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Abstract

Chikungunya virus (CHIKV) is an emerging viral infectious agent with the potential of caus-

ing pandemic. There is neither a protective vaccine nor an approved drug against the virus.

The aim of this study was design of a novel multi-epitope vaccine (MEV) candidate against

the CHIKV structural proteins using comprehensive immunoinformatics and immune simu-

lation analyses. In this study, using comprehensive immunoinformatics approaches, we

developed a novel MEV candidate using the CHIKV structural proteins (E1, E2, 6 K, and

E3). The polyprotein sequence was obtained from the UniProt Knowledgebase and saved in

FASTA format. The helper and cytotoxic T lymphocytes (HTLs and CTLs respectively) and

B cell epitopes were predicted. The toll-like receptor 4 (TLR4) agonist RS09 and PADRE

epitope were employed as promising immunostimulatory adjuvant proteins. All vaccine com-

ponents were fused using proper linkers. The MEV construct was checked in terms of anti-

genicity, allergenicity, immunogenicity, and physicochemical features. The docking of the

MEV construct and the TLR4 and molecular dynamics (MD) simulation were also performed

to assess the binding stability. The designed construct was non-allergen and was immuno-

gen which efficiently stimulated immune responses using the proper synthetic adjuvant. The

MEV candidate exhibited acceptable physicochemical features. Immune provocation

included prediction of HTL, B cell, and CTL epitopes. The docking and MD simulation con-

firmed the stability of the docked TLR4-MEV complex. The high-level protein expression in

the Escherichia coli (E. coli) host was observed through in silico cloning. The in vitro, in vivo,

and clinical trial investigations are required to verify the findings of the current study.

1. Introduction

The Alphavirus genus, Togaviridae family, contains a positive and single-stranded RNA virus

member known as Chikungunya virus (CHIKV) [1, 2]. The annual epidemic outbreaks of

CHIKV occur in tropical and subtropical regions, where two mosquitoes including Aedes
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aegypti and Aedes albopictus play substantial roles as vectors of the virus [1, 3]. This agent has

spread to various countries, posing clinical impacts such as fever, myalgia, headache, nausea,

fatigue, and rashes in patients. The CHIKV is associated with severe influences on neonates,

aged people, and vulnerable individuals [2]. The virus causes a series of self-limiting infections

such as arthralgia and myalgia to more severe effects and even death among immunosup-

pressed and vulnerable individuals, in addition to considerable economic losses [2, 4]. CHIKV

encodes various structural (E2, C, E1, 6K, E3) and non-structural (nsP1-4) proteins which can

be matured and activated via proteolytic cleavage by viral or host enzymes [5–8]. The interac-

tions of viral proteins such as E1 (fusion protein), E2 or p62 (glycoprotein adhesin), and tem-

porary E2-binding protein E3 (unknown function) with the host cell surface initiate and

develop the viral pathogenesis [8–10]. The E2 is the main target of the immune responses. The

virus three different lineages have 92.5–98% identity at the amino acid sequence level [11, 12].

There is neither an efficient preventive [13] nor approved therapeutic approach to control the

virus; hence seeking an appropriate vaccine is of utmost importance [13]. In the process of vac-

cine design, the mapping of INF-γ, B cells, and T cells using rapid and cost-effective immu-

noinformatics approaches is incredibly favorable. Considering these, a low-cost, safe and

effective vaccine is promising to be applied in endemic countries with the CHIKV concerns.

Various efforts aiming at the in silico designation of candidate vaccines utilizing structural and

non-structural proteins, have demonstrated concedable results. However, some predictive

tools need improvements in terms of sensitivity and specificity levels of prediction [14–21]. A

vaccine efficacy is affected by immunogenicity, safety, thermostability and transportability fac-

tors. Subunit vaccines are preferable compared to whole inactivated or attenuated viruses

owing to provocation of higher levels of specific host responses and lower adverse reactions or

events [18, 21, 22].

