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Abstract

This study analyzes the SARS-CoV-2 genome sequence mutations by modeling its nucleo-

tide mutations as a stochastic process in both the time-series and spatial domain of the

gene sequence. In the time-series model, a Markov Chain embedded Poisson random pro-

cess characterizes the mutation rate matrix, while the spatial gene sequence model delin-

eates the distribution of mutation inter-occurrence distances. Our experiment focuses on

five key variants of concern that had become a global concern due to their high transmissibil-

ity and virulence. The time-series results reveal distinct asymmetries in mutation rate and

propensities among different nucleotides and across different strains, with a mean mutation

rate of approximately 2 mutations per month. In particular, our spatial gene sequence results

reveal some novel biological insights on the characteristic distribution of mutation inter-

occurrence distances, which display a notable pattern similar to other natural diseases. Our

findings contribute interesting insights to the underlying biological mechanism of SARS-

CoV-2 mutations, bringing us one step closer to improving the accuracy of existing mutation

prediction models. This research could also potentially pave the way for future work in

adopting similar spatial random process models and advanced spatial pattern recognition

algorithms in order to characterize mutations on other different kinds of virus families.

1 Introduction

The COVID-19 pandemic has wreaked havoc across all corners of the globe ever since its ini-

tial emergence at the end of 2019. As of this writing, there have been more than 200 million

recorded infections, resulting in over 5 million deaths [1]. Scientists all around the world have

worked tirelessly to combat the SARS-CoV-2 virus which caused this deadly disease. Through

careful genome sequencing, researchers seek to gain a better understanding of this lethal foe.

Accurate estimates of virus mutation rates play an integral role in understanding the evolu-

tion of viruses and the tactics to combat them. This is of critical importance and urgency espe-

cially during widespread outbreaks, such as the COVID-19 pandemic that still ravages parts of

the world even over two years since the outbreak. There remains a constant race between the

production of effective vaccines versus the mutation of new virus strains that could threaten to

render existing vaccines obsolete.
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The media has increasingly highlighted evidence of an alarming increase in the number of

“breakthrough cases” [2], whereby individuals are still becoming reinfected by the virus despite

having already been vaccinated against it. Thus, it has become increasingly imperative to pre-

dict when and where the next mutation would occur ahead of the actual mutation. This will

allow vaccine manufacturers to remain a step ahead of the virus, enabling them to preemp-

tively prepare for quick adaption of the vaccine production process, potentially saving count-

less lives.

With the constant emergence of new dominant strains, we require regular vaccine shots to

boost our immunity, much like the seasonal flu. For this purpose, this study seeks to predict

when and where the virus could mutate next, which can then be passed to virologists for fur-

ther analysis.

Our study focuses on five key variants of concern (VOCs) that have become a global con-

cern due to high transmissibility and virulence. These are namely the B.1.1.7 (Alpha), B.1.351

(Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants which had become

the globally dominant strains over different periods of the pandemic, typically lasting over sev-

eral months before the emergence of the next dominant VOC (Fig 1).

As such, there is potential for COVID-19 to eventually become endemic in the global popu-

lation, which means that the SARS-CoV-2 virus could be here to stay and coexist with human-

ity. Much like with the flu, the best way to combat this is to require a regular preventive

vaccine shot to continuously bolster our immunity against new strains of the virus. In this

vein, the more critical questions would thus be—How often would we need this booster shot;

and how often would we have to update the vaccine sequences? This study seeks to provide an

indicative answer to these questions by studying the virus phylodynamics, or how it mutates

over time. Through a detailed survey of related works which will be explored in (subsection

1.1), we have noted that while much research has been done on its evolution phylogeny, few

studies have delved specifically into the time dynamics. Therefore, our study seeks to close this

research gap by carrying out a comprehensive time-series analysis of the virus mutation

dynamics by modeling it as a stochastic process.

