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Abstract

Magnetic resonance imaging is an important tool for characterizing volumetric changes of

the piglet brain during development. Typically, an early step of an imaging analysis pipeline

is brain extraction, or skull stripping. Brain extractions are usually performed manually; how-

ever, this approach is time-intensive and can lead to variation between brain extractions

when multiple raters are used. Automated brain extractions are important for reducing the

time required for analyses and improving the uniformity of the extractions. Here we demon-

strate the use of Mask R-CNN, a Region-based Convolutional Neural Network (R-CNN), for

automated brain extractions of piglet brains. We validate our approach using Nested Cross-

Validation on six sets of training/validation data drawn from 32 pigs. Visual inspection of the

extractions shows acceptable accuracy, Dice coefficients are in the range of 0.95–0.97, and

Hausdorff Distance values in the range of 4.1–8.3 voxels. These results demonstrate that

R-CNNs provide a viable tool for skull stripping of piglet brains.

Introduction

Piglets are an important translational model for measuring the effect of nutrition on brain

development. Not only do piglet brain stages of development correlate with human infant

development, but their nutritional requirements are also comparable [1]. Magnetic resonance

imaging (MRI) is an important technique for obtaining non-invasive measurements of brain

volumes. An early step in volumetric analysis is the identification or “extraction” of the brain

from the surrounding tissue. Manual tracing has been the gold standard for brain extraction

and is performed by creating an outline that separates the surrounding skull, muscles, tissues,

and fat from the brain [1–6]. However, the method is not ideal when working with large data

sets because it is time intensive and is subject to inconsistencies between raters/evaluators.

Automated brain extraction techniques are needed to overcome these limitations. However,
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reports of automated extractions of pig brains are limited. A graph theory approach that

makes use of prior information of anatomical structures has been used to perform automated

extraction of piglet brains [7]. However, deep learning technologies offer the possibility of

automating the training of anatomical structures to enable brain extractions [8–10]. A U-Net

model trained on humans, non-human primates, and 3 pig scans has been shown to success-

fully perform brain extractions on 2 pig scans [11]. Also, a patch-based 3D U-Net trained on

piglets has been used for successful brain extractions of piglets of multiple ages, via transfer

learning [12]. An alternative segmentation tool is Mask R-CNN, a Region-based Convolu-

tional Neural Network (R-CNN). This tool has been used to create a mouse brain atlas that is

generalizable across developmental ages and imaging modalities [10]. These results suggest

that Mask R-CNN may be effective for piglet brain extraction. Here we demonstrate the use of

Mask R-CNN for automated brain extractions of piglet brains.

Methods

Animals and care practices

All animal care and handling procedures were approved by the University of Illinois Institu-

tional Animal Care and Use Committee (Protocol #18256) and were in accordance with fed-

eral guidelines. Male and female average-for-gestational age, Yorkshire crossbred, full-term,

naturally-delivered piglets were obtained from University of Illinois Swine Farm at postnatal

day 2 to allow for colostrum consumption. All piglets remained intact but did undergo routine

processing on the farm including iron dextran (Henry Schein Animal Health, Dublin, OH,

USA) and antibiotic injection (EXCEDE1, Zoetis, Parsippany, NJ 07054, USA) per routine

farm practice and according to label. Four groups of piglets were placed individually into a

caging system under standard conditions as described in a previous publication [13] and ran-

domly assigned to five diet treatment groups. The control group of piglets remained with the

sow until day 28 of age with free access to suckle and were weighed daily. The current study

does not distinguish between diet groups.

Sow-raised piglets were handled daily, as were the artificially raised animals to diminish dif-

ferences between the two types of rearing. After arrival at the Edward R. Madigan Laboratory

(ERML) Animal Facility, experimental piglets received one dose of antibiotic: the first of two

cohorts received SpectraguardTM (Bimeda, Inc, Oakbrook Terrace, IL 60181) on postnatal day

2 and the second cohort received Baytril1 (Bayer healthcare LLC Shawnee Mission, KS

66201) on postnatal day 4. Additional doses of antibiotic were administered during the experi-

ment only under the direction of the staff veterinarian. Animals were individually housed in

racks of metabolism cages specifically designed to artificially rear neonatal piglets under con-

stant 12-h light/dark cycles. Piglet housing at ERML was as follows: space allowance for indi-

vidual piglets was 30" deep, 23" wide, and 18.5" high, providing 4.8 square feet of floor space

per piglet. Each piglet was supplied with a heating pad, toy, and blanket. Room temperatures

were kept at 85–95˚F using space heaters. Animals were also offered water or BlueLite1 elec-

trolyte solution ad libitum. Cages and heating pads were disinfected, and toys and blankets

replaced daily. Animal care protocols were in accordance with National Institutes of Health

Guidelines for Care and Use of Laboratory Animals and were approved by the University of

Illinois Laboratory Animal Care and Use Committee.

