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Abstract

Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and

presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence

risk in NSCLC patients at diagnosis could be essential to designate risk patients to more

aggressive medical treatments. In this manuscript, we apply a transfer learning approach to

predict recurrence in NSCLC patients, exploiting only data acquired during its screening

phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a pri-

mary tumor CT image and clinical information. Starting from the CT slice containing the

tumor with maximum area, we considered three different dilatation sizes to identify three

Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from

each ROI, we extracted radiomic features by means of different pre-trained CNNs. The lat-

ter have been combined with clinical information; thus, we trained a Support Vector Machine

classifier to predict the NSCLC recurrence. The classification performances of the devised

models were finally evaluated on both the hold-out training and hold-out test sets, in which

the original sample has been previously divided. The experimental results showed that the

model obtained analyzing CROP 20 images, which are the ROIs containing more peritu-

moral area, achieved the best performances on both the hold-out training set, with an AUC

of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-

out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of

0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure

for early predicting recurrence risk in NSCLC patients.

Introduction

Lung cancer is one of the most aggressive cancer types with a 5-year relative survival rate of

only 19%. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases and is

one of the most fatal cancers worldwide [1]. Treatment approaches for NSCLC patients differ
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depending on stage, histology, genetic alterations, and patient’s condition. Locally advanced

NSCLC patients are non-surgical candidates and currently treated with chemoradiotherapy

eventually followed by immunotherapy. On the other hand, for early stages of NSCLC, surgi-

cally resection and consequent adjuvant chemotherapy are recommended. Though surgically

resection remains the only potentially curative treatment for early-stage NSCLC, 30–55% of

these patients develop a post-resection tumor recurrence within the first 5 years. Several stud-

ies demonstrated patients’ outcome after surgically resection is often affected by an underesti-

mation of the tumor stage, due to the presence of occult micro-metastatic cancer cells

undetectable by standard staging methods, such as modern diagnostic imaging. Also, in some

cases, surgery itself could lead to the dissemination of cancer cells [2]. Thus, an early identifica-

tion of which patients are more prone to develop a NSCLC recurrence is crucial to define per-

sonalized treatment approaches and improving patients’ prognosis.

Actually, the application of artificial intelligence techniques could be fundamental in devel-

oping tools able to support clinicians in defining personalized therapeutic surveillance plans,

after identifying patients at high risk of relapse.

In the clinical pathway, biomedical imaging, such as magnetic resonance (MR), computed

tomography (CT), or positron emission tomography (PET), plays a pivotal role, offering sev-

eral non-invasive modalities for the high-resolution three-dimensional visualization and char-

acterization of the cancer lesion. Besides, the predictive and prognostic power of radiomic

signature extracted from biomedical images is now well established in the scientific commu-

nity [3–8]. So far, several radiomic-based models have been proposed for lung cancer setting

to solve different tasks [9–13]. While several works are focused on the prediction of histologi-

cal outcome, tumor staging, recurrence free survival and overall survival for NSCLC patients

[14–32], the state of the art is poor of models designed for early prediction of disease recur-

rence [33–41]. Additionally, even though all the proposed models show encouraging results,

they are not yet suitable for a clinical application, even when they involve genomic-based mod-

els that are expensive and time-consuming procedures [33]. Therefore, the early prediction of

recurrence in NSCLC patients is still an unmet clinical need with a strong translational

interest.

To this end, herein we propose a radiomic-based model for predicting the NSCLC recur-

rence exploiting features extracted from pre-treatment CT images throughout pre-trained

Convolutional Neural Networks (CNNs). Pre-trained CNNs refer to a transfer learning

approach which allows to extract radiomic features from images according to which the net-

works have previously learned during training on a very huge (millions) number of images of

different nature. Thus, the knowledge acquired from the network during this training phase,

such as dots and edges, as well as high-level features like shapes and objects from raw images,

has been then transferred and applied on CT images of our sample patients [10, 42–46]. For

our purpose, we used a public database contained both CT images and clinical data of NCSLC

patients, and we analyzed them conjointly to develop a suitable supervised machine learning

model [47]. Specifically, we compared the results obtained using multiple state-of-the-art pre-

trained CNNs for radiomic feature extraction, and we evaluated performances achieved exam-

ining different regions of interest (ROIs) at different dilatations, to investigate the predictive

power of the peritumoral region, namely, the tissue connecting the tumor and the normal

tissue.