We also go one step further beyond the time-series modelling by conducting spatial gene

sequence analysis on the virus nucleotide sequences. Such analysis would not only reveal when

we expect mutations to occur, but also at what positions they could be found along the

genome. In particular, our spatial gene sequence model focuses on identifying patterns in the

Fig 1. SARS-CoV-2 variants distribution [3].

https://doi.org/10.1371/journal.pone.0284874.g001
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mutation interoccurrence distances between nucleotides. Research by Muino et al. (2014) [4]

has found that cancer mutations exhibit power-law distributions for certain short-range inter-

occurrence distances. Although this attribute was found to be specific to cancer genomes,

there is also potential to uncover a similarly characteristic pattern that could be unique to spe-

cific viruses such as SARS-CoV-2. As of this writing, we are not aware of any similar spatial

gene sequence study conducted on the SARS-CoV-2 genome to characterize its mutation

interoccurrence properties.

The findings from both the time-series and spatial domains could contribute interesting

insights to the underlying biological mechanism of SARS-CoV-2 mutations, which brings us

one step closer to improving the accuracy of existing mutation prediction models. This infor-

mation can then be passed on to experts to determine the corresponding virological impact of

such predicted mutations. This research could also potentially pave the way for future work

such as adopting spatial random process models on advanced spatial pattern recognition algo-

rithms in order to characterize mutations on various kinds of virus families.

1.1 Related works

Existing methods of virus mutation estimation models are diverse and often highly complex in

nature [5]. A number of mathematical models for cell populations in which mutations are

occurring have been studied [6]. We explore a panorama of previous works related to the

modeling of virus RNA sequence mutation using a variety of innovative methods. For ease of

comparison, we categorize their methods into two types of general approaches, either through

a probabilistic/stochastic approach or a pattern recognition-based approach. In this study, our

model falls into the former category.

1.1.1 Probabilistic/stochastic approaches. Muiño et al. (2014) [4] studied the spatial

gene sequence distribution of mutation in cancer cells and discovered that cancer genomes

exhibit power-law interoccurrence distances in the short-range. Although this attribute was

found to be specific to cancer genomes, there is also potential to uncover a similarly character-

istic pattern that could be unique to specific viruses such as SARS-CoV-2. In this paper, we

conduct a similar analysis on the SARS-CoV-2 genome to analyze how the spatial distance

between nucleotides influence the mutation rate along the sequence. As with each of the afore-

mentioned works, our study seeks to reveal yet another facet of the mutagenic nature of the

virus.

De Maio et al. (2021) [7] studied the mutation rates and selection on synonymous muta-

tions in SARS-CoV-2 by counting and comparing the ratio of observed mutation types for

descendants. Their results point to evidence that there exists some selection bias on specific

mutation types which heavily favoured mutations from G to U and from C to U by a factor of

up to 8 times. However, their study of mutation rates only provides the relative ratio of muta-

tion types without the consideration of the mutation dynamics in the actual time domain. Our

study also seeks to characterize the propensities for each type of mutation, but further analyzes

their dynamics in the time domain through an embedded Poisson process.

Weinstein et al. (2020) [8] introduced a structured emission distribution (the MuE distribu-

tion) that accounts for mutational variability (substitutions and indels) and uses it to construct

generative and predictive hierarchical Bayesian models (H-MuE models). The H-MuE models

can infer latent representations and features for immune repertoires, predict functional unob-

served members of disordered protein families and forecast the evolution of pathogens.

Nie et al. (2020) [9] conducted phylogenetic and phylodynamic analyses of SARS-CoV-2

using the Kimura 3-parameter nucleotide substitution model, which assigns different proba-

bilities for transitions and transversions as shown in (Fig 3). In contrast, our method uses a
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12-parameter model by assigning a unique probability for each substitution, allowing more

specific characterization of each mutation event. Based on their regression model, the overall

evolutionary rate was found to be 9.90 × 10−4 substitutions per site per year, which translates

to approximately 2.475 substitutions per month assuming the average sequence length of

30,000 nucleotide sites. This closely matches our empirical results of 2.27 as summarized in

(section 5) of this paper. However, their results only provide a generalized evolutionary rate,

whereas our model goes beyond calculating the mutation rates, we also study the time dynam-

ics with a Markov chain embedded Poisson process as detailed in (section 2).

