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Abstract

Aerial photography is a long-range, non-contact method of target detection technology that

enables qualitative or quantitative analysis of the target. However, aerial photography

images generally have certain chromatic aberration and color distortion. Therefore, effective

segmentation of aerial images can further enhance the feature information and reduce the

computational difficulty for subsequent image processing. In this paper, we propose an

improved version of Golden Jackal Optimization, which is dubbed Helper Mechanism Based

Golden Jackal Optimization (HGJO), to apply multilevel threshold segmentation to aerial

images. The proposed method uses opposition-based learning to boost population diversity.

And a new approach to calculate the prey escape energy is proposed to improve the conver-

gence speed of the algorithm. In addition, the Cauchy distribution is introduced to adjust the

original update scheme to enhance the exploration capability of the algorithm. Finally, a

novel “helper mechanism” is designed to improve the performance for escape the local

optima. To demonstrate the effectiveness of the proposed algorithm, we use the CEC2022

benchmark function test suite to perform comparison experiments. the HGJO is compared

with the original GJO and five classical meta-heuristics. The experimental results show that

HGJO is able to achieve competitive results in the benchmark test set. Finally, all of the

algorithms are applied to the experiments of variable threshold segmentation of aerial

images, and the results show that the aerial photography images segmented by HGJO beat

the others. Noteworthy, the source code of HGJO is publicly available at https://github.com/

Vang-z/HGJO.

1. Introduction

Aerial imagery is an important component of modern photography and scientific research.

Through aerial photography technology, we can obtain high-resolution images of natural land-

scapes and urban architecture with previously unparalleled accuracy and detail. These images

can be used in various fields such as map drawing [1], urban planning [2], land use planning

[3], environmental monitoring [4], and agricultural and forestry resource management [5].

However, these high-resolution images may suffer from distortion due to external
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environmental factors, which can make subsequent work difficult. Therefore, preprocessing

aerial images is particularly important.

By segmenting, denoising, enhancing, and other operations on aerial images, we can effec-

tively improve the quality and accuracy of the images, providing more reliable data support for

subsequent applications. On the other hand, segmentation technology can also reduce the

complexity of high-resolution images, making subsequent processing more efficient and accu-

rate. Image segmentation is one of the most critical processes in computer vision. Preprocess-

ing through segmentation technology can effectively reduce the complexity of subsequent

processes.

Segmentation technology is the process of dividing images into several categories based on

pixels, with threshold segmentation being the most effective and commonly used method [6].

Due to its simplicity and stable performance, threshold segmentation has always been the pre-

ferred segmentation technology [7]. In addition, there are clustering-based [8], edge-based [9],

and region-based [10] segmentation methods that have also attracted the attention of research-

ers. However, these methods are currently only effective for binary segmentation problems. As

the number of segmentation targets increases beyond two, their processing capabilities

decrease exponentially. This phenomenon is due to the exponential growth in complexity of

multi-threshold image segmentation problems compared to binary segmentation, making tra-

ditional segmentation methods unable to calculate feasible solutions within a limited time

frame. Therefore, researchers have focused their attention on metaheuristics for these types of

problems. In recent years, some of the most popular meta-heuristics used to solve engineering

problems include Genetic Algorithms (GA) [11], Particle Swarm Optimization (PSO) [12],

Differential Evolution (DE) [13], Ant Colony Optimization (ACO) [14], Whale Optimization

Algorithm (WOA) [15], and Grey Wolf Optimization (GWO) [16]. In addition, some recently

proposed metaheuristics have also been widely recognized by researchers, such as Arithmetic

Optimization Algorithm [17], Aquila Optimizer (AO) [18], Ebola Optimization Search Algo-

rithm (EOSA) [19], Dwarf Mongoose Optimization Algorithm (DMO) [20], Reptile Search

Algorithm (RSA) [21], Prairie Dog Optimization Algorithm (PDO) [22], and Gazelle Optimi-

zation Algorithm (GOA) [23]. These algorithms have achieved good results in dealing with

real word engineering problems, providing new ideas for the development of multi-threshold

image segmentation. The following is a summary of the meta-heuristics used by scholars in

various fields to solve multilevel segmentation problems in recent years.

Yin [24] proposed a recursive method to optimize the minimum cross entropy thresholding

(MCET), which is combined with particle swarm optimization to search for the near-optimal

MCET. The experimental results demonstrate that the MCET obtained by the proposed algo-

rithm is very close to the optimal MCET. Osuna-Enciso, Cuevas and Sossa [25] presented a

mixture of Gaussian functions to approximate the 1D histogram of a gray level image, which is

combined with Particle Swarm Optimization, Artificial Bee Colony Optimization, and Differ-

ential Evolution. The experimental outcomes indicate that each algorithm has its own advan-

tages and disadvantages, and all of them could achieve more satisfactory results. Gao, Kwong,

Yang and Cao [26] suggested a novel Particle Swarm Optimization with an intermediate per-

turbation search strategy, which is called IDPSO. The proposed algorithm is compared with 10

different improved PSO algorithms which achieved outstanding performance on multilevel

threshold segmentation problems. Jiang, Yeh, Hao and Yang [27] introduced a new hybrid

algorithm which is based on honey bee mating algorithms and cooperative learning, further-

more a new initialization population strategy is employed. Upon extensive experimental analy-

sis, the algorithm is demonstrated to be able to be applied to complex image processing

problems. Han, Yang, Zhou and Gui [28] used the State Transfer Algorithm (STA) to fit the

optimal parameters of a linear combined normal distribution functions. The competitive
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capability of the STA in thresholding segmentation is illustrated by comparison with the classi-

cal meta-heuristics. He and Huang [29] proposed an effective improved multilevel color image

thresholding firefly algorithm using Kapur’s entropy, minimum cross-entropy and inter-class

variance method as the objective function. The experimental outcomes indicate that the pro-

posed algorithm is superior to other classical metaheuristic algorithms in all aspects. Ishak [30]

developed a two-dimensional multilevel thresholding technique based on Rényi and Tsallis

entropies, which combines Quantum Genetic Algorithm and Differential Evolutionary to

solve the segmentation problem of multimodal noisy images.

A multi-level threshold image segmentation method using the Fruit Fly Optimization Algo-

rithm was developed by Ding, Dong and Zou [31]. Extensive experimental indicate that the

proposed algorithm could significantly reduce the time cost and also achieve satisfactory

computational accuracy. To effectively segment coastal video images, a multilevel thresholding

method based on Cuckoo Search Algorithm was designed by Widyantara et al [32]. This

method was successful in overcoming a series of problems caused by nonlinear variations in

image quality and opaque areas. Bohat and Arya [33] propose a novel threshold heuristic algo-

rithm for the multilevel thresholding problem, which embeds the proposed algorithm into the

Whale Optimization Algorithm, Gray Wolf Optimizer and Particle Swarm Optimization.

Experiments illustrate that this work reduced the computation time of all the embedded algo-

rithms. Singh, Mittal and Singh [34] presented an efficient multilevel thresholding image seg-

mentation method based on Learning enthusiasm-based Teaching-Learning-Based

Optimization. This method conquered the problem with increasing the level of redundant

thresholds makes the computational complexity grow exponentially. Qualitative experimental

outcomes demonstrate that the proposed algorithm is efficient in the field of image segmenta-

tion. Xing [35] proposed a novel color image segmentation method based on Emperor Pen-

guin Optimization for Berkeley images, Satellite images, and Plant canopy images. The

experimental shows that the method has superior segmentation accuracy. In addition, the

computational complexity does not increase exponentially due to the increase of thresholds.

Upadhyay and Chhabra [36] suggested a Kapur’s entropy based Crow Search Algorithm to

solve the optimal solution for multilevel thresholding image segmentation. By comparing with

the classical meta-heuristics, the proposed algorithm achieves satisfactory performance with

respect to both quality and consistency. Mousavirad and Ebrahimpour-Komleh [37] proposed

a multilevel thresholding for image segmentation using Human Mental Search. This method

combines Kapur’s entropy and Otsu method to achieve significant advantages in multi-thresh-

old segmentation problems.

Zhao et al. [38] proposed an improved Slime Mould Algorithm, which introduced a diffu-

sion mechanism to increase the diversity of population. In addition, this methodology was suc-

cessfully applied to the CT image segmentation of chronic obstructive pulmonary disease,

which could help physicians to analyze the lesion tissues qualitatively and quantitatively, more-

over improving the accuracy of diagnosis. Swain et al. [39] developed a multilevel thresholding

image segmentation method based on differential exponential entropy. The method was com-

bined with Equilibrium-Cuckoo Search Optimizer to achieve satisfactory performance in satel-

lite image segmentation. Furthermore, the method is suggested in the paper for segmentation

of the brain MR images. Houssein et al. [40] proposed a fresh approach based on the black

widow optimizer to overcome the problem of high computational cost of multilevel threshold-

ing image segmentation. This method has been compared with six well-known meta-heuris-

tics. The comparison reveals that this method is the most potential alternative. Ma and Yue

[41] proposed an improved multilevel thresholding image segmentation method based on the

Whale Optimization Algorithm. The proposed method obtains satisfactory results for image

segmentation in both grayscale and color images, respectively. Emam et al. [42] proposed an
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enhanced RSA algorithm for global optimization and image segmentation, which overcomes

the tendency of RSA to get stuck in local optima by combining it with the RUNge Kutta Opti-

mizer (RUN) [43] and applies it to brain MRI image segmentation. The results showed that it

outperformed other advanced meta-heuristics in terms of segmentation accuracy and compu-

tational efficiency. To further advance research on COVID-19, Houssein et al. [44] used the

opposition-based learning mechanism to improve the Manta Ray Foraging Optimization.

Experimental results showed that the proposed method has higher robustness compared to

existing meta-heuristics. Additionally, in [45], the Equilibrium Optimizer was further

improved to advance research on COVID-19, and experimental results showed that the pro-

posed method can be an effective tool for image segmentation. These two works further

advance the research on image segmentation for COVID-19, making effective contributions to

prevent the spread of COVID-19. In addition, Houssein et al. [46] introduced the opposition-

based learning strategy into the Marine Predator Algorithm (MPA) [47] to accelerate the con-

vergence speed of MPA. Finally, Otsu and Kapur entropy were used as objective functions to

perform segmentation experiments on benchmark images. The experimental results showed

that the proposed algorithm outperformed other methods.

In [48], the authors used an improved Golden Jackal Optimization (GJO) [49] to segment

skin cancer images, enhancing the original GJO algorithm using the opposition-based learning

and comparing it with seven different meta-heuristics. The experimental results showed that

the proposed method outperformed other alternative algorithms and effectively solved the seg-

mentation problem. However, the improvement of this work is limited for the GJO algorithm,

as the time complexity of thresholding increases exponentially with increasing image resolu-

tion, and the single opposition-based learning mechanism cannot achieve satisfactory results

on high-resolution images. Although meta-heuristics have been widely used in image segmen-

tation, there are still shortcomings in multi-level threshold image segmentation for complex

images. In other words, researchers are currently working on developing a method that can

maintain consistent results when dealing with complex problems. The GJO algorithm is a

novel and highly scalable swarm intelligence optimization algorithm proposed in 2022, which

has been widely used by scholars [50–52]. Therefore, in this paper, we propose an efficient

image segmentation method based on the GJO algorithm to further advance multi-level

threshold segmentation work at high resolution and apply it to aerial image segmentation.

In this study, we make further improvements to the original GJO to enhance its potential in

multi-level thresholding image segmentation. In order to evaluate the effectiveness of the improve-

ments, the proposed algorithm is compared with numerous classical and novel algorithms on

CEC2022 benchmark functions. Moreover, we used Peak Signal to Noise Ratio (PSNR) [53], Struc-

tural Similarity Index (SSIM) [54], and Feature Similarity Index (FSIM) [55] to determine the per-

formance of image segmentation. The main contributions of this study are as follows:

1. The Opposition-Based Learning (OBL) strategy is integrated into the initialization of the

GJO. The OBL strategy could dramatically improve the quality of the candidate solution to

escape from the local optimal solution.

2. The Cauchy distribution is introduced to enhance the raw single Lévy flight, strengthening

the distributivity of the population to improve the capability of the algorithm to search the

global optimum. Furthermore, a new approach to calculate the prey escape energy is pro-

posed. It is a more reasonable nonlinear method of calculation, which leads to a better bal-

ance of exploration and exploitation.

3. “Helpers” are introduced to improve the performance of GJO for the first time. They are

some special individuals of the golden jackal population. The overall disturbance of the
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population by the “Helpers” before the end of each iteration can effectively prevent the algo-

rithm trapped into local optimum.

4. The proposed HGJO was compared with numerous classical and novel algorithms on

CEC2022 benchmark functions, and a lot of the segmentation of aerial images. The out-

comes demonstrate that the proposed HGJO has remarkably superior performance and

enables to challenge the current existing algorithms.