This manuscript is organized as follows: in Section 2, Materials and Methods, we introduce

the used dataset, the feature extraction procedure by a transfer learning approach, and the

designed learning model; in Section 3–4, Results and Discussion, we present and discuss the

computed performances comparing our study with the state-of-the-art about NSCLC recur-

rence prediction.
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Materials and methods

Experimental dataset

In this work, we used a public radiogenomics dataset of NSCLC available in the Cancer Imag-

ing Archive (TCIA) [47]. Both imaging and clinical data have been de-identified by TCIA and

approved by the Institutional Review Board of the TCIA hosting institution. Ethical approval

was reviewed and approved by Washington University Institutional Review Board protocols.

Written informed consent was obtained from all individual participants involved.

The whole database consisted of 211 subjects divided in two cohorts:

1. the R01 cohort comprising 162 patients (38 females and 124 males, age at scan: mean 68,

range: 42–86) from Stanford University School of Medicine (69) and Palo Alto Veterans

Affairs Healthcare System (93) recruited between April 7th 2008 and September 15th, 2012;

2. the second AMC cohort consists of 49 additional subjects (33 females, 16 males, age at scan:

mean 67, range 24–80) was retrospectively collected from Stanford University School of

Medicine based on the same criteria.

Since only (1) the database 1 included the segmentations of the axial CT images, for this

preliminary study we focused on the cohort R01. Besides, since the tumor segmentation masks

was not available for 18 patients belonged to the cohort R01, the final number of patients

involved in this study was equal to 144, of which 40 (27.78%) with a recurrence event within 8

years from the first tumor diagnosis. For each patient, a CT image in DICOM format, as well

as clinical data were provided. Concerning CT images, these were acquired by preoperative

CT scans with a thickness of 0.625–3 mm and an X-ray tube current at 124–699 mA at 80–140

KVp. Consequently, the related segmentations were defined on the axial CT image series by

thoracic radiologists with more than 5 years of experience and adjusted using ePAD software

[47].

For each patient, along with the CT image, the following clinical data were collected: age at

diagnosis, weight, gender (values: female, male), pack Years, histology (values: adenocarci-

noma, squamous cell carcinoma, not otherwise specified), pathological T stage (values: T1, T2,

T3, T4) [48], pathological N stage (values: N0, N1, N2) [48], histopathological grade (values:

G1, G2 and G3) [49], lymph-vascular invasion (values: absent, present, not collected) and pleu-

ral invasion (values: yes, no). An overview about the sample properties is provided by Table 1.

Feature extraction by transfer learning approach

For each patient, the first step consisted in automatically identifying, among all segmentation

masks, the mask with largest tumor area, that is, the segmentation mask characterized by the

greatest number of pixels having an intensity value equals to 255, i.e., white pixels. Segmenta-

tion masks, which were generated by authors of the public database, were obtained using an

unpublished automatic segmentation algorithm based on semantic annotations ascribed by an

expert radiologist, and then reviewed by two thoracic radiologists with more than 5 years of

experience which edited them as necessary [47].

After identifying the corresponding CT slice, we defined a bounding box around the extre-

mal points of the tumour in the four planar x-y dimensions. So, we cropped the correspondent

CT slide considering three different dilatation sizes: 0 (no dilatations), 10 and 20 additional

pixels along the four extremal points. In this way, for each patient, we identified the following

Regions of Interest (ROI)s: CROP (with no dilations), CROP 10 (obtained adding 10 pixels)

and CROP 20 (obtained adding 20 pixels). The whole ROI extraction procedure is depicted in

Fig 1.
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Next, as depicted in Fig 2A, from each ROI we extracted radiomic features using three pre-

trained convolutional neural networks (CNNs), namely, AlexNET, ResNet152V2 and Incep-

tionV3, after resizing all ROIs to the specific dimension required by each network. Pre-trained

CNNs have been trained on more than a million images belonging to a subset of the ImageNet

database [50], and can classify images into 1000 object categories. Pre-trained networks are

mainly characterized for their accuracy and their relative running time. Therefore, choosing

the pre-trained CNN to be implemented means finding a well-balanced compromise between

these characteristics. Accordingly, pre-trained CNNs we selected represent three different

well-balanced compromises between accuracy and relative running time [51].