Hallak et al. (2022) [10] conducted a statistical modeling of SARS-CoV-2 substitution pro-

cesses as a function of ten explanatory factors based on existing biological literature. By com-

paring all possible combinations of these ten factors as Generalized Linear Models, they

identified the top performing models which can predict the variants that are most likely to

occur based on their mutational likelihood. In this study, a Poisson regression model was fitted

to the following ten explanatory factors: locus of the site, input nucleotide base (A/C/G/U),

input amino acid, input codon, position of the site in the codon (1–3), mature peptide indica-

tor, stem loop indicator, CG pair indicator, right and left neighboring nucleotide.

Our survey of several stochastic approaches revealed that while many existing models have

investigated the probabilistic behaviour of mutation patterns, few studies have delved into the

time domain to specifically characterize their time dynamics. Although it is very useful to

know what type of mutation we can expect, it is more imperative to anticipate when such

mutation is most likely to occur, since response time is of paramount importance during an

ongoing pandemic. Therefore, this study conducts a time-series analysis to also understand

the mutation rates behind the stochastic process.

1.1.2 Pattern recognition-based approaches. Darooneh et al. (2022) [11] proposed a

novel text-mining method to estimate the mutability of genomic segments directly from a ref-

erence (ancestral) whole genome sequence. The underlying assumption behind this model is

that the interactions between neighbouring nucleotides results in clustering of segments,

which are analogous to the clustering of words by the grammatical structure rules of natural

language. Therefore, their method relies on calculating the importance of genomic segments

based on their spatial gene sequence distribution and frequency over the whole genome. The

application of this research could potentially aid in the formulation of novel therapeutics,

which target the stable conserved parts of the virus in order to retain sustained efficacy even

for new variants.

Zheng et al. (2009) [12] propose two metrics to compare DNA and protein sequences based

on a Poisson model of word occurrences. Instead of comparing the frequencies of all fixed-

length words in two sequences, they consider firstly the probability of ‘generating’ one

sequence under the Poisson model estimated from the other; secondly their different expres-

sion levels of words. This method provides an in-depth look beyond individual nucleotide

mutations, but also analyze the set of codons mutation frequencies.

Nawaz et al. (2021) [13] employed a machine learning algorithm called Sequential Pattern

Mining (SPM) on a computer-understandable corpus of COVID-19 genome sequences to ana-

lyze whether there are any interesting hidden patterns, revealing frequent patterns of nucleo-

tide bases and their relationships with each other. This is then applied to sequence prediction

models to evaluate if nucleotide base(s) can be predicted from previous ones. For mutation

analysis in genome sequences, an algorithm is designed to find the locations in the genome

sequences where the nucleotide bases are changed and to calculate the mutation rate.

Hie et al. (2021) [14] modeled SARS-CoV-2 virus mutations with viral escape using

machine learning algorithms originally developed for human natural language. Escape muta-

tions are those that preserve viral infectivity but cause a virus to look different to the immune
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system, akin to word changes that preserve a sentence’s grammaticality but change its mean-

ing. By analyzing the semantics (set of codons) together with the syntax (grammatical structure

of the RNA), the algorithm can even predict whether mutations would be benign or deleteri-

ous in nature.

The aforementioned works employ a myriad of pattern recognition methods which focus

on identifying certain spatial gene sequence patterns among mutations along the virus genome

sequence. In our work, we instead use a stochastic approach to characterize the distribution of

inter-occurrence between mutations. Both of these approaches reveal distinct characteristics of

the mutation process and can be used in conjunction to understand the underlying spatial

gene sequence behaviour of nucleotide substitutions.