The viral cognate receptors in specific tissues determine the tropism and infection. These

receptors mostly include Prohibitin 1 (PHB1), T-cell immunoglobulin and mucin domain-1

(TIM-1), and Glycosaminoglycans (GAGs) [23]. Viral nsP2 inhibits the interferon-mediated

JAK/STAT signaling [19]. CHIKV viral load remains detectable up to more than 35 weeks

post-infection [24, 25]. The viral RNA causes inflammatory and chronic diseases mainly

driven by IFN-α [26]. Although several antivirals have been applied, genetic mutations and the

development of resistance have occurred. The CHIKV manifestations may be mistaken for

Zika or dengue fever with lower mortality rates, thus exact laboratory diagnosis is crucial [27].

Among various vaccines, inactivated or killed vaccines has high production cost impeding its

accessibility [22]. Live attenuated virus provokes higher immune responses compared to inac-

tive vaccines. Subunit vaccines depend on the adjuvant used due to the various efficacy levels

of adjuvants [28]. A suitable adjuvant should contribute to the decrease of multiple doses of

subjection and provide long-lived immunity and protection from viremia [29]. It has been also

revealed that low-molecular weight or protein-based adjuvants enhance the neutralization

ability and antibody titers [30]. The RS09; (sequence: APPHALS) is the TLR4 agonist which

causes co-stimulation of CTL epitopes. This synthetic adjuvant provides higher safety as a

potential immunogenic protein compared to other traditional adjuvants [31–33]. The objec-

tive of the current survey was the design a novel multi-epitope vaccine (MEV) candidate

against the CHIKV using immunoinformatics analyses.

2. Methodology

2.1. Retrieval of proteins sequences

The polyprotein (E1, E2, 6 K, and E3) structure of the Chikungunya virus (CHIKV) with

accession number Q1H8W5 was targeted for epitopes prediction which was retrieved from the
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UniProt protein database (https://www.uniprot.org/) and then saved in FASTA format for

additional analyses.

2.2. Immuno-informatics analyses

2.2.1. Prediction of helper T cell epitopes. Immune Epitope Database (IEDB) (http://

www.iedb.org/) was utilized to predict helper and cytotoxic T lymphocytes (HTLs and CTLs,

respectively) of the CHIKV structural proteins. The IEDB applies various prediction methods,

containing consensus method, Sturniolo method, stabilized matrix method (SMM)-align, and

average relative binding (ARB) for MHC-II binding epitopes prediction [34].

2.2.2. Prediction of cytotoxic T cell epitopes. CTLs play a central role in the immune

system response to intracellular infections. They distinguish defective cells by binding to

presented peptides on the cell surface by MHC class I molecules. Therefore using the

NetMHCpan-4.1 server (https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1),

binding CTL epitopes of the CHIKV structural polyprotein to four mouse alleles (Db,

Dd, KK and Kb) were predicted. The NetMHCpan-4.1 server predicts the binding of

peptides to any MHC molecule of the known sequence using artificial neural networks

(ANNs) [35].

2.2.3. Continuous B-cell epitopes prediction. B-cell epitopes have a vital role in the

designing of protein vaccines, hence using ABCpred server continuous B-cell epitopes were

selected from the CHIKV structural polyprotein. This server predicts continuous B cell epi-

topes based on artificial neural network and recurrent neural network (machine-based tech-

nique) through fixed length patterns with an accuracy of 65.93%.

2.3. Vaccine construct designing

The multi-subunit sequence contained an HTL epitope followed by three B cell epitopes and

two CTL epitopes regions. To improve the MEV construct efficacy, the GPGPG and KK link-

ers were used for epitopes connection [36, 37]. Additionally, the designed vaccine construct

contained the universal T helper epitopes, PADRE (Pan HLA-DR reactive epitope) linked with

the C-terminal region of the MEV candidate via an EAAAK linker and the TLR-4 agonist

(RS09; Sequence: APPHALS) as an adjuvant joined via KK linker to the vaccine construct for

increasing the immune responses [38, 39].

2.4. Structural analysis of the designed vaccine construct

The antigenicity prediction of the designed MEV construct was performed using ANTIGEN-

pro and Vaxijen v2.0 servers. ANTIGENpro is an alignment-free software that predicts antige-

nicity according to the obtained results by protein microarray data analysis. Vaxijen applies a

promising alignment-independent method based on a protein sequence mining technique

[40]. Additionally, the allergenicity of the MEV construct was predicted using the AllergenFP

server, implemented based on the physicochemical properties of proteins with approximately

88% accuracy [41]. The physicochemical properties of designed vaccine, including molecular

weight (Mw), theoretical pI, instability index, half-life, the total number of positive and nega-

tive residues, and grand average of hydropathicity (GRAVY) were predicted using the Prot-

Param tool (http://web.expasy.org/protparam) [42]. The secondary structure of the MEV

construct was predicted using the PSIPRED V3.3 server (http://bioinf.cs.ucl.Ac.uk/

psipredtest) [43].