Table 1. Clinical features distribution over the study population.

Feature Distribution

Overall 144; 100%

Age at diagnosis

Median; [q1, q3] 69; [64, 76]

Weight (Ibs)

Median; [q1, q3] 173.5; [145.13, 198.90]

Nan (abs; %) 10; 6.94%

Gender

Female (abs; %) 36; 25%

Male (abs; %) 108; 75%

Pack Years

Median; [q1, q3] 40; [20, 54]

Nan (abs; %) 27; 18.75%

Histology

Adenocarcinoma (abs; %) 112; 77.77%

Squamous cell carcinoma (abs; %) 29; 20.14%

Not otherwise specified (abs; %) 3; 2.08%

Pathological T stage

T1 (abs; %) 74; 51.39%

T2 (abs; %) 49; 34.03%

T3 (abs; %) 16; 11.11%

T4 (abs; %) 5; 3.47%

Pathological N stage

N0 (abs; %) 115; 79.86%

N1 (abs; %) 12; 8.33%

N2 (abs; %) 17; 11.8%

Histopathological Grade

G1 (abs; %) 37; 25.69%

G2 (abs; %) 80; 55.56%

G3 Poorly differentiated (abs; %) 27; 18.75%

Lymph-vascular invasion

Absent (abs; %) 121; 84.03%

Present (abs; %) 18; 12.5%

Nan (abs; %) 5; 3.47%

Pleural invasion

No (abs; %) 105; 72.92%

Yes (abs; %) 39; 27.08%

“Nan” stands for “Not A Number”, “abs” stands for “absolute value”.

https://doi.org/10.1371/journal.pone.0285188.t001
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Concerning AlexNET [44], which requires input images resized to 227×227 pixels, we

extracted features from the pool2 layer of the network architecture which corresponds to the

second pooling layer after the second convolutional layer of the network. The pool2 layer has

an output with dimensions of 13×13×256 that is flattening to a single 43264-length vector. As

consequence, the number of extracted features is 43264 in total for each ROI of every patient.

Fig 1. ROI extraction process. After identifying the tumor segmentation with maximum area, along with the corresponding CT image, three ROIs

were extracted for each patient: CROP, CROP 10 and CROP 20.

https://doi.org/10.1371/journal.pone.0285188.g001

Fig 2. Schematic overview of the proposed approach. (a) After extracting radiomic features by means of three

different pre-trained CNNs from each identified crop, (b) we performed a feature selection procedure within a 10-fold

cross-validation scheme over 5 rounds on the hold-out training set. (c) Then, we trained a SVM classifier on the hold-

out training set exploiting both clinical data and radiomic features extracted in the previous step. Finally, we

performed an external validation on the hold-out test set.

https://doi.org/10.1371/journal.pone.0285188.g002
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Concerning ResNet152V2 [52], which requires input images resized to 224×224 pixels, we

extracted features using the max_pooling2d layer, which corresponds also in this case to the

second pooling layer after the second convolutional layer and has an output with dimensions

of 28×28×256 flattened to a single 200794-length vector. Thus, for each ROI of every patient

the number of features extracted is equal to 200794.

Finally, we extracted features from the max_pooling2d layer, the second one after the sec-

ond convolutional layer of the InceptionV3 network architecture [53], after resizing images to

299×299 pixels. The max_pooling2d layer has an output with dimensions of 35×35×192 that is

flattening to a single 235200-length vector. As consequence, the number of extracted features

is 235200 in total for each ROI of every patient.

So, for each pre-trained network, we exploited pool2 layer for feature extraction. This is

because pool2 layer is one of the initial layers of the network and returns low-level features,

i.e., representations of local details of an image, such as edges, dots, and curves. These details

would otherwise be obscured considering only global information extracted from later layers

of the network. Additionally, we extracted features from a pooling layer rather than a convolu-

tional layer to preserve the invariance to truncation, occlusion, and translation [54].