1.2 The SARS-CoV-2 genome

The SARS-CoV-2 consists of approximately 30,000 nucleotides (labeled as A, G, T, C respec-

tively), each of which could undergo an independent and random mutation during replication

(Fig 2). The colors represent the RNA structure components, such as blue for the Open Read-

ing Frame (ORF), orange for the Spike Protein (S) and purple for the cell Membrane (M).

From (Fig 2), we can observe that each of these components features sites with higher fre-

quency of mutation, given by bar heights which represent the number of isolates which have

detected the corresponding mutations. The significance of this observation suggests that even

though the mutation process is random, in the long run there may be selective evolutionary

pressures which result in specific types of mutations being preferentially favored over others.

Therefore, understanding the underlying mechanism behind this pattern constitutes the main

impetus behind this research.

2 Methods

2.1 A continuous Markov process model for time series analysis

This study proposes to model these random nucleotide mutations as a Markov Chain embed-

ded Poisson process. Our method uses a Markov Chain Model to represent the nucleotide sub-

stitution process, whereby each nucleotide A, G, T, C (Adenine, Guanine, Thymine, Cytosine)

is given 4 possible transition states in the system. By mapping each state in a state-transition

diagram (Fig 3), we observe that these four states are recurrent and communicate with each

Fig 2. SARS-CoV-2 gene mutation frequency [15].

https://doi.org/10.1371/journal.pone.0284874.g002
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other within a closed-loop chain. The transition rates between these states represent their rate

of mutation which we assume to be a Poisson random process with arrival rate λt, given by the

probability mass function:

P xð Þ ¼
e� ltlx

t

x!
ð1Þ

where the random variable x represents the number of occurrences and the parameter λt, the

Poisson rate coefficient. The overall resulting model is a positive-recurrent Continuous-Time

Markov Chain (CTMC) embedded Poisson process (Fig 3).

Using this model, we can predict the time duration between mutations for each VOC based

on their historical divergence rates from the parent strain. The Poisson arrival rate is then mul-

tiplied with the Markov transition probabilities between nucleotides to obtain the resulting

4x4 transition rate matrix whereby each element represents the number of times we can expect

each specific nucleotide substitution to occur in any given month. This can help construct

future evolution of each nucleotide location and hence construct future potential virus RNA

sequences.

2.2 Spatial gene sequence analysis

Beyond the time-series analysis, we can also extend our sequence analysis into the spatial gene

sequence domain. By taking the approximately 30,000-characters long nucleotide sequence

and assigning them numerical values (A = 50, G = 100, T = 200, C = 250), we can convert the

string into a numpy array. This allows us to easily plot out the genome sequence using the mat-

plotlib pcolor method to create visual representation of the constituent nucleotides of the

sequence. By comparing the array plots of different sample sequences, we can make quick

comparisons on the different mutations along the genome, along with their corresponding

index location on the RNA chain. The resulting visual plot is depicted in (Fig 4). By running

the above spatial gene sequence analysis over many genome samples in the genome database,

we can derive a spatial gene sequence representation of how the mutation rate varies over time

for each nucleotide index. This spatial representation enables us to conduct characteristic anal-

ysis such as a heatmap of mutation points, from which we can derive the distribution of muta-

tion interoccurrence distances.

As discovered in the previous study done by Muino et al [4], natural diseases appear to dis-

play a characteristic “footprint” pattern of localized somatic mutations, such as the Poisson

distribution commonly found in existing literature, or the unique power law relationship in

short-range cancer gene sequences. In this analysis, we apply a similar method to characterize

the spatial gene sequence “footprint” of the SARS-CoV-2 virus.