The rest of this paper is structured as follows: Section 2 encompasses a review of the multi-

level threshold segmentation and the original GJO algorithm. The Improved Golden Jackal

optimization is proposed in Section 3. Section 4 introduces, discusses, and analyzes the results

of CEC2022 benchmark functions. Section 5 investigates the performance of the segmentation

of aerial images. Finally, Section 6 concludes by summarizing the research and making recom-

mendations for future work.

2. Literature review

2.1.Multilevel thresholding image segmentation

Threshold segmentation, as the name implies, is the division of an image into two parts based

on the pixel values, with a given threshold. However, for the current needs of computer vision

tasks, it is often not enough to simply segment the image into two parts. Therefore, depending

upon the current requirements, most scholars are investigating multilevel thresholding. In

general, multilevel thresholding is the addition of more thresholds to binary thresholding to

segment the image into more units. At the current stage, the most commonly used threshold-

ing method for segmentation is the Otsu method. The Otsu method involves histogram of the

image as the input, where the generated class information is employed to calculate the optimal

threshold for segmenting the image. The Otsu method was firstly proposed by Otsu in 1979

[56] to segment the grey scale image by maximizing the variance between classes. The

approach considers L to represent the different gray levels in an image which has the size of

M*N.

n ¼ n0 þ n1 þ . . .þ nL� 1 ð1Þ

pi ¼
ni

n
;
XL� 1

i¼0

pi ¼ 1 ð2Þ

where n means the total number of pixels in the image, ni denotes the number of pixels for

gray level i, and pi indicates the probability distribution of gray levels.

Suppose there is a threshold k, in which 0<k<L−1, then the current input image will be seg-

mented into two classes, namely C1 and C2, where C1 and C2 contain all pixels with the gray-

scale in [0, k] and [k+1, L−1], respectively.

P1ðkÞ ¼
Xk

i¼0

pi; P2ðkÞ ¼
XL� 1

i¼kþ1

pi ¼ 1 � P1ðkÞ ð3Þ

where P1(k) and P2(k) represent the probability of a pixel has been classified into C1 or C2,

respectively.

m1ðkÞ ¼
Xk

i¼0

iPðijC1Þ ¼
Xk

i¼0

iPðC1jiÞPðiÞ
PðC1Þ

¼
1

P1ðkÞ

Xk

i¼0

ipi ð4Þ
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m2ðkÞ ¼
XL� 1

i¼kþ1

iPðijC2Þ ¼
XL� 1

i¼kþ1

iPðC2jiÞPðiÞ
PðC2Þ

¼
1

P2ðkÞ

XL� 1

i¼kþ1

ipi ð5Þ

mk ¼
Xk

i¼0

ipi; mG ¼
XL� 1

i¼0

ipi ð6Þ

where m1(k) and m2(k) indicate the average gray value of the pixels in C1 and C2, respectively.

mk denotes the average grayscale from 0 to k. mG represents the average grayscale of the whole

image. Hence, we can derive Eq (7) without ambiguity. Then the between class variance can be

expressed as Eq (8).

P1ðkÞ �m1ðkÞ þ P2ðkÞ �m2ðkÞ ¼ mG

P1ðkÞ þ P2ðkÞ ¼ 1
ð7Þ

s2
B ¼
ðmGP1ðkÞ � mkÞ

2

P1ðkÞð1 � P1ðkÞÞ

¼ P1ðkÞðm1ðkÞ � mGÞ
2
þ P2ðkÞðm2ðkÞ � mGÞ

2

¼ P1ðkÞP2ðkÞðm1ðkÞ � m2ðkÞÞ
2

ð8Þ

s2

Bðk
∗Þ ¼ max

0�k�L� 1
s2

BðkÞ ð9Þ

As shown by Eq (8), we are able to determine a k* to make the maximum of s2
B, which is

denoted as Eq (9). Therefore, the Otsu method can be used as an objective function of an opti-

mization problem to solve the optimal threshold value for segmented images.

2.2.Golden jackal optimization

GJO is a novel metaheuristic algorithm proposed by Chopra and Ansari in 2022 [49]. GJO

simulates the behavior of the golden jackal in natural environments for hunting. The search

agents of this algorithm follow male and female jackals to seek, encircle and attack the prey,

while the male jackal is considered as the global optimal solution of the problem. The entire

description of the GJO is given below:

1. Initialization. As mentioned above, GJO is a population-based meta-heuristic. There-

fore, the initialization of GJO is consistent with most meta-heuristics. The process of the ini-

tialization is described in detail in Eq (10).

Xk
�!
¼ LB*þ r* � ðUB* � LB*Þ; k ¼ 1; 2; . . .; n

X ¼ ½X1

*
;X2

*
; . . .;Xn

*
�
T

ð10Þ

where X denotes the prey matrix, Xk
*

indicates the position of the prey, n represents the size of

population, LB* and UB* stand for the lower and upper boundary, respectively. r* is a random

vector between 0 and 1.
Algorithm 1 Pseudo-code of the GJO
Inputs: The Population Size N and the Max iterations T.
Outputs: The best solution.
1. Initialization the population X.
2. while (t<T)
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3. Calculating the fitness of the population.

4. XM
*
ðtÞ ¼ bestðXðtÞÞ

5. XFM
*
ðtÞ ¼ second bestðXðtÞÞ

6. foreach (X(t))
7. Update the Evasion Energy (E) according Eq (13).
8. if (|E|�1)
9. Update the population according Eqs (11) and (12).
10. else
11. Update the population according Eqs (14) and (12).
12. end if
13. end foreach
14. t = t+1
15. end while

16. return the best solution (XM
*
)

1. Exploration. In the exploration phase, the algorithm will search for as many potential

solutions as possible over the search space. The position update is performed by a male jackal

leading a female jackal, which is shown in the following mathematical model:

X1

*
¼ Xm

*
ðtÞ � E* � jXm

*
ðtÞ � RL* � Xk

*
ðtÞj

X2

*
¼ Xfm

*
ðtÞ � E* � jXfm

*
ðtÞ � RL* � Xk

*
ðtÞj

ð11Þ

Xk
*
ðt þ 1Þ ¼

X1

*
þ X2

*

2
ð12Þ

where t is the current iteration, Xk
*
ðt þ 1Þ stand for the position after it has been updated,

Xk
*
ðtÞmeans the current position. XM

*
ðtÞ and XFM

*
ðtÞ denote the current positions of the male

and female jackals, respectively, which are best and second-best fitness of the population. RL* is

a random vector which is based on Lévy motion. E* is the Evasion Energy of prey which is cal-

culated as follows:

E* ¼ E1 � E0

*
; E1 ¼ 1:5� ð1 � t=TÞ; E0

*
¼ 2 � r* � 1 ð13Þ

where E1 is the decreasing energy of the prey, E0

*
is the initial energy of the prey. T stands for

the maximum iterations.

1. Exploitation. As most of the meta-heuristics, the exploitation phase is based on the

exploration phase. Through the exploitation of the candidate solutions which have been

searched, the global optimal solution is approximated as closely as possible. The mathematical

is shown as follows:

X1

*
¼ Xm

*
ðtÞ � E* � jRL* � Xm

*
ðtÞ � Xk

*
ðtÞj

X2

*
¼ Xfm

*
ðtÞ � E* � jRL* � Xfm

*
ðtÞ � Xk

*
ðtÞj

ð14Þ

It is worth noting that all of the variables are given in 2.2.2. Therefore, we do not repeat

them. In addition, the pseudo-code of the GJO is shown in Algorithm 1.

3. Improved golden jackal optimization

3.1.Opposition-based learning strategy

Since the generation for initial solution of GJO is consistent with most meta-heuristics, this

approach may cause the initial population to be unevenly distributed and converge sluggishly.
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However, the performance of the algorithm is strongly influenced by the initial population. A

high-quality initial population not only improves the convergence speed of the algorithm but

even has the potential to determine the final outcomes. Enhancing population diversity can

effectively avoid the algorithm from maturing prematurely and falling into a local optimum.

Therefore, the Opposition-Based Learning(OBL) [57] strategy is used to assist with the genera-

tion of the initial population in this study. Each individual in the population was given an

Opposition solution to select the better individual as the initial solution, which could improve

the convergence performance of GJO. The mathematical model of the OBL is shown as fol-

lows:

Xk ~¼LB*þ UB* � Xk
*
; k ¼ 1; 2; . . .n ð15Þ

where Xi~is the opposing individual of Xk
*

in the search space. If the fitness of Xk~is better than

Xk
*

, then Xk~will be retained as the initial individual.

3.2.Cauchy distribution and dynamic balance strategy

3.2.1.Cauchy distribution. The Cauchy distribution is a continuous probability distribu-

tion without mathematical expectation. Better outcomes tended to be achieved when the

motion state of the population was portrayed by the Cauchy distribution [58]. Fig 1 is a com-

parison of the motion trajectory employing the Cauchy distribution and the Lévy flight, which

can be visualized that the Cauchy distribution is able to perform a comprehensive search in a

given search space. Therefore, it is a more sensible choice to adopt the Cauchy distribution in

the exploration stages. The probability density function of the Cauchy distribution is shown

Fig 1. The movement of Cauchy distribution and Lévy flight.

https://doi.org/10.1371/journal.pone.0285211.g001
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below:

f ðx; x0; gÞ ¼ 1=pg 1þ
x � x0

g

� �2
" #

¼
1

p

g

ðx � x0Þ
2
þ g2

" #

ð16Þ

where x0 represents the position parameter, specifying the position of the peak of the distri-

bution. γ denotes the scale parameter, which specifies the half-width at half-maximum. The

Cauchy distribution which obeys X~C(0, 0.5) is utilized in this work. Where γ is fixed at 0.5

was determined by experimental analysis. Table 1 shows the effect of the algorithm using dif-

ferent γ on the test results of IEEE CEC 2022. In this experiment, the population size was set to

60, the number of iterations was 10000, and 31 independent experiments were conducted.

Finally, the results of 31 times were validated to Friedman mean rank test. Through observa-

tion of the data in Table 1, we can realize that although when the value of γ is set to 0.5 does

not achieve the optimal results on all test functions, it is still a best choice in general. In addi-

tion, the results given by the Friedman calibration, γ set to 0.5 is also the best choice. Therefore,

in this paper, the Cauchy distribution which obeys X~C(0, 0.5) is used.

3.2.2.Dynamic balance strategy. The balance of exploration and exploitation essentially

determines the performance of an algorithm [59]. It is not hard to see the escape energy (E*) in

the GJO determines the exploration and exploitation. However, the calculation of E* is defined

Table 1. The experimental of HGJO with different γ.

Problem γ = 0.25 γ = 0.5 γ = 0.75 γ = 1 γ = 1.5

F1 Mean 300 300 300 300 300

Std 3.91E-13 7.190E-14 1.651E-13 3.226E-13 2.044E-13

F2 Mean 403.94923 400 403.47218 404.04741 403.60078

Std 2.13E+00 4.896E-10 1.359E+00 1.636E+00 1.198E+00

F3 Mean 600.00001 600.00001 600.00001 600.00001 600.00001

Std 9.11E-06 1.446E-05 5.991E-06 1.747E-05 2.060E-05

F4 Mean 809.56445 804.65384 809.53234 808.28063 808.89044

Std 3.52E+00 5.963E-01 3.102E+00 2.509E+00 2.436E+00

F5 Mean 900 900 900 900 900

Std 4.00E-13 1.164E-12 5.142E-12 1.415E-12 1.925E-13

F6 Mean 1800.1992 1800.2297 1800.2195 1800.2166 1800.2062

Std 1.12E-01 8.529E-02 1.190E-01 1.087E-01 9.270E-02

F7 Mean 2010.8465 2002.9588 2010.7526 2008.7908 2005.678

Std 9.43E+00 4.874E+00 9.548E+00 9.465E+00 7.783E+00

F8 Mean 2201.6878 2201.8592 2202.8334 2201.4274 2201.1876

Std 1.50E+00 1.340E+00 4.659E+00 1.191E+00 9.500E-01

F9 Mean 2529.2844 2529.2844 2529.2844 2529.2844 2529.2844

Std 0.00E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F10 Mean 2500.2164 2500.2173 2500.2308 2503.8003 2500.2212

Std 4.38E-02 5.886E-02 3.934E-02 1.990E+01 4.141E-02

F11 Mean 2600 2600 2600 2600 2600

Std 5.87E-11 1.422E-10 2.445E-10 4.723E-10 1.364E-10

F12 Mean 2860.0375 2859.0842 2860.0648 2859.8318 2860.2065

Std 1.21E+00 4.359E-01 1.138E+00 1.199E+00 1.103E+00

Friedman mean rank 2.7500 2.3333 3.5417 3.4583 2.9167

Rank 2 1 5 4 3

https://doi.org/10.1371/journal.pone.0285211.t001
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by E1, which is a value that varies linearly according to the iteration. Thus, GJO might cause

exploration and exploitation to be insufficiently balanced during the iteration. In order to

overcome this drawback, we propose a novel formula to calculate E*, which is shown in Eq

(17). Fig 2 compares the variation curves of the two escape energies.

