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Abstract

The human postural control system can maintain our balance in an upright stance. A simpli-

fied control model that can mimic the mechanisms of this complex system and adapt to the

changes due to aging and injuries is a significant problem that can be used in clinical appli-

cations. While the Intermittent Proportional Derivative (IPD) is commonly used as a postural

sway model in the upright stance, it does not consider the predictability and adaptability

behavior of the human postural control system and the physical limitations of the human

musculoskeletal system. In this article, we studied the methods based on optimization algo-

rithms that can mimic the performance of the postural sway controller in the upright stance.

First, we compared three optimal methods (Model Predictive Control (MPC), COP-Based

Controller (COP-BC) and Momentum-Based Controller (MBC)) in simulation by considering

a feedback structure of the dynamic of the skeletal body as a double link inverted pendulum

while taking into account sensory noise and neurological time delay. Second, we evaluated

the validity of these methods by the postural sway data of ten subjects in quiet stance trials.

The results revealed that the optimal methods could mimic the postural sway with higher

accuracy and less energy consumption in the joints compared to the IPD method. Among

optimal approaches, COP-BC and MPC show promising results to mimic the human pos-

tural sway. The choice of controller weights and parameters is a trade-off between the

consumption of energy in the joints and the prediction accuracy. Therefore, the capability

and (dis)advantage of each method reviewed in this article can navigate the usage of each

controller in different applications of postural sway, from clinical assessments to robotic

applications.

Introduction

Maintaining balance involves the cooperation of three systems in the human body in a feed-

back loop: the musculoskeletal system, the sensory system, and the Central Nervous System

(CNS). The CNS as the main controller of the balancing loop collects information from the

sensory organs in the body such as vision, vestibular, and proprioception. Integrating and pro-

cessing this information generates the proper motor commands to the musculoskeletal system

[1, 2]. Aging or injuries can decline the performance of the human balance system. Therefore,
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studying human balance motor control is crucial from three perspectives. First, it can develop

an understanding and diagnosis of balance impairment conditions in health care such as Par-

kinson’s disease. Second, it can lead to the design of new assistive devices for rehabilitation to

aid individuals in regaining their mobility. Last, it can advance biped or humanoid robots in

maintaining stability and movement tasks in complex environments [3].

Many studies have been done to understand the human balance structure and its complex

subsystem to capture its complexity and represent simplified models. Generally, the skeletal

system is modeled in the sagittal plane as a single link inverted pendulum rotating around the

ankle joint [4–7] or double link inverted pendulum rotating around the ankle and hip joints

[8, 9]. The multisensory system in an upright stance is the integration of three primary sensors,

vision, proprioception, and vestibular. There are few studies about qualitative modeling of

this system [10]. However, many studies consider the integration of data provided by these

organs as inputs to the CNS affected by neurological time delay and perturbations [11, 12].

Several studies implemented the Extended Kalman Filter (EKF) for estimating the delayed

time and compensating the perturbations (measurement noise from sensors) [13, 14].

Despite all efforts to understand the mechanism of the neuromuscular system to maintain

balance in an upright stance, the complexity of CNS has made the model for postural control

controversial. Many researchers have tried to find a simplified control model to simulate the

performance of the postural controller in maintaining the human balance in an upright stance

[2, 10, 15–18]. Generally, the postural controller is considered as a Proportional-Derivative

(PD) or Proportional-Integral-Derivative (PID) controller that provides joints torque for the

skeletal system in a feedback loop [1, 5, 16, 19–22]. Despite the simplicity of this representa-

tion, it is an unsophisticated presentation of the postural control, which does not consider

the predictability and adaptability of the CNS to the internal and environmental changes.

For example, in the presence of the biological transmission time delay, selecting PD’s parame-

ters in a stable region is quite a challenge [23]. To solve this issue, modeling the neural con-

troller in postural sway leads to different methodologies that are more robust to the parameter

changes.

Intermittent Proportional Derivative (IPD) controller is utilized in many studies [24–28] in

order to improve the robustness issue of the PD controller in the balance feedback loop. The

paradigm is based on the idea that the feedback controller can be switched on close to the sta-

ble manifold and switched off near an unstable manifold in the phase plane. In other words,

instead of equilibrium configuration in the classical feedback PD controller, the stable mani-

fold is the goal that leads to bounded stability [26]. The method is based on an active intermit-

tent control torque applied to the ankle joint and a passive stiffness control to the hip joint.

In [29], the author has extended the IPD model by applying independent parameter gains for

both the ankle and the hip joint that can explain the mixed ankle-hip strategy. While IPD is

more robust to the time delay than the PD controller, its adaptability and predictability to

parameter changes are not widely understood.

Another potential approach to mimic the neuromuscular controller is using optimization

techniques. This approach’s main advantage is considering the body’s limitations and con-

straints (e.g., joint torque and angle limit) in formulating the postural sway model. The ability

to predict the future is another benefit of this approach that leads to more accurate results.

