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Abstract

Regular monitoring of the number of various fish species in a variety of habitats is essential

for marine conservation efforts and marine biology research. To address the shortcomings

of existing manual underwater video fish sampling methods, a plethora of computer-based

techniques are proposed. However, there is no perfect approach for the automated identifi-

cation and categorizing of fish species. This is primarily due to the difficulties inherent in cap-

turing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic

environments, watercolor, poor resolution, shape variation of moving fish, and tiny differ-

ences between certain fish species. This study has proposed a novel Fish Detection Net-

work (FD_Net) for the detection of nine different types of fish species using a camera-

captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53

for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented

feature extraction network bottleneck attention module (BNAM). The mean average preci-

sion (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is

utilized in the method for the extraction of features is an improved version of DenseNet-169,

and the loss function is an Arcface Loss. Widening the receptive field and improving the

capability of feature extraction are achieved by incorporating dilated convolution into the

dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM

into the dense block of the DenseNet-169 neural network. The results of several experi-

ments comparisons and ablation experiments demonstrate that our proposed FD_Net has a

higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-

RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species

detection tasks in complex environments.
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Introduction

As people’s living conditions continue to improve, aquatic goods have emerged as an increas-

ingly essential source of protein. As a result, the aquaculture industry currently accounts for

more than sixty percent of the world’s total production of these items [1–3]. The output of fish

that has been raised in captivity constitutes a significant component of the entire aquaculture

sector [4,5]. Aquaculture is becoming an increasingly important area of attention for several

national governments as part of ongoing efforts to guarantee that their populations will always

have ready access to adequate supplies of food [6]. The aquaculture industry is moving away

from the more conventional approaches to artificial farming in favor of the more innovative

and cutting-edge farming techniques that are collectively referred to as intelligent farming.

This is a direct result of the rapid advancement of contemporary technology [7–9]. The use of

computer vision technology (CVT) is essential to the development of intelligent aquaculture

[10–12]. CVT is used extensively in fish farming [13] to detect, classify, identify, measure, and

count fish [14,15]. This may be achieved by knowing the phenotypic traits of fish that live in

underwater environments [16–18]. One of the most significant tasks in developing the sector

of fish farming is to get reliable identification of individual fish [19].

Conventional methods for fish identification may use either the machine learning (ML)

technique or manually determined criteria [20–22] to identify the species of fish being

researched. In contrast, manual trait selection is inefficient, and characteristics derived from

human experience are insufficient, leading to an unreliable degree of prediction [23–25]. As

there is a growing interest in mechanized fish farming [26], simple species identification is no

longer enough. Once the species of fish have been identified, each member of that species may

be recognized by their unique identifier and be given a name. Because this makes it possible

for individual fish to be more easily identified, it is of greater relevance in terms of directing

the expansion of the fish farming industry. At this time, the bulk of solutions for fish individual

recognition (FIR) [27] make use of DL models that are built on the framework for fish recogni-

tion. The framework for fish recognition consists of three processes: fish object detection, fish

feature extraction, and fish feature comparison. The process of FIR is comprised of three

stages: the image preprocessing stage [28], the feature extraction stage [29], and the classifica-

tion [30] and identification step. The standard method for object recognition uses an algo-

rithm that relies heavily on the manual selection technique for feature extraction [31–40]. This

method chooses relevant features based on the subjectivity of humans. The selection of traits

using this method is very subjective, inefficient, and prone to overlooking important attributes

[41]. Classifiers like the Naive Bayes (NB) [36], Decision Tree (DT) [39], and Support Vector

Machine (SVM) are often used by traditional methods. Their accuracy is restricted, and they

are only useful for locating very small fish targets that have distinguishable characteristics [42–

43].

Due to its ongoing progress, several academics have started using deep learning (DL) in

their work on object identification algorithms [32–38]. DL can efficiently and automatically

extract characteristics and learn new information. The object identification strategy that is

based on DL thus has the potential to be used to fish for objects with large-scale attributes that

are not very relevant. The R-CNN [15], the SSD [16], the YOLO series [18], and several other

algorithms are included in object identification systems that are based on DL. The RCNN is a

two-stage DL methodology that is based on candidate boxes [19–22]. It has a slow detection

speed and cannot perform real-time detection. Both the SSD and the YOLO series algorithm

are examples of single-stage, regression-based approaches to DL. Even if the SSD method is

fast, a large number of the parameters have to be supplied manually, and the process of debug-

ging is challenging. The YOLO series approach is well suited for identifying individual fish
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because of its rapid speed [27], high accuracy [28], simple debugging, and real-time detection

capabilities [29].

In earlier studies, the identification of fish species in the open ocean relied on characteristics

that had to be manually manufactured. The study that was carried out by Spam-pinato et al.

[44] took into consideration the attributes of the form as well as the features of the texture. It is

then possible to generate a three-dimensional representation of the fish by applying an affine

transformation to each of the generated images and putting them through the same process. In

the study [45], they were able to collect 66 different kinds of characteristics, some of which

were the color, shape, and texture of different parts of the fish. They went on to design a hierar-

chical categorization scheme, which they referred to as the "Balance-Guaranteed Optimized

Tree (BGOT)," intending to minimize the error accumulation problem to the greatest extent

possible.

Both Vieira et al. [46] and Monczak et al. [47] discovered that their models were able to rec-

ognize fish calls with a longer duration and significant harmonics more accurately than calls

with a shorter duration that was pulsed. Even though the detection and classification accuracy

are not very high for every fish call or species, all acoustic studies of fish that have used auto-

matic analysis methods have concluded that these methods provide the most efficient way to

analyze long-term PAM datasets [48–50]. Using a kernel that was developed by Ruiz-Blais

et al. [51] were able to identify the calls that are made by Jamaica weakfish (Cynoscion jamai-

cen-sis). The kernel was based on four call characteristics, and a call was only identified when

all four call features surpassed their respective criteria, which the researchers had already speci-

fied in the beginning. In other words, for a call to be recognized, each of the four call attributes

had to concurrently surpass their respective thresholds. Ricci et al. [52] applied a multi-kernel

approach that was based on the two lowest harmonic frequencies of oyster toadfish sounds to

identify oyster toadfish calls that were included within the recordings. This allowed them to

successfully identify oyster toadfish calls. A CNN with three convolution layers was created by

Salman et al. [53] to collect characteristics and feed them into popular classifiers for the identi-

fication of fish species. These common classifiers include SVM and K-nearest neighbors

(KNN). Qin et al. [54] suggested the use of a CNN that had been trained from the ground up

with the help of the Fish Recognition Ground-Truth dataset. This CNN was built using three

layers of convolutional processing. PCANet [55] and LIN [56] are two examples of different

kinds of deep architectures that were used by Sun et al. [57] in their attempt to extract charac-

teristics from underwater photographs. A linear SVM classifier is used whenever classification

work needs to be done. Using characteristics that were obtained from the activations of the

seventh hidden layer of the pre-trained AlexNet model [58], the findings of Jager et al. [59]

were input into a multi-class SVM classifier to classify the data.

Zhang et al. [60] came up with the AdvFish approach to find a solution to the problem of

noisy backgrounds. They were able to do this by adding a new term in the loss function, which

provided them with the capacity to fine-tune the ResNet50 model. Because of this term, the

network can automatically discern between the areas with fish and those with more distracting

background noise, allowing it to concentrate more of its attention on the areas with fish. In

addition to this, it assists in the development of the network that differentiates the fish areas

from other locations. The teacher-student paradigm was used by Pang et al. [61] to lessen the

effect that interference had on the categorization of fish species. They were able to extract

information regarding interference by reducing the difference between two distance matrices

that had been separately constructed from a processed fish picture and a raw fish image. These

matrices were formed from a fish image before any processing was done to them. They were

able to trace the source of the interference as a direct result of this finding. An application of

KL-divergence is performed on the distribution of the raw data to further cut down on the
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amount of noise that is present in the data. In recent years, advancements in computer vision

have enabled a way for identifying fish movement that is both quick and nondestructive. This

approach was developed to take advantage of these recent developments [62]. Labuguen et al.