E* ¼ E1 � E0

*
; E1 ¼ 2� ð1 � t=TÞpt=T; E0

*
¼ 2 � r* � 1 ð17Þ

All variables have the same implications as those mentioned in the previous section. There-

fore, they are not explained here. Note that how the proposed new escape energy will affect the

exploration and exploitation of the algorithm is described in detail in Section 3.3.

3.3.The new update strategy

Combined with the improvements proposed in the previous two sections, the position update

strategy is also modified in this section. In the raw algorithm, exploration and exploitation are

divided into two opposite parts, the algorithm will proceed to exploration when the escape

energy is greater than 1, and vice versa. However, in this study, we split the iteration into three

parts. First, there is the stage where the escape energy is greater than 1. In this stage, all

Fig 2. The variation curves of the two escape energies.

https://doi.org/10.1371/journal.pone.0285211.g002
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individuals will explore. Then, there is a phase with escape energy greater than 0.5, in which a

part of the individuals in the population explores and the rest exploits. Finally, the stage with

escape energy less than 0.5, in which all individuals were exploiting. The detailed mathematical

model is shown below:

1. In the first stage, when meanðabsðE*ÞÞ > 1, the population will explore. However, their

exploration is divided into two parts, part with reference to the current position of the indi-

vidual, and the other part with reference to the center position of the whole population.

X1

*
¼ Xk
*
ðtÞ � E* � jXm

*
ðtÞ � RC* � Xk

*
ðtÞj

X2

*
¼ Xk
*
ðtÞ � E* � jXfm

*
ðtÞ � RC* � Xk

*
ðtÞj

; rand > 0:5

X1

*
¼ Xk
*
ðtÞ � E* � jXm

*
ðtÞ � RC* �meanðXÞj

X2

*
¼ Xk
*
ðtÞ � E* � jXfm

*
ðtÞ � RC* �meanðXÞj

; otherwise

8
>>>>>>>><

>>>>>>>>:

ð18Þ

where RC* means a random vector generated by the Cauchy distribution, which obeys X~C(0,

0.5). rand denotes a random number between 0 and 1. mean(X) represents the central position

of the current population. The rest of the variables have the same meaning as before.

2. In the second stage, when 0:5 < meanðabsðE*ÞÞ < 1, the population will transition from

exploration to exploitation. In this process, a portion of the individuals will maintain the

exploration, while the rest will transform to exploitation.

X1

*
¼ Xk
*
ðtÞ � E* � jXm

*
ðtÞ � RC* � Xk

*
ðtÞj

X2

*
¼ Xk
*
ðtÞ � E* � jXfm

*
ðtÞ � RC* � Xk

*
ðtÞj

; rand > 0:5

X1

*
¼ Xm

*
ðtÞ � E* � jRC* � Xm

*
ðtÞ � Xk

*
ðtÞj

X2

*
¼ Xfm

*
ðtÞ � E* � jRC* � Xfm

*
ðtÞ � Xk

*
ðtÞj

; otherwise

8
>>>>>>>><

>>>>>>>>:

ð19Þ

All the variables have the same meaning as before.

3. In the last stage, when meanðabsðE*ÞÞ < 0:5, the population will enter the exploitation stage.

In this stage, a part of the individuals will be exploitation depending on themselves, while

the rest of the individuals will be exploitation depending on the center position of the

population.

X1

*
¼ Xm

*
ðtÞ � E* � jRL* � Xm

*
ðtÞ � Xk

*
ðtÞj

X2

*
¼ Xfm

*
ðtÞ � E* � jRL* � Xfm

*
ðtÞ � Xk

*
ðtÞj

; rand > 0:5

X1

*
¼ Xm

*
ðtÞ � E* � jRL* � Xm

*
ðtÞ � meanðXÞj

X2

*
¼ Xfm

*
ðtÞ � E* � jRL* � Xfm

*
ðtÞ � meanðXÞj

; otherwise

8
>>>>>>>><

>>>>>>>>:

ð20Þ

As well, all variables have the same meaning as mentioned before. Therefore, there is no

need to go into too much detail.
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3.4.The helper mechanism

In general, there are individuals in the golden jackal group which are called “helpers” [49].

These helpers are the previous offspring of the golden jackal. Golden jackal populations are

strengthened by helpers. This study focuses on “helpers” to enhance the global searchability of

the algorithm with the introduction of “helpers”, which can effectively prevent the algorithm

trapped into local optimal.

1. The first part of the “helpers” is to support the growth of the golden jackal pups. The mathe-

matical model of this part is shown below:

Xk
*
ðt þ 1Þ ¼

(Xk
*
ðt þ 1Þ; fitnessðXk

*
ðt þ 1ÞÞ < fitnessðXoffspring

*
ðtÞÞ

Xoffspring
*
ðtÞ; otherwise

Xoffspring
*
ðtÞ ¼ Xhelper1

*
ðtÞ þ E* � ðXhelper2

*
ðtÞ � Xhelper3

*
ðtÞÞ

ð21Þ

where Xhelper1
*
;Xhelper2

*
and Xhelper3

*
represent three random individuals, respectively. If the

obtained offspring has a better fitness than the current updated individual, the individual posi-

tion is updated to the position of the offspring.

2. The second part of the “helpers” is to take care of the pups while the golden jackal parents

are out hunting. When other foragers are present, or something happens which could be

harmful to the safety of the pups, the “helpers” will assist the pups in avoiding the danger.

This part of the mechanism can be shown by how the algorithm escapes from the local opti-

mal solution, which the mathematical model is as follows.

Xk
*
ðt þ 1Þ ¼

(Xk
*
ðt þ 1Þ; fitnessðXk

*
ðt þ 1ÞÞ < fitnessðXhelper

*
ðtÞÞ

Xhelper
*
ðtÞ; otherwise

Xhelper
*
ðtÞ ¼ Xi

*
ðtÞ þ rand � ðXrand1

*
ðtÞ � Xrand2

*
ðtÞÞ

ð22Þ

where Xrand1

*
;Xrand2

*
represent two random individuals, respectively. rand denotes a random

number between 0 and 1. At this point, the improvement of IGJO is almost complete. The

pseudo-code of HGJO is given in Algorithm 2.
Algorithm 2 Pseudo-code of the HGJO
Inputs: The Population Size N and the Max iterations T.
Outputs: The best solution.
1. Initialization the population X according Eq (15).
2. while (t<T)
3. Calculating the fitness of the population.

4. XM
*
ðtÞ ¼ bestðXðtÞÞ

5. XFM
*
ðtÞ ¼ second bestðXðtÞÞ

6. foreach (X(t))

7. Update the Evasion Energy (E
*
) according Eq (17).

8. if (meanðjE
*
jÞ > 1)

9. Update the population according Eqs (12) and (18).

10. elseif (meanðjE
*
jÞ > 0:5)

11. Update the population according Eqs (12) and (19).
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12. else
13. Update the population according Eqs (12) and (20).
14. end if
15. Calculating, comparing and updating the fitness of offspring
and current individual according Eq (21).
16. end foreach
17. Global perturbation with helpers according Eq (22).
18. t = t+1
19. end while

20. return the best solution (XM
*
)

3.5.Computational complexity

3.5.1. Time complexity. Based on the pseudo-code in Algorithm 2, we could derive the time

complexity of HGJO without difficulty. In which, the initial population spends O(N*M) time to

generated, where N denotes the size of the population, M represents the dimensions of the deci-

sion space. Then, the fitness of the population needs O(T*N*Of) time to calculate, where T indi-

cates the maximum iterations, Of is the cost of object function. In addition, the population needs

O(T*N*M) time to be updated. Therefore, the total time complexity is O(N*(T*(Of+M)+M)).

3.5.2. Space complexity. Since no additional memory space is used in the computation,

the space complexity of HGJO is limited only by the population size. Hence, the space com-

plexity of HGJO is O(M*N).

4. Experimental results and analysis

In this section, we will evaluate the performance of the proposed algorithm. We will compare

HGJO with six existing meta-heuristics on the CEC2022 test suite. These six meta-heuristics

include the original GJO algorithm, the first variant of GJO algorithm called IGJO which uses OBL

for improvement, two recently proposed widely used meta-heuristics, the RUN algorithm and the

Archimedes Optimization Algorithm (AOA) [60], and the two most classical and stable algorithms,

DE and PSO. Additionally, to further ensure that combining the OBL operator with the GJO algo-

rithm is the most feasible option, we also included the OBL operator in the DE and PSO algorithms

for comparison in the experiments. There are 12 different test functions in the CEC2022 test suite,

which can cover a majority of the real-world problems. Therefore, the contents of this section

enable us to make a preliminary understanding of the performance for HGJO. The details of the

CEC2022 test suite are given in Table 2 and the runtime environment is also shown in Table 3. All

Table 2. The benchmark functions of CEC2022.

Problem No. Problem name Dim Range F_min

F1 Zakharov Function 10 [–100, 100] 300

F2 Rosenbrock’s Function 10 [–100, 100] 400

F3 Schaffer’s F7 10 [–100, 100] 600

F4 Rastrigin’s Function 10 [–100, 100] 800

F5 Levy Function 10 [–100, 100] 900

F6 Hybrid Function 1 10 [–100, 100] 1800

F7 Hybrid Function 2 10 [–100, 100] 2000

F8 Hybrid Function 3 10 [–100, 100] 2200

F9 Composition Function 1 10 [–100, 100] 2300

F10 Composition Function 2 10 [–100, 100] 2400

F11 Composition Function 3 10 [–100, 100] 2600

F12 Composition Function 4 10 [–100, 100] 2700

https://doi.org/10.1371/journal.pone.0285211.t002
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algorithms are iterated with a population size of 60 and a maximum iteration of 1000. Further-

more, in consideration of the suggestion by Arcuri et al. [61], all algorithm parameters are kept at

their default values which are derived from their raw papers to ensure they are in a relatively opti-

mal state, and these parameters are provided in Table 4. Moreover, the source code of the

CEC2022 test set is available at: https://github.com/P-N-Suganthan/2022-SO-BO.

4.1.Statistical results on CEC2022

As mentioned above, the CEC2022 test suite is used to measure the performance of each algo-

rithm, which includes both quantitative and qualitative metrics. The quantitative metrics

include the mean, median, and standard deviation obtained by all algorithms. Qualitative met-

rics are illustrated by convergence curves, which reflect the evolution of the optimal solution

throughout the iterations of the algorithm. To ensure the fairness of the experiments, all algo-

rithms were run 31 times independently on the CEC2022 benchmark test function. Table 5

provides the average time spent by all algorithms over the 31 runs, and lists the median, mean,

and standard deviation of the best values obtained by all algorithms, the best results (minimum

value) was highlighted in bold. The Friedman mean rank [62] was used to determine the over-

all rank of each algorithm. According to the data in Table 5, we can see that the proposed

method is optimal for most problems in terms of mean and median, except for F9 where AOA

obtains the most accurate value. Similarly, the proposed algorithm also achieves satisfactory

results for standard deviation in most problems. Therefore, we can consider that the proposed

algorithm has excellent solving performance in CEC2022. However, in terms of running time,

the AOA algorithm is the shortest in all problems, while the HGJO algorithm has some short-

comings compared to it. Considering that the introduction of OBL and Cauchy operator will

affect the efficiency of the algorithm to some extent, Fig 3 further analyzes the running time of

all algorithms in CEC2022. Fig 3 is the average time slot of all algorithms running in CEC2022,

Table 4. The parameters setting of all algorithms.

Algorithm Parameters

HGJO C1 = 2

GJO C1 = 1.5

IGJO C1 = 1.5

RUN a = 20, b = 12

AOA C1 = 2, C2 = 6, C3 = 2, C4 = 0.5

DE(OBL) PCr = 0.8, F = 0.85

PSO(OBL) C1 = 1.49445, C2 = 1.49445

https://doi.org/10.1371/journal.pone.0285211.t004

Table 3. Runtime environment.

Configurations

Hardware

CPU Intel(R) Core(TM) i9-10980HK CPU @ 2.40GHz

GPU NVIDIA GeForce RTX 3080 Laptop GPU

RAM 64.0 GB

Software

OS Microsoft Windows [Version 10.0.19043.1826]

Interpreter IntelliJ IDEA 2021.3.2 (Ultimate Edition)

Language MATLAB R2021a (9.10.0.1602886)

https://doi.org/10.1371/journal.pone.0285211.t003
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Table 5. The results of CEC2022 for all algorithm.