PLOS ONE Multi-epitope vaccine candidate against Chikungunya virus in silico

PLOS ONE | https://doi.org/10.1371/journal.pone.0285177 May 5, 2023 3 / 19

https://www.uniprot.org/
http://www.iedb.org/
http://www.iedb.org/
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1
http://web.expasy.org/protparam
http://bioinf.cs.ucl.ac.uk/psipredtest
http://bioinf.cs.ucl.ac.uk/psipredtest
https://doi.org/10.1371/journal.pone.0285177


2.5. 3D modeling of the vaccine construct and model refinement

I-TASSER online server at https://zhanggroup.org/I-TASSER/ was applied to predict the 3D

structure of the MEV candidate. The quality of the structure was evaluated using Z-score and

Ramachandran plot through ProSa [44] and PROCHECK [45] servers. The protein was further

refined using side-chain minimization at a maximum of steps per residue (10000) using Mole-

gro Virtual Docker (MVD). The refined structure was used for subsequent analysis.

Furthermore, the stability of the predicted model was evaluated through molecular dynamic

(MD) simulation as the procedure described in next section.

2.6. Molecular docking of vaccine construct with TLR4 receptor

The TLR4 (PDB code: 4G8A) 3D structure was retrieved from RCSB Protein Data Bank

(RCSB PDB) (https://www.rcsb.org/) and subjected to the PyMOL v2.3.4 software for energy

correction. The water molecules were removed from the PDB structure. TLR4 and MEV can-

didate 3D models were submitted to the HDOCK server (http://hdock.phys.hust.edu.cn/) [46]

to assess the interaction of TLR4 and vaccine. According to the results, the highest-ranking

complex was selected at the lowest intermolecular binding energy between the vaccine and the

TLR4.

2.7. Molecular dynamic simulation

The MD simulation was applied to evaluate the stability of the vaccine-TLR4 complex result

from docking simulation using GROMACS 2018. The structure was placed in a dodecahedron

box and filled with water using the tip3 water model. To neutralize systems some molecules of

water were randomly replaced by Cl- or Na+. After neutralization, the steepest descent algo-

rithm was used for energy minimization. The system Equilibration was conducted under 100

ps NVT at the temperature of 298 K followed by 100 ps NPT ensembles at the pressure of 1

bar. Electrostatic interactions were calculated by PME [47] and constrain of all bonds connect-

ing hydrogen atoms was performed using the LINCS procedure. The Final MD simulation was

run for 100 ns with no restraint. The binding energy was calculated using Molecular mechan-

ics/Poisson–Boltzmann (Generalized-Born) method using gmxMMPBSA tools [48].

2.8. Discontinuous B-cell epitopes prediction

The predicted 3D model of the vaccine construct was used as an input file for ElliPro server

subjection to determine the discontinuous B cell epitopes. The ElliPro tool predicts antigenic

protein residues via Thornton’s method, using a protein 3D model [49].

2.9. In Silico cloning and mRNA secondary structure prediction

To convert the amino acid sequence to nucleotide sequence, reverse translation was performed

using the Jcat tool (http://www.prodoric.de/JCat). Then, GenScript Rare Codon Analysis Tool

(https://www.genscript.com/tools/rare-codon-analysis) was utilized to optimize the DNA

sequence for cloning and expression into the E. coli host. Finally, NdeI and BamHI restriction

sites were added to the N and C-terminal regions of the gene sequence, respectively to clone

the adapted MEV construct DNA sequence into the E. coli pET-14b vector. Then, the RNAfold

tool of ViennaRNA Package 2.0 (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.

cgi) was applied to predict the secondary structure of the mRNA sequence. The server predicts

the mRNA structures thermodynamically and assigns a minimal free energy score (MFE).