[63] continue the work that was done in the past [64] by describing an automated method to

count fish. Image processing is used in this method to ascertain the pixel area that is occupied

by the silhouette of each fish. To get started, a binarization and edge detection procedure is

carried out, which involves placing a whole school of fish within a container that was designed

to carry out such procedures. After that, they acquire the total number of fish as well as the

average number of fish that are present in each picture frame by adding the area that is

included inside each contour for each image frame. This allows them to determine the number

of fish that are present in each image frame. Because of this, they can calculate not only the

total number of fish but also the typical number of fish that may be found in each picture

frame.

Using information obtained from underwater video recordings, Fabic et al. [65] devised an

efficient approach for identifying fish, counting them, and establishing the species they

belonged to. This approach depended on blob counting and form analysis to complete these

tasks successfully. They deleted the coral from the background of the picture as part of an era-

sure procedure that they employed to assist in the identification of fish, and then they utilized

canny edge detection to recover the fish outlines. The Zernike shape analysis was carried out

to evaluate the degree to which the shapes of various fish species, particularly those belonging

to the families Acanthuridae and Scaridae, are comparable to one another. This was done to

determine whether or not there is a relationship between the shapes of these fish. Following

the completion of the fish population estimate, the blob counting method was used to identify

the total number of fish that were present in the population. In the end, due to the numerous

shifts that took place in the image, they calculated the average fish count for each period by

beginning with the counts that were present in each frame as their point of reference. The

propagation of fish has turned into a roadblock in the path of the development of fish farming,

and the counting method is one of the issues that come up at various points throughout the

process of hatching fish eggs. The researchers that participated in the study [66] made use of a

robotic eye camera to collect images of shrimp that were being raised on a shrimp farm for the

goal of training the model. The information obtained from the photographs was analyzed and

the results were categorized as having a "low density," "mid-density," or "high density" based

on the number of shrimps that were visible in each picture. An improved model of the Mask

Regional Convolutional Neural Network (also known as the Mask R-CNN) was created as a

result of applying a parameter calibration technique to find the appropriate values for the net-

work’s parameters. As a result of this, the enhanced Mask R-CNN model has the potential to

attain an accuracy level of up to 97.48%. These days, marine ecologists perform research on

the variety of life that may be found in underwater environments by making considerable use

of underwater camera systems. These technologies are not harmful, do not result in any alter-

ations to the environment that they are embedded in, and generate a significant amount of

visual data that may be put to use at any point in time.

By using CNN and training it using a novel method that is based on incremental learning,

Ben et al. [67] were able to classify live reef fish species in an unrestricted underwater environ-

ment. The method of gradual learning was crucial in bringing about this successful outcome.

According to the results of the calculations that were carried out, the recommended method

had an accuracy of 81.83% when applied to the LifeClef 2015 Fish benchmark dataset. Iqbal

et al. [68] proposed the performance of research that would involve an efficient end-to-end

CNN for the goal of classifying fish behavior into the normal and starving categories. This was

done to categorize fish behavior. They evaluate the performance of CNN by modifying the
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number of fully connected (FC) layers and either utilizing or not utilizing the max-pooling

method. The accuracy of the detection method is improved by 10% as a direct result of the

incorporation of three FC layers in addition to the maximum pooling operation. According to

the findings, the shallow architecture of the CNN model, which incorporates a max-pooling

function with an increased number of FC layers, is capable of achieving an accuracy of 98%

and displays promising performance. Roy et al. [69] proposed an improved version of

YOLOV4 for fine-grain object detection. The proposed model is based on Spatial Pyramid

Pooling (SPP), and a modified Path Aggregation Network (PANet) and they achieved an mAP

of 96.29%. WilDect-YOLO is a DL-based automated high-performance detection model in the

study [70] for real-time endangered wildlife identification. Using DenseNet-fused YOLOv4

and attaining an mAP of 96.20 percent, Roy et al. [71] proposed a one-of-a-kind real-time

growth stage detection model that is capable of detecting stages with a high degree of occulta-

tion. Kaya et al. [72] proposed a CNN-based model named IsVoNet8 for the classification of

fish species. They achieved a classification accuracy of 91.37%. LIBS and Raman’s spectroscopy

were used in the study that Ren et al. [73] conducted to develop a novel method for the identi-

fication of fish species. The data from LIBS and Raman spectroscopies gathered from 13 differ-

ent species of fish were used in conjunction with two different machine learning algorithms

called SVM [74] and CNN [75,76] to construct classification models. The proposed CNN

model achieves a maximum accuracy of classification of 96.2 percent.

The purpose of this research is to develop a deep learning (DL)-based methodology for the

recognition of different species of fish. For this study, a proposed fish detection network

(FD_Net) is based on the YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and

depthwise separable convolution for 3 x 3 filter size in the bottleneck attention module

(BNAM) feature extraction network was designed for the detection of nine types of fish species

i.e., gilt-head bream (GHB), red sea bream (RSB), sea bass (SB), red mullet (RM), horse mack-

erel (HM), black sea sprat (BSS), striped red mullet (SRM), trout (TRO), shrimp (SHR). The

bounding box method and semantic segmentation are both viable detection methods included

in this method. This methodology contributes to the preservation of aquatic fish species and

facilitates their identification without the requirement of prior domain expertise. Additionally,

this strategy assists in distinguishing the target fish from the rest of the school of fish. The pri-

mary objective is to construct a model that can detect and categorize the fish species that live

in the water, one that makes use of trained architecture and computer vision algorithms that

are capable of recognizing the fish species quickly and accurately. This research has major con-

tributions which are discussed as follows:

1. The proposed FD_Net model is based on YOLOv7 by exchanging the feature extractor Dar-

knet-53 with the MobileNet which is inspired by depth-wise separable convolution to detect

nine types of fish species.

2. An improved iteration of DenseNet-169 serves as the foundation for the one-of-a-kind fish

identification network known as FD_Net. The normal convolution is kept in the trunk of

the network, while dilated convolution is introduced to the dense block of the network for

feature extraction. Increasing the size of the receptive field makes it possible to acquire traits

with greater specificity.

3. The FD_Net is trained and tested on a large-scale Dataset for fish Classification [44]. Exten-

sive experiments were performed, as well as comparisons of the results with state-of-the-art

approaches.

4. The FD_Net Loss function has been improved, which should result in greater overlap

between the actual item and the predicted one.
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5. Utilize the YOLOv7 technique to improve the accuracy of the model, which resulted in an

improvement in the model’s accuracy as compared to the baseline model.

This study is further divided into four sections: Section 2 presents the recent literature. The

material and methods of the present study are discussed in section 3. Section 4 contains the

results and discussions. The conclusion and future work of this study is described in section 5.

Materials and methods

This section consists of an experimental process that was carried out to measure the classifica-

tion accuracy of the suggested model known as FD_Net, which is built on improved YOLOv7

with BNAM for the detection of nine different species of fish. This system was trained and vali-

dated using a dataset that was made accessible to the public and was described in the study

[43]. The collected images have been scaled to the fixed size of resolution of the image i.e., 299

x 299 x 3. To prevent the model from being overly specific to the data, the process of data nor-

malization was applied to the dataset. The dataset was cut up into three sections, which were

designated as training, validation, and testing respectively. The experimental process was exe-

cuted for up to 150 epochs. The performance of the FD_Net was examined and compared with

YOLOv3 [77], YOLOv3-TL & YOLOv3-BL [78], YOLOv4 [79], YOLOv5 [80], Faster-RCNN

[81], and the most recent YOLOv7 [82] in terms of the Intersection over Union (IoU), mean

average precision (mAP), accuracy, sensitivity, precision, and the f1-score. The schematic

block diagram of this study is shown in Fig 1.