Problem HGJO GJO IGJO RUN AOA DE PSO

F1 Mean 300.000 682.748 699.541 300.000 300.001 1215.047 1220.769

Median 300.000 439.932 456.433 300.000 300.000 1153.934 1217.032

Std 1.228E-13 7.593E+02 7.395E+02 6.385E-05 1.627E-03 3.405E+02 6.384E+01

Time 1.072 0.362 0.395 1.973 0.268 0.524 0.329

F2 Mean 403.472 425.274 422.150 403.587 405.245 405.504 434.336

Median 403.987 411.882 409.887 400.013 400.257 404.124 427.549

Std 1.359E+00 2.210E+01 1.993E+01 4.363E+00 1.139E+01 2.219E+00 1.857E+01

Time 1.149 0.362 0.389 1.976 0.271 0.533 0.327

F3 Mean 600.000 605.511 605.925 611.779 600.245 600.064 615.090

Median 600.000 604.463 605.740 608.887 600.097 600.061 612.536

Std 1.419E-05 4.645E+00 4.768E+00 6.793E+00 2.906E-01 2.314E-02 5.356E+00

Time 1.460 0.457 0.572 2.241 0.371 0.639 0.437

F4 Mean 808.762 819.404 822.509 823.847 817.139 861.592 845.546

Median 808.955 818.711 821.114 823.879 817.909 861.478 845.007

Std 2.819E+00 5.913E+00 7.876E+00 6.765E+00 5.615E+00 1.967E+00 2.538E+00

Time 1.246 0.394 0.448 2.041 0.303 0.568 0.363

F5 Mean 900.000 959.189 967.710 977.192 908.414 900.041 977.753

Median 900.000 951.961 942.420 968.285 900.454 900.014 977.414

Std 3.771E-13 6.716E+01 8.875E+01 4.827E+01 3.302E+01 6.664E-02 6.523E+00

Time 1.275 0.399 0.457 2.066 0.307 0.542 0.369

F6 Mean 1800.226 7151.939 7110.417 2921.693 2532.632 1814.253 4354616.518

Median 1800.211 8154.988 8182.686 2533.530 2171.087 1814.067 4264276.228

Std 9.605E-02 2.193E+03 1.907E+03 1.012E+03 9.174E+02 1.567E+00 7.624E+05

Time 1.202 0.371 0.408 1.988 0.280 0.540 0.343

F7 Mean 2006.963 2032.196 2037.376 2037.731 2021.994 2019.993 2064.246

Median 2001.372 2031.836 2034.197 2037.757 2021.643 2021.894 2062.244

Std 8.907E+00 1.136E+01 1.121E+01 9.988E+00 9.576E+00 6.431E+00 5.565E+00

Time 1.674 0.510 0.689 2.138 0.398 0.654 0.457

F8 Mean 2201.458 2224.956 2225.259 2223.042 2219.205 2210.591 2247.440

Median 2201.065 2225.255 2225.280 2223.540 2221.317 2207.073 2235.872

Std 1.409E+00 4.580E+00 2.978E+00 1.564E+00 6.726E+00 8.650E+00 3.649E+01

Time 1.667 0.548 0.761 2.302 0.482 0.747 0.528

F9 Mean 2529.284 2549.393 2551.107 2529.285 2493.923 2529.284 2545.972

Median 2529.284 2531.291 2541.380 2529.284 2493.923 2529.284 2536.194

Std 0.000E+00 3.477E+01 2.645E+01 2.205E-04 8.775E-05 0.000E+00 3.849E+01

Time 1.436 0.470 0.604 2.127 0.375 0.608 0.426

F10 Mean 2500.230 2570.959 2543.721 2530.174 2551.838 2500.876 2579.107

Median 2500.225 2614.641 2500.606 2500.631 2500.519 2500.874 2648.197

Std 4.586E-02 6.120E+01 5.936E+01 5.094E+01 5.767E+01 6.567E-02 7.631E+01

Time 1.350 0.460 0.579 2.026 0.352 0.580 0.413

F11 Mean 2600.000 2800.106 2725.587 2622.627 2644.051 2600.001 2808.208

Median 2600.000 2735.136 2731.824 2600.018 2600.001 2600.001 2761.214

Std 1.947E-10 1.735E+02 9.684E+01 7.946E+01 1.051E+02 4.481E-04 1.260E+02

Time 1.711 0.531 0.729 2.175 0.431 0.695 0.513

(Continued)
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which can reflect the percentage of time each algorithm consumes when processing the same

problem. The horizontal coordinate is the percentage of time consumed, and the vertical coor-

dinate is the test function. Through Fig 3, we can clearly observe that compared with the origi-

nal GJO, the time complexity of HGJO has increased significantly, but it still has some

advantages compared with RUN. In addition, through the observation of 12 test functions, we

can see that the running time of HGJO has not fluctuated significantly. Although OBL and

Cauchy operator will increase certain time costs, the proposed algorithm shows the most satis-

factory results in terms of overall performance. In addition, the Friedman mean rank is also

used to comprehensively rank the algorithms, and the top three algorithms are HGJO, DE

(OBL), and AOA, respectively.

Table 6 uses the Wilcoxon rank-sum test [63] to further evaluate the running results of each

algorithm. The Wilcoxon rank-sum test is used to verify whether there is a significant differ-

ence between algorithms. When the p-value is less than 0.05, it can be considered that there is

a significant difference between algorithms. On the contrary, it means that the performance of

Table 5. (Continued)

Problem HGJO GJO IGJO RUN AOA DE PSO

F12 Mean 2859.847 2865.104 2865.137 2863.978 2878.827 2861.082 2866.534

Median 2859.369 2864.532 2864.505 2863.883 2867.589 2861.405 2866.482

Std 1.183E+00 3.054E+00 4.156E+00 1.668E+00 1.965E+01 9.283E-01 7.997E-01

Time 1.699 0.554 0.768 2.202 0.443 0.699 0.513

Friedman mean rank 1.1667 4.8333 5.0833 3.9583 3.3333 2.9583 6.6667

Rank 1 5 6 4 3 2 7

https://doi.org/10.1371/journal.pone.0285211.t005

Fig 3. The average time slots for all algorithms.

https://doi.org/10.1371/journal.pone.0285211.g003
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the proposed algorithm is similar to that of the compared algorithm. To better represent the

analysis of values, we use the symbols "++" and "—" to indicate the cases where the p-value is

less than 0.05 and greater than 0.05, respectively. From Table 6, we can clearly see that the pro-

posed algorithm has significant differences compared with the original GJO, IGJO, RUN, and

PSO(OBL). Combined with the data in Table 5, we can consider that it has significant

improvements compared with the above algorithms. For AOA and DE(OBL), only similar per-

formance was shown in F2 and F9, respectively. It is worth noting that we can see from the

data in Table 5 that AOA achieved the best result in F9, which is also reflected in the Wilcoxon

rank-sum test (significant difference between HGJO and AOA). Overall, according to the

results of the Wilcoxon rank-sum test, we can consider that the proposed HGJO algorithm has

higher performance on the CEC2022 test set.

Fig 3 further shows the average time slots achieved by each algorithm on the IEEE

CEC2022 benchmark test function. The figure displays the percentage of time consumed by

each algorithm in processing the same test function. The horizontal coordinate is the percent-

age of time consumed, and the vertical coordinate is the test function. Through this figure, we

can observe that the time consumption of the HGJO algorithm increases to some extent, but

there is no significant fluctuation for the overall. Therefore, this phenomenon verifies that the

performance of the proposed algorithm is not limited to a particular problem. This makes the

algorithm more extensible and can be more widely ap-plied to other optimization problems.

4.2.Convergence behavior analysis

This subsection further presents the results of the convergence analysis of HGJO compared to

other meta-heuristics. Fig 4 shows the convergence curves of all the algorithms for the

CEC2022 benchmark test function. It is worth noting that all the curves in Fig 4 are calculated

as the difference between the optimal values of their benchmark functions. It does not alter the

exact meaning of the convergence curves but additionally enhances the observability of the

images on the logarithmic axis. In short, the value closer to 0 indicates that the optimal solu-

tion obtained by the algorithm is closer to the true optimal solution. With these convergence

plots, we can see that the proposed algorithm reaches a stable point in all benchmark test func-

tions, which can further indicate that the proposed algorithm is convergent. In addition, for

most test functions, HGJO achieved the optimal solution with the least number of iterations,

except for F2 and F9 where it was surpassed by RUN and AOA. Therefore, by analyzing the

Table 6. The Wilcoxon signed-rank test for CEC2022.

Problem HGJO vs. GJO HGJO vs. IGJO HGJO vs. RUN HGJO vs. AOA HGJO vs. DE HGJO vs. PSO

F1 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++

F2 6.018E-07 ++ 1.588E-06 ++ 4.457E-02 ++ 3.001E-01 — 6.352E-06 ++ 6.018E-07 ++

F3 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++

F4 7.329E-07 ++ 6.642E-07 ++ 6.018E-07 ++ 1.588E-06 ++ 6.018E-07 ++ 6.018E-07 ++

F5 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++

F6 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++

F7 1.192E-06 ++ 6.018E-07 ++ 6.018E-07 ++ 6.252E-05 ++ 2.308E-02 ++ 6.018E-07 ++

F8 6.018E-07 ++ 6.018E-07 ++ 6.642E-07 ++ 1.312E-06 ++ 2.906E-03 ++ 6.018E-07 ++

F9 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ NaN — 6.018E-07 ++

F10 6.018E-07 ++ 6.018E-07 ++ 6.642E-07 ++ 6.018E-07 ++ 6.642E-07 ++ 6.018E-07 ++

F11 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++ 6.018E-07 ++

F12 6.642E-07 ++ 6.018E-07 ++ 1.192E-06 ++ 5.057E-04 ++ 1.451E-02 ++ 6.018E-07 ++

https://doi.org/10.1371/journal.pone.0285211.t006
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convergence of the proposed algorithm and other competing algorithms, the superiority of

HGJO is further validated, making it possible for HGJO to replace existing algorithms to solve

complex problems.

4.3.Boxplot behavior analysis

Due to the many local optima of the CEC2022 benchmark test functions, solving these prob-

lems can easily fall into local optima. In order to analyze the algorithmic results more intui-

tively, in this section we use boxplots to analyze HGJO and other metaheuristics. Fig 5 shows

boxplots for all algorithms on the CEC2022 benchmark test function. The boxplots provide a

visual representation of the distribution characteristics of the data, with the maximum and

minimum values of the data corresponding to the highest and lowest points of the image,

respectively. Therefore, the narrower the image reflects, the more stable the data. For most

benchmark test functions, the proposed method has the narrowest and lowest boxplots. In

fact, HGJO outperforms other metaheuristic algorithms in most test functions, except for F9.

Combining the performance analysis of HGJO mentioned above, we can reasonably speculate

that the proposed algorithm has the ability to solve complex engineering problems in the real

world, providing a new candidate solution for scientific researchers to choose from. In the

next section, we will use HGJO to handle the optical aerial image segmentation problem.

5. The optical aerial image segmentation

In this section, HGJO is applied to a real-world scenario of multi-level thresholding segmenta-

tion. The HGJO and all the comparison algorithms in the previous section are used to perform

Fig 4. The convergence curves for all algorithms on CEC2022 benchmark functions.

https://doi.org/10.1371/journal.pone.0285211.g004
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threshold segmentation on the optical aerial image. The objective function used is the Otsu

method introduced in Section 2.1. Finally, all algorithms are evaluated by PSNR, SSIM, and

FSIM obtained after processing.

Fig 5. The box plots for all algorithms on CEC2022 benchmark functions.

https://doi.org/10.1371/journal.pone.0285211.g005
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5.1.Dataset and runtime environment

The optical aerial image used for image segmentation experiments are from the MASATI dataset

[64], where each image has a size of 512×512. In this study, 16 images are selected for segmenta-

tion, which were named C0080, C0088, C0132, C0135, C0180, C0536, C1088, L0032, L0064,

L0135, L0158, L0226, L0699, L0879, L1074, and X0017, as shown in Fig 6. All of these images are

characterized by their own features which cover the vast majority of optical aerial image types.

Fig 6. The selected images for segmentation.

https://doi.org/10.1371/journal.pone.0285211.g006
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Furthermore, Figs 7–14 show the RGB histogram of all the selected images. The threshold values

of each image are set to 8, 16, 24, 32, respectively. To ensure the fairness of the experiments, the

population size was fixed to 60, the maximum number of iterations was set to 1000 and all the

algorithms were run independently 31 times with the same configured environment.

