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Abstract

About one in ten babies is born preterm, i.e., before completing 37 weeks of gestation,

which can result in permanent neurologic deficit and is a leading cause of child mortality.

Although imminent preterm labor can be detected, predicting preterm births more than one

week in advance remains elusive. Here, we develop a deep learning method to predict pre-

term births directly from electrohysterogram (EHG) measurements of pregnant mothers

recorded at around 31 weeks of gestation. We developed a prediction model, which includes

a recurrent neural network, to predict preterm births using short-time Fourier transforms of

EHG recordings and clinical information from two public datasets. We predicted preterm

births with an area under the receiver-operating characteristic curve (AUC) of 0.78 (95%

confidence interval: 0.76-0.80). Moreover, we found that the spectral patterns of the mea-

surements were more predictive than the temporal patterns, suggesting that preterm births

can be predicted from short EHG recordings in an automated process. We show that pre-

term births can be predicted for pregnant mothers around their 31st week of gestation,

prompting beneficial treatments to reduce the incidence of preterm births and improve their

outcomes.

Introduction

Around 10% of all live births, about 15 million babies per year, are preterm, that is, they hap-

pen before 37 weeks of gestation are completed [1, 2]. Preterm births are a leading cause of

newborn mortality [3]. Moreover, many preterm babies suffer from long-term morbidity,

including permanent neurological damage [2, 4]. Because treatments can delay preterm births

and improve their outcomes, identifying pregnant mothers at high risk of preterm birth is

compelling, as recognized by the World Health Organization (WHO) [2, 5].

Although several methods can predict preterm births, they have limitations. Broad histori-

cal risk factors, such as previous preterm births or multiple gestations, can identify mothers at
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higher risk of preterm birth, but these risk factors alone are not sufficient to accurately predict

which individual mothers will deliver preterm [6–8].

In clinical practice, preterm birth is usually predicted by measuring cervical length or the

concentration of cervico-vaginal fibronectin alpha [8]. In mothers with symptoms of preterm

labor, these minimally invasive tests can predict births that will occur within one week [9, 10].

Moreover, the combination of these tests has been reported to produce more accurate results

than each method separately and could be used to predict preterm births in symptomatic

mothers within two weeks of testing [11]. These measurements are helpful because they inform

physicians and guide treatments to reduce the risk of preterm labor and to improve its out-

comes. However, these measurements are not cost-effective screening tools for the general

population of pregnant mothers because they have low predictive values among mothers at

low risk for preterm labor, such as nulliparous women with singleton pregnancies [8, 12].

Home uterine activity monitors (HUAMs) were developed to measure uterine contractions

and predict preterm births. The first such devices were based on tocodynamometer recordings,

which measure the pressure changes associated with uterine contractions [13]. Unfortunately,

these devices could not predict preterm births, and current clinical guidelines discourage their

use for this purpose [8, 13, 14].

More recently, electrohysterogram (EHG) recordings have been proposed to predict pre-

term births [15, 16]. EHG recordings use abdominal electrodes to measure the electrical activ-

ity associated with uterine contractions, and they can be recorded with portable devices

equipped with algorithms to monitor uterine contractions [15, 17]. A variety of algorithms

have been developed with the aim of predicting preterm births from various features derived

from EHG measurements [16, 18]. These features are generally calculated from uterine con-

traction intervals, either manually selected or identified using dedicated algorithms [16, 19,

20]. These intervals can also be identified with the aid of simultaneous tocodynamometer

recordings [17, 19].

To the best of our knowledge, EHG measurements have not yet been shown to predict pre-

term births more than two weeks in advance with a performance comparable to the clinical

standards, i.e., using measurements of cervical length or fibronectin alpha for detecting immi-

nent labor. Although many researchers have reported nearly perfect predictions of preterm

births based on EHG measurements from the “Term-Preterm EHG Database,” meticulous

analysis revealed that these results were overoptimistic and resulted from data leakage [21, 22].

Namely, these works inadvertently introduced strong correlations between the data used to

train the prediction models and the data used to test the performance of these models, as

shown by Vandewiele et al. [16, 21, 22]. This problem was caused by inappropriate attempts to

improve the models’ performance by balancing the number of term and preterm samples used

to develop these models. After Vandewiele et al. corrected this problem, these models were no

longer able to predict preterm births accurately [21, 22]. Additional works with sound method-

ology suggest that some features derived from EHG measurements can be used to distinguish

between recordings of mothers who eventually delivered at term from those who delivered

preterm [23–26]. However, none of these works could predict preterm births with clinically

useful accuracy. More recently, Xu et al. and Lou et al. developed methods for predicting pre-

term births avoiding data leakage [27, 28]. Although Xu et al. and Lou et al. achieved high clas-

sification performances on test sets including real and synthetic measurements, the

performances of their approaches on test sets including only real measurements are not

reported. Moreover, Fischer et al. used an end-to-end deep learning model to predict preterm

births from EHG measurements without artificially increasing the number of preterm samples

to avoid possible data leakage and achieved only a moderate accuracy [29].
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Here, we present an end-to-end deep learning model that predicts preterm births directly

from EHG measurements, without handcrafted features. Therefore, our model is not sensitive

to varying implementations of specific features or to how uterine contractions are segmented.

We developed our work using EHG measurements and supplementary clinical information

from two public databases. Importantly, we developed our model with care to avoid data leak-

age. Using our model, we could predict preterm births in pregnant mothers around their 31st

week of gestation. Our predictive accuracy was close to that achieved by using cervical length

and fibronectin alpha measurements to predict preterm labors in mothers with symptoms of

preterm labor and within one week of delivery. Moreover, by investigating the measurement

components that contribute to the predictions of our model, we showed that it is possible to

predict preterm births using short recording times, thus facilitating clinical adoption and at-

home implementation of EHG measurements. This finding is aligned with the observations of

Jager et al., who proposed that preterm births can be predicted from short contractile or non-

contractile intervals of EHG measurements with similar accuracy as when using 30-minute

long recordings [19]. Our work and results encourage using EHG measurements and deep

learning for predicting preterm births in real-world scenarios. Their successful employment

could help reduce newborn morbidity and mortality, especially in populations with limited

access to healthcare, who suffer more from preterm birth [2].