In parallel with our time series model, we propose a Poisson model (with rate λs) for the

arrival process of mutations within a given spatial nucleotide sequence interval. Due to the

memoryless property of Poisson processes this amounts to exponential distribution (with

parameter λs) for the nucleotides distances between two consecutive mutations. Plotting the

logarithm of the number of occurrences of mutations versus the nucleotides distances between

consecutive mutations, we expect a linear relationship if the exponential distributed interoc-

currence distance (and equally Poisson distributed number of mutations) assumption is cor-

rect.

PðxÞ ¼ e� lslx
s ð2Þ

logðlsÞ ¼ aþ bx: ð3Þ
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Fig 3. State transition diagrams. (a) Markov state transitions, (b) Corresponding nucleotide transversions and

transitions.

https://doi.org/10.1371/journal.pone.0284874.g003
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Taking the logarithm of the exponential distribution probability density function given by Eq

(2), we can represent the Poisson process in a linear form Eq (3) where λs represents the num-

ber of mutations in the gene sequence space, and x is a measure of the nucleotide distance

between subsequent mutations along the gene sequence. This allows us to establish the linear

relationship between the two variables in the log-scale, given by a gradient of β and corre-

sponding intercept of α. Therefore, this relationship can be straightforwardly determined from

the linearity of its log-linear histogram, which we will explore in (section 4) by performing lin-

ear regression in the logarithmic scale of nucleotide distances.

3 Data

This research accesses the GISAID EpiCoV database for SARS-CoV-2 genome sequences as

the data source for training the model. GISAID [16] is a public data-sharing platform that

aggregates virus genome submissions from around the world. The EpiCoV database includes

sequence alignments, 3D protein models, drug targets and phylogenetic trees (Fig 5).

The genomic sequences can be downloaded directly from the database as a zip folder con-

sisting of two files, one with a format of sequences.fasta and another corresponding metadata.
tsv file which contains S1 File such as the date of submission, originating lab, country, variant,

and so on. The main information is obtained from the sequences.fasta file which encodes a

string of approximately 30,000 characters of A, G, T, C corresponding to the nucleotides (Fig

6).

3.1 Data pre-processing

Before we can use the GISAID EpiCoV data for this study, we have to perform several data

pre-processing steps to ensure that the sequences are structurally tractable. Firstly, the

Fig 4. Sample nucleotide map.

https://doi.org/10.1371/journal.pone.0284874.g004
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accession data is filtered for complete nucleotide genomes without any ‘Null’ entries along the

sequence. Next, the samples are aligned via Nucleotide BLAST to account for any insertions or

deletions in the sequence which could be problematic for substitution analysis due to frame-

shifted sequences. Finally, the filtered and aligned sequences are downloaded into a single

sequences.fasta file for ingestion into our model. In this study, our models ingest SARS-CoV-2

sequence data from January to March 2022.

The database also quantifies the divergence of each submitted genome versus the reference

strain, which is the original sequence first isolated from Wuhan on 01 Dec 2019. GISAID pro-

vides the definition of the divergence metric [16] as the number of changes (mutations) in the

genome from the ancestor strain. Therefore, analyzing the SARS-CoV-2 Phylogenetic Tree

(Fig 7) allows us to determine the divergence of each VOC upon first detection. Furthermore,

by tracing the elapsed time from the original sequence to the emergence of each VOC, we can

divide the elapsed time by their respective divergences in order to calculate their individual

divergence rates in the time domain.

Fig 5. GISAID EpiCoV database [16].

https://doi.org/10.1371/journal.pone.0284874.g005

Fig 6. Nucleotide sequence (truncated).

https://doi.org/10.1371/journal.pone.0284874.g006
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4 Results

4.1 Time series results

GISAID’s empirical data with hundreds of fully sequenced genome submissions are ingested

into the proposed model to obtain the transition probabilities each nucleotide mutation. The

transition rate matrix can be visualized in a stacked bar chart whereby the x-axis represents

each type of nucleotide and the stacked bars indicate their probability to be substituted by a

corresponding nucleotide (Fig 8).