5.2.The evaluation metrics

As mentioned above, in this study PSNR, SSIM, and FSIM will be used as the performance

metrics for image segmentation. This subsection will describe the effects of these three metrics

in detail.

First is PSNR, peak signal-to-noise ratio, which is used to measure the difference between

two images, which has a minimum value of 0 to represent the maximum difference. The

Fig 7. The RGB histogram of C0080 and C0088.

https://doi.org/10.1371/journal.pone.0285211.g007

Fig 8. The RGB histogram of C0132 and C0135.

https://doi.org/10.1371/journal.pone.0285211.g008
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mathematical formula of PSNR can be described as follows:

PSNR ¼ 20 log
10

255

RMSE
;RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

XN

j¼1

ðIinði; jÞ � Ioutði; jÞÞ2

M � N

v
u
u
u
u
t

ð23Þ

where RMES is the root mean square error, Iin and Iout are the original image and the seg-

mented image, which have the size of M×N, respectively.

Next is SSIM, Structural Similarity, which is used to evaluate the similarity between two

images. The value of SSIM is between 0 and 1, and if two images are completely identical, then

Fig 9. The RGB histogram of C0180 and C0536.

https://doi.org/10.1371/journal.pone.0285211.g009

Fig 10. The RGB histogram of C1088 and L0032.

https://doi.org/10.1371/journal.pone.0285211.g010
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the SSIM is equal to 1. Its mathematical model can be described as follows:

SSIMðIin; IoutÞ ¼
ð2mIinmIout þ c1Þð2dIin;Iout þ c2Þ

ðm2
Iin þ m

2
Iout þ c1Þðd

2

Iin þ d
2

Iout þ c2Þ
ð24Þ

where μIin and μIout are the mean intensities of the original image and segmented image,

respectively, σIin and σIout are the standard deviations of the original image and segmented

image, respectively, σIin,Iout is the covariance of the original and segmented images, and C1 and

C2 are two constants.

Finally, is FSIM, Feature Similarity, which is calculated by Phase Consistency (PC) and Gra-

dient Magnitude (GM). It reflects the difference in features between the two images. The FSIM
has the same value as the SSIM, which is also between 0 and 1, and the closer to 1 indicates that

Fig 12. The RGB histogram of L0158 and L0226.

https://doi.org/10.1371/journal.pone.0285211.g012

Fig 11. The RGB histogram of L0064 and L0135.

https://doi.org/10.1371/journal.pone.0285211.g011
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the feature information of the two images is more similar. It can be described as follows:

FSIM ¼

X

x2O

SLðxÞPCmðxÞ
X

x2O

PCmðxÞ
ð25Þ

SLðxÞ ¼ ½SPCðxÞ�
a
½SGðxÞ�

b
ð26Þ

SPCðxÞ ¼
2PCIinðxÞPCIoutðxÞ þ T1

PC2
IinðxÞ þ PC2

IoutðxÞ þ T1

ð27Þ

SGðxÞ ¼
2GIinðxÞGIoutðxÞ þ T2

G2
IinðxÞ þ G2

IoutðxÞ þ T2

ð28Þ

Fig 14. The RGB histogram of L1074 and X0017.

https://doi.org/10.1371/journal.pone.0285211.g014

Fig 13. The RGB histogram of L0699 and L0879.

https://doi.org/10.1371/journal.pone.0285211.g013
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where PCIin and PCIout are the PC of the original image and segmented image, respectively,

and T1 is a positive constant used to increase the stability of SPC. GIin and GIout represent the

gradients of the original and segmented images, respectively, while T2 is also a positive con-

stant that controls the range of GM. α and β are two constants, respectively. In short, for all

three metrics, PSNR, SSIM, and FSIM, the bigger the better.

5.3.Experimental results and analysis

In this section, the experimental outcomes of multilevel thresholding segmentation are ana-

lyzed by combining images and tables. To verify the adaptivity of HGJO in handling the seg-

mentation task, the selected optical aerial images were segmented at threshold levels of 8, 16,

24, and 32, respectively. The algorithms involved in the segmentation comparison are consis-

tent with the previous section, and the experimental results are evaluated by three metrics:

PSNR, SSIM, and FSIM. In addition, the comprehensive performance of all algorithms is

ranked using the Friedman mean rank test, and the Wilcoxon rank-sum test is used to analyze

the fitness of all algorithms on the Otsu method.

Tables 7–9 show the mean and std value of the PSNR, SSIM, and FSIM, respectively. It is

noteworthy that the maximum mean and minimum std are highlighted in the tables. In addi-

tion, it should be mentioned that the segmentation results of the same algorithm on different

images may behave differently. This is because each image corresponds to a different problem

being processed. When compared to other algorithms, HGJO performs exceptionally well at

the specified threshold level. Additionally, as the threshold level increases, this performance

does not degrade.

According to the analysis of the results of PSNR recorded in Table 7, the proposed HGJO

algorithm obtained the best experimental data in terms of accuracy and stability in the seg-

mentation experiments of C0080, C0088, C0132, C0135, C0180, C1088, L0226, L0699 and

X0017 for a total of 9 images. The other compared algorithms did not obtain the best results in

the segmentation experiments for any of the images. The top three algorithms ranked by the

Friedman mean rank test are as follows: the first ranked is the proposed HGJO algorithm, the

AOA algorithm ranks second, and the RUN ranks third.

In Table 8, which records the results about SSIM, the proposed algorithm achieves optimal

results in the segmentation experiments of C0080, C0536, and X0017 for a total of 3 images.

The rest of the algorithms also did not achieve optimal results on any of the images. According

to the Friedman mean rank test, the top three algorithms were, HGJO, RUN, and AOA.

Table 9 shows the experimental results of FSIM, which are similar to Tables 7 and 8. By

evaluating the FSIM metrics, the proposed HGJO algorithm achieves optimal results in a total

of 7 images, C0080, C0088, C0180, C0536, C1088, L1074, and X0017. The performance far

exceeds that of other comparable algorithms. According to the Friedman average ranking test,

the top three algorithms are HGJO, AOA, and RUN.

In addition, Table 10 shows the results of the Wilcoxon rank-sum test. Consistent with the

evaluation criteria in the previous section, if P>0.05, the null hypothesis is true; otherwise, the

alternative hypothesis is true. By analyzing the results of the Wilcoxon rank-sum test, we can

see that the proposed method has significant differences with other compared algorithms in all

experiments, except for some experiments where it performs similarly to DE(OBL). Therefore,

we can conclude that the performance of HGJO is significantly different from other

algorithms.

Despite the fact that the algorithms used for comparison have some competitiveness on

some images. In all, however, the proposed algorithm is still outstanding in optical aerial

image segmentation. These results demonstrate that the HGJO algorithm can achieve better
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Table 7. The PSNR results for all algorithms.