There are increasing number of studies that used optimization techniques [30–38]. In general,

the postural controller is formulated as an optimization problem to minimize the postural

sway. Other cost functions have been studied, minimizing energy consumption in joints or

tracking the body’s momentum. However, to what degree they can mimic the postural sway

in an upright stance in case of time delay and parameter changes and their validity to replicate

experimental data is a question that needs to be answered.
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Validation and justification of the hypothetical simplified postural controllers with the

experimental human data is yet an open research direction. In a few articles, the postural con-

troller is defined by system identification techniques based on the experimental data [39–43].

Data-driven controllers are practical approaches to identify the relationship between the inputs

to the neural controller and the generated outputs from that in the balancing loop and can be

a tool to develop the parameters of the model-based approaches [44, 45]. However, the main

drawback is that they can not explicitly describe the dynamics and pathophysiology behind the

neuromuscular controller. On the other hand, validating and adjusting the simplified postural

control model with human data is a technique that can contribute to a reliable understanding

of the postural control model.

This paper aims to evaluate the optimal controllers that can resemble the postural control in

an upright stance. Our goal is to find a structure that can mimic the human balance strategy

and can be implemented in balance applications. Therefore, we have studied the human-likeli-

ness of three commonly used formulations of the optimal controller (Model Predictive Control

(MPC), COP-Based Controller (COP-BC) and Momentum-Based Controller (MBC)) in the lit-

erature. Specifically, we evaluated these methods in a human balance feedback structure loop

while considering the sensory system’s noise and transmittal time delays. First, in simulation

studies, we compared the robustness to different perturbations, the consumption of energy, and

the postural strategy of each technique to reveal the human-likeliness of each method. Second,

we validated and compared the efficiency of these methods in predicting postural sway through

multiple human experimental data in upright stance trials with changes in the vision and pro-

prioception sensory input. Finally, we examined the choice of parameters in the performance of

the methods mentioned above and compared the results with IPD controllers. We believe our

findings aid the postural sway analysis used in clinical and assistive robotic applications.

Methods

Human data collection

The experimental data is part of a larger project collected in the Human Health and Perfor-

mance Lab at Luleå the University of Technology, Luleå, Sweden [43, 46, 47]. Written

informed consent was obtained from all individual participants included in the study. The

study design was approved by the Regional Ethical Review Board in Umeå, Sweden (ref no.

2015-182-31) and was organized according to the 1964 Helsinki declaration.

Ten subjects were chosen from a larger study [46] where community-dwelling elderly who

have a critical balance posture were selected with a mean age of 75.2(±4.5) years. The Center

Of Pressure (COP) data was collected by a force plate with a sampling frequency of 3000Hz,

while the subjects were asked to stand still and look straight at the fixed point. In order to

measure the total time delay subjects did a reaction time test where they had to press the bot-

tom when they received the visual and audio signals as fast as possible. The experiment was

repeated for five trials. The angular position of the joints was collected by a Qualisys Motion

Capture System with eight cameras and a 200 Hz sampling rate. The experiment to measure

reaction time is explained in detail in [47].

Human balance control loop

Fig 1 presents the block diagram of the closed-loop control structure to stabilize the human

body in a quiet stance by the hip and ankle joints.

Body dynamics described in (2) is activated by control input u(k) = [τa, τh]> and exposed

to unknown disturbances ψk. The states of the system are xðkÞ ¼ ½qa; qh; _qa ; _qh �
>

which can be
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derived by solving the nonlinear discrete form at time instance k 2 Zþ as:

xkþ1 ¼ Fðxk; ukÞ þ ψk; ð1aÞ

yk ¼ SðxkÞ þ vk; ð1bÞ

where ψk 2 R
ns is the applied disturbance to the system. F : Rns � Rnu ! Rns is a nonlinear

function describing the dynamics of the skeletal system. S : Rns ! Rnm is the vector of mea-

sured states affected by noise in neural sensing vk 2 R
nm and yðkÞ ¼ ½qm

a ; q
m
h ; _qa

m; _qh
m�
>

is the

vector of measured outputs by sensors. The number of states, inputs and measurements are

shown by ns, nu, nm respectively.

Skeletal modeling and body dynamics

The human body in quiet standing can be modeled as a two-link inverted pendulum rotating

around the ankle and hip joints, as illustrated in Fig 2 [48]. In this representation, it is assumed

that for small perturbations, the knee joint in the lower body and body segments from the hip

joint to the head are neglected. However, for more significant perturbation, the human body

bends the knee and takes a step to increase the base of support, which this scenario is beyond

the scope of this article.