All the analysis steps have been performed by using MATLAB R2022a (Mathworks, Inc.

Natick, MA, USA) software.

Learning model

Using both clinical data and radiomic features extracted in the previous step, our aim was to

devise a model for predicting recurrence event in NCSLC. The flowchart of the implemented

method is shown in Fig 2. After implementing the feature extraction procedure previously

described, we performed a stratified randomly sampling on the overall dataset, in order to split

the 144 NSCLC patients in a hold-out training set, containing 80% of the sample, and a hold-

out test set, containing 20% of the sample. As a consequence, the hold-out training set con-

sisted of 116 patients, of which 81 control cases and 35 recurrence cases. While the hold-out

test set consisted of 28 patients, of which 23 control cases and 5 recurrences.

Consequently, we developed nine learning models which discriminate between recurrence

and non-recurrence patients, exploiting normalized features extracted by means of the three

different pre-trained CNNs from the CROP, the CROP 10 and the CROP 20, by turns.

For each devised model, we firstly selected the only features whose variance was not equal

to zero, and then we performed a feature selection procedure on the hold-out training set (Fig

2B). Thus, we recorded the features with an Area Under the Curve (AUC) value greater than

0.7 over 5 rounds of a finetuning procedure. Specifically, for each round, the hold-out training

set was partitioned into 10 smaller sets, and each of these sets was removed by turns for evalu-

ating features predictive power.

At the end of this iterative procedure, we selected the subset of radiomic features that

showed an AUC above this threshold at least 40% for AlexNET, 60% for ResNet152V2 and

100% InceptionV3. These thresholds have been found to be the optimal ones after evaluating

classification performances achieved by our model according to all possible frequencies.

Though these frequencies differ from each other due to the different architectures of the

employed networks, they represent the best trade-off between high performances and low-

dimensional datasets. Interim results were not reported to not burden the discussion.

According to this features reduction step, we obtained a subset of significative features for

each applied CNN. Then, after estimating the missing clinical data of the database by means of

the Miss Forest imputation technique [55], we combined each radiomic feature subset with

the clinical data, in order to train a SVM classifier on the hold-out training set within a 10-fold
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cross-validation scheme over 5 rounds, as depicted in Fig 2C. SVM is a supervised machine

learning model which detects the hyperplane that has the maximum distance between data

points of both classes, through a specific kernel function. For our study the linear function was

adopted. Finally, we evaluated all the developed classification models on the hold-out test set

using the optimal feature subset identified on hold-out training set (external validation in

Fig 2).

For both the hold-out training and the hold-out test set we evaluated performances of all

used models in terms of AUC, as well as Accuracy (Acc), Sensitivity (Sens), Specificity (Spe),

which are metrics calculated by identifying the optimal threshold by means of a Youden’s

index test [56].

Results

Table 1 summarized the characteristics of the analyzed sample. For Age at Histological Diag-

nosis, Weight, and Pack Years median, first quartile q1 and third quartile q3 are reported. For

the other clinical features, the absolute and relative frequencies are reported.

Classification performances achieved by all models on CROP, CROP 10 and CROP 20

images are summarized in Tables 2–4, respectively. Specifically, each table includes perfor-

mances obtained on both the hold-out training and the hold-out test sets, along with the num-

ber of radiomic features selected within the feature selection procedure and exploited for

training the related model.

Concerning CROP images, Table 2 shows how the best performances on the hold-out train-

ing set were reached with 8 residual radiomic features extracted by AlexNET: AUC = 0.73,

Acc = 0.61, Sens = 0.63, and Spe = 0.60. On the other hand, the best performances on the hold-

out test set were obtained involving 27 residual features extracted by InceptionV3:

AUC = 0.68, Acc = 0.68, Sens = 0.80, and Spe = 0.65.

Considering CROP 10 images, Table 3 reveals how the best performances on the hold-out

training set have been reached exploiting 11 residual radiomic features extracted by

ResNet152V2: AUC = 0.80, Acc = 0.78, Sens = 0.66, and Spe = 0.84. However, on the hold-out

test set, the best performances were obtained by analyzing 4 residual radiomic features

extracted via AlexNET: AUC = 0.79, Acc = 0.82, Sens = 0.80, and Spe = 0.83. referring to

InceptionV3, its performances were stable on both the hold-out training and hold-out test

sets.