We also estimate the mutation rate of the next mutation that would occur for each VOC,

where the divergence is given by a Poisson process for each of the four key variants. Their

respective Poisson distributions are simulated over a large number of samples and then plotted

as a histogram with corresponding mean mutation rates (λt) which represents the number of

expected nucleotide mutations per month for each VOC (Fig 9).

Multiplying the Markov transition probabilities (Fig 8) with the Poisson rate coefficients

(Fig 9) will give us the specific mutation rate of each type of nucleotide substitution for each

strain. The resulting mutation rate matrix is tabulated in (Fig 10) for each of the five key

VOCs, whereby each value represents the mean rate of mutation per month for each nucleo-

tide substitution from row to column. Cells with larger values are visually represented with

darker colour shading.

The overall calculated mutation rate also has a Poisson mean of λt = 2.27 mutations per

month, which closely matches the average of 2 mutations per month as cited from empirical

results in the existing literature [18]. We validate the statistical robustness of our results by

conducting a one-sample t-test on the sample mean compared with the expected population

mean. The obtained test statistic T = 1.038, which falls within the 95% region of acceptance:

[-1.984, 1.984] and a 95% confidence interval of [1.754, 2.786]. These results show that our

findings display statistical similarity to previously discovered literature values [9, 18].

Fig 7. SARS-CoV-2 phylogenetic tree [17].

https://doi.org/10.1371/journal.pone.0284874.g007
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4.2 Spatial gene sequence results

By making genomic comparisons of the 150x200 nucleotide maps across multiple sequences,

we can map each point mutation occurrence on the mutation array. A cumulative count at

each index allows us to plot a heatmap of mutation hot spots along the genome (Fig 11).

Taking the spatial gene sequence distance between indices of consecutive mutations along

the genome, we can then calculate the mutation interoccurrence distances. Plotting these

interoccurrence distances as a histogram on a linear (Fig 12a) and log-linear scale (Fig 12b)

allows us to observe their spatial gene sequence distribution, given by a Poisson mean of

approximately λs = 102 spatial nucleotide distance between mutations. To validate these

results, we further conducted a linear regression test to verify the log-linearity of short range

mutation distances. This test yielded a coefficient R2 = 0.708, which indicates that there exists

the presence of a linear relationship in the logarithmic spatial domain.

5 Discussion

A detailed look at both our time-series and spatial gene sequence results reveals some interest-

ing preliminary insights to the phylodynamics of the SARS-CoV-2 virus. However, we also

note that there are several limitations to this simple substitution model that can be improved

in future work.

Fig 8. Markov transition probabilities.

https://doi.org/10.1371/journal.pone.0284874.g008

Fig 9. Poisson histograms of five key VOCs.

https://doi.org/10.1371/journal.pone.0284874.g009
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5.1 Mutation rates differ across strains

A comparison of the mutation rates between the 5 key VOCs (Fig 9) indicates that the muta-

tion rates for each key VOC differs slightly. The Alpha and Gamma variants are displaying a

faster rate of evolution with Poisson coefficients of 2.90 and 3.05 mutations per month respec-

tively, whereas the Beta and Delta strains are mutating at about half the rate with arrival rate of

1.66 and 1.50, respectively. A possible interpretation of this finding is that the Beta and Delta

variants are more stable in nature due to certain genetic advantages over its competitors. This

result also corroborates existing medical findings which suggest that each strain exhibits

unique virus characteristics, especially in the gene expressions of their spike protein, which

causes them to have different binding affinity to the human ACE-2 receptors ultimately result-

ing in varied mutation dynamics [18].

