P<0.001) in males compared to non-PD (3.46 +/- 0.86, Fig

9E). In females, LDL was significantly decreased compared to non-PD (3.56 +/- 0.87, P<0.01)

only at -5 to 0 years compared to non PD (3.74 +/- 0.88, Fig 9F). Interestingly, waist circumfer-

ence was significantly increased in females compared to non-PD (85.31 +/- 12.29) at -10 to -5

years before diagnosis (86.28 +/- 12.50, female, p<0.05, Fig 9G & 9H), and trends higher at

other timepoints. In summary, total cholesterol and LDL appear to be protective, this indicates

people with a reduced risk of heart disease a more likely to developed PD, however increased

central adiposity, indicated by increased waist circumference in females is associated with

increased PD risk in the next 10 years.

Discussion

We presented the IDEARS platform, which uses state-of-the-art machine learning algorithms

XGBoost and SHAP to rank the risk factors for PD using the world’s largest and most compre-

hensive prospective community study, the UK Biobank. Ageing is widely recognised as the

most significant factor in predicting PD, therefore we chose to age normalise our datasets to

uncover a hierarchy of feature importance that is age-independent. Our model demonstrated

that gender was the most important feature, with PD being more prevalent in males, which led

us to further split subsequent analyses by gender to uncover gender specific feature impor-

tances. Our unbiased machine learning approach uncovered a novel set of features most asso-

ciated with PD. Interestingly, several well-established risk factors thought to have a high

association level with PD were not identified in the most important features in our model (e.g.,

pesticide exposure, smoking status, traumatic brain injury and caffeine consumption).

Of note is the importance of insulin-like growth factor 1 (IGF-1), which presented in the

top 3 most important features, based on mean SHAP score in the combined dataset, and male

and female lists. On deeper inspection of the data, it was clear that IGF-1 levels were elevated

in males and females up to 10 years before disease onset. IGF-1 is an endocrine, paracrine and

autocrine hormone that is a primary mediator of the effects of growth hormone. Major func-

tions of IGF- include insulin-like activity, cell proliferation and survival, antioxidant effects

and neuroprotection. In vivo studies have demonstrated IGF-1 deficiency results in increased

oxidative stress, inflammation, neuronal cell death and cognitive deficits that can be improved

by exogenous IGF-1 [19, 20]. It is well documented that IGF-1 is elevated in serum at diagnosis

in PD patients, and levels at this time correlate with disease severity [5, 7]. To account for the

discrepancy in the beneficial effects of IGF-1 and the fact it is increased in PD, it has been

hypothesised that IGF-1 signalling is defective in PD, resulting in a decrease in the

Fig 8. Box plots showing frailty-related variables for (A, C, E, G, I, K) males and females (B, D, F, H, J, L) in the 10

years preceding and 5 after a PD diagnosis in 2,036 males and 1,242 females compared to the non-PD group. Mean +/-

SD. An unpaired 2-sample t-test was used for statistical comparisons, with Benjami-Hochberg correction for multiple

comparisons used to calculate the adjusted p values, *P<0.05, **P<0.01 and ***P<0.001.

https://doi.org/10.1371/journal.pone.0285416.g008
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neuroprotective effects and reduction in the brains ability to buffer oxidative damage. More-

over, IGF-1 signalling is known to be dysregulated by both toxin-induced inflammation and

central obesity [5, 21, 22], consistent with our model identifying prospective biomarkers pre-

dictive of greater PD risk in these categories. Therefore higher-than-average IGF-1 levels years

Fig 9. Box plots showing cardiovascular variables and waist circumference for (A, C, E, G) males and females (B, D,

F, H) in the 10 years preceding and 5 after a PD diagnosis in 2,036 males and 1,242 females compared to the non-PD

group. Mean +/- SD. An unpaired 2-sample t-testwas used for statistical comparisons, with Benjami-Hochberg

correction for multiple comparisons used to calculate the adjusted p values, *P<0.05, **P<0.01 and ***P<0.001.

https://doi.org/10.1371/journal.pone.0285416.g009
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before diagnosis may indicate a compensatory mechanism in response to dysregulated IGF-1

signalling. Our findings suggest that IGF-1 should be further considered as a prognostic bio-

marker for PD risk.

AST:ALT was elevated up to 10 years before, and after PD diagnosis in males but not in

females, this is consistent with elevated ALT being protective in the male SHAP list. Elevated

AST:ALT ratios between 1–2 are indicative of non-alcoholic fatty liver disease (NAFLD) or

non-alcoholic steatohepatitis (NASH), whilst levels <2 are indicative of alcoholic liver disease

[23, 24], therefore the moderate increases in the male UKB PD cohort may be indicative of

NAFLD/NASH, although some individuals in the PD group have levels above 2. A recent

study of NAFLD and PD found a greater risk of PD in females with NAFLD [25], and an ear-

lier study found that NASH in males and females with hepatitis B and C infection led to a

greater PD risk [26]. With that said, NAFLD is associated with cardiovascular disease and met-

abolic disorders which does not fully align with our other findings (see below) [27]. Whilst

more research on NAFLD and PD is required, our findings indicate elevated AST:ALT may be

a useful prospective biomarker of PD in males.