Table 2. Classification performances achieved with CROP images on both hold-out training and hold-out test sets.

HOLD-OUT TRAINING HOLD-OUT TEST

CNN features AUC Acc Sens Spe AUC Acc Sens Spe

AlexNET+clinical 8 0.73 0.61 0.63 0.60 0.64 0.71 0.40 0.78

ResNet152V2+clinical 16 0.71 0.66 0.71 0.63 0.54 0.39 1.0 0.26

InceptionV3+clinical 27 0.66 0.67 0.74 0.64 0.68 0.68 0.80 0.65

https://doi.org/10.1371/journal.pone.0285188.t002

Table 3. Classification performances achieved with CROP 10 images on both hold-out training and hold-out test sets.

HOLD-OUT TRAINING HOLD-OUT TEST

CNN features AUC Acc Sens Spe AUC Acc Sens Spe

AlexNET+clinical 4 0.73 0.61 0.63 0.60 0.79 0.82 0.80 0.83

ResNet152V2+clinical 11 0.80 0.78 0.66 0.84 0.54 0.50 1.0 0.39

InceptionV3+clinical 11 0.75 0.70 0.83 0.64 0.72 0.89 0.60 0.96

https://doi.org/10.1371/journal.pone.0285188.t003
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Finally, as far as CROP 20 images, Table 4 shows how the best performances on the hold-

out training set have been achieved involving 17 residual radiomic features extracted by

ResNet152V2: AUC = 0.78, Acc = 0.72, Sens = 0.83, and Spe = 0.68. These performances

decreased on the hold-out test set in terms of Sensitivity (0.60). Actually, the best performances

on the hold-out test set were reached with 7 residual radiomic features extracted by AlexNET:

AUC = 0.83, Acc = 0.79, Sens = 0.80, and Spe = 0.78.

Comparing results obtained on the hold-out test set analyzing the three different CROPs,

performances achieved on CROP 20 images resulted the best ones.

Actually, for each patient, further ROIs were identified exploring other dilatation sizes,

such as, 30, 40, 50 and 60 additional pixels along the four extremal points (S1 Fig). However,

classification performances achieved by our models on all these images decreased significantly,

probably because of a too large zone of peritumoral tissue considered which could also include

surrounding regions, such as, the backbone, which could be confounding elements for model

learning. With the purpose of showing how surrounding regions containing confounding ele-

ments really affect performances, in S2 Fig we depicted AUC values achieved by models

trained on features extracted by AlexNET pool2 layer from CROP 0, CROP 10, CROP 20,

CROP 30, CROP 40, CROP 50 and CROP 60. Moreover, middle dilatation sizes were investi-

gated, but the most appropriate criterion resulted the one we adopted. Interim results were not

reported to not burden the discussion.

Finally, pool1, pool2 and pool5 layers of the AlexNET network were exploited to extract fea-

tures on the CROP 20 images, with the aim of demonstrating the second pooling layer provides

the most relevant information (S3 Fig).

Discussion

An early and accurate prediction of recurrence risk in NSCLC patients during diagnosis could

be essential to promptly designate risk patients to more aggressive medical therapies, and, on

the other hand, to spare no risk patients from unnecessary invasive treatments [1]. For this

purpose, it could be important to design a model able to assess in NSCLC patients the recur-

rence risk during diagnosis. Nowadays, in the clinical practice, CT imaging represents the gold

standard for NSCLC diagnosis. Therefore, the goal of this study is to define a model able to

predict the NSCLC recurrence risk exploiting both clinical data and a CT image of the primary

tumor, which are both acquired during the screening phase.

We analyzed a public radiogenomic database, from which a sub-cohort of 144 patients with

available CT images, segmentation tumor masks and clinical data have been selected [47]. In

order to evaluate the information contained both in the tumor region and in the peritumoral

area, once the image with largest tumor was identified, we cropped the image with dilatation

sizes 0, 10 and 20 and extracted radiomic features via CNNs. The entire sub-cohort was

divided into a hold-out training dataset and a hold-out test dataset corresponding to the 80%

and 20% of the entire sample, respectively. Then, after reducing the radiomic features and

combining them with clinical information a linear SVM classifier was trained and the perfor-

mances on the hold-out training set and the hold-out test set were computed.