MRI acquisition

MRI data were acquired using 3 T Prisma scanner (Siemens, Erlangen) housed at the Biomedi-

cal Imaging Center at the University of Illinois. Pigs were anesthetized using TKX (combina-

tion of 2.5 ml of xylazine (100 mg/ml) and 2.5 ml of ketamine (100mg/ml) added to a Telazol
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vial and administered at a dosage of 0.02–0.03 ml/kg IM) then maintained on isofluorane (1–

3%) throughout the imaging. Animals were scanned in the supine position using a specialized

piglet head coil (Rapid Biomed, Rimpar). During scanning, the respiration rate, heart rate and

blood oxygen levels were monitored using a LifeWindow LW9x monitor (Digicare, Boynton

Beach, FL).

MRI Structural Imaging: Our structural MRI scan consisted of a 3D MPRAGE acquisition

(voxel size = 0.6 x 0.6 x 0.6 mm3, FOV = 173 x 173 mm2, 256 slices, GRAPPA—GeneRalized

Autocalibrating Partial Parallel Acquisition—acceleration factor R = 2; TR = 2060 ms,

TI = 1060 ms, flip angle = 9⁰, for an overall scan time of 5:21 min).

Manual brain extraction

Manual brain extraction was facilitated by first performing a rigid alignment of T1-weighted

images from all piglets to the brain atlas [14]. This was done using SPM12 imaging analysis

software. First, we performed a manual rotation to approximately align the T1-weighted

images with 28-day piglet template [14], without resampling. We then used the “coregistra-

tion” function of SPM12 to further align the T1-weighted images to the template, again without

resampling. The resulting alignment was accurate for all piglets, even though it was performed

without first performing brain extraction, as shown by a representative image in Fig 1.

An atlas-based brain mask was then resampled into the native space of each piglet, provid-

ing initial estimates of the brain masks for each piglet. These initial estimates were then modi-

fied to create individualized brain masks using Slicer3D, as shown in Fig 2. Most revisions

were done in the sagittal plane, but all three orthogonal views were reviewed and modified for

improved precision. All extractions were performed by one rater to minimize variability. No

image intensity normalization was performed prior to manual or automated brain extraction.

Fig 1. Results of coregistration of piglet brain to the average brain template. The top row shows images from a

representative piglet brain and bottom row shows the same slices from the average brain template. Blue lines within

each image indicate the locations of the perpendicular slices. The consistency of two sets of images confirms a good

approximate alignment of the T1-weighted image with the average brain template.

https://doi.org/10.1371/journal.pone.0284951.g001
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Automated brain extraction

This study uses a deep learning instance segmentation neural network using object detection

model Mask R-CNN with Inception Resnet v2 architecture [15], pretrained on the COCO

2017 data set [16]. Our model uses a Tensor Flow 2.4.0 implementation of Mask R-CNN [15],

with feature extractor Faster R-CNN [17]. Faster R-CNN utilizes a Region Proposal Network

(RPN) to select object proposals from a backbone, which for our study was generated using a

combined ResNet101 and Feature Pyramid Network (FPN) [18].

Training was performed using a single NVIDIA GeForce GTX 1070 Ti GPU, with NVIDIA

developer driver 465.21, CUDA 11.0, and CUDNN library 8.0.4. The network was trained with

a cosine decay learning rate of 0.008 and a momentum optimizer value of 0.9, and a batch size

of two images, or slices, per iteration. We performed 200,000 iterations, or 48.8 epochs. The

training and segmentation were performed only in 2D sagittal planes. During evaluation, pre-

dicted masks were binarized at a confidence parameter threshold of 0.5. The masks created

from the 2D slices were then combined into 3D datasets for final cleaning. This involved larg-

est connected component (LCC) filtering to remove several small and spurious masks, typi-

cally occurring in slices that did not include brain. Cleaning was done by first using the Matlab

function “bwconncomp” to identify all isolated masks, consisting of one or more connected

voxels, where connected voxels are defined as those with touching faces. Then we discarded all

but the largest mask, or brain mask.