Materials and methods

Study participants

In developing our work, we used two datasets in the Physionet repository, aggregating data

from the “Term-Preterm EHG Database” (TPEHG DB) [23, 30] and from the “Term-Preterm

ElectroHysteroGram DataSet with Tocogram” (TPEHGT DS) [19, 30]. These datasets contain

bipolar EHG measurements, with nearly every recording lasting 30 minutes, and clinical infor-

mation obtained from pregnant mothers during regular pregnancy checkups, as well as from

mothers hospitalized for threatened preterm labor. Both datasets were acquired at the Univer-

sity Medical Centre Ljubljana, using the same recording protocol and device. The TPEHG DB

consists of 300 records, each obtained from a different mother at either around the 22nd or the

32nd week of gestation. Additionally, the TPEHGT DS contains 26 records from 18 different

mothers, obtained around the 31st week of gestation. Half of the samples in the TPEHGT DS

correspond to mothers who eventually delivered preterm, while the other 13 records corre-

spond to term deliveries. When compiling these datasets, the datasets’ authors excluded the

mothers whose labors were induced or whose deliveries were performed using a Cesarean sec-

tion [19, 23].

We included the records from both datasets obtained after the 26th week of gestation. We

used this threshold of 26 weeks following the grouping of gestational ages at the time of the

recordings in the TPEHG DB [23]. Since each record in the TPEHG DB was obtained from a

different mother, we included all the records from this database that were obtained after the

26th week of gestation. On the other hand, when there were multiple records for the same

mother in the TPEHGT DS, we included only the latest record during the pregnancy, provided

that the record was made after the 26th week of gestation. We identified the records in the

TPEHGT DS that corresponded to a particular mother by comparing the clinical information.

By using a single record per mother, we prevented our models from learning features that

characterize mothers rather than features that are predictive of pregnancy outcomes. Overall,

we used 159 records from different mothers. Each of these records lasted 30 minutes, except

for two records that were 26 and 33 minutes long. To facilitate the data analysis, we zero-pad-

ded the 26-minute-long record and truncated the 33-minute-long record, so that all the
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records were 30 minutes long. Among these mothers, 18.9% delivered preterm. We detail the

clinical information of these mothers in Table 1. Additionally, we illustrate the distribution of

gestational ages of the mothers included at the times of recording and at birth in S1 and S2

Figs.

Prediction models

We developed classification and regression models to predict a term or a preterm birth. The

classification models were trained specifically to predict categorical outcomes, i.e., delivery at

term or preterm. Pursuing a different approach, we trained the regression models to predict

the gestational age at delivery, labeling predictions lower than 37 completed weeks, or 259

days, as preterm, and those above 37 weeks as term. In developing the classification and regres-

sion models, we used clinical information alone, EHG measurements alone, and clinical infor-

mation combined with EHG measurements. These prediction models, developed using

MATLAB 2020a, are detailed in the next subsections and summarized in a block diagram in

Fig 1.

Clinical information models. First, using only the clinical information of the records, we

predicted whether each mother delivered preterm or at term. We used most of the predictors

shown in Table 1, namely maternal age, gestational age at the time of the recording, weight,

whether the mothers had given birth previously (parous), had aborted pregnancies previously,

had reported vaginal bleeding in the first trimester, had reported vaginal bleeding in the sec-

ond trimester, or were smokers. We excluded diagnoses of hypertension and diabetes because

these diagnoses are mostly absent in this dataset. We also excluded diagnoses of funnelling

because they are made through transvaginal sonography and because, in this dataset, these

diagnoses have a low predictive power [8]. Similar to funnelling, we excluded the variable in

Table 1. Clinical information from the records included in our work.

Distribution Predictive power No. of missing entries

Number of participants 159 - -

Number of preterm births (%) 30 (18.9) - -

Continuous predictors a Median (IQR) AUC (95% CI)

Age [years] 28 (26–33) 0.51 (0.39–0.63) 23

Gestational age at recording [weeks/days] 31/0 (30/4–32/4) N/A 0

Weight [Kg] 72 (66–76) 0.56 (0.43–0.69) 30

Binary predictors b No. of positives (%) Risk ratio (95% CI)

Parous 51 (32.1) 1.32 (0.79–2.20) 0

Previous abortions 21 (13.2) 0.72 (0.23–2.28) 0

Hypertension 0 (0.0) N/A 21

Diabetes 1 (0.7) N/A 21

Placental position 68 (53.1) 1.73 (1.31–2.30) 31

Bleeding in 1st trimester 12 (8.7) 0.25 (0.02–4.13) 21

Bleeding in 2nd trimester 3 (2.2) 12.53 (1.19–131.49) 21

Funneling 5 (3.6) 1.57 (0.18–13.27) 21

Smoker 11 (6.92) 3.58 (1.17–10.96) 0

a We characterized the data distributions using the median values and interquartile ranges (IQR). We assessed the predictive power of the continuous predictors using

the area under the receiver-operating characteristic curve (AUC) and calculated the 95% confidence interval (CI) using the logit method.
b For the binary predictors, we show the number of positive samples in the dataset and the percent of positive samples in the dataset (%). We assessed the predictive

power, with 95% CI, of these predictors through the risk ratio test.

https://doi.org/10.1371/journal.pone.0285219.t001
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the dataset indicating the placental position, which takes the values “front” (considered as the

positive value in Table 1) and “end.” We completed the missing entries for each variable in the

training and testing datasets using the mode of that variable in the training set. To prevent

data leakage, rather than using the modes of the entire dataset, we used the modes of the sam-

ples in the training set to complete missing entries in both the training and testing sets [31].

Therefore, our training data does not contain any information from the test set and when

making predictions, our model uses only information from the training set to both complete

missing entries and make predictions. In other words, our model makes predictions on each

sample of the testing dataset using only information from the training set.