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

C0080 8 24.49 4.05E-02 22.23 7.44E-01 23.29 4.29E-01 22.48 6.72E-01 23.35 2.77E-01 24.38 1.37E-02 18.67 1.23E+00

16 29.64 1.23E-01 27.32 9.44E-01 27.37 9.60E-01 28.06 6.36E-01 28.32 5.83E-01 27.62 3.88E-01 23.61 9.81E-01

24 34.82 5.66E-01 30.57 8.25E-01 29.67 1.13E+00 31.79 5.29E-01 31.60 6.71E-01 29.30 1.08E+00 26.08 1.35E+00

32 37.86 2.54E-01 31.39 1.12E+00 31.66 9.20E-01 33.13 7.09E-01 34.18 6.69E-01 31.09 1.16E+00 29.66 1.01E+00

C0088 8 24.43 3.82E-03 23.80 1.87E-01 24.14 9.64E-02 24.19 5.86E-02 24.32 3.60E-02 24.42 6.67E-03 19.90 9.88E-01

16 30.31 3.29E-02 27.69 5.86E-01 28.11 5.34E-01 28.63 3.54E-01 29.67 1.49E-01 28.87 1.31E-01 25.37 7.67E-01

24 33.88 7.34E-02 30.29 7.56E-01 30.99 4.90E-01 31.65 3.20E-01 32.76 1.47E-01 31.43 2.36E-01 26.86 8.28E-01

32 36.45 1.20E-01 32.80 6.64E-01 32.77 5.70E-01 33.59 5.92E-01 35.21 1.44E-01 33.11 3.22E-01 29.08 8.26E-01

C0132 8 25.06 9.41E-03 24.04 3.70E-01 24.00 3.24E-01 24.50 1.32E-01 24.47 1.84E-01 25.06 2.55E-03 21.80 7.87E-01

16 30.21 1.12E-01 28.45 4.60E-01 28.44 5.82E-01 28.83 3.68E-01 28.56 3.12E-01 27.15 7.10E-01 24.53 1.03E+00

24 33.67 1.32E-01 30.53 8.49E-01 30.76 5.64E-01 31.96 4.37E-01 32.31 2.78E-01 30.18 6.07E-01 27.45 8.25E-01

32 36.54 2.06E-01 31.11 1.11E+00 33.01 7.12E-01 34.66 4.48E-01 34.42 3.38E-01 31.44 7.07E-01 29.51 9.41E-01

C0135 8 24.88 1.49E-02 22.72 6.23E-01 23.80 2.50E-01 24.62 7.07E-02 24.66 4.91E-02 24.85 1.29E-02 20.93 6.83E-01

16 30.86 2.71E-02 27.30 7.52E-01 28.88 4.79E-01 29.04 3.22E-01 29.84 1.88E-01 28.69 3.60E-01 22.41 1.42E+00

24 34.36 5.83E-02 31.40 4.87E-01 30.84 7.32E-01 31.60 4.42E-01 32.33 3.44E-01 31.46 2.91E-01 28.01 8.52E-01

32 36.99 1.55E-01 33.25 7.34E-01 32.73 8.07E-01 33.97 5.09E-01 34.77 2.39E-01 33.18 3.62E-01 28.91 1.12E+00

C0180 8 25.93 7.28E-15 24.13 7.54E-01 24.14 4.32E-01 25.79 4.54E-02 24.48 6.67E-01 25.92 1.60E-02 19.93 1.34E+00

16 31.50 1.29E-01 28.27 8.29E-01 29.09 7.22E-01 29.28 4.50E-01 29.58 6.41E-01 28.28 5.83E-01 26.59 1.08E+00

24 35.56 1.79E-01 30.85 9.47E-01 31.25 9.23E-01 31.90 6.97E-01 31.40 8.09E-01 31.20 7.19E-01 26.83 1.45E+00

32 38.02 3.85E-01 33.10 7.69E-01 34.51 5.80E-01 34.81 7.18E-01 34.78 6.03E-01 32.67 8.31E-01 29.27 1.46E+00

C0536 8 23.96 1.20E-02 23.10 5.06E-01 23.15 3.92E-01 23.96 1.72E-01 23.92 1.30E-01 23.93 7.28E-15 19.21 9.90E-01

16 30.47 2.06E-01 27.36 8.19E-01 28.59 5.59E-01 29.66 3.74E-01 28.43 4.67E-01 28.44 5.46E-01 25.25 1.10E+00

24 34.82 2.39E-01 30.63 8.74E-01 31.74 6.40E-01 32.40 3.95E-01 32.08 3.16E-01 30.74 6.31E-01 26.26 1.42E+00

32 37.09 2.12E-01 32.63 1.08E+00 33.44 6.58E-01 34.26 5.18E-01 34.63 3.94E-01 33.00 5.55E-01 30.15 1.10E+00

C1088 8 22.72 3.61E-02 21.41 6.58E-01 20.96 6.48E-01 21.90 5.84E-01 22.55 1.57E-01 22.64 1.70E-02 14.25 2.08E+00

16 30.20 1.52E-01 25.01 1.14E+00 26.89 8.42E-01 27.74 5.48E-01 28.49 6.76E-01 26.10 9.36E-01 20.20 1.72E+00

24 34.42 2.71E-01 28.28 1.25E+00 28.86 8.17E-01 29.57 8.20E-01 31.94 7.32E-01 30.19 8.93E-01 25.24 1.76E+00

32 37.08 2.96E-01 29.26 1.13E+00 30.97 1.08E+00 30.14 1.23E+00 33.39 8.25E-01 32.09 7.79E-01 25.89 1.83E+00

L0032 8 19.41 8.40E-02 18.27 3.89E-01 18.27 3.90E-01 18.27 1.36E+00 18.77 3.27E-01 19.13 5.91E-04 17.15 1.24E+00

16 23.11 2.20E-01 18.27 3.27E+00 19.61 3.33E+00 20.23 3.08E+00 20.01 2.88E+00 21.07 9.06E-01 19.21 1.87E+00

24 26.59 5.89E-01 22.93 2.89E+00 21.06 3.70E+00 28.12 1.30E+00 22.29 2.55E+00 20.99 1.83E+00 19.33 3.11E+00

32 33.67 1.51E+00 24.71 2.36E+00 26.27 2.36E+00 23.23 3.22E+00 24.63 2.52E+00 21.87 2.73E+00 21.09 3.25E+00

L0064 8 22.97 9.47E-02 21.97 4.48E-01 22.70 2.81E-01 21.11 7.57E-01 22.70 2.40E-01 22.70 8.62E-02 20.32 7.46E-01

16 29.35 2.97E-01 26.34 1.38E+00 28.05 9.55E-01 29.90 3.12E-01 27.30 1.18E+00 25.09 9.36E-01 22.62 1.72E+00

24 33.15 3.16E-01 27.95 1.45E+00 30.39 8.34E-01 32.42 5.99E-01 31.42 8.71E-01 28.40 9.43E-01 23.92 1.75E+00

32 37.55 6.83E-01 32.91 8.16E-01 32.90 1.06E+00 34.96 6.14E-01 33.69 6.63E-01 29.35 1.70E+00 24.30 2.22E+00

L0135 8 22.65 2.40E-03 21.18 5.20E-01 22.15 8.36E-01 21.20 9.25E-01 22.64 2.73E-01 22.64 2.51E-03 18.91 1.23E+00

16 26.98 2.31E-01 24.73 1.78E+00 23.84 2.53E+00 27.72 1.25E+00 25.12 2.11E+00 24.58 1.10E+00 22.73 1.42E+00

24 34.26 1.30E+00 27.25 2.22E+00 27.33 2.12E+00 32.20 1.07E+00 27.91 2.58E+00 25.72 1.54E+00 24.53 2.32E+00

32 37.40 2.29E+00 31.09 1.32E+00 28.63 2.04E+00 31.15 1.81E+00 28.48 2.80E+00 26.62 1.69E+00 26.11 2.46E+00

L0158 8 22.18 3.73E-02 20.09 8.82E-01 20.95 4.25E-01 22.15 7.18E-01 21.80 3.12E-01 22.01 7.28E-15 16.66 1.40E+00

16 28.77 3.08E-01 25.99 1.28E+00 25.58 1.38E+00 28.95 5.23E-01 28.96 5.72E-01 25.42 9.80E-01 21.43 2.13E+00

24 33.98 5.43E-01 29.91 9.75E-01 28.55 1.47E+00 32.27 4.67E-01 32.12 6.11E-01 25.62 1.27E+00 23.21 2.32E+00

32 36.91 6.09E-01 32.29 8.77E-01 30.86 1.50E+00 31.23 1.23E+00 33.77 8.02E-01 29.66 1.42E+00 25.87 1.86E+00

(Continued)
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Table 7. (Continued)

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

L0226 8 21.42 7.28E-15 19.79 9.06E-01 21.40 2.31E-01 21.29 5.09E-01 21.02 2.70E-01 21.42 1.58E-03 19.04 1.48E+00

16 29.47 4.40E-01 26.65 1.48E+00 26.62 1.75E+00 28.15 1.14E+00 25.90 1.91E+00 24.03 1.62E+00 21.29 2.26E+00

24 36.22 6.15E-01 32.38 8.56E-01 32.12 9.04E-01 34.04 4.84E-01 32.57 9.25E-01 25.81 2.38E+00 25.16 2.00E+00

32 39.28 2.34E-01 33.20 9.84E-01 34.61 8.55E-01 36.43 4.99E-01 35.06 6.74E-01 28.01 2.30E+00 25.39 2.28E+00

L0699 8 21.47 3.64E-15 18.85 1.04E+00 20.49 5.91E-01 20.50 1.39E+00 20.50 8.32E-01 21.47 3.64E-15 17.97 1.52E+00

16 30.10 5.00E-01 24.33 2.06E+00 27.08 1.34E+00 25.85 1.87E+00 27.55 1.56E+00 24.52 1.57E+00 20.41 2.70E+00

24 36.47 6.57E-01 28.99 1.53E+00 29.70 1.47E+00 27.37 1.95E+00 32.20 9.90E-01 28.58 1.94E+00 23.38 3.08E+00

32 39.63 3.95E-01 31.96 1.50E+00 31.48 1.66E+00 31.51 1.21E+00 35.91 6.84E-01 29.68 2.19E+00 24.74 2.34E+00

L0879 8 21.24 2.73E-04 20.50 5.17E-01 19.65 9.02E-01 20.50 1.29E+00 21.24 1.96E-01 21.24 3.64E-15 19.04 1.04E+00

16 27.92 4.45E-01 25.16 2.11E+00 24.97 2.05E+00 29.20 9.69E-01 24.41 2.17E+00 23.62 1.07E+00 21.55 1.50E+00

24 33.62 8.29E-01 29.70 1.29E+00 24.72 2.66E+00 31.98 1.05E+00 26.94 2.52E+00 25.51 1.89E+00 20.90 2.84E+00

32 38.05 1.48E+00 29.03 1.84E+00 30.59 1.70E+00 30.69 1.98E+00 33.78 1.39E+00 26.49 2.54E+00 24.02 2.54E+00

L1074 8 24.33 8.48E-03 23.13 6.21E-01 23.10 3.77E-01 24.49 2.97E-01 24.30 2.08E-01 24.30 7.28E-15 20.66 1.03E+00

16 31.32 1.25E-01 28.94 5.60E-01 29.48 4.96E-01 30.08 3.87E-01 29.82 4.15E-01 28.31 5.99E-01 25.21 9.50E-01

24 35.34 1.26E-01 31.97 5.45E-01 32.37 6.48E-01 32.90 4.09E-01 33.08 2.61E-01 31.26 4.99E-01 25.63 1.33E+00

32 38.08 1.89E-01 33.39 6.92E-01 34.05 8.71E-01 35.33 4.20E-01 35.10 3.77E-01 32.96 5.24E-01 29.60 8.36E-01

X0017 8 23.45 8.22E-03 22.19 4.50E-01 22.10 4.04E-01 22.72 1.84E-01 23.25 5.07E-02 23.39 1.47E-02 20.65 6.03E-01

16 29.26 7.51E-02 26.58 7.20E-01 27.56 4.75E-01 27.48 3.74E-01 28.68 1.21E-01 27.58 2.35E-01 24.42 9.23E-01

24 32.99 6.53E-02 30.39 4.81E-01 29.71 7.04E-01 30.36 4.55E-01 32.18 1.29E-01 30.40 2.57E-01 27.84 5.01E-01

32 35.60 9.65E-02 32.26 6.18E-01 32.25 7.39E-01 32.36 5.06E-01 34.54 1.36E-01 32.14 3.50E-01 28.82 7.64E-01

Friedman mean rank 1.1328 4.9844 4.5781 3.0156 2.8828 4.4219 6.98441

Rank 1 6 5 3 2 4 7

https://doi.org/10.1371/journal.pone.0285211.t007

Table 8. The SSIM results for all algorithms.

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

C0080 8 0.892 8.99E-04 0.833 1.74E-02 0.868 7.74E-03 0.844 1.39E-02 0.869 5.55E-03 0.890 3.69E-04 0.660 4.64E-02

16 0.957 1.16E-03 0.937 9.46E-03 0.940 9.50E-03 0.945 6.07E-03 0.945 5.63E-03 0.932 5.13E-03 0.840 2.12E-02

24 0.987 3.13E-03 0.966 4.53E-03 0.963 6.18E-03 0.977 2.34E-03 0.974 3.20E-03 0.951 8.67E-03 0.900 1.83E-02

32 0.993 5.42E-04 0.973 4.29E-03 0.970 4.15E-03 0.983 1.95E-03 0.985 1.84E-03 0.963 6.76E-03 0.948 8.88E-03

C0088 8 0.938 4.63E-04 0.933 1.56E-03 0.937 7.18E-04 0.940 6.52E-04 0.940 8.79E-04 0.937 2.69E-04 0.841 2.42E-02

16 0.983 1.40E-04 0.970 2.84E-03 0.974 2.33E-03 0.978 1.41E-03 0.980 8.15E-04 0.976 1.17E-03 0.951 6.26E-03

24 0.993 1.33E-04 0.984 1.82E-03 0.986 1.25E-03 0.989 6.29E-04 0.990 4.02E-04 0.985 1.03E-03 0.961 5.25E-03

32 0.996 1.14E-04 0.991 1.11E-03 0.991 7.98E-04 0.993 6.94E-04 0.994 2.35E-04 0.989 8.64E-04 0.974 3.34E-03

C0132 8 0.859 2.48E-04 0.835 1.06E-02 0.809 1.59E-02 0.838 5.96E-03 0.837 6.73E-03 0.859 6.78E-04 0.615 6.47E-02

16 0.940 1.50E-03 0.917 1.31E-02 0.937 1.45E-02 0.944 3.81E-03 0.911 8.40E-03 0.872 1.77E-02 0.795 3.49E-02

24 0.977 1.68E-03 0.951 8.95E-03 0.945 8.01E-03 0.974 2.32E-03 0.965 3.12E-03 0.938 9.27E-03 0.859 2.28E-02

32 0.989 1.13E-03 0.939 1.05E-02 0.980 5.62E-03 0.986 1.57E-03 0.978 2.33E-03 0.941 8.56E-03 0.927 1.57E-02

C0135 8 0.907 7.95E-04 0.858 1.58E-02 0.882 5.95E-03 0.914 2.17E-03 0.910 1.88E-03 0.905 7.59E-04 0.759 3.13E-02

16 0.974 3.54E-04 0.946 6.34E-03 0.960 4.39E-03 0.968 1.96E-03 0.964 2.18E-03 0.951 4.17E-03 0.775 3.83E-02

24 0.989 2.38E-04 0.979 2.56E-03 0.977 3.05E-03 0.981 1.45E-03 0.980 1.58E-03 0.976 2.09E-03 0.939 9.22E-03

32 0.993 3.01E-04 0.985 1.74E-03 0.984 2.36E-03 0.989 8.99E-04 0.988 7.17E-04 0.981 1.69E-03 0.948 9.13E-03

C0180 8 0.888 1.14E-16 0.845 2.11E-02 0.843 1.32E-02 0.890 1.75E-03 0.849 2.03E-02 0.888 1.32E-04 0.689 5.44E-02

16 0.962 1.93E-03 0.928 1.05E-02 0.939 8.61E-03 0.945 5.41E-03 0.939 8.48E-03 0.908 1.18E-02 0.885 2.21E-02

24 0.986 8.68E-04 0.957 6.91E-03 0.958 6.82E-03 0.970 3.44E-03 0.956 6.58E-03 0.949 7.61E-03 0.900 2.12E-02

32 0.992 1.11E-03 0.977 4.08E-03 0.980 2.45E-03 0.984 2.33E-03 0.980 2.55E-03 0.960 6.16E-03 0.926 1.60E-02

(Continued)
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Table 8. (Continued)