The equation of motion can be written in the following form:

M€q þ Cðq; _qÞ þ FðqÞ ¼ H ð2Þ

where q = [qa, qh]> is the angular rotation around ankle (qa) and hip (qh), M ¼
M11 M12

M21 M22

" #

represents the mass matrix with:

M11 ¼
1

4
L2

1
m1 þ L2

1
m2 þ

1

4
L2

2
m2

þL1L2m2 cosðqhÞ þ I1 þ I2

ð3aÞ

Fig 1. The illustration of the postural controller feedback loop is studied in this paper. The body’s dynamical system is activated by control input

u(t) and affected by disturbances w(t). The sensory system receives the motion dynamic x(t) and transfers it to neuromuscular contorted by noise

v(t) and time delay td. The delayed sensory information and a buffer of the control input up to the current time u(t) are used in the neuromuscular

by EKF method to estimate delayed states. The optimal controller block refers to all optimal methods explained in this work. The reference angular

position xref(t) = 0 is considered zero degrees in an upright stance.

https://doi.org/10.1371/journal.pone.0285098.g001
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Fig 2. Illustration of two joints dynamical model of the human body in standing position. qa and qh represent the

angular position of the ankle and hip joints respectively. COM is the location of the center of the system’s total mass,

while m1 and m2 are the mass of the lower body and upper body respectively. Lf is the length of the foot.

https://doi.org/10.1371/journal.pone.0285098.g002
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M12 ¼
1

4
L2

2
m2 þ

1

2
L1L2m2 cosðqhÞ þ I2

ð3bÞ

M21 ¼ M12 ð3cÞ

M22 ¼
1

4
L2

2
m2 þ I2; ð3dÞ

where L1 and m1 represent the length and mass of the lower body, while L2 and m2 show the

length and mass of the torso, respectively. I1 and I2 represent the inertia around the ankle and

the hip joint, respectively. It is assumed the center of mass of each segment is in the middle of

the segment. Cðq; _qÞ is the vector of Coriolis and Centrifugal terms with:

C ¼
�

1

2
L1L2m2 sinðqhÞ _q

2

h � L1L2m2
_qa _qh sinðqhÞ

1

2
L1 _q2

a sinðqhÞ

2

6
6
6
4

3

7
7
7
5
: ð4Þ

The vector with gravitational force F(q) is depicted as:

F ¼
F1

�
1

2
L2m2g sinðqa þ qhÞ

2

6
4

3

7
5 ð5Þ

where F1 ¼
1

2
gð� L2m2 sin ðqa þ qhÞ � L1m1 sinðqaÞ þ 2L1m2 sinðqaÞÞ.

H represents the applied torques vector as:

H ¼
ta

th

" #

ð6Þ

where τa, τh are the generated torque at the ankle and hip joint respectively.

Neural time delays and noise in the sensory system

Balancing requires different sensory systems such as proprioception, vestibular, and vision [5].

Due to the different lengths of the neural path, there are time latencies in transmitting infor-

mation to the CNS. Besides, less delays exist in processing at the CNS and transducing the

information to the musculoskeletal system by applying the executed forces and torques on

muscles and joints. In general, the total time is called the neural time delay, and for the body,

sway is in the range of * 100 − 300 (ms). However, the primary time delays happen in obser-

vation and perception of sensory data * 200 − 300 (ms) [49]. Aging and impaired functions

in any part of the balance control loop can increase the neural time delay, resulting in difficulty

of balance and falls [50].

Therefore, the neuromuscular controller receives sensory information as:

yk� kd
¼ Sðxk� kd

Þ þ vk� kd ð7Þ

where kd is the total measurement delay from sensors, called observation delay.

The neuromuscular controller has to reduce the noise from the received delayed measure-

ment and predict and estimate the current states of the system for further prediction of control
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actions. Besides, it is assumed that the Neuromuscular controller has a memory of the previous

control actions fuk� kd
; . . . ; uk� 1g.

Here, we have used EKF to resemble the prediction and estimation of noisy delayed sensory

measurements. The algorithm works in two steps. First, the EKF generates the estimate of the

delayed states x̂k� kd jk� kd
by finding the Kalman gain Gk� kd

and updating the states error covari-

ance Pk� kd jk� kd
. Next, the states and the state error covariance matrix will be predicted for the

next sampling time. The procedure is repeated until it reaches the estimate of the current time

step x̂k which is explained in more detail in [51].

Neuromuscular controllers

Model predictive controller. The MPC solves an optimization problem at each sampling

time for a finite prediction horizon N to find the sequence of optimal control inputs. The cost

function to be minimized is introduced as:

min
u

J ¼
XN� 1

j¼0

kx̂k � xrk
2

Γ þ kuk � urk
2

Λ; ð8Þ

where N 2 N�2 is the prediction horizon, x̂k is the estimated states vector, xr presents the refer-

ence states, uk and ur are the controller action and desired control action, respectfully. The

first term, weighted by Γ 2 R4, minimizes the error between the current states and the desired

one. The second term, weighted by Λ 2 R2, tracks the error between the produced control

action with the desired one.