Next, we trained a logistic regression to predict whether deliveries were preterm and a lin-

ear regression model to predict the gestational age at birth. These models are represented

using a block with a blue outline on the upper part of Fig 1. In the logistic regression model,

we discarded the redundant predictors, using lasso regularization. We regularized only the

classification model, and not the regression model, because we observed that the lasso regulari-

zation improved the performance of the logistic regression model slightly but marginally wors-

ened the performance of the linear regression model. Since we regularized the logistic

regression model, we also normalized the predictors in this model to prevent the regularization

Fig 1. Block diagram of the three classification and regression models developed in this work. The details of these models are provided in Methods.

The clinical information model is illustrated in the upper part of the diagram, using shapes with blue outlines. This model uses clinical information, in

tabular format, to predict preterm births by using logistic or linear regression, represented as a block with a blue outline and schematic illustrations

below it. Preprocessing the clinical information consists of completing missing entries and normalizing the predictors, as described in Methods. The

EHG model is illustrated in the lower part of the diagram, using shapes with black outlines. This model uses EHG measurements, represented by an

input block with a schematic illustration below it, that are first preprocessed. This preprocessing step includes bandpass filtering (BPF) and

downsampling. The preprocessed measurements are used to compute STFTs, illustrated by a block and a schematic representation, that are used as

input to the RNN. This network is composed of an input layer, a BiLSTM layer, a fully connected (FC) layer, and an output layer, which are illustrated

using light blue shapes with black outlines and enclosed within a dashed light blue outline. The combined model uses clinical information and EHG

measurements to predict preterm births and is illustrated in the middle part of the diagram using shapes with red outlines. The dotted black outline

represents the cross-validation technique employed, indicating that the operations within are applied separately for each data partition, whereas the

operations outside are applied to all the data, independent of the data partition.

https://doi.org/10.1371/journal.pone.0285219.g001

PLOS ONE Predicting preterm births from electrohysterogram recordings via deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0285219 May 11, 2023 5 / 20

https://doi.org/10.1371/journal.pone.0285219.g001
https://doi.org/10.1371/journal.pone.0285219


term from penalizing the model parameters based on the scale of the predictors. Again, to pre-

vent data leakage, we normalized both the training and testing sets using the means and stan-

dard deviations of the samples in the training set, thus avoiding revealing information from

the test set to the training set.

The operation to complete missing entries described above, together with the operation to

normalize the input data, comprise the preprocessing step for the clinical information. This

preprocessing step is represented in Fig 1 as a block that is executed once for each partitioning

of the data into training and testing datasets, as described below.

EHG measurements models. Then, using only the EHG measurements, we predicted

whether the mothers delivered preterm or at term. We used solely the first signal (s1) in the

databases, in agreement with the recommendation of Garcia-Casado et al. of using simple sys-

tems for predicting preterm birth [18]. This signal measures the electric potential difference

between two electrodes aligned horizontally on the abdomen, 3.5 cm above the navel, and sep-

arated by seven cm.

We preprocessed all the EHG measurements to improve the data quality. We removed the

first minute of the recordings to remove transient effects. Next, we filtered the measurements

to remove baseline wander and high frequency noise. Specifically, we filtered the recordings

using a fourth-order, Butterworth bandpass filter with zero-phase and cutoff frequencies of

0.05 Hz and 4 Hz. Although most uterine activity is concentrated between 0.05 Hz and 0.7 Hz,

we included a higher frequency range because higher frequency components have been shown

to be predictive of preterm birth [19, 32]. Finally, we downsampled the measurements to 10

Hz to improve computational speed without losing information. These preprocessing opera-

tions are represented using a block with a black outline at the bottom of Fig 1.

Next, as illustrated in the bottom part of Fig 1, we transformed the preprocessed EHG mea-

surements to the time-frequency domain, using the short-time Fourier transform (STFT). We

used the STFT following the positive results previously reported using this transformation for

predicting preterm births from EHG measurements [19, 27]. The STFT usefully represents

how the spectral components of the measurements change over time by constructing a matrix

where each column corresponds to a sliding time interval and contains the estimated spectral

content of the measurements during the corresponding time interval. This transformation is

helpful in analyzing non-stationary processes, such as the contractile activity during the

recordings. We estimated the STFT using Hamming windows of 60 s that were slid using a

75% overlap. We chose this configuration since uterine contractions usually last around one

minute and because this configuration resulted in satisfactory temporal and spectral resolu-

tions based on visual inspection [33].

We predicted the pregnancies’ outcomes from EHG recordings using a deep neural net-

work, rather than using handcrafted features, because neural networks automatically learn the

most informative features from the data [34, 35]. Given the limited success of various methods

designed to predict preterm births from the EHG measurements in the TPEHG DB using

handcrafted features, Vandewiele et al. suggested using deep learning to achieve better results

[22].

In agreement with the suggestions from Vandewiele et al., we used a deep recurrent neural

network (RNN) to predict the pregnancies’ outcomes from EHG measurements, developing a

dedicated network architecture for this task. This RNN uses the training set, consisting of data

samples labeled with their respective pregnancy outcome, to learn features from the input data

that predict the pregnancies’ outcomes. The RNN consists of a series of layers that are trained

to learn multiple abstractions of the data that are helpful in relating the input data to the pre-

dictions [34]. The first layer in our network is a sequence input layer that rearranges the matri-

ces of STFTs so that the columns of the STFT matrices, which capture the spectral content of
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the measurements during the sliding time intervals, become a set of features for the corre-

sponding time step in the RNN. This input layer feeds into a series of bidirectional long short-

term memory (BiLSTM) cells with 100 hidden states. The BiLSTM cells are able to learn pat-

terns from sequential data: in our case, these cells are intended to learn patterns from the spec-

tral changes of the EHG measurements over time. Similar network architectures, using long

short-term memory (LSTM) and BiLSTM cells, have been used to successfully learn informa-

tive data representations from STFTs in other applications [36, 37].

