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Abstract

Manual segmentation, which is tedious, time-consuming, and operator-dependent, is cur-

rently used as the gold standard to validate automatic and semiautomatic methods that

quantify geometries from 2D and 3D MR images. This study examines the accuracy of man-

ual segmentation and generalizes a strategy to eliminate its use. Trained individuals manu-

ally measured MR lateral ventricles images of normal and hydrocephalus infants from 1

month to 9.5 years of age. We created 3D-printed models of the lateral ventricles from the

MRI studies and accurately estimated their volume by water displacement. MRI phantoms

were made from the 3D models and images obtained. Using a previously developed artificial

intelligence (AI) algorithm that employs four features extracted from the images, we esti-

mated the ventricular volume of the phantom images. The algorithm was certified when dis-

crepancies between the volumes—gold standards—yielded by the water displacement

device and those measured by the automation were smaller than 2%. Then, we compared

volumes after manual segmentation with those obtained with the certified automation. As

determined by manual segmentation, lateral ventricular volume yielded an inter and intra-

operator variation up to 50% and 48%, respectively, while manually segmenting saggital

images generated errors up to 71%. These errors were determined by direct comparisons

with the volumes yielded by the certified automation. The errors induced by manual seg-

mentation are large enough to adversely affect decisions that may lead to less-than-optimal

treatment; therefore, we suggest avoiding manual segmentation whenever possible.

Introduction

Digital imaging has progressed to where it is utilized for an ever-increasing number of applica-

tions, many of which have become essential to modern society [1, 2]. Irrespective of the applica-

tion, the visual information is subject to viewer interpretation requiring computational methods
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to quantify [3–5]. In the quantifying processes, the method begins by determining if an identifi-

able boundary exists between a given structure and its surroundings within the field of view. If

so, this allows segmentation to determine planar geometries (2D) and volume (3D). [6–8].

Cerebral ventricular volume is essential in diagnosing and treating neurological diseases,

with hydrocephalus being one of the most common [9]. Serial MRI studies monitor ventricular

size to gauge response to treatment and disease progression. Such monitoring is accomplished

by visually comparing ventricular size from one set of MR images to another [10]. To more

accurately determine if a change in ventricular volume has occurred, multiple semiautomatic

and automatic techniques have been developed using manual segmentation as the gold standard

for validating purposes [11, 12]. As manual segmentation is time-consuming, tedious, and oper-

ator-dependent, it is usually only done for research endeavors [13]. The question arises regard-

ing how accurate manual segmentation is upon which semiautomatic and automatic programs

have been developed for this purpose. This study examined the accuracy of manual segmenta-

tion for ventricular volume (3D) and compared it to a certified version of the Automatic Ven-

tricular Volume Estimator (AVVE), a method we developed in [14]. The AVVE uses Support

Vector Machine (SVM) to automatically classify the voxels belonging to volumes of interest.

This statistical estimator receives four features extracted from the studied image and the ventric-

ular masks as supervisory factors. When presented to the research community, the AVVE was

validated using manually segmented masks, but in this delivery, the AVVE has been certified for

accuracy using a reproducible pipeline. Then, with the certified AVVE, we measure and report

the errors attained by human operators while segmenting the lateral ventricles.

Materials and methods

The Fig 1 shows a generalization of the presented solution. The primary purpose is to create

reliable gold standards that measure more accurately than manual segmentation and tune

automatic or semiautomatic instruments in the measuring range.

Fig 1. General strategy to determine human errors in manual assessment. The first pass over manual segmentation allows the creation of physical

models serving as gold standards to tune an Automatic Segmentation Algorithm (ASA). The ASA is validated when yield volume read value differs (R)

from the one given by the Water Displacement With the validated ASA the automatic and manual segmentations are compared to determine the

human errors.

https://doi.org/10.1371/journal.pone.0285414.g001
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Since applications in medicine deal with individuals’ health, the need for accuracy is high

[15]. The methods presented in this document strictly comply with relevant guidelines and

regulations. This study was approved by the Institutional Review Board of the Children’s Hos-

pital Los Angeles, which waived the requirement for informed consent because of the data’s

retrospective nature and use of de-identifying methods. Please, refer to IRB number CHLA-

15-00161.