The cost function (8) is minimized subject to the following constraints:

1. The dynamic of the body in discrete form as in Eq (1).

2. The joint torques (τa, τh) are bounded:

tmin
a < taðjÞ < tmax

a 8j 2 f0; 1; . . . ;N � 1g ð9aÞ

tmin
h < thðjÞ < tmax

h 8j 2 f0; 1; . . . ;N � 1g ð9bÞ

The MPC solves the mentioned above optimal control problem for a finite horizon N at

each sampling time. The optimum results for the predicted horizon are u* = {u(0)opt, u(1)opt,

. . ., u(N − 1)opt}. Then the first optimal value u(0)opt is applied to the body to obtain the angu-

lar position and velocity.

Center of pressure based controller. The structure of this controller is similar to the

MPC controller with the difference in using COP in the objective function. Theoretically the

COP is calculated from the torque applied at the toe τt and the vertical component of ground

reaction force fv applied on the foot [49]:

COP ¼
tt

fv
: ð10Þ

The control torque at the toe and the ground reaction are defined from the Euler-Lagrange

equations from the potential and kinetic energy as described in [49]: The cost function can be

written as follows:

min
u

J ¼
XN� 1

j¼0

kxCOP � xd
COPk

2

α þ kuk � urk
2

β; ð11Þ
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where xd
COP is the desired distance for ground pressure to keep the balance which is zero in this

case. α 2 R and β 2 R2
are the weights of error of COP and control action respectively. In

addition to the constraints in MPC, the horizontal position of COP should always remain in

the base of support, which in quiet standing with two joints is equivalent to the length of the

foot Lf:

Lmin
f < xCOPðjÞ < Lmax

f 8j 2 f0; 1; . . . ;N � 1g ð12Þ

Momentum based controller. MBC is widely used in controlling the humanoid robots

[52–54]. In [55], the usage of this controller on the mediolateral balance is studied. Here, we

implemented this controller based on [34]. The main goal is to find the joint torques by the

whole body momentum. The whole body momentum h can be derived as follows:

h ¼ AG _q; ð13Þ

where _q ¼ ½ _qa; _qh�
>

is the vector of angular velocities and AG is the centoridal momentum

matrix calculated based on the description in [56]. The momentum rate change can be calcu-

lated by taking the derivative of Eq 13 and through the contact forces by the Newton-Euler

equations.

_h ¼ AG€q þ _AG _q ¼
1 � xCOM

0 1

" #
l1

l2

" #

þ
0

� Mg

" #

; ð14Þ

l ¼

xCOPfcy

fcy

2

4

3

5; ð15Þ

where λ is the contact wrench and fcy is the contact force applied to the foot in the vertical axis.

The MBC optimization can be written in the following form by minimizing the momentum

rate and angular acceleration error:

min
€q;l

J ¼
XN� 1

j¼0

k _h � _hdk
2

Φ þ k€q � €qdk
2

Ω ð16Þ

s:t:Equation 14 ð17Þ

€qmin < €q < €qmax ð18Þ

Lmin
f < xCOP < Lmax

f ð19Þ

where _hd is the desired momentum rate, €qd is the reference angular acceleration, F and O

are the weight in the minimization term of the momentum rate change and the angular accel-

eration, respectively. The weights are chosen according to to [34] to guarantee stability. By

finding the optimal value for €q and λ, the control torque τ can be computed by solving the

inverse dynamics.

Intermittent PD controller. In this method the generated torque for each joint τ = [τa, τh]

from the neuromuscular controller consists of three parts:

t ¼ tb þ ts þ ti ð20Þ
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where τb is the bias torque apply to compensate for the gravity force:

tb ¼ � g

m1L1

2
þm2L1

� �

sin qref
a þ

m2L2

2
sin qref

a þ qref
h

m2L2

2
sin qref

a þ qref
h

2

6
6
6
4

3

7
7
7
5

τs is the torque related to the stiffness and damping in the muscles as follows:

ts ¼ �

Kaðqa � qref
a Þ þ Ba _qa

Khðqh � qref
h Þ þ Bh _qh

2

4

3

5

with Ka, Kh, Ba, Bh represent the stiffness and damping parameters of ankle and hip joints

respectively. The last term τi in the Eq 20 shows the intermittent control torque. Here, we

implemented this torque as in [25] contrary to other literature that considers the intermittent

control on a single inverted pendulum around the ankle, which has considered two degrees

of freedom around the ankle and hip. In their representation, the Virtual Inverted Pendulum