Next, using a similar approach as Zhu et al., we connected the last BiLSTM cell to a fully

connected layer consisting of two neurons, and finally we connected the fully connected layer

to an output layer [36]. The fully connected layer encodes the data abstraction inferred by the

BiLSTM cells into a pair of scalar values, which are then used by the output layer to make a

prediction. In the classification model, this pair of scalar values scores the association of each

EHG recording to the preterm and term categories. This architecture is illustrated in Fig 1.

We used two different output layers, depending on whether we intended to predict the cate-

gorical outcome of the pregnancy or to predict the gestational age at birth. For the classifica-

tion problem, we used a softmax output layer and trained the network using a weighted cross-

entropy loss function that penalized errors in the preterm birth predictions more. We deter-

mined the weights of the loss function based on the relative frequency of each class in the train-

ing set, a strategy that addresses the class-imbalance problem of predicting preterm births.

Namely, because term labors are more frequent in the general population and in the database,

classification models trained on these data are naturally biased towards predicting term labors

and may learn to predict term labors for every input. This loss function is given by:

loss ¼ �
1

N

XN

n¼1

w1Tn lnðynÞ þ w0ð1 � TnÞlnð1 � ynÞ½ �; ð1Þ

where N is the number of samples in each training batch, wi is the penalization weight of each

class, Tn = {0, 1} is the label of sample n, and yn is the output score of the sample n. We set the

penalization weight for class i to be:

wi ¼
2Sð1� iÞ
S0 þ S1

; ð2Þ

where Si is the number of samples from class i in the training set, as suggested in [38].

For the regression problem, we used a regression layer as the output of the network. This

layer implements a mean square error (MSE) loss function to train the network. Since the

regression models are trained on a continuous output, i.e., the gestational age at birth, these

models are less sensitive to the class imbalance problem. The classification and regression out-

put layers are represented by a single blue block with a black outline at the bottom of Fig 1.

In developing our prediction models using EHG measurements, we evaluated alternative

model designs based on a single run of a five-fold cross-validation. We evaluated alternative

time-frequency representations, namely wavelet transforms and the empirical mode decompo-

sition, as described in [39, 40]. Additionally, we tested other neural network architectures,

namely using long short-term memory (LSTM) cells and convolutional neural networks

(CNN), with varying network parameters, such as the numbers of layers and the number of

LSTM cells. Here, we report the model that produced the best prediction results.

We also fine-tuned the learning parameters based on a single run of a five-fold cross-valida-

tion. Namely, we selected an appropriate mini-batch size, number of training iterations, learn-

ing rate, and regularization hyperparameter.

PLOS ONE Predicting preterm births from electrohysterogram recordings via deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0285219 May 11, 2023 7 / 20

https://doi.org/10.1371/journal.pone.0285219


Combined models. We developed both a classification and a regression model that com-

bine clinical information with EHG measurements to predict pregnancies’ outcomes. We

hypothesized that combining all the available information can improve the performance of

our models, as previously suggested [18]. We first trained the network described in the previ-

ous subsection. Then, we extracted the activation values of the fully connected layer and

concatenated these values with the clinical information. Next, we used the combined data to

train the logistic regression model to predict the outcome of the pregnancy, and the linear

regression model to predict the gestational age at delivery. We implemented these logistic and

linear regression models as described before. The difference between these models and those

used for predictions based only on clinical information is that, in this case, the data vectors

included the activations of the fully connected layers in addition to the clinical information.

The stages of these classification and regression models, which combine clinical information

and EHG measurements, are illustrated in the middle part of Fig 1.

Cross-validation

We evaluated the performance of our models using a stratified, five-fold cross-validation. We

partitioned the data into a training set, containing 80% of the data, and a test set, containing

the remaining 20% of the data, so that both the training and testing sets included the same pro-

portion of preterm samples. We illustrate our data partitioning in S3 Fig. We used the training

set to train our models and the testing set to evaluate the models’ performance. We repeated

this process five times, each time using a different set of samples for the training and testing

set, so that all the samples were used for testing throughout the five runs. This cross-validation

routine is indicated in Fig 1 by a dotted black outline. This outline symbolizes that the opera-

tions represented within are applied separately for each partition of the data, whereas the oper-

ations represented outside the outline are applied once for all the data.

Statistical analysis

To evaluate the performance of the prediction models with confidence intervals and to reduce

the risk of bias, we repeated the cross-validation routine 20 times, as recommended in [41].

Each time, we used a different random partition of the data. By repeating the cross-validation

routine with various random partitions, we prevented our models from possibly producing

over-optimistic results due to fitting of the training hyperparameters and model specifications

to a specific cross-validation partition. We then calculated the mean and 95% confidence inter-

val (CI) of the performance statistics, assuming that the performance statistics had Gaussian

distributions with unknown means and variances.

Results

Performance of the prediction models

First, we attempted to predict preterm births by using only the clinical information, which sup-

plements the EHG measurements and is described in Table 1. We developed two models: a

logistic regression model to determine whether a pregnancy would result in a preterm birth,

and a linear regression model to predict the gestational age at delivery, as detailed in Methods.

When using the regression model, we predicted that a birth would be at term if the estimated

gestational age at delivery was at least 37 complete weeks, or 259 days. The classification model

predicted preterm births with an area under the receiver-operating characteristic curve (AUC)

of 0.65 (95% CI: 0.63–0.67), whereas the regression model predicted preterm births with an

AUC of 0.67 (95% CI: 0.65–0.70).
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Next, we examined whether EHG measurements could be used to predict preterm births

using end-to-end deep-learning models, directly from EHG measurements and without

requiring handcrafted features. Specifically, we trained a recurrent neural network to predict

whether the pregnant mothers would deliver preterm and to predict their gestational ages at

delivery, as described in Methods. This network’s predictions surpassed those of the clinical

information models. The classification model trained on EHG measurements was able to pre-

dict preterm births with an AUC of 0.74 (95% CI: 0.73–0.76), whereas the regression model

predicted preterm births with an AUC of 0.70 (95% CI: 0.68–0.73).