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

C0536 8 0.832 5.78E-04 0.812 1.58E-02 0.814 1.36E-02 0.832 8.51E-03 0.830 6.65E-03 0.831 3.41E-16 0.626 5.13E-02

16 0.959 4.78E-03 0.932 1.09E-02 0.925 9.92E-03 0.951 5.21E-03 0.925 9.26E-03 0.923 1.14E-02 0.862 2.94E-02

24 0.987 1.46E-03 0.963 6.30E-03 0.970 4.19E-03 0.979 2.26E-03 0.969 3.01E-03 0.951 7.51E-03 0.868 2.90E-02

32 0.992 6.71E-04 0.974 5.01E-03 0.984 2.64E-03 0.986 1.56E-03 0.984 1.69E-03 0.968 5.25E-03 0.961 1.08E-02

C1088 8 0.847 1.02E-03 0.812 1.97E-02 0.795 2.03E-02 0.824 1.71E-02 0.842 4.92E-03 0.845 4.82E-04 0.240 1.59E-01

16 0.965 2.46E-03 0.898 1.87E-02 0.926 1.08E-02 0.954 4.77E-03 0.941 1.15E-02 0.907 1.40E-02 0.655 5.95E-02

24 0.988 1.26E-03 0.938 9.89E-03 0.960 5.27E-03 0.968 4.17E-03 0.983 2.66E-03 0.952 8.91E-03 0.886 2.28E-02

32 0.993 4.01E-04 0.966 5.92E-03 0.977 4.26E-03 0.974 3.72E-03 0.986 1.80E-03 0.969 4.01E-03 0.884 2.23E-02

L0032 8 0.582 6.35E-03 0.496 2.95E-02 0.496 2.92E-02 0.496 7.65E-02 0.534 2.39E-02 0.561 1.41E-05 0.533 9.14E-02

16 0.778 8.88E-03 0.496 1.24E-01 0.595 1.08E-01 0.639 7.73E-02 0.620 8.59E-02 0.684 3.84E-02 0.576 9.30E-02

24 0.869 1.39E-02 0.773 5.81E-02 0.686 9.87E-02 0.916 1.50E-02 0.742 5.78E-02 0.521 8.35E-02 0.579 1.19E-01

32 0.963 2.15E-02 0.829 3.49E-02 0.865 3.35E-02 0.797 5.47E-02 0.880 3.06E-02 0.799 4.73E-02 0.702 8.43E-02

L0064 8 0.812 3.68E-03 0.781 1.39E-02 0.802 1.10E-02 0.751 2.72E-02 0.802 9.50E-03 0.802 3.33E-03 0.702 3.21E-02

16 0.941 5.31E-03 0.894 2.56E-02 0.919 1.84E-02 0.964 4.50E-03 0.907 2.09E-02 0.853 2.07E-02 0.813 4.32E-02

24 0.972 3.10E-03 0.921 1.53E-02 0.947 8.76E-03 0.984 1.84E-03 0.959 8.91E-03 0.916 1.35E-02 0.819 3.57E-02

32 0.992 3.66E-03 0.980 2.92E-03 0.972 6.22E-03 0.988 1.33E-03 0.978 3.10E-03 0.927 1.84E-02 0.827 3.80E-02

L0135 8 0.793 1.37E-04 0.740 1.85E-02 0.778 3.00E-02 0.740 3.41E-02 0.793 1.05E-02 0.793 1.48E-04 0.582 5.97E-02

16 0.904 4.98E-03 0.857 3.03E-02 0.834 4.23E-02 0.923 1.39E-02 0.863 3.45E-02 0.847 2.41E-02 0.790 3.71E-02

24 0.982 1.37E-02 0.910 2.34E-02 0.909 2.27E-02 0.979 3.20E-03 0.918 2.40E-02 0.875 2.30E-02 0.846 3.80E-02

32 0.990 1.30E-02 0.961 6.98E-03 0.929 1.42E-02 0.971 5.55E-03 0.924 2.05E-02 0.890 2.18E-02 0.884 3.26E-02

L0158 8 0.865 1.03E-03 0.809 2.35E-02 0.834 1.07E-02 0.868 1.58E-02 0.855 7.76E-03 0.861 4.55E-16 0.670 4.68E-02

16 0.960 3.19E-03 0.931 1.34E-02 0.924 1.58E-02 0.970 3.64E-03 0.963 5.19E-03 0.918 1.31E-02 0.825 3.69E-02

24 0.988 2.69E-03 0.968 5.32E-03 0.957 8.87E-03 0.987 1.13E-03 0.983 2.22E-03 0.915 1.35E-02 0.880 2.94E-02

32 0.994 1.82E-03 0.983 2.24E-03 0.972 5.72E-03 0.979 3.31E-03 0.987 2.18E-03 0.962 8.50E-03 0.921 1.78E-02

L0226 8 0.680 2.28E-16 0.614 4.48E-02 0.679 1.04E-02 0.684 2.44E-02 0.661 1.23E-02 0.680 7.45E-05 0.561 6.85E-02

16 0.910 1.07E-02 0.866 3.50E-02 0.840 4.26E-02 0.912 2.30E-02 0.822 4.62E-02 0.760 4.64E-02 0.664 8.24E-02

24 0.987 5.91E-03 0.951 1.01E-02 0.973 9.77E-03 0.984 1.89E-03 0.953 1.11E-02 0.809 4.83E-02 0.798 4.95E-02

32 0.994 1.03E-03 0.953 8.19E-03 0.984 3.13E-03 0.990 1.09E-03 0.971 4.35E-03 0.859 3.39E-02 0.791 4.62E-02

L0699 8 0.760 2.28E-16 0.670 3.33E-02 0.727 1.83E-02 0.728 3.77E-02 0.728 2.37E-02 0.760 2.28E-16 0.601 5.31E-02

16 0.934 7.78E-03 0.832 3.56E-02 0.889 2.27E-02 0.865 2.85E-02 0.896 2.45E-02 0.833 2.84E-02 0.662 7.43E-02

24 0.988 4.64E-03 0.922 1.65E-02 0.925 1.43E-02 0.897 2.04E-02 0.953 8.70E-03 0.905 2.32E-02 0.808 7.42E-02

32 0.994 1.22E-03 0.960 6.83E-03 0.960 1.03E-02 0.963 6.47E-03 0.984 2.45E-03 0.920 1.91E-02 0.788 4.26E-02

L0879 8 0.789 9.89E-06 0.765 1.71E-02 0.733 3.13E-02 0.765 4.03E-02 0.789 6.74E-03 0.789 2.28E-16 0.705 4.08E-02

16 0.936 7.58E-03 0.891 2.92E-02 0.884 2.79E-02 0.963 6.92E-03 0.873 2.91E-02 0.853 2.23E-02 0.792 4.52E-02

24 0.981 5.95E-03 0.959 8.38E-03 0.877 2.76E-02 0.983 2.66E-03 0.919 1.91E-02 0.893 2.59E-02 0.760 5.82E-02

32 0.994 5.51E-03 0.945 1.09E-02 0.961 7.91E-03 0.969 6.45E-03 0.981 4.26E-03 0.908 2.60E-02 0.857 3.41E-02

L1074 8 0.929 6.34E-05 0.909 1.08E-02 0.909 7.15E-03 0.932 6.41E-03 0.929 4.24E-03 0.929 0.00E+00 0.833 2.63E-02

16 0.986 8.00E-04 0.976 2.79E-03 0.976 2.51E-03 0.983 1.33E-03 0.978 2.20E-03 0.965 5.00E-03 0.944 1.01E-02

24 0.995 2.31E-04 0.989 9.63E-04 0.989 1.60E-03 0.991 6.29E-04 0.990 5.82E-04 0.981 2.24E-03 0.923 1.32E-02

32 0.997 1.56E-04 0.992 9.63E-04 0.993 1.08E-03 0.995 3.91E-04 0.994 4.66E-04 0.986 1.69E-03 0.969 4.78E-03

X0017 8 0.921 2.38E-04 0.898 8.22E-03 0.896 7.49E-03 0.908 3.50E-03 0.918 1.06E-03 0.921 3.04E-04 0.869 1.15E-02

16 0.978 3.25E-04 0.959 4.91E-03 0.966 2.80E-03 0.966 2.54E-03 0.975 6.07E-04 0.966 1.63E-03 0.924 1.02E-02

24 0.989 3.28E-04 0.981 1.50E-03 0.979 2.33E-03 0.981 1.50E-03 0.988 3.13E-04 0.980 1.48E-03 0.964 3.61E-03

32 0.994 1.62E-04 0.988 1.50E-03 0.987 1.67E-03 0.988 1.12E-03 0.993 2.16E-04 0.986 1.16E-03 0.969 3.93E-03

Friedman mean rank 1.3203 4.7969 4.4219 2.5469 3.1172 4.8750 6.9219

Rank 1 5 4 2 3 6 7

https://doi.org/10.1371/journal.pone.0285211.t008
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Table 9. The FSIM results for all algorithms.