Validation

Nested Cross-Validation was used to evaluate the performance of the training models. This

method has been shown to produce unbiased performance estimates, even in small datasets

[19]. We randomly assigned each of the 32 pigs to one of six test groups. Four of the test groups

consisted of five pigs, and two of the test groups consisted of six pigs. For each test group, a

Fig 2. Demonstration of the creation of manually-defined brain mask via modification of the template brain mask. A

representative T1-weighted image is overlayed with the template brain mask, creating a brighter region. The green outline shows the

manual-designated brain mask. The manual brain mask was created by editing the template brain mask for each individual piglet.

https://doi.org/10.1371/journal.pone.0284951.g002

PLOS ONE Automated identification of piglet brain tissue using neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0284951 May 11, 2023 4 / 11

https://doi.org/10.1371/journal.pone.0284951.g002
https://doi.org/10.1371/journal.pone.0284951


training model was generated using the remaining pigs, beginning with the same architec-

ture which was naïve to the test images. Validation of the test groups was performed by

comparing the machine-generated masks with the manually generated masks by visual

inspection, by computing Dice coefficients, 3D Hausdorff Distance (HD) values, and Pear-

son correlations between the manual and machine-generated masks. Dice coefficients were

calculated using the formula 2|X\Y|/(|X|+|Y|), where |. . .| indicates the number of voxels

within the mask, \ indicates the union, and X and Y indicate the manual and machine-gen-

erated masks. Dice coefficients were calculated before and after LCC filtering. We calculated

3D Hausdorff Distance (HD) values, using the freely-available “EvaluateSegmentation”

command-line tool (https://github.com/Visceral-Project/EvaluateSegmentation) [20].

Because HD values are sensitive to outliers eliminated by LCC filtering, HD values were

only calculated after LCC filtering [20].

Results

Visual inspection of the brain extractions reveals good accuracy of automatic brain extractions

(Fig 3). The six models were labelled with letters from A to F. We found that Model D failed to

identify the brain within several sagittal slices of one of the test pigs, as shown in Fig 4(A) and

4(B). These slices included an unusually bright region in the subcutaneous fat layer near the

superior area of the head (see Fig 4(B)). This bright region was removed by manually outlining

it in one of the slices, and then removing the traced voxels from all the slices (see Fig 4(D)).

The modified structural images were then re-evaluated using the same model, producing a

more accurate brain mask (see Fig 4(C) and 4(D)). This manual correction boosted the Dice

coefficient of the pre-LCC filtered images from 0.91 to 0.96. The brain mask from the modified

images was used for subsequent validation.

Fig 3. Sample extractions from two piglets. The overlay that creates a brighter region indicates machine extractions,

and the green outline shows the manual brain masks. The top row shows a piglet tested using Model A, and the bottom

row shows a piglet tested using Model B.

https://doi.org/10.1371/journal.pone.0284951.g003
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Visual inspection of the results also revealed that the LCC filter was important for one of

the pigs, for which the automated brain extraction inaccurately identified large brain patches

within 5 slices outside of the head. This pig exhibited a Dice coefficient of 0.92, which

improved to 0.957 after LCC filtration. The LCC filter improved Dice coefficients for all other

pigs as well. However, this benefit was smaller due to the lower volumes of outlier voxels; for

the remaining 31 pigs, the maximum improvement in Dice coefficient was 0.008 and the mean

improvement was 0.001. The final brain extractions, after application of the LCC filter, exhib-

ited Dice coefficients in the range of 0.95–0.97 (mean: 0.961, standard deviation: 0.0036, see

histogram in Fig 5(A)), and HD values in the range of 4.1–8.3 voxels (mean: 5.48, standard

deviation: 1.16, see histogram in Fig 5(B)), or 2.5–5.0 mm (mean: 3.3, standard deviation: 0.7).

The Pearson correlation coefficient, R, of the volumes, Vmanual and Vmachine, of the manual and

machine-generated masks was R = 0.90, with p<0.001 (see Fig 6).

Fig 4. A segmentation error generated by Model D that was subsequently corrected. Panels (a) and (b) show the

inaccurate mask, indicated by green lines, and panels (c) and (d) show the mask generated by the same model after

image modification, with the same views and the same slices. Axial slices are shown in (a) and (c); sagittal slices are

shown in (b) and (d). The yellow lines in the axial views, (a) and (c), show the location of the sagittal view and the red

lines in the sagittal views, (b) and (d), show the location of the axial views. For the inaccurate mask there are several

sagittal slices in which no brain regions were identified, as shown in (a). These slices included a bright region in the fat

layer of the superior region of the head, as shown in (b). The bright region was manually traced and removed from the

same voxels of all sagittal slices as shown in (d). A re-evaluation of the edited images using the same model, Model D,

produced an accurate brain extraction, as shown in (c) and (d).

https://doi.org/10.1371/journal.pone.0284951.g004
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Fig 5. Histograms of (a) Dice coefficients and (b) Hausdorff Distance (HD) values calculated from each of the 32 test cases after LCC filtration.