We also developed models to predict preterm births based on clinical information com-

bined with EHG measurements, as described in Methods. We hypothesized that integrating

the clinical information and the EHG measurements would yield more accurate prediction

models, because the models trained independently on clinical information alone and EHG

measurements alone could predict preterm births better than random guessing. Moreover, the

clinical information and the EHG measurements provide complementary information about

the pregnancy. Consistent with our hypothesis, the prediction models trained on both clinical

information and EHG measurements slightly outperformed the models trained on clinical

information alone and on EHG measurements alone. Our classification model predicted pre-

term births with an AUC of 0.78 (95% CI: 0.76–0.80), and the regression model predicted pre-

term births with an AUC of 0.75 (95% CI: 0.73–0.77).

To better evaluate the performance of our prediction models, we estimated a performance

bound on this classification problem. In our work, as well as in the obstetrics literature and

clinical practice, births are considered preterm if the mother delivers the fetus before complet-

ing 37 weeks of gestation. However, the gestational age of the mother has an uncertainty that

depends on the method used to estimate it. Generally, gestational age is estimated based on a

first trimester ultrasound examination or on the timing of the last menstrual period (LMP)

[42]. When the gestational age is estimated based on early ultrasound examination, the esti-

mate has a standard deviation of about five days, whereas estimates based on the LMP have

standard deviations of about seven days [43]. Notably, the incidence of preterm births depends

on the method used to estimate the gestational age [44].

This estimation error translates into uncertainty in the ground truth labels and limits the

possible performance of classification algorithms. We estimated the upper bound of the AUC

due to this limitation by measuring the AUC obtained when predicting the gestational age at

delivery using a noisy version of the true gestational ages at delivery. We corrupted the gesta-

tional ages at delivery by adding independent and identically distributed (i.i.d.) Gaussian noise

with zero mean and a standard deviation of six days. After repeating this procedure 20 times to

estimate the mean and 95% CI of this AUC using this approach, we found that the upper AUC

bound for this classification problem is 0.98 (95% CI: 0.98–0.98).

In Fig 2, we present the receiver-operating characteristic curves (ROC) for the classification

and regression models trained on clinical information alone, EHG measurements alone, and

clinical information combined with EHG measurements. We observe that the classification

models which leverage EHG measurements outperform the regression models trained on the

same data. Moreover, we notice that regardless of whether we use the classification or regres-

sion approach, the EHG-based models outperform the clinical information-based models and

that the models that leverage both the clinical information and the EHG measurements

achieve the best performance.

To further assess the performance of our models, we measured the sensitivity, positive pre-

dictive value (PPV), and negative predictive value (NPV) at various specificity levels, as shown

in Table 2 [45]. We include the PPV and NPV in our analysis because these statistics consider

the incidence of preterm births in the dataset [45]. Since the classification models that use
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EHG measurements outperformed the regression models, we present the results only for the

classification models.

In Table 2, we observe that the combined model outperforms the models trained on clinical

information alone or EHG measurements alone in sensitivity, PPV, and NPV at various speci-

ficity levels. Moreover, we observe that our models have a much higher NPV than PPV, which

results from the low incidence of preterm births. In other words, our predictions of term births

are more reliable than our predictions of preterm births.

We verified that our model was not discriminating between the two datasets used in our

work. The TPEHG DB and the TPEHGT DS datasets were acquired with the same device and

following the same protocol, so we did not expect that our model would discriminate between

the samples of either dataset. We confirmed that our model does not assign one label to the

samples from one dataset and another label to the samples of the other dataset. Moreover,

Fig 2. Performance of the models for predicting preterm births. (a) ROC curves for predicting preterm births using

the classification models trained with clinical information alone, EHG measurements alone, and clinical information

combined with EHG measurements. (b) ROC curves for the same tasks as in (a), but using the regression models

instead of the classification models. (a), (b) The performance bound is shown in both panels by a black ROC curve.

The greyed area delimited by this bound indicates unattainable performance due to the uncertainty in the ground

truth labels. The AUCs of the models are presented with 95% CIs.

https://doi.org/10.1371/journal.pone.0285219.g002

Table 2. Performance of classification models in predicting preterm birth.

Specificity

50% 70% 90%

Sensitivity (%)

Clinical information 65.3 (61.8–68.9) 52.0 (48.4–55.6) 27.3 (23.1–31.5)

EHG 84.7 (81.5–86.5) 64.7 (61.0–68.4) 34.8 (31.0–38.6)

Combined 87.3 (84.3–90.3) 72.2 (68.6–75.8) 39.7 (35.7–43.6)

PPV (%)

Clinical information 23.3 (22.3–24.3) 28.7 (27.2–30.3) 38.9 (34.9–42.8)

EHG 28.1 (27.5–28.7) 33.4 (31.9–34.8) 44.8 (41.6–47.9)

Combined 28.9 (28.1–29.6) 35.9 (34.6–37.2) 48.0 (45.0–51.0)

NPV (%)

Clinical information 86.1 (84.9–87.4) 86.2 (85.4–87.1) 84.2 (83.4–85.0)

EHG 93.1 (92.1–94.1) 89.5 (88.5–90.5) 85.6 (84.9–86.3)

Combined 94.4 (93.2–95.6) 91.5 (90.6–92.5) 86.5 (85.8–87.3)

All values are presented with 95% CIs. Bold fonts indicate the best performing model for each metric and for the

different specificity levels. PPV, positive predictive value; NPV, negative predictive value.

https://doi.org/10.1371/journal.pone.0285219.t002
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when we trained the classification models using only the TPEHG DB, we obtained similar

AUCs to those obtained when we trained the models using data from both datasets.

Although our regression models could predict preterm births more accurately than random

guessing, these models were not able to predict the gestational ages at delivery with a much

lower MSE than the MSE obtained using the mean gestational age at delivery in the training

set, i.e., the minimum MSE estimator. Although the correlation between the predicted and

true gestational ages at delivery is positive, the accuracy of the predictions is low, as shown in

S4 Fig.