Table 4. Classification performances achieved with CROP 20 images on both hold-out training and hold-out test sets.

HOLD-OUT TRAINING HOLD-OUT TEST

CNN features AUC Acc Sens Spe AUC Acc Sens Spe

AlexNET+clinical 7 0.73 0.61 0.63 0.60 0.83 0.79 0.80 0.78

ResNet152V2+clinical 17 0.78 0.72 0.83 0.68 0.63 0.79 0.60 0.83

InceptionV3+clinical 6 0.72 0.63 0.86 0.53 0.73 0.68 1.0 0.61

https://doi.org/10.1371/journal.pone.0285188.t004
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We have explored various CNNs, namely, AlexNET, ResNET152V2, and InceptionV3, and

then we compared the related performances after suitably reducing the extracted features. Our

best results were obtained investigating the predictive power of CROP 20 images, which are

the images containing more peritumoral area. Particularly, on the hold-out training set our

model achieved an AUC value equals to 0.73, an Accuracy equals to 0.61, a Sensitivity equals

to 0.63, and a Specificity equals to 0.60. Even more promising performances were achieved on

the hold-out test set with an of AUC 0.83, an Accuracy of 0.79, a Sensitivity of 0.80, and a Spec-

ificity 0.78. These results represent the best performances in terms of balance between hold-

out training and hold-out test sets. While ResNET152V2 and InceptionV3 seem to be generally

more performing on the hold-out training set, AlexNET appeared to give better performances

on the independent test. Hence, classification performances resulted partially sensitive to pre-

trained CNN choice due to the different accuracy characterizing pre-trained networks. Indeed,

choosing a pre-trained CNN to be implemented means finding a well-balanced compromise

between accuracy and relative running time.

Moreover, comparing these results with the ones obtained by analyzing both images with-

out dilatations (CROP) and images containing a smaller dilatation (CROP 10), it is evident

how the peritumoral region allowed us to retrieve more discriminant information about

NSCLC recurrence prediction. As previously reported by our group in a study assessing the

sentinel lymph-node status in breast cancer patients by ultrasound images of the primary

tumor, we concluded the peritumoral region was essential for accurate predicting the outcome

[6]. Other dilatation sizes, such as, 30, 40, 50 and 60 additional pixels, as well as middle dilata-

tion sizes, were also investigated. On the one hand, classification performances achieved on

CROP 30, CROP 40, CROP 50 and CROP 60 images decreased significantly, probably because

of a too large zone of peritumoral tissue considered which could also include surrounding

regions, such as, the backbone, which could be confounding elements for model learning. On

the other hand, middle dilatation sizes did not appreciably contribute to improve classification

performances. Consequently, the most appropriate criterion resulted the one we adopted.

Our results are comparable with those obtained by Wang et al. who analyzed CT images

from a cohort of 157 NSCLC patients using only handcrafted-radiomic features, which are

however operator dependent. In their study, they reached an Accuracy equals to 0.85 [37].

On the other hand, S. Hindocha et al. developed a model able to predict recurrence, recur-

rence-free survival, and overall survival of NSCLC patients, by employing only clinical features

collected from a cohort of 657 patients. Considering the recurrence prediction, authors

reached an AUC value equals to 0.69 and 0.72 for the validation and external datasets, respec-

tively [38].

With respect to NSCLC recurrence studies involving features extracted by means of convo-

lutional neural networks, P. Aonpong et al. used the same radiogenomic database analyzed in

the present study to predict the NSCLC recurrence devising a genotype-guided radiomic

model [33]. For their specific goal, a sub-cohort of 88 patients was considered. Their model

predicted the NSCLC recurrence via gene expression data extracted from CT images vis CNNs

and achieved an AUC of 0.77, and Accuracy of 0.83, a Sensitivity of 0.95, and a Specificity of

0.59.