Dataset description

This dataset [43] is available publically and contains images of nine distinct types of seafood

procured from the fish counter of a grocery store. A Kodak Easyshare Z650 and a Samsung

ST60 are the two cameras that are utilized during the process of gathering the information for

this dataset. Although 50 unique fish photos are obtained for each of the nine classes such as

gilt-head bream (GHB), red sea bream (RSB), sea bass (SB), red mullet (RM), horse mackerel

Fig 1. Study flow diagram for detecting several fish species.

https://doi.org/10.1371/journal.pone.0284992.g001
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(HM), black sea sprat (BSS), striped red mullet (SRM), trout (TRO), shrimp (SHR). Fresh fish

is used in the process of acquiring the photograph, and while they are positioned in a variety of

orientations and displacements, the lighting conditions do not dramatically shift throughout

the procedure. Last but not least, to make the dataset useable in research that deals with real-

life situations, a blue and noisy background is preferable over a spotlessly white background.

Fig 2 is an illustration of several example photographs taken from the dataset that was

collected.

In addition, the test images for all nine classes have had their dimensions reduced to the

fixed size of resolution (299 x 299 x 3) while maintaining almost the same aspect ratio. The size

of the dataset was increased through the application of the affine transformation [82]. Table 1

contains a comprehensive display of the dataset’s statistical information after synthetically

increasing the size of the dataset.

Marking the bounding box of the fish dataset

The quality of fish objects varies from image to image depending on the direction in which the

fish are swimming [83]. Therefore, determining which fish object should be given the best

label is an interesting challenge. The dataset was broken up into nine different categories. Each

class’s stored work was placed in the appropriate folder. In addition, the names of the images

were changed to conform to the specifications, and each class of the dataset was given a name

consisting of the respective class name, followed by GHB, RSB, SB, SRM, RM, HM, BSS, TRO,

and SHR. Finally, the file that was produced after labeling the image had the extension.xml.

The picture bounding box coordinates and the name of the class are automatically saved in

the.xml file. Table 2 presents the bounding box coordinates to the dataset.

Fig 2. Sample fish images of the dataset.

https://doi.org/10.1371/journal.pone.0284992.g002

Table 1. Summary of the fish detection dataset.

Sr# Fish Type Abbreviations No. of images Augmented Image

1 Gilt-head bream GHB 50 1000

2 Red sea bream RSB 50 1000

3 Sea bass SB 50 1000

4 Red mullet RM 50 1000

5 Horse mackerel HM 50 1000

6 Black sea sprat BSS 50 1000

7 Striped red mullet SRM 50 1000

8 Trout TRO 30 1000

9 Shrimp SHR 30 1000

Total 410 9000

https://doi.org/10.1371/journal.pone.0284992.t001

PLOS ONE Multi-Classification Deep Neural Networks for Identification of Fish Species

PLOS ONE | https://doi.org/10.1371/journal.pone.0284992 April 26, 2023 7 / 32

https://doi.org/10.1371/journal.pone.0284992.g002
https://doi.org/10.1371/journal.pone.0284992.t001
https://doi.org/10.1371/journal.pone.0284992


Proposed model

Fig 1 depicts the model structure of the proposed method for the identification of fish that live

underwater. The improved YOLOv7 algorithm is used in the object detection module (ODM),

which results in improved detection capabilities. The FD_Net method, which is described in

this article, is implemented in the recognition module. This method makes use of a network

for feature extraction and loss calculation. The improved DenseNet-169 is the network that is

used for feature extraction, while the Arcface loss (AFL) function is used for the loss function.

YOLOv7 and ODM. In this particular investigation, the YOLOv7 [23] method is used for

fish object identification. This decision was taken after some time was spent previously weigh-

ing the benefits of several YOLO series algorithms. To identify fish targets, we implemented

several modifications to YOLOv7, one of which was the complete replacement of the feature

extraction network as well as an upgrade to the existing feature extraction network [80]. These

changes were done to classify nine different types of fish species. YOLOv7 is comprised of

three fundamental components: the Backbone network, which is in charge of feature extrac-

tion; the improved feature extraction networks; and the YoloHead network, which is in charge

of prediction [81]. The original YOLO network has been improved with the introduction of

the YOLOv7 platform. There have been enhancements made to several different aspects, such

as the feature extraction network, the activation function, the loss function, and several other

areas. Both the activation function, which is changed from Leaky ReLU to Mish, and the net-

work for feature extraction, which is changed from YOLOv7’s [82] Darknet53 to CSP Dar-

knet53, are updated to reduce the size of the model while maintaining the same level of

accuracy. The version of the YOLO algorithm known as YOLOv7 is both more accurate and

more productive when compared to previous iterations of the YOLO algorithm [83].

Improvements to YOLOv7. MobileNetv3 has been used instead of the feature extraction

network CSP Darknet53 in the YOLOv7 network to make the OBM more lightweight and

user-friendly across mobile platforms [74]. According to [77], MobileNetv3 has the potential

to be used for categorization and has a positive impact on feature extraction. [28] This is

accomplished via the integration of the Squeeze and Excitation (SE) Network as well as by the

modification of the complex tail structure of MobileNetv2. The result is a network that is more

accurate and requires less processing power than MobileNetv2 [84]. If you choose Mobile-

Netv3 as the backbone network for feature extraction for YOLOv7, you may achieve good

detection results with fewer parameters; in addition, MobileNetv3 is more lightweight than

CSP Darknet53 [85].

Multiple researchers [47–58] have looked at the possibility of using MobileNet in conjunc-

tion with YOLO as a method. The authors of the research [29] concluded that an upgraded

version of MobileNetv3 would be a better choice than Darknet53 in YOLOv3 for feature

Table 2. Coordinate the format of the fish detection dataset for the bounding box.

Fish Type Class Xmin Ymin Xmax Ymax

GHB 1 312 298 409 395

RSB 2 335 298 415 399

SB 3 331 295 413 255

RM 4 330 285 400 275

HM 5 306 299 455 315

BSS 6 365 300 399 299

SRM 7 312 265 369 258

TRO 8 417 285 369 301

SHR 9 396 258 411 322

https://doi.org/10.1371/journal.pone.0284992.t002
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extraction since it would both lower the overall complexity of the algorithm and make the

model more accurate [86]. In addition, channel attention and spatial attention in MobileNetv3

come together to build a whole new attention module known as SESAM. In the article [85],

the authors presented a structure that was based on the YOLOV5-MobileNetv3Smal network

model. They also applied MobileNetv3Smal to YOLOv5, which improved the Backbone net-

work structure by resolving the problem of inference of high-pixel pictures using excessive

memory on low-power edge computing nodes. According to the research [32], the backbone

of YOLOv4 is built on MobileNetv3, which is improved by CBAM and adapted from SENet.

As a consequence of this, the complexity of the model is reduced, and the effect of interference

from high-light backgrounds is reduced to a minimum [87].

The problem of fish species identification was addressed by this work by modifying CSP

Darknet53 in YOLOv7 to MobileNetv3 [88]. Additionally, the input feature size was increased

to 299 x 299, and the output channels of the three effective feature layers were set to 20, 60, and

80, respectively. YoloHead is then connected to the three effective feature layers that were pre-

viously created. Additionally, an application of depthwise separable convolution [85] is investi-

gated in this study for YOLOv7. By using depthwise separable convolution, one may split the

spatial dimension from the channel dimension during the convolution process [89]. The input

and output are the same as in a standard convolution, but it uses a much smaller number of

parameters and calculations. As a result, including it in the network might result in a consider-

able reduction in the total number of parameters as well as the amount of time required for

computation. Some researchers have also looked at whether or not depthwise separable convo-

lution applies to certain situations. In the feature extraction network described in [36], the reg-

ular convolution is switched out for the depthwise separable convolution. In addition, the

attention mechanism is added in the channel and spatial dimensions of each dense block of

the feature extraction network to focus on tiny targets. In the study [37], the conventional

dense bottleneck block is changed into a compact dense bottleneck block by removing the very

last 1x1 convolution layer and replacing it with a 3x3 depthwise separable convolution. This

research makes use of depthwise separable convolution on the enhanced feature extraction

network i.e., Extended Efficient Layer Aggregation Network (E-ELANet) [90,91]. Additionally,

all three convolutions in E-ELANet are replaced with depthwise separable convolutions to fur-

ther reduce the number of parameters and speed up the calculation. Fig 3 shows the improved

structure of YOLOv7.