Hence, the MFE structure and the centroid secondary structure, as well as their minimum free

energy were calculated [50].
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2.10. Immune simulation

Immune response stimulation by employing the C-ImmSim server (http://kraken.iac.rm.cnr.

it/C-IMMSIM/) evaluated the efficiency of the designed vaccine in silico. This server applies a

position-specific scoring matrix (PSSM) to identify immunological epitopes and immune

interactions [51]. Three peptide vaccine injections were given for 350 days at time steps 0, 120,

and 240. The simulation volume of the vaccine (containing no LPS) injection was set at 10.

Random seed and time step were set at 234 and 1024 respectively.

3. Results

3.1. Immunoinformatics analyses

3.1.1. Prediction of HTL, CTL, and B cell epitopes. Those top-scoring HTL (I-Ab, I-Ad,

and I-Ed) and CTL (Db, Dd, Kb, and KK) alleles were predicted from the CHIKV structural

polyprotein (E1, E2, 6 K, and E3) using IEDB and NetMHCpan servers respectively. In addi-

tion, the continuous B-cell epitopes were identified from the CHIKV structural polyprotein

using ABCpred server (Table 1).

3.2. Devising potential multi-epitope vaccine candidate

The designed MEV candidate construct included one HTL, three B-cell, two CTL epitopes and

the adjuvant (PADRE and RS09- TLR-4 agonist). The MEV construct components were fused

using proper linkers (GPGPG, KK, and EAAAK) (Fig 1).

3.3. Designed vaccine construct evaluation

The designed MEV construct was evaluated for its functional properties. The antigenicity

(using the ANTIGENpro server) included 0.8 and (using the VaxiJen 2.0 server) included 0.65

by a virus model at a threshold of 0.4. Additionally, the MEV construct was predicted to be

non-allergenic by the AllergenFP server. The physicochemical properties of the MEV con-

struct were predicted by the ProtParam server. The molecular weight included 14.795 kDa

with 135 amino acids, aliphatic index of 84.67, pI value of 10 (indicating stability in nature)

and GRAVY score of -0.326. Additionally, an instability index of 35.03 predicted the protein

vaccine stability. Total number of positively and negatively charged residues included 22 and

8, respectively. The estimated half-life was calculated as> 20 hours in mammalian reticulo-

cytes, in vitro and>20 hours in yeast in vivo. Moreover, the secondary structure of the

designed MEV construct was determined using the PSIPRED V3.3 server, where 10.37% of the

sequence consisted of the strand, 50.37% consisted of coil and the remaining 39.25% com-

posed of helix structure (Fig 2).

3.4. 3D modeling of vaccine construct and model refinement

The 3D structure of the MEV was modeled using the I-TASSER server (S1 Fig) and its struc-

ture was validated using Z-score and Ramachandran plots. The z-score of the model was

Table 1. Predicted HTL, CTL and continuous B cell epitopes of the CHIKV structural polyprotein.

HTL epitopes CTL epitopes Continuous B cell epitopes

23PTIQVIRPRPRPQRQAGQLAQLI45 354HSPVALERI362 122KvTGYACLVGDKVMKP137

725YELTPGATVPFLLSLI740 673HGHPEIILYYYELYP689

992DVYNMDYPPFGAGRPG1007

HTL: helper T lymphocytes, CTL: cytotoxic T lymphocytes

https://doi.org/10.1371/journal.pone.0285177.t001

PLOS ONE Multi-epitope vaccine candidate against Chikungunya virus in silico

PLOS ONE | https://doi.org/10.1371/journal.pone.0285177 May 5, 2023 5 / 19

http://kraken.iac.rm.cnr.it/C-IMMSIM/
http://kraken.iac.rm.cnr.it/C-IMMSIM/
https://doi.org/10.1371/journal.pone.0285177.t001
https://doi.org/10.1371/journal.pone.0285177


within the range of scores typically found for native proteins of similar size (Fig 3). The rama-

chandran plot showed that 99.1 percent of residues were within the most favored in allowed

regions (Fig 4).

3.5. Docking of the vaccine construct with TLR4

Docking results exhibited that the MEV construct interacted with the TLR4 3D structure via

several amino acids of the TLR4 (Fig 5). The free energy of binding between the MEV and

TLR4 during the MD simulations was calculated by applying the ΔGMMPBSA. The calculated

score included -84.66 Kcal/mol (Fig 6).