(VIP) is considered to calculate the rotation around the ankle by a virtual link to the whole

body Center Of Mass (COM) as:

qCOM ¼ tan� 1
xcom

ycom

� �

; ð21Þ

where xcom ¼ m1

L1

2
sin qa þm2 L1 þ

L2

2

� �
sinðqa þ qhÞ and

ycom ¼ m1

L1

2
cos qa þm2 L1 þ

L2

2

� �
cos ðqa þ qhÞ. Then the error between the estimated value

of the angular location of COM by EKF and the reference value (qer
com ¼ qref

com � q̂com) is used to

generate the control action only on the ankle joint as follows:

ti ¼
C

0

" #

;

with
C ¼ Pqer

com þ D _qer
com if qer

comð _q
er
com � aq

er
comÞ > 0

C ¼ 0 otherwise

(

ð22Þ

where P, D are the proportional and derivative parameters, respectively, and α is the switching

parameter. To have a wider stable region based on the value of P and D, we chose α = 0.4 as dis-

cussed in [23], and the controller becomes active in the first and third quadrants of the phase

plane.

Results

Simulation results

The human body parameters used for the simulation are summarized in Table 1. The simula-

tion results were run on MATLAB and ‘ode23t’ function was used to solve the numerical inte-

gration. For an accurate comparison, noise perturbation is simulated by a white noise signal

with a standard deviation of 0.005 for all the trails. The neural delay of 200(ms) is chosen

based on the literature [49]. The EKF is run with a time step the same as the sampling time and

fixed covariance matrices of measurement noise and disturbances are chosen empirically as

Q = [diag(0.01, 0.01, 0.01, 0.01)] and R = [diag(0.1, 0.1, 0.01, 0.01)].
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The stiffness and damping parameter in the IPD controller are chosen as Ka = 500 (Nm/

rad), Kh = 380 (Nm/rad), Ba = 30 (Nms/rad), Bh = 30 (Nms/rad) according the measurements

and equations provided in [24, 57]. The optimization is done by MATLAB’s ‘fmincon’ func-

tion. The objective function gains in the simulation are chosen empirically so that the out-

comes remain stable and sway in the base of the support region. The prediction horizon of

N = 10 with a nominal sampling time of 0.01 s was assumed for the prediction. Table 2 summa-

rized the bounded parameters used in the simulation of optimal controllers methods. The

bounds are approximated based on [31, 58].

We simulated each controller starting at two different initial states to compare the perfor-

mance to perturbations such as external force applied to the body. We assumed an initial

state of q = [0.0873 0]T (rad) for a small perturbation initial state of q = [0.2618 0]T (rad) as a

higher perturbation. Figs 3 and 4 shows the simulation results with the best-tuned parameter

for each method for both ankle and hip joints, respectively. The body stabilizes around zero

in all methods for both small and higher perturbations. However, it can be seen that IPD

andCOP-BC controllers converge slightly faster to the stable position, while on the other

hand, MBC and MPC show more oscillation around zero in ankle and hip joint respectively.

Expectedly, increasing the perturbation results in higher amplitude in both angular position

and angular velocity in all methods. This analysis is important, especially in the case of push

recovery in robotic applications such as humanoids. Considering fast convergence in push

recovery and the ability to handle constraints, COP-BC controller can outperform other

controllers. It should be highlighted that the results are displayed based on the best-tuned

parameter. The choice of parameters can generally affect the controller outcomes’ conver-

gence and settling time. More investigation on the controller parameters is discussed in the

discussion section.

Other vital factors for comparing the controller are the strategy of balance and the energy

consumption in joints. The joint energy is calculated from joint torque τ and angular velocity

_q as E ¼
R
t _qdt. Fig 5 compares the energy consumed in each joint by each method for differ-

ent perturbed sway. It can be seen that IPD controller uses more energy at each joint than opti-

mal methods in both small and high perturbation. It is also clear that with higher perturbed

sway, the efforts to maintain balance in all the joints will increase and with higher sway, the

hip joint consumes more energy than the ankle joint. In the optimal controller methods MBC

controller uses significantly lower energy at the ankle compared to the hip joint even with

smaller sway, indicating higher efforts of the upper body to stabilize the body in this method.

COP-BC controller consumes almost equal energy in both joints to maintain balance in both

small and high perturbations.

Table 2. Parameters bounds and limitations.

Lf τa τh qa qh
Min -0.08 m -20 N.m -40 N.m -0.35 rad -0.53 rad
Max 0.22 m 20 N.m 40 N.m 0.53 rad 0.87 rad

https://doi.org/10.1371/journal.pone.0285098.t002

Table 1. Body characteristics.