Human errors in 3D measurements

Correctly estimating the volume of the brain’s ventricles is crucial in diagnosing and monitor-

ing hydrocephalus in infants and normal pressure hydrocephalus in adults [9, 16, 17]. Ran-

domly selected images of the brain lateral ventricles were manually segmented to create 3D

structure models. The volume of the 3D models was determined using an electronic device

that reads water displacement (WD). The 3D models were used to create MRI phantoms

scanned in a 3T Phillips device using isometric voxels of 1mm. From this moment, images are

created from a 3D structure with a known volume. The volume of the 3D structure serves as a

supervising factor that certifies the operation of the AVVE that performs segmentation of the

ventricles using AI [14]. With the certified AI-based measurements, we determined errors

introduced by human operators during manual segmentation. For this volume-target scenario,

the general pipeline of Fig 1 turns into the one shown in Fig 2.

Tunning process. The Brain-ventricles’ phantoms

This Section points to the creation of the phantom shown in block V of Fig 2. The ventricles

are segmented from T1 images. The resulting masks are saved in stereolithography (STL)

Fig 2. We tested the automatic ventricular volume estimator (AVVE) algorithm [14] for accuracy using as a gold standard the volume of the 3D

printed structures obtained by water displacement.

https://doi.org/10.1371/journal.pone.0285414.g002
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format [18]. Next, the STL files are loaded in Cura [19] using a resolution of 0.1 mm on all

axis. Then, the models are moved to gcode format [20] before printing in a Monoprice Ulti-

mate 3D printer using 0.1mm of precision and 20% for structural filling. From this moment, a

physical-measurable object exists with dimensions in the real world; however, its form is com-

plex. From the physical models, MRI phantoms can be created. The process consists in sus-

pending the volume in a solution jelly:water (1g:3ml). The inert material of the 3D model

surrounded by the watery fixation creates the needed contrast on an MRI scanner from which

images are obtained. From this point on, the volumes extracted from images can be fairly com-

pared with those obtained by the water displaced with the physical model. The brain-ventricu-

lar models were extracted from templates created by healthy patients at ages [1, 6, 15, 24, 48,

66, 78, 96, 114] months old. Additionally, two hydrocephalus patients underwent the same

process.

Tunning process. The water displacement measuring device

The water displacement (WD) was chosen as the method to measure the irregular volumes of

the 3D reproduced ventricles. The conceptual design of the device is shown in the Fig 3. The

montage consists of a measuring [MR] and a sample recipient [SR], both hosting electrical

Fig 3. Design of the water-displacement-measuring device.

https://doi.org/10.1371/journal.pone.0285414.g003
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water pumps [WP-01] and [WP-02]. The recipients rest on digital scales [DS-01] and [DS-02]

with a precision of 1 ml. The [SR] has a non-contact-level sensor [NC-LS], which works as a

digital switch. The [NC-LS] is on when water reaches or exceeds the sensor level; it is off other-

wise. The pumps are connected to two pipes so that depleting one recipient fills the other. The

tube that drains the [SR] is connected to a flow sensor [FS] that produces pulses when the

water moves. The [FS] is specified to read fluxes in the range of 0.1-3L/min. This hardware is

controlled with a Beagle Blackbone [21] (Programmable device) that recovers logical transis-

tor-to-transistor logic (TTL) signals in its sensor ports (magenta lines) and uses the control

ports (black lines) to activate/deactivate the pumps over the residential power distribution

(120V-60Hz) through transistorized power interfaces.

To start, the water level in [SR] is below the [NC-LS] sensor; thus, [NC-LS] sends a 0

through its sensor line. Then [WP-02] is activated to push water on [SR] until the water

reaches the [NC-LS] level. At this moment, the programmable device will see a logic 1 in the

[NC-LS] sensor line. Next, [WP-01] is activated to deplete water from [SR] to find the zero

level. At that moment, the programmable device sees a zero in the [NC-LS] line. Then, the

sample is submerged in [SR], raising the water level above the [NC-LS] sensor and forcing a

logic 1 in the sensor line. Next, the [WP-01] is turned on, and the programmable device acti-

vates the pulse counting in the [FS] sensor line. The water pumping from [SR] will continue

until the water level reaches zero. The volume of the displaced water is equal to the volume of

the submerged object, and it will be captured by the pulsating pattern yielded by the [FS] sen-

sor. Because the 3D volumes are built with gaps in their internal structure, sinkers are needed

to eliminate the buoyancy.