3.6. Molecular dynamic simulation

3.6.1. Root Mean Square deviation (RMSD). The stability of the MEV and MEV-TLR4

complex was evaluated using the Root Mean Square deviation (RMSD) of the backbone atoms.

This plot indicates the protein conformational alterations during MD simulation from the ini-

tial structure. The MEV construct 3D structure confirmed that the RMSD values were in the

range of 0.2 to 0.75 nm in free form and 0.2 to 0.5 nm in docked form. After 50 ns of simula-

tion, both structures reached stability. According to the RMSD plot, both structures were sta-

ble. However, the MEV-TLR4 complex was more stable than the MEV construct free form

(Figs 6 and 7).

Fig 1. The diagram of the designed MEV construct composed of helper T lymphocytes (HTL), B cell (BCL), cytotoxic T lymphocytes

(CTL) epitopes and adjuvant joined together using proper linkers.

https://doi.org/10.1371/journal.pone.0285177.g001

Fig 2. PSIPRED graphical results from secondary structure estimation of the designed vaccine construct.

https://doi.org/10.1371/journal.pone.0285177.g002
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3.6.2. The root-mean-square fluctuation (RMSF). The root-mean-square fluctuation

(RMSF) indicates the fluctuation of protein residues over time from a reference position dur-

ing simulation. Here we evaluated the fluctuation of the MEV construct in the free-state and in

the docked complex. According to the results, no unusual fluctuation was observed in the both

states of the MEV candidate construct (Fig 8).

3.6.3. Radius of gyration. We evaluated the change in compactness of the MEV during

simulation using Radius of gyration (Rg) plot. According to the results, the Rg of free and

docked state were in the range of 1.45 to 1.65. After 65 ns, the Rg of both structures reached

stability and remained stable (Fig 9).

3.6.4. Hydrogen bonds. To evaluate the MEV-TLR4 complex, the number of hydrogen

bonds between the MEV construct and the TLR4 was calculated (S2 Fig). Furthermore, the

distribution probability of hydrogen bonds was plotted. According to this plot, six hydrogen

bonds were formed between the MEV candidate and the TLR4 with higher probability during

simulation (S3 Fig).

3.6.5. dssp analysis. To evaluate the change in secondary structure during simulations,

dssp analysis was performed. The percentage of secondary structures in the free and docked

state of the MEV candidate was calculated. No significant difference was observed in the sec-

ondary structure of the MEV candidate in neither free nor bounded form. Accordingly, the

results revealed the stability of both states of the MEV construct (S4 Fig).

Fig 3. Validation analysis of the MEV 3D structure by ProSA-web server exhibiting the z-score in the range of

native protein conformation.

https://doi.org/10.1371/journal.pone.0285177.g003

PLOS ONE Multi-epitope vaccine candidate against Chikungunya virus in silico

PLOS ONE | https://doi.org/10.1371/journal.pone.0285177 May 5, 2023 7 / 19

https://doi.org/10.1371/journal.pone.0285177.g003
https://doi.org/10.1371/journal.pone.0285177


Fig 4. The ramachandran plot exhibited that 99.1 percent of residues were within the most favored allowed regions.

https://doi.org/10.1371/journal.pone.0285177.g004
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3.7. Discontinuous B-cell epitopes prediction

Discontinuous B-Cell epitopes were predicted from the 3D structure of the MEV construct

using the ElliPro server (Table 2).

3.8. In Silico cloning and mRNA secondary structure

Reverse translation and codon optimization of the designed MEV construct were performed.

The significant properties of the gene sequence to achieve a high-level protein expression in

the E. coli host, including Codon Adaptation Index (CAI), GC content, and Codon Frequency

Distribution (CFD), were estimated by the GenScript Tool. The CAI of the optimized nucleo-

tide sequence was 0.85. The average GC content of the MEV sequence was 52.36. The results

of 100% CFD value were obtained for the sequence (S5A–S5C Fig). The secondary structures

of the mRNA along with their corresponding free energies were evaluated using the RNAfold

server. The MFE secondary structure had a minimum free energy of -126.50 kcal/mol, while

that of centroid secondary structure included -106.80 kcal/mol. These results suggest that the

mRNA could remain stable after manufacturing (S5D and S5E Fig).