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

C0080 8 0.975 1.33E-04 0.962 4.17E-03 0.970 2.03E-03 0.964 3.40E-03 0.971 1.18E-03 0.975 3.94E-05 0.885 2.12E-02

16 0.992 2.11E-04 0.984 2.12E-03 0.987 2.02E-03 0.988 1.49E-03 0.990 9.56E-04 0.986 1.52E-03 0.939 1.04E-02

24 0.997 5.07E-04 0.993 1.23E-03 0.993 1.33E-03 0.996 4.77E-04 0.996 6.36E-04 0.990 1.48E-03 0.977 3.62E-03

32 0.998 2.77E-04 0.995 9.76E-04 0.993 1.17E-03 0.997 3.93E-04 0.998 4.65E-04 0.992 1.43E-03 0.992 1.91E-03

C0088 8 0.988 1.61E-05 0.986 6.69E-04 0.987 3.89E-04 0.987 3.53E-04 0.987 3.03E-04 0.988 3.22E-05 0.957 7.57E-03

16 0.997 1.62E-04 0.995 6.08E-04 0.995 5.93E-04 0.995 3.75E-04 0.997 9.38E-05 0.995 6.02E-04 0.989 2.20E-03

24 0.999 5.39E-05 0.997 5.21E-04 0.998 3.82E-04 0.998 2.77E-04 0.999 5.21E-05 0.998 3.63E-04 0.991 1.30E-03

32 0.999 3.48E-05 0.998 3.44E-04 0.997 3.99E-04 0.998 1.92E-04 0.999 3.25E-05 0.998 1.97E-04 0.996 8.69E-04

C0132 8 0.972 3.60E-04 0.963 5.11E-03 0.974 1.56E-03 0.976 5.06E-04 0.976 2.05E-03 0.972 3.03E-04 0.951 9.26E-03

16 0.993 2.17E-04 0.988 1.28E-03 0.989 1.69E-03 0.990 9.38E-04 0.991 9.38E-04 0.989 2.02E-03 0.977 6.35E-03

24 0.996 2.06E-04 0.993 1.42E-03 0.995 1.09E-03 0.995 6.34E-04 0.996 4.78E-04 0.993 1.20E-03 0.983 3.29E-03

32 0.998 2.79E-04 0.992 1.47E-03 0.996 9.72E-04 0.998 3.16E-04 0.998 2.39E-04 0.997 5.51E-04 0.990 2.11E-03

C0135 8 0.977 8.04E-06 0.968 2.00E-03 0.976 4.70E-04 0.976 4.25E-04 0.978 2.87E-04 0.977 7.67E-06 0.944 8.20E-03

16 0.995 1.73E-04 0.987 1.87E-03 0.992 1.10E-03 0.990 9.83E-04 0.994 4.07E-04 0.989 1.27E-03 0.951 8.64E-03

24 0.998 1.60E-04 0.994 9.36E-04 0.994 1.19E-03 0.996 4.94E-04 0.997 1.81E-04 0.995 6.62E-04 0.984 2.68E-03

32 0.999 9.61E-05 0.997 7.34E-04 0.997 5.38E-04 0.997 3.68E-04 0.999 1.57E-04 0.996 6.31E-04 0.995 1.33E-03

C0180 8 0.956 0.00E+00 0.947 4.18E-03 0.948 2.06E-03 0.951 1.22E-03 0.955 3.55E-03 0.955 3.45E-04 0.917 2.50E-02

16 0.986 6.60E-04 0.974 3.50E-03 0.978 3.18E-03 0.979 2.06E-03 0.980 1.59E-03 0.979 2.74E-03 0.961 8.50E-03

24 0.995 2.80E-04 0.982 3.12E-03 0.985 2.72E-03 0.988 1.51E-03 0.987 1.59E-03 0.987 2.30E-03 0.954 1.14E-02

32 0.998 4.18E-04 0.991 2.08E-03 0.992 1.16E-03 0.995 9.35E-04 0.992 1.19E-03 0.991 2.81E-03 0.967 6.64E-03

C0536 8 0.947 1.43E-04 0.941 7.41E-03 0.942 5.99E-03 0.947 6.61E-03 0.947 2.75E-03 0.947 4.55E-16 0.934 1.08E-02

16 0.988 1.77E-03 0.981 2.34E-03 0.983 2.10E-03 0.985 1.29E-03 0.983 1.02E-03 0.981 4.16E-03 0.967 8.89E-03

24 0.996 7.85E-04 0.990 2.24E-03 0.990 1.86E-03 0.992 1.19E-03 0.989 8.61E-04 0.986 2.58E-03 0.972 9.37E-03

32 0.997 2.70E-04 0.990 2.03E-03 0.995 1.17E-03 0.995 6.55E-04 0.995 7.87E-04 0.991 1.78E-03 0.979 3.89E-03

C1088 8 0.951 8.77E-04 0.928 8.46E-03 0.921 8.23E-03 0.937 5.06E-03 0.947 1.83E-03 0.949 4.13E-04 0.799 4.52E-02

16 0.990 6.26E-04 0.963 6.40E-03 0.975 4.30E-03 0.985 1.73E-03 0.983 2.61E-03 0.975 4.34E-03 0.878 2.48E-02

24 0.996 4.42E-04 0.982 3.54E-03 0.989 1.61E-03 0.992 1.46E-03 0.994 1.00E-03 0.994 2.96E-03 0.979 1.06E-02

32 0.998 2.02E-04 0.990 1.57E-03 0.993 1.68E-03 0.993 1.31E-03 0.996 7.79E-04 0.994 1.83E-03 0.971 7.71E-03

L0032 8 0.921 6.75E-04 0.917 1.76E-03 0.917 1.57E-03 0.917 1.25E-02 0.919 1.96E-03 0.919 1.44E-04 0.884 3.37E-02

16 0.943 1.93E-03 0.917 2.62E-02 0.923 2.59E-02 0.927 1.88E-02 0.924 2.33E-02 0.924 9.88E-03 0.926 2.44E-02

24 0.980 8.13E-03 0.944 1.74E-02 0.932 2.61E-02 0.994 2.82E-03 0.900 2.24E-02 0.972 2.24E-02 0.918 3.44E-02

32 0.997 5.54E-03 0.955 9.36E-03 0.974 7.09E-03 0.947 1.52E-02 0.958 1.34E-02 0.829 3.63E-02 0.939 2.12E-02

L0064 8 0.969 5.92E-04 0.965 1.73E-03 0.968 1.98E-03 0.958 4.17E-03 0.967 1.31E-03 0.967 5.74E-04 0.944 1.07E-02

16 0.993 6.84E-04 0.985 3.19E-03 0.991 1.23E-03 0.995 4.15E-04 0.990 2.22E-03 0.983 4.46E-03 0.980 7.06E-03

24 0.997 3.60E-04 0.991 1.65E-03 0.994 1.10E-03 0.997 4.47E-04 0.997 9.12E-04 0.996 1.80E-03 0.975 7.58E-03

32 0.999 2.20E-04 0.998 6.91E-04 0.997 6.62E-04 0.999 3.46E-04 0.998 2.71E-04 0.996 2.42E-03 0.990 5.83E-03

L0135 8 0.967 4.77E-04 0.950 4.98E-03 0.963 3.52E-03 0.950 5.04E-03 0.967 5.39E-04 0.967 4.28E-04 0.865 3.01E-02

16 0.992 1.15E-03 0.978 3.88E-03 0.972 5.53E-03 0.993 1.86E-03 0.982 4.50E-03 0.979 4.13E-03 0.952 9.37E-03

24 0.998 6.89E-04 0.992 1.43E-03 0.991 1.36E-03 0.995 9.63E-04 0.995 8.49E-04 0.990 2.44E-03 0.981 7.88E-03

32 0.999 3.56E-04 0.996 7.33E-04 0.996 7.45E-04 0.994 1.70E-03 0.995 8.54E-04 0.987 2.41E-03 0.984 6.54E-03

L0158 8 0.964 5.09E-04 0.948 7.99E-03 0.954 3.67E-03 0.967 5.80E-03 0.960 3.09E-03 0.962 0.00E+00 0.921 1.65E-02

16 0.992 1.14E-03 0.983 3.95E-03 0.981 5.72E-03 0.996 7.57E-04 0.994 1.24E-03 0.988 6.61E-03 0.959 1.48E-02

24 0.998 7.64E-04 0.994 1.22E-03 0.991 2.42E-03 0.998 2.76E-04 0.998 3.94E-04 0.990 2.85E-03 0.977 1.17E-02

32 0.999 3.70E-04 0.998 3.13E-04 0.994 1.37E-03 0.997 4.39E-04 0.998 3.72E-04 0.992 1.80E-03 0.984 3.77E-03

(Continued)

PLOS ONE An improved golden jackal optimization for multilevel thresholding image segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0285211 May 5, 2023 29 / 37

https://doi.org/10.1371/journal.pone.0285211


results in processing optical aerial images. Combined with the analysis of the results for

CEC2022 test suite in the previous section, it is reasonable to presume that the current results

can be maintained when HGJO is applied to a wider range of optical aerial image segmentation

in the future. In addition, an interesting phenomenon worth our attention is that the improved

algorithm has a certain loss in the performance of land images which is named at the begin-

ning of “L”. By comparing with the original image, we can observe that these images all have a

common feature, including many small objects, which greatly increases the difficulty of seg-

mentation. Therefore, in the future work, we can further optimize the segmentation problem

of such images.

Fig 15 displays the segmentation results of each algorithm on the test image C0180 with a

threshold level of 8. They are the original image, HGJO segmentation result, GJO segmenta-

tion result, IGJO segmentation result, RUN segmentation result, AOA segmentation result,

DE(OBL) segmentation result and PSO(OBL) segmentation result in order. It is worth noting

that only the image results with a threshold level of 8 are shown here, because it is impossible

to intuitively feel the quality of the segmentation results in the high threshold segmentation

results through human eye observation. Therefore, image results with a threshold level above 8

are not listed separately. With this figure, we can intuitively feel that the island in the optical

aerial image segmented by HGJO have more distinct contours. In addition, by comparing the

seabed distribution features in the segmentation results, we can observe that the competition

algorithms ignore these details. However, HGJO preserves almost all the features of ocean dis-

tribution. Therefore, it can be concluded that HGJO can effectively segment complex ocean

distribution optical aerial images with high quality. In summary, the proposed HGJO can

Table 9. (Continued)

Image Name Level HGJO GJO IGJO RUN AOA DE PSO

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

L0226 8 0.960 0.00E+00 0.941 5.84E-03 0.963 1.44E-03 0.953 2.15E-03 0.961 1.00E-03 0.961 2.56E-04 0.876 2.49E-02

16 0.990 8.55E-04 0.986 2.51E-03 0.986 2.03E-03 0.987 1.25E-03 0.984 3.05E-03 0.989 3.25E-03 0.972 8.56E-03

24 0.998 4.03E-04 0.994 1.01E-03 0.991 1.49E-03 0.995 7.68E-04 0.996 6.68E-04 0.988 2.81E-03 0.981 7.68E-03

32 0.999 1.09E-04 0.995 1.05E-03 0.996 6.03E-04 0.997 4.02E-04 0.997 3.57E-04 0.995 1.75E-03 0.991 3.28E-03

L0699 8 0.943 0.00E+00 0.918 9.03E-03 0.937 3.67E-03 0.936 9.32E-03 0.937 6.95E-03 0.943 0.00E+00 0.948 2.85E-02

16 0.986 2.34E-03 0.960 8.36E-03 0.973 5.58E-03 0.968 6.71E-03 0.974 5.98E-03 0.958 8.86E-03 0.923 2.14E-02

24 0.997 9.79E-04 0.987 3.22E-03 0.985 3.11E-03 0.981 4.08E-03 0.990 2.14E-03 0.979 6.18E-03 0.935 1.77E-02

32 0.999 2.49E-04 0.994 1.88E-03 0.993 2.09E-03 0.995 8.85E-04 0.999 7.23E-04 0.982 5.05E-03 0.953 1.18E-02

L0879 8 0.962 7.77E-05 0.955 4.93E-03 0.944 8.41E-03 0.955 8.43E-03 0.962 1.80E-03 0.962 2.28E-16 0.958 2.30E-02

16 0.993 1.05E-03 0.987 2.93E-03 0.985 3.04E-03 0.994 8.56E-04 0.984 3.28E-03 0.987 3.62E-03 0.975 1.08E-02

24 0.998 5.37E-04 0.995 9.02E-04 0.983 3.30E-03 0.997 4.97E-04 0.992 1.82E-03 0.985 2.70E-03 0.958 9.37E-03

32 0.999 3.64E-04 0.994 1.08E-03 0.997 5.13E-04 0.998 1.49E-03 0.998 2.75E-04 0.995 1.86E-03 0.990 6.74E-03

L1074 8 0.983 1.08E-04 0.978 2.66E-03 0.978 1.74E-03 0.983 7.57E-04 0.983 8.91E-04 0.983 0.00E+00 0.982 8.03E-03

16 0.996 2.65E-04 0.994 8.05E-04 0.993 1.17E-03 0.996 5.68E-04 0.996 6.06E-04 0.994 1.36E-03 0.989 3.70E-03

24 0.999 1.15E-04 0.998 6.61E-04 0.998 6.14E-04 0.997 3.67E-04 0.999 9.92E-05 0.996 9.59E-04 0.995 1.89E-03

32 0.999 7.77E-05 0.999 3.86E-04 0.998 5.77E-04 0.999 1.52E-04 0.999 4.11E-05 0.998 3.90E-04 0.994 1.60E-03

X0017 8 0.984 4.13E-05 0.979 1.94E-03 0.979 1.70E-03 0.980 1.13E-03 0.984 2.07E-04 0.984 9.19E-05 0.968 4.20E-03

16 0.996 1.18E-04 0.990 1.52E-03 0.993 8.46E-04 0.993 8.67E-04 0.995 1.69E-04 0.991 9.11E-04 0.981 3.24E-03

24 0.998 1.31E-04 0.996 3.31E-04 0.996 5.48E-04 0.996 3.13E-04 0.998 1.13E-04 0.995 6.34E-04 0.990 1.91E-03

32 0.999 7.92E-05 0.997 3.82E-04 0.997 4.43E-04 0.998 2.82E-04 0.999 5.66E-05 0.997 3.27E-04 0.990 1.43E-03

Friedman mean rank 1.5547 5.0938 4.4531 3.2031 2.6484 4.3125 6.7344

Rank 1 6 5 3 2 4 7

https://doi.org/10.1371/journal.pone.0285211.t009
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Table 10. Comparison of the Wilcoxon signed-rank test for Otsu method.

Image Name Level HGJO vs. GJO HGJO vs. IGJO HGJO vs. RUN HGJO vs. AOA HGJO vs. DE HGJO vs. PSO

C0080 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.906E-03 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C0088 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 1.734E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C0132 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.578E-05 ++ 6.104E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C0135 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 1.090E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C0180 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 9.766E-02 — 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C0536 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 8.411E-05 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

C1088 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 8.731E-03 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L0032 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 1.289E-01 — 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 2.875E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 2.643E-05 ++ 3.051E-05 ++ 2.489E-05 ++

L0064 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 6.168E-02 — 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L0135 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 8.356E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L0158 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 1.367E-02 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++
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Table 10. (Continued)

Image Name Level HGJO vs. GJO HGJO vs. IGJO HGJO vs. RUN HGJO vs. AOA HGJO vs. DE HGJO vs. PSO

L0226 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ NaN — 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L0699 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 4.648E-01 – 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L0879 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 9.766E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

L1074 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 6.250E-02 — 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

X0017 8 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 5.662E-04 ++ 3.090E-05 ++

16 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

24 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

32 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++ 3.090E-05 ++

https://doi.org/10.1371/journal.pone.0285211.t010

Fig 15. The segmentation results for C0180.

https://doi.org/10.1371/journal.pone.0285211.g015
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effectively handle optical aerial image segmentation and provide effective help for the subse-

quent data processing and data acquisition.

Furthermore, the segmentation histogram for each channel is also shown in Appendix A–G

in S1 Appendix. By comparing these images, we can see that, the results of HGJO segmenta-

tion on the red, green, and blue channels can retain more details. This shows that for optical

aerial images, the proposed algorithm has more advantages and can retain more details after

segmentation than other algorithms, which is helpful for subsequent image processing.

6. Conclusions

Aerial photography images can provide a wealth of information for scientific researchers. Multi-

level threshold segmentation of aerial images can effectively reduce the complexity of subsequent

image processing while preserving the original features. This paper introduces a new optimization

algorithm, the Golden Jackal Optimization (GJO) algorithm, which suffers from convergence

issues and the tendency to get stuck in local optima. Therefore, an improved version of GJO,

which is named HGJO, is proposed in this paper to enhance the search capabilities and avoid get-

ting stuck in local optima, to optimize the process of multilevel thresholding segmentation. The

performance of the proposed method is compared with six different meta-heuristics, including

GJO, IGJO, RUN, AOA, DE(OBL), and PSO(OBL), on the IEEE CEC2022 benchmark test func-

tion. Based on the experimental results, the proposed algorithm outperforms all other algorithms

in terms of convergence accuracy and stability. In addition, the Otsu method is used as an objec-

tive function to perform multi-level threshold segmentation on a set of aerial images. PSNR,

SSIM, and FSIM are used as evaluation metrics to assess the quality of the segmented images pro-

duced by each algorithm. Moreover, the Friedman mean rank test and the Wilcoxon rank-sum

test are used to verify the segmentation results. The experimental results show that HGJO outper-

forms other algorithms in terms of overall performance. The proposed algorithm can effectively

reduce the image complexity while preserving the original features, thereby improving the effi-

ciency of the subsequent image processing. In general, the results of this study are satisfactory, but

there are certain shortcomings. Firstly, the introduction of OBL and Cauchy operators increases

the computation time of the original algorithm, making the proposed method less efficient than

most algorithms (only better than RUN). Secondly, there is a performance loss in complex image

segmentation, such as test images L0032, L0064, and L0135, thus further work is needed to

improve the algorithm’s performance in these types of image segmentation.

In future work, we will further validate and improve the proposed algorithm through more

extensive problems, such as medical image segmentation. In addition, we will try to apply

HGJO to other more complex problems, such as neural networks, remote sensing data pro-

cessing, and UAV path analysis. Furthermore, improving the computational efficiency of

HGJO would be a significant contribution.
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