Tunning process. Estimating volume with artificial intelligence

Marbles of different sizes are utilized to accurately estimate the water’s flux traversing the [FS]

device. The marbles’ volume is determined analytically by measuring the diameter (D) with a

caliper with a precision of 0.1 mm and using V ¼ 1∗p∗D3

6
. The uncertainty of the device is esti-

mated by measuring known volumes –the marbles– in the range of the studied ventricles. The

uncertainty in each studied point is calculated by averaging five readings. The [FS] produces a

pulsating signal where the proximity of the pulses is directly correlated with the flux (volume

per time). Unfortunately, the pumps do not move the water at a constant rate; therefore, the

pulsating pattern’s first derivative yields signals with descending-exponential envelopes. Since

the behavior of the pumps is challenging to characterize by analytical means, and such opera-

tional variability precludes accuracy in volume estimation, we tested several regression meth-

ods to predict volume from pulsating patterns. A regressor based on a neuronal network

resulted in the best solution for the challenge. The pulse counting (PuCi), the first 20 time slots

produced by the first derivative of the pulsating pattern (TSi), the time the system took to dis-

place the water (Twdi), and the amplitude A0fi of the Fourier’s DC components on each TSi are

included in the input array Xi (44x23). The output array Yi (44x1) contains the volumes—

namely real volumes—per each formulation extracted analytically based on the caliper mea-

surement. This data is publicly available at https://doi.org/10.5281/zenodo.7654881 [22].

Training/testing tasks were accomplished in a 3-folded exercise using randomly selected

TSi arrays in a ratio 70%/30% among all pulsating samples. Data augmentation was accom-

plished by submerging several marbles together in [MR]. We avoid the need for padding in the

matrix formulation—due to the different lengths of the pulsating patterns—by considering

only the first 20 time slots in (TSi). The decision not to use the whole (TSi) was made after

observing that the highest timing variability in the whole data set was due to the irregular

pump’s starting. The results section shows a Mean Absolute Error (MAE) metrics comparison
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among tested regressors, including linear regression, polynomial regression, Neuronal net-

work with linear output layer, decision trees, and Random Forest. The Fig 4 presents the archi-

tecture of the used neuronal network that ultimately showed the best performance.

Manual segmentation (MSeg) assisting software

The MSeg process involves tasks that are not related to tracing the outline of the ventricles but

are also essential to accomplish the activity. These collateral activities refer to loading images,

moving through slices, saving the mask obtained from the current slice, concatenating the

masks, and saving the created volume.

Since our purpose is to qualify and quantify the segmentation process, the mentioned col-

lateral activities are fully automated; therefore, the operator is forced to find and delineate the

region of interest in every slice without distractions. Besides, we have accounted for operator

Fig 4. Architecture of the used neuronal network. The first layer has 23 nodes to receive the features in Xs, two

hidden layers with 12 and 10 nodes, both layers with rectified linear unit (ReLu) activation function, and an output

layer with a linear activation function that performs the regression. Mean Squared Error (MSE) drives the loss, the

Adam algorithm is set as the optimizer, and the accuracy metric is performed by Mean Absolute Error (MAE).

https://doi.org/10.1371/journal.pone.0285414.g004
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fatigue with timers that allow the operator to work for 30 minutes and force a 10 minutes rest

before restarting the segmentation. These values were empirically chosen after receiving feed-

back from operators regarding optimal times to enforce concentration. The in-house-made

software monitors some activities the operator performs and records timestamps before and

after every action.

Human assestments on clinical data

Four human operators have been trained to segment the lateral brain ventricles on MRI data

available at the Children’s Hospital Los Angeles. Although clinical imaging on children often

yields low-quality images, the ventricles are among the most easily identifiable structures in

the brain. Each operator is asked to separate the lateral brain ventricles three times in the three

views for a total of 9 Mseg per subject. The gathered information is profiled and kept separated

for subsequent analysis as follows:

Inter-operator experiments. The four operators perform segmentation on the axial

images of patients in the same age range as those used for creating the gold standards. The vol-

umes’ mean values obtained among the experts are compared with those extracted with the

water displacement device. Then, errors are computed.