3.9. Immune stimulation

The C-ImmSim server was used for the immune simulation. This reveals an immunological

response similar to the body immune response. An enhancement in IgM+IgG levels was char-

acteristic of the first reaction, followed by increases in levels of IgM and IgG1+IgG2, respec-

tively (Fig 10A). In addition, the findings demonstrated the formation of memory cells and

increase in the number of HTLs (Fig 10B), CTLs (Fig 10C), cytokines (IFN-γ and IL-2) (Fig

10D), macrophages (Fig 10E) and dendritic cells (DCs) after further exposure (Fig 10F). Both

the secondary and tertiary stages of the immune responses were distinguished by the presence

of a significant number of B-cells population (Fig 10G and 10H).

4. Discussion

The CHIKV causes Chikungunya fever (CHIKF) which is a health problem worldwide and a

recurrent infection for which societies suffer from a lack of efficient preventive or therapeutic

approaches [52, 53]. Vulnerable individuals such as children and those>60 years are more

susceptible to the disease. Various vaccine candidate platforms such as live attenuated vaccine

Fig 5. The MEV model in complex with the TLR4; dark green and orange: Adjuvant, dark blue: Helper T lymphocyte epitopes, red: B cell

epitopes, blue: Cytotoxic T lymphocyte epitopes, green: TLR4 and red: Hydrogen bonds.

https://doi.org/10.1371/journal.pone.0285177.g005
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(LAV), viral vector, chimeric virus, virus-like particle (VLP), and DNA vaccines have been

introduced against CHIKV.

Bioinformatics tools can predict various aspects (structural and physicochemical charac-

ters) of biomolecular structures such as proteins/epitopes and their interactions with the tar-

gets. The advantage of these approaches includes predicting rapid, valid, and inexpensive basic

results [54, 55].

The development of subunit MEVs has advantages such as proper immunity provocation,

safety (due to specific epitopes), and protection without allergic reactions or acute viremia.

Fig 6. The different components of binding energy between TLR4 and vaccine calculated by gmxMMPBSA tool.

https://doi.org/10.1371/journal.pone.0285177.g006
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The virus structural and non-structural proteins such as capsid, E1, E2, E3, P62, 6K, Nsp1,

Nsp2, Nsp3, and Nsp4 have been utilized in the MEV candidate constructs. These proteins act

in viral binding and assembly and immune evasion or JAK-STAT signaling, INF-β and the

NF-κB promoter inhibition [15, 19, 56–58]. E1 and E2-based subunit vaccines are strongly

adjuvant-dependent and have elicited antibody responses in AG129 mice [21, 59]. An MEV

candidate can stimulate more powerful immune responses than a single protein. Notably, the

immunogenicity of vaccines can be enhanced using adjuvants that elicit humoral and cell-

Fig 7. RMSD plot of the MEV and MEV-TLR4 complex: Black: Vaccine, red: MEV-TLR4 complex.

https://doi.org/10.1371/journal.pone.0285177.g007

Fig 8. RMSF plot of the vaccine in the free and docked state: Black: Free-state, red: Docked state.

https://doi.org/10.1371/journal.pone.0285177.g008
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mediated responses [60]. Clinical trials of subunit vaccines have revealed their potential for

antibody response stimulation [61]. E1 and E2 proteins fused to the Fc of IgM could elicit anti-

body responses and a balance of Th1/Th2 activation in C57BL/6 mice [62]. The immunization

of BALB/c mice with CHIKV full-length E2 (E2-FL) protein could elicit specific antibodies

and the N-terminal and C-terminal regions epitopes provoked B and T cells responses using

immunoinformatics studies [63]. In another study, E1 and E2 glycoproteins were expressed in

Sf9 insect cells using the baculovirus expression system producing trimeric, glycosylated

CHIKV spikes. The E2 CHIKV recombinant protein conjugated with Poly (I:C) adjuvant pro-

voked the highest immune responses in both arms in C57BL/6 mice [14].