The IDEARS model identified several features associated with cardiovascular health and

body adiposity. Total and LDL cholesterol levels were reduced in PD in males 10 years before

diagnosis but only 5 years in females. This observation is in keeping with a large population-

based study of 261,638 statin-free individuals, which identified that males who had lower levels

of total and LDL cholesterol were at a greater risk of developing PD, however there was no sig-

nificant differences in females [8]. Given lower LDL levels, PD patients have shown a reduced

risk of myocardial infarction and stroke [28, 29]. It has been hypothesised that the reduced

cholesterol levels may be due to nonmotor peripheral symptoms, such as constipation, that

can manifest before motor symptoms appear [8].

Cardiovascular health is also strongly linked to metabolic regulation. There are mixed find-

ings on the co-morbidity of type 2 diabetes and PD, with some studies showing an increase

[30], and others showing a reduced prevalence [29, 31]. As mentioned above HbA1c is higher

10 years before PD onset in males, but reduced 0–5 years before diagnosis. However, the pro-

portion of the PD group with HbA1c in the diabetic range is slightly higher than the non-PD

group. Therefore, further research is needed to investigate the possible associations of diabetes

and PD.

In keeping with previous literature, the IDEARS platform identified that increasing urate

concentrations are associated with a lower risk of PD [32, 33]. It is thought that urate reduces

the risk of neurodegenerative diseases through its iron chelating properties, antioxidant

quenching of superoxide and hydroxyl free radicals, and as an electron donor that increases

antioxidant activity of enzymes, such as superoxide dismutase [34]. IDEARS identified

increased creatinine levels in the urine of both sexes before and after PD diagnosis, which may

be indicative of poor kidney function beginning in the pre-symptomatic phase. However this

finding is at odds with a large Swedish study that found a slight reduction in creatinine serum

levels from 1 year before diagnosis onwards [35], whilst another smaller study found no

change in serum creatinine in PD [36]. Therefore, whilst decreased urate levels might be a use-

ful biomarker for PD, further investigations are required to understand the relationship of cre-

atinine and PD.

Several epidemiological studies have linked central adiposity to PD [37, 38], consistent with

output from the IDEARS model with waist circumference being ranked 14th and significantly

increasing before diagnosis in females. Although this observation may be at odds with better

cardiovascular and metabolic health in general, body fat distribution may be a key factor, with

increased adiposity hypothesised to modulate IGF-1 signalling [5, 21]. Clearly, more research

is required to better understand the complex interactions of body adiposity and the risk of PD.
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The IDEARS model identified several features relating to the immune system, specifically

an increase in neutrophil count, a decrease in lymphocyte count and an increase in NLR, were

all identified to be altered both 10 years before and at diagnosis in males, whilst only NLR fol-

lowed the same pattern in females. An elevated neutrophil count is associated with the occur-

rence, progression, and severity of inflammation or infection. In contrast, a decreased

lymphocyte count, as part of the adaptive immune response, is heavily depressed by stress.

Thus, NLR is considered a compound biomarker of inflammation and stress. Therefore it is

perhaps not surprisingly that NLR is the most robust and consistent example of a prospective

biomarker of PD risk from the IDEARS model. A recent study demonstrated similar findings

with increased NLR in 100 PD patients, but no change in Alzheimer’s disease [6]. Increased

neutrophil count and NLR are in keeping with the literature that inflammation and infection

are risk factors for PD. NLR may therefore be considered a useful prospective biomarker for

the risk of PD, however as it is associated with many other chronic diseases, it should be used

in combination with other biomarkers identified by our model.

Unexpectedly, C-reactive protein, a marker of acute inflammation, appeared as protective

in the SHAP list, however on closer inspection it was unchanged in the PD cohort before or

after diagnosis in both sexes. The appearance of C-reactive protein as protective, may be due

to its complex relationships with other inflammatory markers, which may be more chronic.

No change in C-reactive protein is at odds with a recent meta-analysis that found an increase

in C-reactive protein in PD [39]. This may be explained as the UKB dataset includes 2,719 sub-

jects with PD, compared to a combined 2,691 subjects across twenty studies in the meta-analy-

sis. Moreover, findings in those studies were highly variable, two showed no change in C-

reactive protein, 10 a small increase and 8 showed a large increase. Therefore, the usefulness of

C-reactive protein as a biomarker of PD remains an open question.

Epidemiological studies have revealed viral (e.g. influenza, HSV, hepatitis) and bacterial

(e.g. C. pneumonia and H. pylori) infections are associated with an increased risk of developing

PD [26, 40–43]. Inflammatory conditions, such as head trauma, allergic rhinitis and exagger-

ated allergic reactions following insect stings, have been linked to an increased risk of develop-

ing PD [44–47]. Neuroinflammation is also a common pathological hallmark seen in the PD

brain [48–51]. Conversely, long-term use of non-steroidal anti-inflammatory drugs (NSAIDs)

reduce the risk of developing PD [52–55]. Our analysis demonstrates a protective effect of Ibu-

profen use in the UKB participants, which was more pronounced in at higher NLR.