FD_Net model. With the fish identification module, this body of work presents a method

known as FD_Net, which is an underwater fish recognition methodology. It is made up of two

parts, namely, the loss computation and the backbone feature extraction network. The loss

function is modified to Arcface Loss (AFL), and the backbone network that is used for feature

extraction is improved based on DenseNet-169 [92]. The following is a list of the most impor-

tant improvements made to DenseNet-169:

1. The BNAM is integrated inside the dense block of DenseNet-169.

2. Before the convolution process begins, the dense block goes through batch normalization

(BAN).

3. While the max-pooling layer (MPL) is eliminated and dilated convolution is added to the

dense block, the conventional convolution is maintained as the primary method of process-

ing data in the backbone network.

4. Instead of the ReLU activation function, we employ the Hard-Swish activation function

5. BAN–dropout–Fully Connected (FC)–BAN strategy is used in this work.
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Figs 4 and 5 illustrate, respectively, the structure of the dense block of the enhanced Dense-

Net-169, which has been given the designation P-Bottleneck, and the structure of the improved

backbone network.

DenseNet-169. This research utilizes and improves the DenseNet-169 network because,

in comparison to DenseNet-121 and ResNet, the performance of DenseNet-169 is much

higher [90–93]. Cardinality is a new hyperparameter that has been added to DenseNet with

version 169 [92]. It was stated in the cited work [93] that increasing cardinality is a more effec-

tive strategy for attaining accuracy than expanding either the depth or the breadth of the con-

siderations [94]. The input channels are split up into a greater number of groups for the

convolution process when the cardinality is increased. This results in the output channels

being wider and having a greater number of features. The DenseNet-169 block structure is

seen in Fig 6.

As can be seen in Fig 6, the input of the DenseNet-169 block is a 256-channel feature map.

This map is then divided into 64 branches, each of which has 256 input channels for the first

convolutional layer, a 1x1 convolution kernel, and 8 output channels [95]. The number of

input channels in the second convolutional layer of each branch is set to four, the kernel size is

three, and the number of output channels is likewise set to four. The number of input channels

in the third convolutional layer of each branch is set to 4, the kernel size is set to 1, and the

number of output channels is set to 256 [96]. After that, separate additions are made to each of

the output feature maps of the 64 branches. The final output is generated by adding the result

Fig 3. Enhanced YOLOv7 architecture.

https://doi.org/10.1371/journal.pone.0284992.g003
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of the summation to the input piece, which is done by a rather straightforward connection.

The structure that may be created by simplifying Fig 6, which is the structure that is used the

most often, can be seen in Fig 7.

Bottleneck attention module (BNAM). The purpose of incorporating the BNAM into

the dense blocks of DenseNet-169 is to enhance the capability of the network to extract proper-

ties shared by a variety of fish species. A lightweight attention module that is introduced by

[90], it is made up of the Channel Attention Module (CHAM) and the Spatial Attention Mod-

ule (STAM) as depicted in Fig 8.

The input feature maps are initially pooled in the CHAM by using maximum and average

pooling, in that order, before being sent to the Shared MLP for processing. The Shared MLP is

then followed by the inclusion of the individual output feature components to integrate the

output features. Activating the sigmoid function is the last step in the process of extracting the

output characteristics of the CHAM. The characteristics that are generated by the CHAM are

taken as input by the STAM, which then makes findings based on those characteristics. In

Fig 4. P-Bottleneck: Dense block after embedding BNAM.

https://doi.org/10.1371/journal.pone.0284992.g004

Fig 5. Backbone network DenseNet-169.

https://doi.org/10.1371/journal.pone.0284992.g005
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addition, maximum pooling and average pooling are carried out before splicing the two layers

together and carrying out the convolution procedure to reduce the channel to a value of 1. In

the end, sigmoid activation is a method that may be used to get the output qualities of the

STAM. In [97], the BNAM attention module is applied to the output of DenseNet-169 to per-

form BNAM processing on each group of the detailed features to get useful features, suppress

superfluous features, and enhance information usage. We used the BNAM on the dense block

of DenseNet-169 for the fish species identification challenges. After embedding the BNAM, we

renamed the dense block as B-Bottleneck and subsequently replaced Bottleneck with P-Bottle-

neck. The purpose of this is to improve the network’s ability to extract the characteristics of

each fish and extract features with a higher level of detail.

Batch Normalization (BAN). The input data are converted into a normal distribution via

BAN [92], which has a mean value of 0 and a variance value of 1. Using this approach, the net-

work’s capacity for generalization, initial learning rate, and convergence speed may all be

improved. In addition, the initial learning rate of the network can also be boosted. First, the

convolution operation is carried out on the dense blocks of the initial DenseNet-169 network.

Next, the effective BAN operation is carried out on these blocks. However, when training is

being done, it is possible to make the network unstable, and it is also simple for the loss to

drop to cause enormous fluctuations; both of these things would reduce the overall influence

that the training has. To make the training process more reliable and to make it go even more

quickly, this research proposes moving the BAN layer up in the hierarchy and putting it in

front of the convolutional layer. The data that is being input from a higher layer is first put

through a BAN operation to ensure that it follows the normal distribution, and then it is put

Fig 6. The block structure of DenseNet-169.

https://doi.org/10.1371/journal.pone.0284992.g006
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through a convolution operation, which may increase training speed and make the training

process more stable. The data that is being brought down from a higher tier is being processed

by both of these actions as it comes in.

Pooling layers. When DenseNet-169 was originally implemented, the input feature map

was subjected to maximum and average pooling. When performing the downsampling

Fig 7. Unit of DenseNet-169.

https://doi.org/10.1371/journal.pone.0284992.g007
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operation on the feature map, the highest value of the neighborhood’s feature values is used as

the starting point for the procedure [98]. The size of the feature map is reduced by half after

the max-pooling layer, which may function as dimension reduction and lower network param-

eters. However, in the process of dimension reduction, some details and more manageable

objectives will be lost. Since the information that is lost cannot be recovered, the end product

will not be perfect. The goal of average pooling is to determine the value of the neighborhood’s

feature values on average. This may be able to effectively maintain the background, but it also

can rapidly blur the picture. Given that the visuals that correlate to the various perceptual fields

of the various points are unique from one another, the relative weights that are assigned to the

various points need to also be distinct from one another. However, the performance of the net-

work is degraded when they are handled in the same manner as if they had the same weight,

which is how the average pooling method works.

Because of the difficulties caused by the layer that is directly above it, the pooling layer of

the DenseNet-160 backbone network has been modified in this research. First, max pooling

will no longer be used to maintain the same size of the feature map and prevent the loss of a

significant quantity of data. After that, the layer responsible for averaging the pooled data is

removed, and the BAN–dropped–FC–BAN structure is put into place. When the average pool-

ing is taken out of the equation, the information from the original feature map may be kept

without any image distortion taking place. At the moment, connecting a BAN layer to the net-

work may normalize the input data. This is then followed by a dropout layer, which prevents

overfitting by randomly deactivating neurons in the network. After that, it moves on to the

fully linked layer, where it begins to extract properties that enable categorization. The very last

layer is a BAN layer that uniformly regularizes the output data to deliver the very last output

features.

Since the max-pooling layer can cause the image’s receptive field to increase, the original

picture’s receptive field, which corresponds to the created feature map, would shrink if max

pooling is immediately disabled. The subsequent convolution operations will be impacted as a

result of this circumstance. To improve the receptive field, the authors of this research imple-

ment dilated convolution inside a succession of dense structures of DenseNet-169. However,

the backbone network, which does not include the dense structure, continues to make use of

standard convolution.

Dilated convolution and activation function. Dilated convolution [99] is an extension of

standard convolution that involves the injection of holes to increase the size of the receptive

field while preserving the dimensions of the initial input feature map. Dilation convolution is

Fig 8. The structure of BNAM contains two modules i.e., channel and spatial attention.

https://doi.org/10.1371/journal.pone.0284992.g008

PLOS ONE Multi-Classification Deep Neural Networks for Identification of Fish Species

PLOS ONE | https://doi.org/10.1371/journal.pone.0284992 April 26, 2023 14 / 32

https://doi.org/10.1371/journal.pone.0284992.g008
https://doi.org/10.1371/journal.pone.0284992


an extension of traditional convolution that involves the addition of a new hyperparameter

known as the dilation rate. This hyperparameter allows the user to choose the number of

spaced kernels. In this investigation, we make use of the Hybrid Dilated Convolution (HDC)

[90] algorithm that is described in the study [94], and we apply three different expansion rates

1, 2, and 3 for each convolutional layer. In this way, the information contained inside each

pixel will be preserved, and the receptive field will be enlarged.