In this study, using comprehensive immunoinformatics approaches, we developed an MEV

candidate that included HTL, B cell, and CTL epitopes which were selected from structural

proteins (E1, E2, 6 K, and E3) of the CHIKV. Additionally, PADRE epitope and RS09 as TLR4

agonist were used as adjuvant in the designed the MEV construct. This adjuvant is sufficiently

Fig 9. Rg plot of the MEV in free and docked states; black: Free-state, red: Docked state hydrogen bonds.

https://doi.org/10.1371/journal.pone.0285177.g009

Table 2. Conformational B-cell epitopes from 3D MEV construct protein predicted by ElliPro server.

Discontinuous B cell epitopes Number of

residues

Score

1:P1, 1:T2, 1:I3, 1:Q4, 1:V5, 1:I6, 1:R7, 1:P8, 1:P10, 1:Q15, 1:Q21 14 0.769

1:F56, 1:G57, 1:A58, 1:G59, 1:R60, 1:P61, 1:G62, 1:K63, 1:K64, 1:H65, 1:G66, 1:H67, 1:

P68, 1:E69, 1:I70, 1:I71, 1:Y82, 1:E83, 1:L84, 1:T85, 1:P86, 1:G87, 1:A125, 1:A126, 1:K127,

1:K128, 1:A129, 1:P130, 1:P131, 1:H132, 1:A133, 1:L134, 1:S135

33 0.681

1:D39, 1:K40, 1:V41, 1:K43, 1:P44, 1:K45, 1:K46, 1:D47, 1:V48, 1:H100, 1:S101, 1:P102, 1:

V103, 1:R107

14 0.674

1:A110, 1:A112, 1:K113, 1:A114, 1:K115 5 0.604

1:R9, 1:K29, 1:G32, 1:Y33, 1:A34 5 0.519

https://doi.org/10.1371/journal.pone.0285177.t002
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safe and able to provoke CTL epitopes [33]. We observed that the physicochemical traits of the

MEV candidate were acceptable as evaluated by the ProtParam server. The molecular weight

of the designed MEV construct included 14.795 kDa and similar to previous studies revealed

appropriate antigenic characteristics [64–66], because vaccines with a molecular weight less

than 5–10 KDa are supposed to be weak immunogens, whereas the pI value of 10 indicated the

protein basic conditions in nature, and an instability index of 35.03 competent the MEV as a

stable protein similar to designed vaccines in previous studies [64–68], and proteins with insta-

bility index <40 are stable. The aliphatic index was estimated at 84.67 demonstrating the MEV

construct as a high thermostable protein according to previously designed MEV candidates

[64–68]. A high aliphatic index is an indication of high thermostability of a protein. The

GRAVY score was -0.326, a negative GRAVY value reflects hydrophilic nature of a protein

which was similar to those scores in previous studies [64–68]. This is responsible for better

interaction with the polar environment. Immune simulation results confirmed that our

designed MEV was able to stimulate immune responses (cellular, humoral, and innate

immune). The humoral immune simulation such as IgG1 + IgG2, IgM, and IgG + IgM anti-

bodies production, the B cell population, and the cellular immune response, HTLs, memory

and CTLs were enhanced as well as recently published work on an MEV candidate against the

SARS-CoV-2 [64]. The NK (natural killer) and DCs activity was found to be consistent along

with higher macrophage activity in our designed MEV but they were not checked in another

MEV against the SARS-CoV-2 [64]. The elicitation of a suitable immune response was con-

firmed by high levels of IFN-γ and IL-2 production in the simulation; these results were consis-

tent with a previous research related to a designed MEV to combat SARS-CoV-2 [68].

Immunogenic epitopes were selected from structural proteins of CHIKV in our MEV con-

struct, while recently Safavi et al, selected T cell epitopes from non-structural proteins for

designing an MEV against the SARS-CoV-2 [64]. For the humoral immune system provoca-

tion effectively via antibodies, the SARS-CoV-2 spike protein inducing domain was used in

vaccine construct compared to our vaccine construct which selected B cell epitopes from struc-

tural proteins of the CHIKV. According to in silico evaluations, our designed MEV construct

had higher antigenic properties (Vaxijen; 0.65 and Antigenpro; 0.8) compared to recently

Fig 10. Immune simulation of the MEV candidate, a: immunoglobulin production on subsequent injection of antigens (shown by black lines);

colored lines indicative of immune cells class, b: production of HTLs or helper T lymphocytes. c: production of CTLs or cytotoxic T lymphocytes,

d: increase of cytokines and interleukins release for effective immune response. e: macrophages population, f: dendritic cells population, g: B-cell

population, h: B-cell population per state.

https://doi.org/10.1371/journal.pone.0285177.g010
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published research on an MEV candidate against SARS-CoV-2 [64]. Additionally, both the

MEV constructs were predicted as non-allergen.