Predictive components of EHG measurements

Further, we investigated how various components of the EHG measurements contribute to the

preterm birth predictions by altering the STFT representations of the data. We first explored

the predictive power of various frequency bands, as shown in Fig 3a and 3b. We extracted four

frequency bands (B0 through B3) by using only the relevant rows of the STFT for training and

testing. We considered similar frequency bands as Jager et al.: in our case, B0, B1, B2, and B3,

cover the frequency ranges between 0.05 Hz and 1.0 Hz, 1.0 Hz and 2.2 Hz, 2.2 Hz and 3.5 Hz,

and 3.5 Hz and 5.0 Hz, respectively [19]. The only difference between our spectral partition

and that proposed by Jager et al. is that, in our case, the lower frequency cutoff of B0 is 0.05 Hz

instead of 0.08 Hz [19]. According to Jager et al., B0 mostly contains electrical activity associ-

ated with uterine contractions, whereas the higher bands contain harmonic frequencies of

uterine reverberation caused by maternal cardiac activity [19]. Notably, we observed that the

models trained on higher frequency bands achieved higher AUCs, as shown in Fig 3b.

Next, we examined how the temporal patterns of the measurements contribute to the mod-

els’ predictions. We disrupted the temporal patterns by randomly rearranging a random subset

of columns of the STFTs, as illustrated in Fig 3c. The AUC of the model did not significantly

change as larger fractions of columns of the STFTs were rearranged, as shown in Fig 3d. Nota-

bly, when all the columns of the STFTs were randomly rearranged, i.e., when all the temporal

Fig 3. Effects of information loss on the prediction of preterm births. (a) A representative STFT of an EHG

recording overlaid with the limits of the frequency bands examined. (b) AUCs obtained using the classification model

trained on the various frequency bands. (c) The same STFT as in (a), but with all the columns randomly rearranged.

(d) AUCs obtained using the classification model trained on STFTs with varying fractions of columns randomly

rearranged. (e), The same STFT as in (a), but where ten minutes of the recording were removed. The colorbar in this

panel also corresponds to panels (a) and (c). (f) AUCs obtained using the classification model trained on STFTs with

varying durations. (b), (d), (f), The AUCs are presented as black dots with error bars denoting the 95% CIs.

https://doi.org/10.1371/journal.pone.0285219.g003
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patterns were disrupted, our classification model trained on disrupted EHG measurements

alone was able to predict preterm births with an AUC of 0.74 (95% CI: 0.72–0.76).

Based on our observations from disrupting the spectral and temporal patterns, we hypothe-

sized that the predictions of our model are guided more by the spectral composition of the

measurements than by their temporal patterns. Hence, we sought to predict preterm births

using shorter EHG recordings. The duration of EHG recordings, usually between 30 and 60

minutes, is an important hindrance to their implementation in clinical settings, where person-

nel resources are often limited [23, 46].

To test this hypothesis, we trained and tested our model using cropped STFTs, as shown in

Fig 3e. We removed columns at the beginning and at the end of the STFTs to simulate shorter

EHG measurements. Since the initial point selected for these shortened STFTs slightly affects

the resulting AUC, we selected a random initial point for each shortened sample. Remarkably,

the performance of our model decreased only marginally with decreasing measurement dura-

tion, as shown in Fig 3f. When we trained our model using one-minute long recordings, we

could predict preterm births with an AUC of 0.71 (95% CI: 0.69–0.73), which is only slightly

lower than the 0.74 (95% CI: 0.73–0.76) AUC we obtained using the entire 30-minute long

recordings.

Discussion

We developed a deep learning method to predict preterm births from EHG measurements and

clinical information obtained from two public databases. We predicted preterm births with

good accuracy directly from the data and without using handcrafted features, manual annota-

tions, or simultaneous tocography measurements. Thus, our method potentially enables auto-

matic prediction of preterm births from EHG recordings.

To assess the performance of our method from the perspective of clinical practice, we com-

pared the performance of our method with the performances reported for other technologies

and methods to predict preterm births, as shown in Table 3. For this comparison, we included

results only from studies published in peer-reviewed journals, with sound methodology, that

reported the AUC of the predictions, and which included at least 50 pregnant mothers. Simi-

larly to the datasets used in this work, the results reported in these studies correspond to

obstetric populations excluding medically induced births. However, whereas many of these

studies included either mothers with or without symptoms of preterm labor, the TPEHG DB

and the TPEHGT DS contain EHG recordings obtained both during regular checkups and

from mothers hospitalized with symptoms of preterm labor. Unfortunately, we could not dis-

tinguish EHGs based on whether the mothers had symptoms of preterm labor during the

recordings because this information is not provided in the datasets.

From this comparison, we observe that the performance of our method is superior to the

performance of existing methods to predict preterm births that take place before 37 complete

weeks of gestation. Importantly, our method outperforms the gold standard biomarkers of

preterm birth, i.e., cervical length and fibronectin alpha, in this task. Moreover, the perfor-

mance of our method in predicting preterm births in mothers around their 31st week of gesta-

tion is relatively close to the performance of the gold standard tests in predicting preterm birth

within only one week in mothers with symptoms of preterm labor. Our results support previ-

ous findings suggesting that preterm birth can be predicted by using EHG measurements from

around the 31st week of gestation [16, 23].

Additionally, we investigated how the temporal and spectral components of the EHG

measurements contribute to our model’s predictions. We observed that the higher frequency

components of the EHG measurements are more predictive of preterm births. A possible
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explanation for this phenomenon is that the higher frequency bands contain spectral harmon-

ics of the electrical activity in EHG measurements and more spectral information may be

coded in the higher frequency bands. However, further research is needed to decipher the

sources of the various spectral components of EHG measurements.

Importantly, we observed that the temporal patterns measured in EHG measurements are

not crucial to predicting preterm births. This observation agrees with the results published by

Iams et al., who showed that the frequency of uterine contractions is not predictive of preterm

births [49]. Moreover, this observation also might explain the inability of tocography, which

measures the temporal patterns of uterine contractions, to predict preterm births [13].