In the first implementation of DenseNet-169, the ReLU activation function was put to use.

Although the ReLU activation function is used rather often, there are a few restrictions on its

use. When the input is either close to zero or negative, the ReLU function gradient will eventu-

ally hit zero. When this occurs, the network will be unable to finish backpropagation, which

will result in neuron deactivation. To avoid these kinds of problems, this research makes use of

the Hard-Swish (H-Swish) activation mechanism [100].

The H-Swish activation function was suggested by Prajit Ramachandran et al [97]. This

activation function is an improvement over the Sigmoid and ReLU activation functions. Swish

combines the advantageous aspects of the Sigmoid and ReLU activation functions, and as a

result, the performance of its deep model is superior to that of both. The expression of the sig-

moid and H-Swish function is mentioned in Eqs (1) and (2) respectively:

FðSÞ ¼ S� SigmoidðL� SÞ ð1Þ

H � SwishðhÞ ¼

0; h � � 3

h h � 3

h�
ðhþ 3Þ

6
; otherwise

ð2Þ

8
>>><

>>>:

where L represents the learnable parameter. Through the use of H-Swish, this research was

able to effectively replace all of the ReLU activation functions that were included in the initial

DenseNet-169 network.

Loss function. The four coordinates that are predicted by the FD_Net, YOLOv3,

YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7 model architec-

ture for each bounding box are tX, tY, tW, and tH. The Intersection over Union (IoU) [82]

metric is the sort of evaluation metric that is utilized for object recognition more frequently

than any other type. The degree to which the anticipated bounding box overlaps with the

ground truth is displayed by this statistic. The coordinates of the upper left corner are com-

monly used to represent the ground truth, whereas the coordinates of the bottom right corner

are commonly used to represent the forecast box (x1, y1, x2, y2). Because this is a vector, how-

ever, its distance can normally be calculated by applying the L1 and L2 norms to the vector.

Even though the L1 and L2 norms both assume the same value, the actual detection impact of

IoU and generalized intersection over union (GIoU) is drastically different [86]. If the pro-

jected bounding box does not coincide with the ground truth, then the IoU values will be

deemed to be zero in that situation. The fact that the gradient of the outcome is 0 demonstrates

that optimization cannot be performed successfully. On the other hand, IoU offers a consider-

able issue whenever it appears that the predicted box and the ground truth do not overlap. It

does not reflect the distance that is necessary to separate the ground truth from the forecast

box in an appropriate manner [101]. To work around this limitation of IoU, this study suggests

using GIoU as a new bounding box loss function instead of using it. The coordinate regression
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loss by GIoU is represented by Eqs (3 & 4), which can be calculated as follows:

IoU ¼
jA \ Bj
jA [ Bj

ð3Þ

GIoU ¼ IoU �
jC ðA \ BÞj
jCj

ð4Þ

The parameters A and B stand for the expected truth and the ground truth, respectively, in

each of the boxes. The parameter C represents the smallest convex region that includes both A
and B in its scope of coverage. When the expected and ground truth bounding boxes coincide,

Eqs (3&4) show that the values of both IoU and GIoU are reasonably close to value 1, indicat-

ing that this occurs when the two sets of bounding boxes coincide. If there is no overlap

between the values that are expected and the values that are found on the ground, then the IoU

will be equal to zero, and the GIoU will finally be equal to one. As a consequence of this, we

concluded that we should refer to this function as 1 –GIoU loss [92]. When there is a greater

distance between the bounding boxes that are predicted and those that represent the ground

truth, the ranges of IoU and GIoU are [0, 1] and [–1, 1], respectively. The bounding

box regression loss (BBRL) [93] of GIoU is characterized by Eq (5).

BBRL ¼ 1 � GIoU ð5Þ

The proposed FD_Net model confidence loss and classification are calculated by using Eqs

(6) and (7):

Closs ¼
XA2

X¼0
∗
XB

Y¼0
lobjectXY ðIx �

�IxÞ
2
þ ⋋XY

XA2

X¼0
∗
XB

Y¼0
lNo� object
XY ðIx �

�IxÞ
2

ð6Þ

Classloss ¼
XA2

X¼0
∗lobject

XY ∗
XB

classes
ðHiðCÞ � JiðCÞÞ

2
ð7Þ

The confidence loss is defined by Eq (6), where lobject
XY is responsible for the existence of the

target object in a grid I by the Yth bounding box, A2 represents the grid cells, and B represents

the bounding box. Ix is the actual data of the box confidence score, and �Ix is the

box confidence prediction score. Class loss is defined by Eq (7), where lobject
XY is accountable for

whether or not an object exists in cell C, Hi (C) is the real object probability confidence score,

and Ji (C) is the forecast value.

The loss function is very necessary for ensuring that the model training effect is achieved

and that correct prediction are made. Some of the most common types of loss functions are

the Softmax Loss [98], the Triplet Loss [99], and the Arcface Loss [100]. An illustration of the

Softmax Loss equation may be found in Eq (8). Because it does not need intra-class compact-

ness, it is not suited for individual recognition tasks. However, it may guarantee the separation

of categories in fish identification.

SoftmaxðSÞ ¼ �
1

N

XN

i¼1
log

ewU
y ðxiþbyiÞ

Pn
j¼1

eWU
y ðjþbyjÞ

ð8Þ

After some time, a large number of researchers developed variants of the Softmax Loss algo-

rithm to enhance its capacity for discrimination. The Arcface Loss was discussed in [101], and

PLOS ONE Multi-Classification Deep Neural Networks for Identification of Fish Species

PLOS ONE | https://doi.org/10.1371/journal.pone.0284992 April 26, 2023 16 / 32

https://doi.org/10.1371/journal.pone.0284992


it was based on the formula for the Softmax Loss (see Eq (9)).

Arcface Að Þ ¼ �
1

N

XN

i¼1
log

esðcosðyyiþmÞÞ

esðcosðyyiþmÞÞ þ
Pn

j¼1;j6¼yi
esðcosðyjÞÞ

ð9Þ

After training using Arcface Loss, it is feasible to obtain larger fish species class distances,

constant performance without mixing with other loss functions, and simple convergence. As a

result, the Arcface Loss was selected to serve as the loss function for the fish identification net-

work in this particular paper.

Results and discussions

For this study, a total of eight networks, including FD_Net, YOLOv3, YOLOv3-TL,

YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7 have been trained and tested,

and the results of each network are provided here. The findings were drawn from a fish dataset

that was one of a kind and consisted of nine different categories such as GHB, RSB, SB, SRM,

RM, HM, BSS, TRO, and SHR.

Experimental setup

The neural network models i.e., FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4,

YOLOv5, Faster-RCNN, and YOLOv7 were constructed with the assistance of the computer

vision libraries OpenCV [94] and Keras [86]. In addition, Python is used for the programming

of various methods that are not immediately related to neural networks. The experiment was

done on a computer running Windows, which had both a 32 GB graphics processing unit

(GPU) and an 11 GB NVIDIA graphics processing unit installed.