Moreover, the Ramachandran plot confirmed that 99.1 percent of residues were within the

most favored or in-allowed regions. The docked MEV-TLR4 complex unraveled the stability

interacted via several bonds. According to the RMSD plot, the MEV-TLR4 complex was more

stable than the MEV construct free form. The RMSF inferred no unusual fluctuations in the

neither free nor docked state of the MEV candidate construct. The Rg score and dssp indicated

the stability of both structures after 65ns and negligible secondary structure alteration.

In a study by Narula et al, an MEV candidate was employed against the CHIKV strain
S27-African prototype using various structural and non-structural proteins and the β-defensin

as the adjuvant. T cells, INF-γ, and B cell epitopes were predicted against capsid, E1-E3, and

Nsp1-Nsp4 proteins and demonstrated potential immunogenicity efficacy. The docking and

MD simulation were performed with the TLR3 [69]. The recombinant E1 and E2 envelope

proteins of CHIKV have been used to elicit Th1/Th2 (along with high levels of pro-and anti-

inflammatory cytokines in splenocytes) and antibody responses in mice [21]. In a study

among E1 sequences, NTQLSEAHVEKS epitope was highly conserved, safe and efficient, elic-

iting B cells. Moreover, the KTEFASAYR epitope was conserved and promising for the T cells

provocation [16]. Common epitopes of CHIKV and Mayaro viruses could elicit B cells and T

cells epitopes using in silico approaches with population coverage of 92.43% worldwide [20].

In an in silico and docking study, E1 and E2 potential epitopes respectively included “SED-

VYANTQLVLQRP” and “IMLLYPDHPTLLSYR” eliciting B and T cells responses and also

binding to the HLA-I and HLA-II molecules at extremely low IC50 value. These epitopes

exhibited over 80–90% and 60–80% population coverage, respectively [17]. An immunoinfor-

matics study using the NSP2-CHIKV introduced B cell inducing VVDTTGSTKPDPGD epi-

tope and HLA-A-binding epitopes of QPTDHVVGEY, FSKPLVYY, SLSESATMVY, and

VTAIVSSLHY and HLA-DRB*01:01 binding VVGEYLVLSPQTVLRS epitope which demon-

strated promiscuity [18].

There are few studies regarding the development of MEV candidates against CHIKV to

evaluate proteins and adjuvants and compare the results. This study methods were promising

in terms of the employment of more suitable online servers and adjuvants which provided

valid results and sufficient immune responses. As TLR4 is expressed onto various immune cell

types (macrophages, monocytes, DCs, and granulocytes), related immunization will provide

acceptable immune responses [70]. Additionally, our selection of universal viral sequence and

polyprotein provoked more inclusive immunization. Our survey inferred that the designed

CHIKV MEV construct using structural proteins (E1, E2, 6 K, and E3) epitopes can stimulate

cellular and humoral immune responses. The main limitations of this study included the lack

of experimental studies such as in vitro, in vivo, and clinical trials to verify the results.

5. Conclusion

CHIKV is an emerging viral infectious agent with the potential of causing a pandemic without

any approved vaccine or therapeutic approach. In this study, using comprehensive immunoin-

formatics analyses, we developed a novel MEV candidate using CHIKV structural polyprotein

(E1, E2, 6 K, and E3). The selected potential epitopes were immunogen which efficiently stim-

ulated immune responses using the proper and safe synthetic adjuvant including PADRE and

RS09 designed for the MEV construct. Immune provocation included predicted HTL, B cell,

and CTL epitopes. The MEV in silico cloning was successful in E. coli host with a high level of

expression. In vitro, in vivo, and clinical trial studies are required to verify the findings of the

current study.
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