https://doi.org/10.1371/journal.pone.0284951.g005

Fig 6. The consistency of brain volumes, Vmanual and Vmachine, from manual and machine brain extractions,

respectively. The solid line indicates unity and the colors denote the models used. Brain volume units are cubic

centimeters.

https://doi.org/10.1371/journal.pone.0284951.g006
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Discussion

We have shown that Mask R-CNN trained on manually generated masks can be used to per-

form accurate piglet brain extractions. However, for one of the 32 test cases, a model failed to

identify brain tissue within several slices. This problem was eliminated when the evaluation

was repeated after the removal of an unusually bright region of subcutaneous fat from the

images. It is possible that that problem could have been avoided by using more training data,

or by performing a bias field correction, or intensity normalization, before training. Image

intensity normalization is often important for automated segmentation [21, 22]. We did not

perform this step before brain extraction, because in SPM, a bias field correction is typically

done simultaneous to tissue segmentation [23]. However, incorporation of a normalization

before brain extraction might improve the generalization of our model to other scanning con-

ditions, such as different scanners and coils.

Dice coefficients were>0.95 and HD values were<5 mm; these are similar to values that

have been achieved by neural networks for the skull-stripping of non-human primates [11],

rodents [24, 25], and piglets [12]. In contrast to our study, Ref [12] employed a 3D patch-

based U-net architecture. The potential strength of a 3D patch is that the added depth dimen-

sion enhances the local information available to the neural network. However, because of the

higher memory demands of using 3D images, the model training and inference steps in

Ref. [12] were performed on cubic patches of 323 voxels. A potential disadvantage of this

approach is that the segmented patches from the test images must be aggregated and recon-

ciled. By contrast, a potential strength of a 2D approach is the potential to train on complete

slices, thereby simplifying post-processing. In Ref. [12] the Dice coefficients from the final

method, including post-processing, were in the range of 0.94–0.96 (mean 0.952, standard devi-

ation: 0.0069), slightly lower than the Dice coefficients observed in our study (0.95–0.97,

mean: 0.961, standard deviation: 0.0036). Similarly, HD values from Ref. [12] were 5.4–14.3

voxels (mean: 8.51, standard deviation: 2.20), slightly higher than the HD values of our study

(4.1–8.3 voxels, mean: 5.48, standard deviation: 1.16). The higher Dice coefficients and lower

HD values of our study could be influenced by multiple factors, including image quality differ-

ences, which are sensitive to factors such as age differences in piglets, equipment used, and

acquisition times. Clearly, a quantitatively accurate comparison of brain extraction methods

would require use of the same MRI data. It is possible that the differences in performance met-

rics were driven by the choice of network architecture. Direct comparisons of Mask R-CNN

and U-Net architectures have favored U-Net architectures for segmentation [26] and Mask

R-CNN object detection [27, 28]; giving rise to a hybrid methods that exploit the relative

strengths of both methods [29], or that improve upon segmentation abilities of Mask R-CNN

[30]. Despite the potential drawbacks of Mask R-CNN for segmentation, our results demon-

strate that it can be suitable for this application.

Improvements to our approach could be implemented in a variety of ways. Training with a

larger sample size is expected to increase performance and accuracy of machine learning algo-

rithms [31]. Performance may also be improved by hyperparameter tuning and optimization

[32, 33]. Improved performance might have been obtained by using 3D Mask R-CNN; how-

ever we employed 2D Mask R-CNN to obtain shorter training times [34]. The use of 3D, or

2.5D, segmentation has the potential to create a brain mask with greater smoothness at the

edge of the brain between adjacent slices. However, the non-smoothness of the automated seg-

mentations is similar to that seen with manual brain extractions, which are also performed in

2D. Also, any inaccuracies due to non-smoothness appear to be localized in the CSF layer sur-

rounding the brain and unlikely to influence the results of automated segmentation of grey

matter on the edge of the brain, performed on the extracted brain images. Brain exaction
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performance may also be improved by using quantitative imaging techniques, such as MT sat-

uration [35, 36], to improve the contrast between brain and non-brain tissues. Further

research is required to access whether network architectures such as U-Net [37], may improve

upon results obtained with Mask R-CNN.

In summary, the use of automated brain extraction has the potential to reduce analysis time

because it requires minimal supervision. This process is scalable to a high number of piglets,

avoiding complications and inconsistencies that might arise from having multiple raters per-

form manual brain extractions. The effectiveness of Mask R-CNN for performing piglet brain

extractions implies that it may be a useful tool for segmenting sub-regions of the brain. Further

research is needed to assess whether such an approach may compliment or improve upon

existing methods for volumetric analysis of piglet brain MRI data [4, 23, 38].
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