Inspired by this observation, and specifically by our results presented in Fig 3d, we explored

whether we could use shorter EHG measurements to predict preterm births.

Notably, we found that shortening the EHG measurements did not substantially degrade

the performance of our model in predicting preterm births. Our findings using short EHG

Table 3. Accuracy of several technologies and methods to predict preterm births.

Technology Population AUC

Prediction of birth before 37 weeks of gestation

Clinical information [47] Singleton pregnancies, asymptomatic mothers 0.64 (0.61–

0.67)

Our method (clinical information alone) Section of TPEHG DB and TPEHGT DS 0.65 (0.63–

0.67)

Fibronectin alpha [9] Asymptomatic mothers 0.65 (0.63–

0.66)

Fibronectin alpha [9] Symptomatic mothers 0.71 (0.69–

0.73)

Cervical length [12] Nulliparous, singleton pregnancies, asymptomatic

mothers

0.67 (0.64–

0.70)

Clinical information and placental

measurements [47]

Singleton pregnancies, asymptomatic mothers 0.72 (0.66–

0.77)

EHG [24] TPEHG DB 0.60

EHG [22, 48]a TPEHG DB 0.61

EHG [19, 22]a TPEHG DB 0.65

EHG [28]b TPEHG DB 0.84

EHG [27]b TPEHG DB 0.97

EHG [29] TPEHG DB 0.69

Our method (EHG alone) Section of TPEHG DB and TPEHGT DS 0.74 (0.73–

0.76)

Our method (combined classification model) Section of TPEHG DB and TPEHGT DS 0.78 (0.76–

0.80)

Prediction of preterm birth within one week

Fibronectin alpha [9] Symptomatic mothers 0.84 (0.80–

0.87)

Cervical length [10] Symptomatic mothers 0.84c

a We considered the performance of these methods after their methodology was corrected by Vandewiele et al. [22].
b Performance was evaluated on a combination of real and synthetic data. The performance on real data alone is not

reported.
c The AUC was obtained by extrapolating the ROC curve. AUCs are presented with 95% CI in parenthesis when

available.

The TPEHG DB and the TPEHGT DS contain EHG measurements recorded from mothers both with and without

symptoms of preterm labor.

https://doi.org/10.1371/journal.pone.0285219.t003
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measurements suggest that shorter EHG recordings could be sufficient to predict preterm

births. From the perspective of clinical adoption, a shorter recording is easier for the users and

saves cost [18]. Moreover, the shortened recording time combined with the automaticity of

our method facilitates at-home implementations.

Whereas the classification and regression models could predict preterm births with good

accuracy, surprisingly, the regression models could not predict the gestational ages at delivery

accurately, as shown in S4 Fig. This effect can be explained by the pathology of preterm births

and by analyzing the distribution of the gestational ages at delivery. Preterm birth is an abnor-

mal physiological condition, not just a pregnancy that happened to end early. Therefore, we

can expect that physiological measurements, such as EHG recordings, may show a stronger

dichotomy between pregnancies that end with either preterm or term deliveries than is shown

in continuous characteristics correlated with gestational age at delivery.

We observe the dichotomous aspect of preterm and term births through the distribution of

the gestational ages at delivery, shown in S1 and S2 Figs. The distribution of the gestational

ages at birth of the mothers included in this work only from the TPEHG DB is left-skewed and

does not appear to follow a Gaussian distribution, as shown in the panel d of S2 Fig. This skew-

ness may can be caused by either an excess of preterm births compared to what would be

expected if the gestational ages at birth followed a Gaussian distribution and by the induction

of postterm births, which can skew the distribution towards earlier deliveries. However, when

we exclude the preterm births the distribution of gestational ages at birth appears to follow a

Gaussian distribution, as shown in the panel h of S2 Fig. This observation suggests that the

skewness results from an over-representation of preterm births rather than from the induction

of postterm births. Since the gestational ages at delivery do not follow a Gaussian distribution

where the left tail accounts for preterm births, we suggest that the dynamics that dictate the

gestational age at delivery do not follow a continuum between preterm and term births. There-

fore, we propose that predicting the gestational age at delivery is more complicated than pre-

dicting preterm births using categorical outputs.

The significance of predicting preterm births several weeks before delivery is that it can be

helpful in delaying preterm births and improving their outcomes. For example, clinical provid-

ers can prescribe progesterone to these mothers to prolong their pregnancies [50, 51]. Addi-

tionally, medical providers could more frequently screen mothers at high risk of preterm birth

to identify and treat hypertensive disease and cervical insufficiency [52, 53]. Moreover, antici-

pating preterm births can be useful in planning for the birth to take place at a hospital with a

neonatal intensive care unit (NICU), rather than at home, in birthing centers, or in hospitals

without a NICU, thus avoiding ambulance transport and admission delays and improving out-

comes [54–56]. Furthermore, identifying mothers at high risk of preterm birth may help

researchers assess the efficacy of potential approaches and therapies to delay preterm births

and improve their outcomes.

Although machine learning algorithms can contribute to improving healthcare and much

research is yielding advances in this field, important challenges remain [57, 58]. For example,

machine learning predictions usually lack interpretability, meaning that it is challenging to

identify the causes justifying the algorithms’ predictions [57, 58]. In our case, although our

predictions could influence pregnancy management, our predictions would need to be supple-

mented with additional medical examinations to determine which therapies are more likely to

reduce the risk of preterm birth and improve its outcomes. Additionally, machine learning

algorithms in healthcare settings need to be carefully developed to protect data privacy and to

prevent social biases from driving the predictions [58–60].

Despite the limitations of machine learning algorithms for developing medical devices, the

number of medical products based on machine learning is steadily increasing thanks to their
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good performance [61]. By predicting preterm births with good accuracy directly from the

measurements, while avoiding data leakage, our work is a step forward towards developing a

medical device for predicting preterm births from EHG measurements using deep learning.