The reduction in lymphocyte count well before PD in our study is consistent two recent

studies, including one that used the UKB dataset (thus validating our approach) [11, 32], as

well as a meta-analysis that showed decreased numbers of CD3+ and CD4+ lymphocyte subsets

in intermediate and late-stage PD, whilst a decrease in CD8+ T lymphocytes was also observed

[56]. Interestingly, this reduction in lymphocyte count occurs up to 10 years before diagnosis

in males, but only 5 years before in females, and therefore maybe a better prospective marker

in men. It is noteworthy that ‘suffers from nerves’ (19th overall) and self-reported nervous feel-

ing (8th in females) were highly ranked risk factor in the IDEARS model. Therefore the PD

group may have higher-than-average stress levels, which could depress lymphocyte counts.

More detailed analyses of CD4+ T lymphocyte subsets suggests that they are skewed towards

proinflammatory phenotypes (i.e., increased Th1, Th17, and reduced Th2 and Tregs) in PD

patients [57–59]. The inflammatory milieu in PD may also be a contributor to decreased IGF-

1 signalling mentioned previously [5, 19, 20]. Overall, these findings imply a predisposition to

PD may be established by conditions that induce peripheral inflammation (injury/infection)

and stress, or in individuals with an immune system skewed towards inflammation.

Given that PD is an age-related motor disease it was unsurprising that the IDEARS model

identified overall health rating and number of treatments/medications taken as highly ranked
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features, indicative of overall frailty. A deeper analysis into other frailty related features

revealed reduced hand grip strength and decreased walking pace can be considered early

markers of motor dysfunction and given they are significantly reduced in both sexes 10 years

before diagnosis they should be considered as useful clinical measures to predict the risk of PD

onset. Existing literature has identified the importance of these factors. Hand grip strength and

reduced dexterity have been reported as predictors of motor symptom severity in PD [60].

Slow walking speed has been correlated with advanced age and PD severity [61], and it is also

one of the first complaints in the early stages of the disease [62]. Increased number of ICD con-

ditions at baseline, and reduced forced vital capacity were also apparent years before diagnosis

in both sexes, and are indictors of general ill health and multiple co-morbidities in PD patients.

Arthritis, hypertension, atrial fibrillation, depression, back problems, and cataracts are com-

monly reported co-morbidities of PD [30, 63], and require a wide range of treatments.

Other significant gender differences were observed with parental PD being more important

for men than women, which may suggest that since idiopathic PD has a phenotype that

strongly overlaps with monogenic forms of the disease [64], there may be a greater genetic

component in idiopathic PD in males. Conversely, vitamin D was more protective for PD in

women than men. Vitamin deficiency has been linked to neurodegenerative diseases, and a

deficiency in vitamin D in particular has been linked to reduced dopamine levels and alpha-

synuclein accumulation, which are pathological hallmarks of PD [65]. Vitamin D has been

shown to have neuroprotective, anti-inflammatory and antioxidant effects in vitro [66], how-

ever a recent meta-analysis could not conclude clear benefits of vitamin D supplementation in

reducing PD risk [67].

Applying a novel methodology in the IDEARs platform has enabled us to examine a much

larger range of variables without a priori assumption. The advantage of using XGBoost and

SHAP in this context is the ability to consider a large number of variables and accurately deter-

mine their importance in the model while implicitly modelling interactions between variables,

resulting in a demonstratively higher AUC. The disadvantage is the black box nature of this

approach. We have sought to mitigate this by providing a separate univariate analysis of indi-

vidual variables. It is important to state that a limitation to this modelling approach is that it

does not imply causality, Bayesian Networks [68] and other approaches seek to better under-

stand the direction of causality between factors and would be a natural extension to this work.

In addition to the power of determining the most significant risk factors in driving PD, this

approach could be used separately to provide a risk score which we would expect to be more

accurate than existing methods.

Conclusion

In summary our novel unbiased model “IDEARS” identified a novel set of risk factors for PD

that diverge considerably from the most well-established risk factors thought to have a high

association level with PD. The most promising biomarkers for PD risk are elevated IGF-1,

AST:ALT, NLR and reduced urate, and total and LDL cholesterol. These biomarkers demon-

strated a consistent change before PD onset in males, however only IGF-1 and NLR were

robustly elevated before diagnosis in females. Given the non-specific nature of some of these

biomarkers (e.g. AST:ALT, NLR), we suggest that they would be best used in combination to

predict PD risk. If the hoped-for development of neuroprotective treatments for PD is fruitful,

our biomarker panel may help identify those at heightened risk who may benefit most from

prophylactic treatment. Features indicative of frailty, particularly those that relate to motor

dysfunction, such as walking pace and hand grip strength, as well as a high number of co-
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morbidities and poor overall health rating, were strongly associated with increased PD risk in

both sexes, and these signs could serve as useful clinical indications leading to earlier

diagnosis.
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