Inter-view experiments. The operators perform segmentation on every view (axial, coro-

nal, sagittal). The obtained volumes are computed for each view and compared with the vol-

ume yielded by the water displacement method to determine errors.

Intra-operator experiments. The operators are presented with the task of segmenting

every available structure in the axial view three times. Since the assisting software controls how

the images are delivered, operators are never conferred with the same subject consecutively, so

learning is avoided. The mean value of the obtained volume is computed with the volumes

yielded by the water displacement method to obtain the difference.

Results

Water displacement device and yielded data

The differences in the timing profiles described by the Gaussian statistics in Table 1 suggest an

irregular operation in the pumping device that tends to stabilize itself when the pump is opera-

tive for extended periods. The construction of the flow sensor forces a pulsation pattern that

does not vary its duty cycle (50%) but its frequency, justifying the use of a feature extracted

from the Fourier in the AI-based volume prediction tasks.

Table 1. Marbles’ volumes and time slot statistics per experiment. Ma, Vol, Max, Min, and Std stand for Marble, Volume, Maximum, Minimum and Standard deviation,

respectively.

Count (pulses) Model Real Vol (ml) Max time Mean time Min time Std time

58 Ma2 8.0 ± 1.0 0.037554 0.030398 0.025835 0.000993

61 Ma1 8.1 ± 1.0 0.037157 0.030073 0.027922 0.000779

63 Ma5 7.9 ± 1.0 0.037871 0.030483 0.027922 0.000795

65 Ma4 7.6 ± 0.9 0.037233 0.031458 0.027922 0.001300

66 Ma3 7.3 ± 0.9 0.037157 0.031326 0.027922 0.000707

120 Ma6 16.1 ± 1.4 0.033562 0.030225 0.028124 0.000726

184 Ma7 23.4 ± 1.6 0.037157 0.031093 0.026125 0.000963

252 Ma7 35.6 ± 0.9 0.033232 0.029899 0.025774 0.000930

445 Ma8 60.1 ± 0.9 0.034960 0.030765 0.026517 0.000837

https://doi.org/10.1371/journal.pone.0285414.t001
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The Table 1 is a record of the pulses generated by some of the marbles used in the WD-

device’s tuning process. The pulse counting sorts the data; however, the order is not kept in

the column Real Vol, empowering the thesis of the pump’s unstable behavior, which is corrob-

orated by timings registered in the same table.

Tunning process. Volume estimation through artificial intelligence

Five regression strategies were tested to convert the pulsating patterns to volume after sub-

merging marbles in the water displacement device. Table 2 compares the MAE for each regres-

sor in a three-fold exercise.

In Table 2, the polynomial regression is configured with a 2nd order degree. The Neuronal

network uses the MSE to calculate loss, the Adam optimizer, and the activation functions per

layer were: relu, relu, relu and linear. The decision tree and random forest methods were con-

figured as regressors, and the random forest used ten estimators.

The smallest marble’s volume read with a caliper yielded an analytical value of 7329 mm3,

and the worst obtained MAE is 129.99 mm3 which is 1.77% (below the 2% of tolerance) of the

smallest measured volume. Therefore, the WD is certified to measure volumes by water dis-

placement with high precision.

Estimating human errors in manual segmentation

Once the WD device is tuned, it is possible to measure the 3D structures’ volume from medical

images accurately.

The Fig 5 showing errors as percentual differences concerning the gold standard volumes

complements Table 3.

The circle’s center is the radar plots’ zero error point. The errors are presented as a percent

of the real value provided by the water displacement method (i.e., gold standard). The inter-

Table 2. Mean Absolute Errors (MAE) in three folded exercises aiming to predict the volume from features derived from pulsating patterns. The MAE records are

presented in mm3. The term reg stands for regression.