Mass Length Inertia

Foot m0 = 3.71 kg L0 = 0.158 m I0 = 0.025 kg.m2

Shank m1 = 11.41 kg L1 = 0.78 m I1 = 0.35 kg.m2

Torso m2 = 50.14 kg L2 = 0.73 m I2 = 0.25 kg.m2

https://doi.org/10.1371/journal.pone.0285098.t001
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In [59] shows that the changes in control strategy from ankle to hip strategy can be seen

by changes in joints torque trajectories. [58] mentions that in hip strategy, the ankle plantar

flexion torque is smaller than the hip. Considering these studies, each method’s value of joint

torque trajectories is plotted in Fig 6. While, as expected, higher perturbation cause shifting

from ankle to hip strategy to maintain balance, it is apparent that for small sway IPD and

MPC use both ankle and hip joint (ankle-hip strategy). Surprisingly, MBC mainly utilizes a

hip strategy to stabilize the body. Although this result confirms the assumption in [60] that

in MBC controllers in robotic applications only the hip is actuated to keep the balance, it

does not simulate the human postural sway behavior to maintain balance since the human

data shows ankle and ankle-hip strategy even in perturbed sway [61]. COP-BC controller

mainly uses ankle strategy which shows the robustness of this method to the perturbed pos-

tural sway.

Experimental results

To compare the controllers with the human data, first, we used the measured angular position

of the joints as reference data for all the controllers to obtain the cost function gains. An opti-

mization problem was solved to find the gains of the controller as

min
q;w

XT

j¼0

kqhuman � qk2
; ð23Þ

Fig 3. Phase portraits comparison of the mentioned methods for the ankle joint. The solid black line indicates the

small perturbation and the dashed red line illustrates the higher perturbation.

https://doi.org/10.1371/journal.pone.0285098.g003
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Fig 5. Energy consumption at each joint for different methods.

https://doi.org/10.1371/journal.pone.0285098.g005

Fig 4. Phase portraits comparison of the mentioned methods for the hip joint. The solid black line indicates the

small perturbation and the dashed red line illustrates the higher perturbation.

https://doi.org/10.1371/journal.pone.0285098.g004
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where T is the total time samples (30 s) and q is the vector of the angular position of each joint.

Table 3 summarizes the obtained gains for each controller.

Later on, to have a fair resemblance, we simulated all controllers with the initial point of

human data measurement, the related body characteristics, and the obtained gains. Fig 7

shows the result for the COP prediction of a random subject in the data set for one step ahead

prediction where the human measurement is known at each sampling time as well as Fig 8 that

shows the result for prediction for the total measured time of (30 s) where only the initial point

is known from the human data.

The results are validated by three criteria: Root Mean Square Error (RMSE) and Variance

accounted for (VAF) and Power Spectral Density (PSD) in the frequency domain. VAF repre-

sents how much the estimated output is similar to the measured data. A higher percentage

shows more similarity.

VAF ¼ ð1 �
varðCOPmeas � COPestÞ

varðCOPmeasÞ
Þ∗100 ð24Þ

Fig 6. Hip versus ankle joints torque for different methods. The solid black line indicates the small perturbation and

the red dashed line indicates the higher perturbation.

https://doi.org/10.1371/journal.pone.0285098.g006

Table 3. Controllers gains.

MPC Γ = [5000 ± 1900, 8000 ± 1000, 7000 ± 1000, 8500 ± 1000]

Λ = [0.02 ± 0.002, 0.01 ± 0.001]

COP-BC α = 12 ± 2, β = [0.9 ± 0.1, 0.8 ± 0.2]

MBC F = [83 ± 2, 85 ± 2], O = [1500 ± 300, 1300 ± 200]

IPD P = 0.7 ± 0.2, D = 352 ± 40

https://doi.org/10.1371/journal.pone.0285098.t003
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Table 4 presents the RMSE and VAF calculated for both prediction for a step ahead

and prediction for the total duration of the experiment. According to the table, optimal

approaches generally have more accurate predictions than the IPD approach. While the-

COP-BC approach has the slightest error and more accurate prediction than other methods. It

Fig 7. One step ahead prediction of COP with different methods. The subject body parameters are M = 67 kg,

L = 1.68 m. The noise is estimated as white noise with a standard deviation of 0.005. The reaction time of the subject is

0.310 s.

https://doi.org/10.1371/journal.pone.0285098.g007

Fig 8. COP validation of measured experimental data of a random subject in the data set with the result of the

generated COP of each method for the total time of the prediction. The subject body parameters are M = 67 kg,

L = 1.68 m. The noise is estimated as white noise with a standard deviation of 0.005. The reaction time of the subject is

0.310 s.

https://doi.org/10.1371/journal.pone.0285098.g008

PLOS ONE Optimal controllers resembling postural sway during upright stance

PLOS ONE | https://doi.org/10.1371/journal.pone.0285098 May 2, 2023 14 / 23

https://doi.org/10.1371/journal.pone.0285098.g007
https://doi.org/10.1371/journal.pone.0285098.g008
https://doi.org/10.1371/journal.pone.0285098


should be highlighted that while the VAF metric provides a rough approximation of the accu-

racy of a prediction, it is not a valid indicator for assessing one-step-ahead prediction. This is

because the VAF primarily measures the ability of the controller to track the measured COP,

whereas the objective is to validate the controllers’ ability to stabilize the position and track the

zero angular position.