Performance evaluation

To determine the accuracy of the proposed FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL,

YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7 models, the following methods were imple-

mented: IoU, GIoU, mean average precision (mAP), and precision-recall. In addition, the

detection time as well as the frame rate per second (FPS) [95] is a significant assessment index

that can be used to measure the effectiveness and speed of the network when it is offline. In

addition to this, it was found that the predicted value of the bounding box’s IoU was accurate,

and a rise in the threshold value led to an increase in the number of overlaps in the ground

truth. During the process of computing the association between the bounding box of the

ground truth and the prediction, this measure played an important role. If the IoU value is

higher than the threshold value, the detection result will be regarded as correct. For us to move

on with this work, we will be utilizing GIoU as a method for determining the typical precision

of our detection model. Our major goal is to calculate the mean average precision (mAP) [96]

that occurs between the bounding boxes that were predicted and the ground truth. If the value

of the IoU is higher than the threshold of 50%, the result of the test will be regarded as a true

positive (TP) [98]. On the other hand, the result of the test will be considered a false positive

(FP) if the IoU value of the model is greater than 50% of the threshold but our model consid-

ered this value lower than the threshold. The image does contain a second object, even though

the false-negative (FN) [99] result shows that the image does not contain the object that was

being looked for. If the value of the IoU is lower than the threshold of 50%, the result of the

negative will be regarded as a true negative (TN). In this particular study, the measurements

that were previously used to calculate recall and precision are combined. This was done so that

the results may be more accurately interpreted. The average precision (AP), when extended,
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can be used to compute the mean absolute precision (mAP) of each class. For this thesis, there

are a total of nine distinct species of fish will be utilized to compute the mean of average preci-

sion, and the mAP index will be the metric that will be employed to determine how accurate

the results are. Precision (PRE), accuracy (ACU), f1-score, specificity (SPF), and recall (REC)

[100] have each been calculated based on the number of true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN), in that order. Eqs (10–14) are employed, to

define the terms PRE, REC, ACU, SPF, and an F1-score, respectively.

PRE ¼
TP

TP þ FP
ð10Þ

REC ¼
TP

FN þ TP
ð11Þ

ACU ¼
TPþ TN

TP þ TN þ FN þ TP
ð12Þ

F1 � score ¼ 2∗
PRE∗REC

PREþ REC

� �

ð13Þ

SPF ¼
TN

TN þ FP
ð14Þ

Where TP is the detection of an object correctly with a positive sample, and FP is the detec-

tion of an object adversely by the error of a positive sample, TN indicates the total number of

correctly labeled negative cases and FN value, which refers to the total number of positive sam-

ples that were incorrectly labeled as negative.

Results analysis and discussions

The large fish dataset [43] is utilized in the process of fixing and initializing the darknet-53

backbone architecture that is used for fish detection tasks. When the model is being trained, it

is necessary to make use of images that have a resolution that varies between scales. When

there are 32 batches, the resolution of the dataset is applied to the fixed input image once every

batch. For the FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-

RCNN, and YOLOv7 we set the start and final learning rates at 0.05 and 0.01, respectively, dur-

ing the training stage. The batch size is 32, the IoU threshold is 0.5, and the average decay is 0.

The proposed FD_Net and other YOLO models are trained for 150 epochs. To avoid the

model from failing to converge during training, the learning rate is adjusted. Fig 9 depicts the

training and validation accuracy curves for the proposed FD_Net, YOLOv3, YOLOv3-TL,

YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7. Additionally, Fig 10 represents

the training and validation loss of these eight models.

Checkpoint size and parameters. All of the weight, gradients, biases, and other variable

values are saved in a binary file with the extension ckpt, which is the checkpoint [96]. This

checkpoint binary file is where TensorFlow [97] stores all of the variables that are used to con-

vert variable names to tensor values. Additionally, it analyses each value on its own to deter-

mine the optimal mAP for storing the checkpoints (CP) files on the disc in a consistent

manner. During the training, the checkpoint file was saved every five minutes as part of this

study. The combined storage capacity of all checkpoints across all eight networks amounts to

52GB. The storage capacity of a single checkpoint size and the number of parameters is
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outlined in Table 3. It demonstrates that FD_Net is significantly less cumbersome and quicker

than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7,

in addition to having fewer parameters.

mAP of fish dataset. GHB, RSB, SB, SRM, RM, HM, BSS, TRO, and SHR. were nine

types of fish that were included in a large number of fish species detection datasets [43] that

Fig 9. Training and validation accuracy curves of the a) FD_Net model, b) YOLOv3, c) YOLOv3-TL, d) YOLOv3-BL,

e) YOLOv4, f) YOLOv5, g) Faster-RCNN, and h) YOLOv7.

https://doi.org/10.1371/journal.pone.0284992.g009
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were used in the experiment for this study. The total number of images for training is 6300

and 1800 images for validation, while there are 900 images for the test. When compared to the

mAP of the YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and

YOLOv7 model, which was trained from the ground up, the mAP of the FD_Net model

achieves superior results with 150 training epochs. In this study, depthwise separable

Fig 10. Training and validation loss curves of the a) FD_Net model, b) YOLOv3, c) YOLOv3-TL, d) YOLOv3-BL, e)

YOLOv4, f) YOLOv5, g) Faster-RCNN, and h) YOLOv7.

https://doi.org/10.1371/journal.pone.0284992.g010
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convolution was utilized to accomplish the goal of creating a lightweight network. According

to the findings, FD_Net is capable of maintaining a high detection speed despite a moderate

reduction in map size. The mAP comparison on the fish testing dataset is displayed in Table 4

at a 299 x 299 x 3 resolution for each algorithm. When contrasted with the YOLOv3,

YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7 models, the

FD_Net model’s mAP performance is superior. When compared to other target identification

algorithms, the mAP displayed unusually high levels of stability and discrimination [102]. In

addition to this, it offers a single-figure evaluation of quality in comparison to memory levels.

During the experiment that was conducted for the present work, the number of training

epochs ranged from 0 to 150. The detailed summary of mAP results obtained for the eight

YOLO models is presented in Table 4.

It has been observed that (see Table 4), the proposed FD_Net model achieved the highest

mAP value (95.30%), F1-score (95.39%), SPF (95.28%), PRE (95.15%), REC (95.45%), and

ACU (95.29%). The YOLOv3 achieved the 87.69% of mAP. The YOLOv4, YOLOv5, and

Faster-RCNN achieved the mAP of 88.88%, 87.93%, and 87.93%, respectively. The YOLOv7

achieved an mAP of 90.49%. Fig 11 shows the graphical representation of the mAP and

F1-score achieved by the proposed FD_Net and seven different models.

Analyzing mAP value by using different sizes of fish image resolution. As discussed

earlier, one of the most important metrics to look at when evaluating the performance of a net-

work on a testing dataset is the precision-recall ratio. This ratio compares the number of cor-

rect predictions to the total number of possible correct predictions. In addition, a measure that

is taken for accuracy is the relevancy of the results, and a measure that is taken for the recall is

the total number of correct results and relevant results. In this work, we additionally analyze

the detection performance of the model by calculating the average percentage of false positives

Table 3. Specifications and sizes of the single checkpoint files for FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL,

YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7.

Models Single File CP Size Parameters

FD_Net 115.6 MB 32 million

YOLOv3 585.1MB 45 million

YOLOv3-TL 585.1MB 45 million

YOLOv3-BL 799.3 MB 67 million

YOLOv4 985.2 MB 72 million

YOLOv5 675.6 MB 58 million

YOLOv7 697.5 MB 60 million

Faster-RCNN 756.6 MB 63 million

https://doi.org/10.1371/journal.pone.0284992.t003

Table 4. Comparison of proposed FD_Net and seven YOLO models using the fish dataset at 299 x 299 x 3 image resolution.

Sr# Models mAP PRE REC F1-Score SPF ACU

1 FD_Net 95.30% 95.15% 95.45% 95.39% 95.28% 95.29%

2 YOLOv3 87.69% 86.99% 87.12% 87.23% 87.03% 87.68%

3 YOLOv3-TL 88.52% 88.50% 88.45% 88.19% 88.19% 88.50%

4 YOLOv3-BL 87.93% 87.90% 87.96% 87.91% 87.26% 87.90%

5 YOLOv4 88.88% 88.88% 88.89% 88.59% 88.62% 88.86%

6 YOLOv5 87.93% 87.95% 87.92% 87.59% 87.79% 87.90%

7 Faster-RCNN 85.79% 85.80% 85.81% 85.78% 85.79% 85.76%

8 YOLOv7 90.49% 90.99% 90.25% 90.95% 90.91% 90.42%

https://doi.org/10.1371/journal.pone.0284992.t004
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for each class and architecture using images of various sizes. The detailed mAP results achieved

by the proposed model and other YOLO versions with different image resolutions are pre-

sented in Table 5.