Folding Regression model (23 features, 44 formulations, split 0.3)

Linear reg. Polynomial reg. Neuronal Network Decision tree Random forest

MAE MAE MAE MAE MAE

1 1578.54 3260.24 129.99 1908.61 578.12

2 1876.58 4125.73 79.71 1155.41 411.65

3 1599.33 3518.47 85.81 1196.66 388.96

Average 1684.81 3694.81 98.50 1420.22 459.57

https://doi.org/10.1371/journal.pone.0285414.t002

Fig 5. Graphical results of the performed experiments. The errors are presented as percentual variations from the

gold standard stated by the water displacement device. The abbreviations HC, mo, Mod and Sev stand for

hydrocephalus, month, moderate and severe, respectively.

https://doi.org/10.1371/journal.pone.0285414.g005
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operator measurements introduced errors up to 50% concerning the water displacement stan-

dard, and the more significant volumes tended to be more challenging to measure. Regarding

the plane, the operators were more accurate in segmenting the ventricles when working in the

axial view. Segmenting the sagittal plane generated the most significant errors reaching differ-

ences up to 71% with respect to the water displacement standard. The Intra-operator variabil-

ity reached 48%, and the most extensive volumes presented the highest challenges to the

human operators.

Discussion

A significant number of algorithms—many of them employing AI—have been developed to

generate semiautomatic and automatic determinations of volume and shape. Scientists employ

different imaging modalities to quantify geometries and later judge accuracy against manual

segmentation as the gold standard. Several such studies in medicine have assumed that manual

segmentation is a reliable validator [23–30]. In this report we demonstrate that manual assess-

ments are not that accurate. Moreover, we provided insights about a highly accurate technique

with a proof of concept that eliminates the need to use inaccurate, tedious, time-consuming,

and operator-dependent manual segmentation.

The problem of validating automatic and semiautomatic tools with manual assessments in

medicine has been underrated. Nevertheless, some authors have recently spoken out about the

inconsistency of using unstable manual segmentation as a grand truth and proposed to believe

in the AI-based machine’s capacity to learn and be reproducible [31] for accomplishing tasks

with precision. The authors in [31] justified their efforts with a 10% discrepancy between oper-

ators in a multiple-sclerosis framework while segmenting brain structures. However, reporting

the differences between operators obviates the target and, thus, precision. In other words, both

operators could report the same and be remote from the real numbers. Losing the target is a

natural result when we lack an objective gold standard. This missing part propagates the inac-

curacy to the AI machine performing the segmentation. Has it obtained the correct numbers?

How can we ensure that? We can not compare our findings with anything reported before

because we propose the creation of reliable gold standards, something missing in the 8.880

Table 3. The AVVE value column holds the volumes obtained by the certified AVVE on clinical images. The experts are asked to perform segmentations on the same

subjects measured by the certified AVVE. The mean values obtained by the experts on each subject are registered in this table. Using the mean values obtained from several

operators is a strategy often used to validate the accuracy of automatic and semiautomatic segmentation tools. The abbreviations HC, mo, mod, and sev stand for hydro-

cephalus, month, moderate and severe, respectively.

PATIENT AGE (mo) AVVE VALUE (ml) INTER � OP EXPs n ¼ 4 INTER � VIEW EXPs n ¼ 3 INTRA � OP EXPs n ¼ 3

Mean (ml) Error (ml) Mean (ml) Error (ml) Mean (ml) Error (ml)