However, since approximating individual noise and disturbance may not be accurate, vali-

dation in the frequency domain is more reliable. PSD is a common method to analyse the

COP in studying postural sway. Here, we used the Lomb-Scargle function in MatLab to calcu-

late the PSD that is preferable in case of short time series to detect low frequencies. Fig 9

compares the PSD calculated for the COP obtained with different methods compared with

measured COP of a random subject. It can be seen that only MPC andCOP-BC approaches

have similar PSD in small frequencies (below 0.1 Hz), compared to the human data.

Discussion

The choice of weights and feedback parameters in the controller can affect the performance of

the controllers. Here, we studied the robustness of each controller to the parameter changes as

well as the energy consumption in the joints. For the IPD controller and the optimal controller

Table 4. Mean± standard deviation of RMSE and VAF for the prediction of COP of ten subjects with different methods.

One-step-ahead Total duration of experiment

RMSE(cm) VAF% RMSE(cm) VAF%

MPC 0.1 ± 0.07 96 ± 5 0.6 ± 0.1 53 ± 4

COP-BC 0.1 ± 0.04 96 ± 2 0.5 ± 0.05 45 ± 6

MBC 0.25 ± 0.1 77 ± 3 0.7 ± 0.04 19 ± 3

IPD 0.43 ± 0.15 56 ± 8 0.8 ± 0.07 12 ± 4

https://doi.org/10.1371/journal.pone.0285098.t004

Fig 9. PSD comparison of measured experimental data of a random subject in the data set and the mentioned

methods.

https://doi.org/10.1371/journal.pone.0285098.g009

PLOS ONE Optimal controllers resembling postural sway during upright stance

PLOS ONE | https://doi.org/10.1371/journal.pone.0285098 May 2, 2023 15 / 23

https://doi.org/10.1371/journal.pone.0285098.t004
https://doi.org/10.1371/journal.pone.0285098.g009
https://doi.org/10.1371/journal.pone.0285098


(MPC andCOP-BC), we changed the parameters so that the controller’s results stay stable and

in the range of body joints movements. However, as described in the methodology section, the

weight in MBC is chosen as the null space projection of AG matrix and the stability is sensitive

to this weight. Therefore, there is limited freedom to change this weight. Although this can be

a limitation, further works need to be done to investigate the stable region of this controller.

Fig 10 study the effect of changing the proportional Kp and derivative Kd gain in IPD con-

troller. The energy versus error plot shows that the error between the angular and reference

positions decreases as the controller gain increases. At the same time, ankle and hip joints

need more effort to maintain balance. Interestingly, the same trend can be observed by chang-

ing weights in the objective function for both MPC andCOP-BC controller methods as shown

in Figs 11 and 12. This indicates that the change of the controller parameters in the stable

region is a trade-off between the energy consumption in the joints and the accuracy of the pre-

diction. This is an essential factor to consider in designing robotic applications. Finding the

optimal parameter based on energy consumption and accuracy is in the form of the Pareto

front optimization, which is deferred to our future work.

Moreover, we investigated whether parameter changes will influence the balance strategy.

As shown in Fig 10 IPD controller uses an ankle-hip strategy despite changes in the controller

gains. This is almost the same case for the MPC controller (Fig 11). However, increasing the

gain of the error reduction term in theCOP-BC objective function results in favoring the ankle

strategy to stabilize the body (Fig 12). When designing robot applications, robustness to

parameter changes may be desirable. Therefore, IPD and MPC controllers are more attractive.

On the other hand, in the clinical application of the postural sway model, the relation between

parameters or weights and postural strategy is an essential factor. Since, by aging or postural

related disease, the human body uses more hip, hip-ankle strategy rather than ankle strategy

Fig 10. Evolution of changing controllers gain in IPD controller. The upper plot shows the effect of gain change on

the total energy consumption in the joints and the RMSE. The lower plot represents the effect on the joints’ torques

and standing strategy.

https://doi.org/10.1371/journal.pone.0285098.g010
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Fig 11. Evolution of changing weights in the optimization of the MPC controller. The upper plot shows the effect of

gain change on the total energy consumption in the joints and the RMSE. The lower plot represents the effect on the

joints’ torques and standing strategy.

https://doi.org/10.1371/journal.pone.0285098.g011

Fig 12. Evolution of changing the COP distance error’s weight (α) inCOP-BC controller. The upper plot shows the

effect of gain change on the total energy consumption in the joints and the RMSE. The lower plot represents the effect

on the joints’ torques and standing strategy.

https://doi.org/10.1371/journal.pone.0285098.g012
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to maintain balance [62, 63]. The results about theCOP-BC, confirm the finding in the [63]

where they found the COP information valuable and plausible to generate postural sway. They

also found COP metrics sensitive to the parameter changes of the active controller, where the

COP obtained by their method can show the difference between younger and older adults’

balance control. Besides, the presence of tactile and proprioception sensors under the feet [64]

makes consideration of COP information in the postural sway controllers essential in posturo-

graphy and clinical applications.