Our work is limited by the etiology of preterm birth and the dataset that we used to develop

our models. Because preterm birth is a syndrome with many causes, it is most likely that no

single physiological measurement will predict preterm births with perfect or nearly perfect

accuracy [5, 62]. A combination of measurements of various physiological processes is likely to

produce better results [5, 63].

The limited size of the datasets employed limits our work. We evaluated our prediction

models using cross-validation rather than separating a subset of the data exclusively for test-

ing after developing our models, because such a testing set would be too small for accurate

performance evaluation [41]. For example, if we set apart 20% of the data for the final test-

ing, this dataset would contain five preterm and 25 term samples. Moreover, all the samples

in the dataset were acquired in a single hospital, and thus our model may not generalize well

to measurements from mothers in different populations. Additionally, the datasets used in

our work and in those mentioned in Table 3 excluded medically induced births and there-

fore, these populations may differ from general obstetric populations. However, Erkamp

et al. found similar screening performance for preterm birth using sonographic measure-

ments when either including or excluding medically induced births from their analysis [47].

Furthermore, we used a dataset with a larger proportion of preterm births than the general

population due to the inclusion of the TPEHGT DS, which has the same number of term

and preterm samples. This overrepresentation of preterm births can bias our results with

respect to the expected performance in the general population, especially affecting the PPV

and NPV, which depend on the incidence of preterm births. A larger database, preferably

acquired across multiple healthcare centers, could rectify these limitations. Specifically, a

larger database would enable us to separate a subset of samples to further evaluate the

generalizability of our model. Moreover, because of the limited size of the database, we

trained a small neural network with a limited number of parameters. In the future, a larger

database would also enable us to train larger and more complex prediction models for better

results [64].

Our work can be expanded to improve its performance and clinical value. First, following

the same approach we used to combine EHG measurements with clinical data to predict pre-

term births, our method could incorporate other data, such as cervical length and fibronectin

alpha measurements, which are likely to improve its performance. Additionally, to track the

evolution of EHG activity towards birth and develop a dynamic prediction model, multiple

EHG measurements could be recorded throughout pregnancy for each mother. Moreover,

alternative techniques can be used for preprocessing EHG measurements that could poten-

tially improve the performance of our prediction model [16, 65]. Lastly, our work could be

integrated with models connecting surface EHGs with uterine sources to include anatomical

and physiological information for making predictions [66, 67].

Conclusions

In summary, we developed a deep learning model to predict preterm births using clinical

information and EHG measurements. Our method predicted preterm births more accurately

than existing technologies. We also showed that preterm births can be predicted using short

EHG recordings. Our work and results are useful for developing applications to predict pre-

term births early during pregnancy and for ultimately improving their outcomes.
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Supporting information

S1 Fig. Distribution of gestational ages at the times of recording and at the times of birth.

Distribution of gestational ages at the times of recording and at the times of birth. (a) Gesta-

tional ages at birth plotted against gestational ages at the times of recording. (b) Elapsed times

between recordings and births, plotted against gestational ages at recording. (a), (b) The

dashed black lines separate preterm (red circles) and term births (blue diamonds).

(TIF)

S2 Fig. Distribution of gestational ages at the times of recording and delivery. Note dissimi-

lar scale ranges between graph pairs. (a) Histogram of the gestational ages when the EHGs

were recorded. (b) Same as a, but using only the samples used from the TPEHG DB. (c) Histo-

gram of the gestational ages at the times of delivery. This distribution is left skewed (skewness

= -1.5) and does not appear to follow a Gaussian distribution (p = 5.1 × 10−10). (d) Same as (c),

but using only the samples used from the TPEHG DB. This distribution is also left skewed

(skewness = -1.8) and does not appear to follow a Gaussian distribution (p = 8.5 × 10−10). (e)

Histogram of the gestational ages at the times of delivery for the preterm births. Preterm births

are more common at older gestational ages. (f) Same as (e), but using only the samples used

from the TPEHG DB. (g) Histogram of the gestational ages at delivery for the term births. This

distribution appears to more closely follow a Gaussian distribution (p = 4.5 × 10−3). (h) Same

as (g), but using only the samples used from the TPEHG DB. This distribution also appears to

more closely follow a Gaussian distribution (p = 4.2 × 10−2). (c), (d), (g), (h), Normality was

assessed using the Shapiro-Wilk test.

(TIF)

S3 Fig. Stratified partitioning of the data for the five-fold cross-validation. (a) Distribution

of term and preterm samples in the training set of each cross-validation fold. (b) The corre-

sponding distributions for the test set. In each fold of the cross-validation the training and test

sets contain approximately the same proportion of term and preterm samples.

(TIF)

S4 Fig. Predictions of gestational ages at delivery using the regression models. (a) Predicted

gestational ages at birth, using the clinical information alone plotted against the true gesta-

tional ages at birth. Each blue circle shows the gestational age at delivery, predicted based on

the clinical information and the true gestational age at delivery for a single mother. The solid

black line represents the linear fit between the predictions and the true values. The dashed

black line represents a perfect correspondence between predictions and true values. The legend

shows the root mean square error (RMSE) of the predictions, the coefficient of determination

(R2) of the predictions, and the slope of the linear fit. (b) Bland–Altman plot for the predicted

gestational ages at birth, using the clinical information alone and the true gestational ages at

birth. Each blue circle represents the difference between predicted and true gestational ages at

birth, and the mean of these values. The solid and dashed black lines show the mean of the dif-

ference between the predicted and the true values, and the 95% limits of agreement, calculated

as mean ± 1.96 standard deviations, respectively. (c) Similar to (a), but using the predictions

based on EHG measurements alone. (d) Similar to (b), but using the predictions based on

EHG measurements alone. (e) Similar to (a), but using the predictions based on clinical infor-

mation combined with EHG measurements. (f) Similar to (b), but using the predictions based

on clinical information combined with EHG measurements. All values are presented as mean

with 95% CI.

(TIF)
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