After analyzing the outcomes of the experiments, it became clear that the dimensions of the

input images had a considerable impact on the performance of FD_Net, YOLOv3,

YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7. Aside from that,

the detection performance is also impacted by the image size. For example, the detection per-

formance improved when the image size was increased, indicating that the larger the image

size, the better the detection performance. When we increase the input image size the accuracy

of the proposed model and other YOLO models is also increased as shown in Table 5. Simi-

larly, we decrease the image size to 199 x 199 x 3 and 99 x 99 x 3 the proposed model achieved

the mAP of 95.21% and 95.18% respectively. The detailed results are graphically presented in

Fig 12.

From Table 5, it is concluded that our proposed model achieves significant results as com-

pared to the other seven YOLO versions. Our proposed model is also suitable for the small size

of input images used for the detection of the fish species. A comprehensive analysis of nine fish

species classes mAP% as it appears in images of varying scales is presented in Table 5.

Analysis of the detection time. The detection time analysis calculated using images was

carried out using a variety of resolutions. The FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL,

YOLOv4, YOLOv5, Faster-RCNN, and YOLOv7 models were used to analyze each of the

images, and the combined scores were used to determine the final result. YOLOv3-BL has a

parameter quantity of 67 million, which is double the size of the FD_Net model parameter

quantity, which is approximately 32 million (see Table 3). Additionally, YOLOv3-TL,

YOLOv4, YOLOv5, and YOLOv7 have 45 million, 72 million, 58 million, and 60 million

respectively. The detection speed of FD_Net is much quicker than that of YOLOv3-TL,

Fig 11. The mAP and F1-score are achieved by the proposed FD_Net and seven different models.

https://doi.org/10.1371/journal.pone.0284992.g011

Table 5. Comparison of proposed FD_Net and seven YOLO models in obtaining mAP value by using the fish dataset at various resolutions.

Image Resolutions FD_Net YOLOv3 YOLOv3-TL YOLOv3-BL YOLOv4 YOLOv5 Faster-RCNN YOLOv7

299 x 299 x 3 95.30% 87.69% 88.52% 87.93% 88.88% 87.93% 85.79% 90.49%

199 x 199 x 3 95.21% 85.18% 83.12% 84.13% 84.38% 86.13% 81.20% 89.59%

99 x 99 x 3 95.18% 84.06% 83.01% 83.99% 84.04% 85.71% 81.01% 89.42%

399 x 399 x 3 95.39% 87.77% 88.59% 87.99% 88.97% 88.03% 85.86% 90.57%

499 x 499 x 3 95.45% 87.82% 88.64% 88.04% 89.08% 88.15% 85.94% 90.64%

599 x 599 x 3 95.59% 87.86% 88.72% 88.09% 89.15% 88.21% 85.99% 90.76%

https://doi.org/10.1371/journal.pone.0284992.t005
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YOLOv4, YOLOv5, and YOLOv7 due to the reduced number of parameters. Because this

study acquired deep separable convolution, the number of parameters was cut by between 3

and 4 times. Therefore, the detection speed of YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4,

YOLOv5, Faster-RCNN, and YOLOv7 models are slow, whereas the speed of FD_Net is

approximately fifty percent faster than that of YOLOv3-BL. The IoU is the intersection of the

anticipated box and the ground truth bounding box. The ideal condition for IoU would be

closer to 1, which would indicate that there is a complete overlap in the data. If the IoU score is

more than the cutoff value of 0.5, then it has the potential to be regarded as an outstanding per-

formance. The GIoU was utilized so that the bounding box regression loss for the training

model could be calculated. According to the findings, the FD_Net model is superior to the

other models in terms of its capability to extract finer-grained features of small objects. As a

direct result of this, the IoU of small and medium-sized objects has been given a boost in terms

of their competitiveness. In addition to this, the IoU value of the improved FD_Net model has

almost the same value when compared to the seven different detection models. As can be seen

in Fig 13, the estimated result revealed that the FD_Net model displayed much better results in

terms of detection time when compared to the YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4,

YOLOv5, Faster-RCNN, and YOLOv7 models.

Therefore, it is necessary to take into consideration whether the quantity of mAP should be

reduced to get a speedier network. The results of a comparison between FD_Net and other

models were displayed in Table 6 in terms of frame per second (FPS) and detection time in

milliseconds (ms). Additionally, Table 6 displayed the results obtained by using the image res-

olutions of 299 x 299 x3.

Fig 12. mAP score comparison between the different sizes of images.

https://doi.org/10.1371/journal.pone.0284992.g012
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Ablation study

In this study, we improved the model by including the BNAM as well as enhanced versions of

the DenseNet-169 and Arcface loss function modules. We used the control variable strategy to

statistically analyze the experimental data while simultaneously controlling a variable to deter-

mine whether or not the updated YOLOV7 model is valid for use with nine different species of

fish. During this work, the mAP and FPS values of each model were analyzed and compared

with the help of metrics to identify the importance of the improved module to the model. The

initial YOLOV7 model is shown in Experiment 1, the BNAM is implemented in Experiment 2,

Fig 13. Fish detection time; a) FD_Net, b) YOLOv3, c) YOLOv3-TL, d) YOLOv3-BL, e) YOLOv4, f) YOLOv5, g)

Faster-RCNN, and h) YOLOv7 models.

https://doi.org/10.1371/journal.pone.0284992.g013

Table 6. Detection time and FPS of the FD_Net and other models.

Models Image Resolution Detection Time (ms) FPS

FD_Net

299 x 299 x 3

15.45 48

YOLOv3 30.34 52

YOLOv3-TL 32.46 56

YOLOv3-BL 25.35 58

YOLOv4 37.80 59

YOLOv5 39.99 60

Faster-RCNN 43.44 53

YOLOv7 24.79 45

https://doi.org/10.1371/journal.pone.0284992.t006
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upgraded DenseNet-169 with an Arcface loss function in Experiment 3, and the improved

model is shown in Experiment 4. The findings of the experiment are shown in Table 7.

When the results of Experiment 1 and Experiment 2 are compared, it is clear that the incor-

poration of the BNAM into the model leads to an improvement of 1.06% in the model’s aver-

age detection accuracy (mAP), even though the model’s inference speed is slightly slowed

down as a result of this modification. This shows that the BNAM makes use of channel atten-

tion to create the correlation across channels, therefore suppressing the information about fea-

tures that are not necessary, and that it makes use of the spatial attention mechanism to extract

the target’s position within a given space. The BNAM allows the model to pay more attention

to the feature information of the detection target, which improves the quality of the feature

mapping and significantly increases the overall accuracy of the model. On the other hand, the

BNAM increases the complexity of the model and slows down the inference speed of the net-

work. When the results of Experiment 1 and Experiment 3 are compared, the model inference

speed (FPS) is shown to be improved by 0.92 percent. This shows that replacing the ReLU

function with the Arcface activation function increases the model inference speed while keep-

ing the same perceptual field. When Experiment 1 is compared to Experiment 4, the model’s

average detection accuracy shows a 14.29% improvement. This indicates that the YOLOv7

model, which combines the BNAM and DenseNet-169 in exchange for improved detection

accuracy, is superior in terms of overall model performance.

Comparison with state-of-the-art methods

In this section, the proposed FD_Net model is compared with the state-of-the-art methods in

detecting nine different types of fish species. Table 8 compares the mAP score of our suggested

classifier, FD_Net, with other most recent methods. Iqbal et al [68] proposed a CNN-based

model for two types of fish species classification and they were able to achieve 88.00 mAP

scores. Knausgård et al [2] improved the YOLOv3 and combine it with CNN to classify five

different types of fish species. They achieved an mAP score of 87.40%. Similarly, Ju et al [103]

fine-tuned the pre-trained model AlexNet in classifying the different types of fish and attained

Table 7. Integration of the various components of the model such as YOLOv7, BNAM, and DenseNet-169.