Besides, G. Kim et al. recently proposed an ensemble-based prediction model for NSCLC

recurrence involving 326 patients also including our dataset. They developed three neural net-

work models trained combining clinical data, such as tumor node stage, handcrafted radiomic

features, and deep learning radiomic features [35]. The final performances of clinical, hand-

crafted and deep-learned features together were AUC equal to 0.77, Sensitivity equals to 0.80,

and Specificity equals to 0.73.
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The best performances obtained in our study have been compared with those available in

the literature, to the best of our knowledge, (Table 5).

Accordingly, compared to the main state-of-the-art, our proposal shows better performing

results, except with reference to models using genomic information. In this regard, in our

study we aimed to devise a model to predict the NSCLC recurrence, purposely neglecting the

genomic information provided by the clinical features EGFR and KRAS, that are clinically

expansive and time-consuming to obtain. Furthermore, even though studies for predicting

NSCLC recurrence involving both deep and clinical features already exist [33, 35], the original

aspect of our study is the analysis of CT images with different dilatation (crops) levels and dif-

ferent CNNs. Using a different CNN, as well as analyzing a different dilatation level, can affect

the final performances of the model. In fact, our results were extremely influenced by the

thickness of peritumoral region considered, and our best performances were obtained investi-

gating the predictive power of CROP 20 images. As well, though we exploited three pre-trained

CNNs characterized by a well-balance compromise between accuracy and relative running

time, performances were also influenced by network accuracy. Thus, in our future work, we

will also investigate the predictive power of other pre-trained networks, such as DenseNET

and Vision Transformer, as well as end-to-end models developed training CNNs on a more

conspicuous data sample.

Besides, other limitations of our study deal with its retrospective design and the limited

dimension of the dataset. With a larger dataset, it could be possible to achieve higher perfor-

mances and improve the model. For this purpose, in our future work we will collect a private

database of NSCLC patients, also including more histopathological features of the primary

tumor, along with CT images acquired during the screening phase.

Conclusion

The current study proposes an artificial intelligence-based model for early predicting recur-

rence risk in patients affected by NSCLC exploiting only data acquired during diagnosis,

namely, clinical variables and a primary tumor CT image. Specifically, in this study we investi-

gated the discriminant power of different CNNS employed for automatically extracted radio-

mics features from three different regions of interest, identified considering different thickness

of peritumoral region. Despite the promising results achieved by our model analyzing the ROI

containing the maximum peritumoral area, for our future work we aim to collect a private

database of NSCLC patients, including both histopathological features and a CT image of the

primary tumor. Moreover, it could be interesting to include the use of the Explainable Artifi-
cial Intelligence that through the years has gained a lot of attention in order to overcome the

“black-box” nature of artificial intelligence algorithms, trying to better understand and explain

the choices made by these models [57].

Table 5. NSCLC recurrence prediction: A comparison among performances achieved by the state-of-the-art models.

N. of patients Model Performances

Wang et al. (2019) [37] 157 Handcrafted Radiomic features based Acc = 0. 85

Aonpong et al. (2021) [33] 88 CNN + gene-expression based AUC = 0.77

Acc = 0.83

Kim et al. (2022) [35] 326 CNN based + Handcrafted Radiomic based + Clinical based AUC = 0.77

Acc = 0.73

Hindocha et al. (2022) [38] 657 Clinical based AUC = 0.69

Best proposed model 144 AlexNET CNN + clinical based AUC = 0.83; Acc = 0.79

https://doi.org/10.1371/journal.pone.0285188.t005
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Supporting information

S1 Fig. Visualization of all ROIs extracted from each patient. After identifying the tumor

segmentation with maximum area, along with the corresponding CT image, six ROIs were ini-

tially extracted for each patient, in addition to the CROP without dilation: CROP 10, CROP

20, CROP 30. CROP 40, CROP 50 and CROP 60.

(TIFF)

S2 Fig. AUC values achieved by models trained on features extracted by AlexNET pool2

layer from CROP 0, CROP 10, CROP 20, CROP 30, CROP 40, CROP 50 and CROP 60.

(TIFF)

S3 Fig. Radar chart depicting classification performances achieved exploiting features

extracted by pool1, pool2 and pool5 layers of the AlexNET network on the CROP 20

images. Performances achieved exploiting features extracted from pool2 layer resulted the best

one.

(TIFF)
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