We compared the three most common optimization methods that can mimic postural sway

in quiet standing with IPD controller. We chose IPD controller since it solves the stability

issue of the PD controller specifically in case of time delays [24]. However, future work should

consider other methodologies, such as delayed PD or Proportional-Derivative Acceleration

(PDA) controller [65–67], to compare the optimal controllers. PDa feedback controller, where

control action is switched on and off based on the sensory dead zone, is a potential methodol-

ogy to consider specifically in case of larger time delays [68–70]. Furthermore, the intermit-

tency here is based on activating the PD controller based on the state-dependent mechanism.

However, other intermittent controller paradigms introduced in [71, 72] and the human likeli-

ness of each paradigm can be studied as future work.

In this work, we utilize EKF to estimate the neural time delay and the sensory noise. How-

ever, in spite of the simplicity of EKF in predicting the time delays and reducing the measure-

ment noise, further estimation methods can be studied. Finally, on a broader level, research

should also determine the three joints model without locking the knee to study the impact of

time delays on the control strategies and utilizing the stepping strategy to maintain balance in

a quiet stance.

Conclusion

In this paper, we investigated optimal control structures mimicking the postural sway by con-

sidering the physical body dynamic as two links inverted pendulum and comparing it with the

widely used IPD controller. In addition to benefiting from using joint and body constraints,

our results show that optimal control techniques consume less energy in the joints and have a

more accurate prediction of the control input to the joints with higher accuracy compared to

the IPD controller. However, the straightforward implementation and information about the

muscles’ damping and stiffness is still an advantage of the IPD method in clinical applications.

In optimal techniques, our results revealed that although the MBC can somewhat predict

the control output to the joints, the balance strategy differs from what the human body uses,

especially for significant perturbation. Besides, the choice of weight to maintain the controller

in a stable region needs more effort than other approaches. Improving the performance of this

controller to be more similar to human behavior in postural sway; future work is required to

study the additional term to the cost function (Eq 16) that consider the changes of COP.

Both MPC andCOP-BC optimal controllers showed promising results in both simulation

and experimental comparison. However, COP-BC controller uses less energy in the hip and

mainly uses ankle strategy in postural sway, which is preferable in robotic applications.

We also observed that tuning the parameter is a trade-off between the consumed energy in

the joints and the accuracy of the prediction. These findings suggest that, while IPD controller

is not superior to other methods, it benefits from simplicity and can be used in clinical and

robotic applications. While for more accuracy and less energy consumption, one can benefit

from optimal controllers.

Although our finding can be a helpful aid in choosing the balance controller structure

for the balance applications, it has some limitations. First, to carefully compare the human
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likeliness of the different approaches, it is desirable to consider the stepping strategy in higher

perturbation. Therefore, future research should study the capacity of different methodologies

with a three-link inverted pendulum considering the knee joint. Second, more efforts are

needed to investigate the methods considering the model-based structure of the muscular sys-

tem in the human balance loop.
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43. Jafari H, Pauelsen M, Röijezon U, Nyberg L, Nikolakopoulos G, Gustafsson T. On internal modeling of

the upright postural control in elderly. In2018 IEEE International Conference on Robotics and Biomimet-

ics (ROBIO) 2018 Dec 12 (pp. 231-236). IEEE.

44. Lippi V, Maurer C, Mergner T. The Importance of Models in Data Analysis with Small Human Movement

Datasets–Inspirations from Neurorobotics Applied to Posture Control of Humanoids and Humans. arXiv

preprint arXiv:2102.02543. 2021 Feb 4.

45. Hou ZS, Wang Z. From model-based control to data-driven control: Survey, classification and perspec-

tive. Information Sciences. 2013 Jun 20; 235:3–5. https://doi.org/10.1016/j.ins.2012.07.014

46. Pauelsen M, Jafari H, Strandkvist V, Nyberg L, Gustafsson T, Vikman I, et al. Frequency domain

shows: Fall-related concerns and sensorimotor decline explain inability to adjust postural control strat-

egy in older adults. PLoS ONE. 2020 Nov 20; 15(11):e0242608. https://doi.org/10.1371/journal.pone.

0242608 PMID: 33216812

47. Pauelsen M, Vikman I, Strandkvist V, Larsson A, Röijezon U. Decline in sensorimotor systems explains
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