Experiment YOLOv7 BNAM DenseNet Image Resolution mAP (%) FPS

1 ✓ × × 299 x 299 x 3 77.98% 62

2 ✓ × ✓ 299 x 299 x 3 79.63% 59

3 × × ✓ 299 x 299 x 3 80.86% 61

4 ✓ ✓ ✓ 299 x 299 x 3 95.30% 48

https://doi.org/10.1371/journal.pone.0284992.t007

Table 8. Proposed FD_Net model comparison with state-of-the-art methods.

Ref Year Models Fish Classes mAP

Kaya et al [72] 2023 CNN 5 90.39%

Ren et al [73] 2023 CNN and SVM 4 92.43%

Iqbal et al [68] 2022 CNN 2 88.00%

Knausgård et al [2] 2022 YOLOv3 + CNN 5 87.40%

Li et al [97] 2022 FFRNET 2 90.00%

Ju et al [98] 2020 AlexNet 4 89.78%

Tarling et al [7] 2022 ResNet-50 4 90.79%

Yeh et al [11] 2021 CNN 5 91.29%

Ours - FD_Net 9 95.30%

https://doi.org/10.1371/journal.pone.0284992.t008
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the mAP of 89.78%. Our proposed FD_Net achieved a 95.30% of mAP score in classifying nine

different types of fish species. The results reveal that the proposed FD_Net model produced

superior results as compared to state-of-the-art methods in detecting fish.

Conclusion and future work

Deep neural networks give a solution to the problem of reliably recognizing fish and other

aquatic species of interest, which was previously a difficult task. This research makes use of fish

species analyses and substantial data collection to demonstrate the efficacy of the deep neural

network approach in deep oceans. This paper proposes a detection module that enhances the

YOLOv7 object identification approach by making it lighter and more accurate. The improve-

ment is achieved by improving the feature extraction network and adding depthwise separable

convolution in BNAM. In the fish species identification module, the FD_Net method is pre-

sented, and DenseNet-169 is improved by the addition of the BNAM attention module as well

as the presentation of BAN, pooling layers, a loss function, and dilated convolution. The

improved version of DenseNet-169 is utilized as a network for feature extraction. Arcface Loss

is used as a loss function, which not only increases the compactness within a class but also

assures the separability across classes. The combination of detection and identification algo-

rithms has a beneficial effect, as it permits the realization of a varied range of underwater fish

species. The FD_Net, YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN,

and YOLOv7 models are the ones responsible for carrying out the fish detection. The FD_Net

model’s detection speed is exceptionally quick because it has fewer parameters than other

models. The findings demonstrate that the FD_Net model is superior to the other models in

terms of its capacity to extract finer-grained features of small objects. As a consequence of this,

the IoU of small and medium-sized images has significantly improved in a competitive sense.

The FPS, detection accuracy, and mAP for each class are evaluated in this study. The FD_Net

model obtain mAP scores of 95.30% when applied to the testing dataset. Following the comple-

tion of this study concluded that FD_Net detection time, accuracy, and detection speed have

all improved in comparison to other competing approaches. The limitation of this study is that

the proposed FD_Net model is not suitable for classifying underwater species other than fish.

Future work will involve further exploration of network models for underwater target recogni-

tion with the goals of increasing recognition accuracy and speed, broadening the dataset so

that the models can be applied to more scenarios with varying conditions, and promoting the

use of vision transformers in such scenarios.
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14. Sokolova Maria, AdriàMompó Alepuz Fletcher Thompson, Mariani Patrizio, Galeazzi Roberto, et al.

"A Deep Learning Approach to Assist Sustainability of Demersal Trawling Operations." Sustainability

13, no. 22 2021 pp: 12362.

15. Salim Nareen OM, Subhi RM Zeebaree Mohammed AM Sadeeq, A. H Radie, Hanan M Shukur, et al.

"Study for Food Recognition System Using Deep Learning." In Journal of Physics: Conference Series

2021, vol. 1963, no. 1, p. 012014. IOP Publishing.

16. Zhao Zhenxi, Liu Yang, Sun Xudong, Liu Jintao, Yang Xinting, et al. "Composited FishNet: Fish detec-

tion and species recognition from low-quality underwater videos." IEEE Transactions on Image Pro-

cessing 30 (2021): 4719–4734. https://doi.org/10.1109/TIP.2021.3074738 PMID: 33905330

17. Balk Helge. "Development of hydroacoustic methods for fish detection in shallow water." Faculty of

Mathematics and Natural Science, University of Oslo 2001.

18. Bermejo Sergio. "Fish age classification based on length, weight, sex and otolith morphological fea-

tures." Fisheries Research 84, no. 2 2007,pp: 270–274.

PLOS ONE Multi-Classification Deep Neural Networks for Identification of Fish Species

PLOS ONE | https://doi.org/10.1371/journal.pone.0284992 April 26, 2023 27 / 32

https://doi.org/10.1371/journal.pone.0267759
http://www.ncbi.nlm.nih.gov/pubmed/35507631
https://doi.org/10.1016/j.marpolbul.2021.111974
http://www.ncbi.nlm.nih.gov/pubmed/33485020
https://doi.org/10.1109/TIP.2021.3074738
http://www.ncbi.nlm.nih.gov/pubmed/33905330
https://doi.org/10.1371/journal.pone.0284992


19. Boom, Bastiaan J., Phoenix X. Huang, Jiyin He, and Robert B. Fisher. "Supporting ground-truth anno-

tation of image datasets using clustering." In Proceedings of the 21st International Conference on Pat-

tern Recognition (ICPR2012), pp. 1542–1545. IEEE, 2012.

20. Clark, H. L. "New seafloor observatory networks in support of ocean science research." In MTS/IEEE

Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), vol.

1, pp. 245–250. IEEE, 2001.

21. Xu Wenwei, and Matzner Shari. "Underwater fish detection using deep learning for water power appli-

cations." In 2018 International conference on computational science and computational intelligence

(CSCI), pp. 313–318. IEEE, 2018.

22. Wang H., ZeZXeZBePJ Lei X. Zhang B. Zhou, and J Peng. "Machine learning basics." Deep Learn

2016 pp: 98–164.

23. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recogni-

tion." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778. 2016.

24. Ioffe Sergey, and Szegedy Christian. "Batch normalization: Accelerating deep network training by

reducing internal covariate shift." In International conference on machine learning, pp. 448–456.

PMLR, 2015.

25. Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E. "Imagenet classification with deep convolu-

tional neural networks." Communications of the ACM 60, no. 6 2017, pp: 84–90.

26. Cui Suxia, Zhou Yu, Wang Yonghui, and Zhai Lujun. "Fish detection using deep learning." Applied

Computational Intelligence and Soft Computing 2020 (2020).

27. Khan Wisal, Raj Kislay, Kumar Teerath, Roy Arunabha M., and Luo Bin. "Introducing urdu digits data-

set with demonstration of an efficient and robust noisy decoder-based pseudo example generator."

Symmetry 14, no. 10 2022 pp: 1976.

28. Xu Wenwei, and Matzner Shari. "Underwater fish detection using deep learning for water power appli-

cations." In 2018 International conference on computational science and computational intelligence

(CSCI), pp. 313–318. IEEE, 2018.

29. Knausgård Kristian Muri, Wiklund Arne, Tonje Knutsen Sørdalen Kim Tallaksen Halvorsen, Alf Ring

Kleiven, et al. "Temperate fish detection and classification: a deep learning based approach." Applied

Intelligence 52, no. 6 (2022): 6988–7001.

30. Alshdaifat Nawaf Farhan Funkur, Abdullah Zawawi Talib, and Mohd Azam Osman. "Improved deep

learning framework for fish segmentation in underwater videos." Ecological Informatics 59 (2020):

101121.

31. Jabeen Kiran, Muhammad Attique Khan Jamel Balili, Alhaisoni Majed, Nouf Abdullah Almujally, et al.

"BC2NetRF: Breast Cancer Classification from Mammogram Images Using Enhanced Deep Learning

Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection." Diagnostics 13,

no. 7 (2023): 1238. https://doi.org/10.3390/diagnostics13071238 PMID: 37046456
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