1 3.4 ± 0.2 3.9 ± 0.3 0.5 ± 0.4 4.42 ± 0.7 1.0 ± 0.7 4.0 ± 0.2 0.6 ± 0.3

6 7.3 ± 0.2 8.9 ± 0.1 1.60 ± 0.2 9.6 ± 0.1 2.3 ± 0.2 8.4 ± 0.1 1.1 ± 0.2

15 10.8 ± 0.2 13.6 ± 0.7 2.8 ± 0.7 14.6 ± 1.7 3.8 ± 1.7 12.5 ± 0.6 1.7 ± 0.6

24 10.5 ± 0.2 14.2 ± 1.4 3.6 ± 1.4 13.2 ± 1.1 2.7 ± 1.1 12.0 ± 0.5 1.5 ± 0.5

48 19.8 ± 0.2 17.9 ± 2.6 1.9 ± 2.6 16.7 ± 0.9 3.1 ± 0.9 16.3 ± 0.3 3.5 ± 0.4

66 8.0 ± 0.2 9.8 ± 0.8 1.8 ± 0.8 11.1 ± 0.9 3.1 ± 0.9 9.9 ± 0.1 1.9 ± 0.2

78 11.5 ± 0.2 13.9 ± 1.1 2.4 ± 1.1 16.3 ± 3.0 4.8 ± 3.0 14.0 ± 0.3 2.5 ± 0.4

96 11.0 ± 0.2 12.7 ± 1.0 1.7 ± 1.0 14.3 ± 0.9 3.3 ± 0.9 13.0 ± 0.7 2.0 ± 0.7

114 19.7 ± 0.3 23.3 ± 1.8 3.6 ± 1.8 23.7 ± 0.9 4.0 ± 0.9 22.5 ± 0.9 2.8 ± 0.9

HC-mod (72) 88.4 ± 0.9 113.5 ± 18.4 25.0 ± 18.4 119.6 ± 21.1 31.2 ± 21.1 107.2 ± 7.8 18.8 ± 7.8

HC-Sev (80) 115.9 ± 1.0 152.8 ± 21.3 36.9 ± 21.3 161.2 ± 33.3 45.3 ± 33.3 136.9 ± 18.4 21.0 ± 18.4

https://doi.org/10.1371/journal.pone.0285414.t003
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entries displayed by google scholar after the search string “Segmentation algorithms in medical

imaging” only in 2023.

In the presented scenario, we created 3D printed models derived from MR images that

mimic the lateral ventricles and very precisely measured the 3D models’ volume with a water

displacement technique. The 3D models were placed in a gel, and MR images were obtained.

The images extracted from the phantoms were fed to an AI-based algorithm tuned until the

volumes were congruent to those obtained by water displacement. The next step, currently in

development, is to incorporate the algorithm into MR scanners so that all subsequent ventricu-

lar volumes can be accurately and automatically be determined with a numerical value that

will be included with each radiology report.

Similarly, for planar measurements in medicine (study not reported in this document), we

created multiple printed rings to mirror the mean HC at various ages along the x-axis of the

Nellhaus chart for head growth. The 3D printed rings (arbitrarily made 0.5 cm thick to have

substance) were used to create MR phantoms in a manner equivalent to that of the ventricular

models. Measurements of the outside diameter of 3D rings tuned the automatic image-based

algorithm that determines maximum HC [32]. The algorithm to accomplish automatic and

accurate measurement of maximum HC is currently being added to the MR scanners at our

hospital. We are not advocating that pediatric patients undergo MR imaging to obtain maxi-

mum HC but to utilize images incorporated in the hospital database acquired for clinically

indicated purposes. Human errors in planar images or measurements directly performed on

the body, such as the maximum HC, can be accurately estimated using the model proposed in

Fig 1. We are currently working on this development and will report the referred errors

subsequently.

The Picture Archiving and Communications System (PACS) [33] is currently the standard

platform to manage medical images but lacks analytical and quantification capabilities. Staying

within the PACS, we have developed automatic methods to retrieve the medical data and

access it at the voxel level, decrypted and uncompressed enabling analytical procedures to be

applied to the data while not perturbing the system’s daily operations.

The Health Insurance Portability and Accountability Act (HIPAA) [34], a federal law

enacted in 1996 to protect patients’ health information, mandates that such information can-

not be disclosed without a patient’s consent. Data transferred out of the PACS is identifiable

and, thus, is subject to all the requirements of HIPAA. By eliminating manual segmentation,

we add reliability to the whole automating pipeline and assure that our methods are HIPAA

compliant, eliminating the need for patient or Institutional Review Board (IRB) approvals.

Doing so also makes it much easier to monitor a given patient over time and compare such a

patient with other patients included in a defined database. The presented automation can be

expanded by including multiple institutional sites that favor implementing AI in medicine, as

we displayed in patent US20200273551A1 [35].

Conclusion

Manual segmentation is not recommended to derive quantitative assessments from medical

images nor to validate automatic or semiautomatic methods based on such a technique since

the results of the Mseg are variable and do not provide a mechanism to determine the accuracy

of the results. The errors induced are large enough to adversely affect decisions that may lead

to less-than-optimal treatment.

The results yielded by automation can be made to be reproducible. The inaccuracies intro-

duced by machines are known as systematic errors, and those discrepancies can be corrected if

a reliable gold standard is utilized. The authors recommend that automation using quantifiable
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gold standards be used to determine size and volume from medical images with manual seg-

mentation be eliminated whenever possible.
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