5.2 Mutation rates differ by nucleotides

From the Markov state transition probabilities (Fig 8), it is worth noting that in general, the

nucleotides T (Thymine) and C (Cytosine) have higher propensities to be substituted in the

chain, with almost twice the probability over A (Adenine) and G (Guanine). This interesting

property is observed across all variants in (Fig 10) where we can observe clear asymmetry in

the mutation rates, notably that pyrimidine transitions occur more often than purine transi-

tions, while transversions between the two different kinds of nucleotides are infrequent by

contrast (Fig 3). This could point to evidence that there exists some evolutionary selection

mechanism for mutation types as verified by De Maio (2021) who mapped the selection ratios

for different mutation types [7]. A plausible biological explanation could be the predominance

of certain nucleotides found in the spike protein receptor binding domain (RBD) where most

of the mutations have been detected to occur with higher frequencies (Fig 2), possibly due to

selective escape from immune response [19].

5.3 Exponentially distributed interoccurrence distances

From the histogram of interoccurrence distances (Fig 12a), we observe that the distances

appear to be decreasing exponentially, suggesting that the distribution of number of mutations

Fig 10. 4x4 mutation rate matrices.

https://doi.org/10.1371/journal.pone.0284874.g010
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in the gene sequence space is Poisson in nature. To verify this using our linearized model in Eq

3, we check the linearity of the log-linear histogram and note that at short-range distances

(< 500 nucleotides), there indeed exists a linear relationship between frequency and distance.

A similar trend is observed for all 5 VOCs, therefore we present the histogram for the Omicron

variant as an example to visualize the corresponding distribution.

This finding draws some interesting parallels with the cancer mutation research by Muiño

et al [4], where they discovered that cancer genomes exhibit power-law interoccurrence dis-

tances in its short-range sequences, whereas our study suggests a Poisson mutation occurrence

signature with exponentially distributed interoccurrence distances. This result is of particular

interest since it could represent a characteristic “footprint”of the spatial gene sequence pattern

underlying the SARS-CoV-2 mutation mechanism, much like the “Kataegis” phenomenon

that was noted by the cancer study.

The significance of identifying the spatial Poisson behaviour of mutations in the gene

sequence enables the ability to predict the approximate location along the genome where we

can expect the next mutation to occur. This could allow virologists to focus their research on

the potential impacts of future mutation positions in the short range. Therefore, a potential

Fig 11. Mutation heatmap.

https://doi.org/10.1371/journal.pone.0284874.g011
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application of this finding could be to contribute statistical information for the timely or even

predictive update of vaccine sequences in anticipation of the next VOC emergence, which is

very complex and open research question that no existing models have been able to achieve

with sufficient accuracy and confidence as of yet.

Fig 12. Interoccurrence distance histograms. a) Linear, b) Log-linear.

https://doi.org/10.1371/journal.pone.0284874.g012
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5.4 Limitations

There are several limitations of this model, with several constraints pertaining to the dataset

available from the GISAID database, while some limitations are inherent to the underlying

steady-state assumptions behind the analysis method.

5.4.1 Data skewness. Firstly, it has been highlighted that the data points are heavily

skewed toward countries with a higher number of genome submissions, especially from first

world countries such as the UK and US with better technology infrastructure and more labora-

tories that are able to collect and sequence the genomes of the virus samples. Secondly, it is

also established by several other collaborators of GISAID that a large proportion of the submit-

ted reports could be biased towards reported ‘bad’ strains only, as benign samples would be

omitted due to the lack of manifestation of the COVID-19 disease [20].

5.4.2 Steady-state assumption. Another limitation to the analysis method is the inherent

assumption of a steady-state behaviour being exhibited by the virus. By assuming a Poissonian

and Markovian nature of virus mutations, our methods analyze the mutation rate as a distribu-

tion centered around a fixed mean and standard deviation. However, in reality the different

strains of the virus could mutate at different rates at various time points in the outbreak. This

could be due to a variety of external factors that affect its replication rate, such as the popula-

tion of infected individuals. In essence, our study only captures a “snapshot” in time of the cur-

rent phylodynamic state of the virus, but does not account for future changes in its

characteristics. Further studies by moving time or genome sequence location windows can

reveal non-homogeneous Poisson characteristics.

5.4.3 Indel mutations. Apart from the limitations of the dataset, there are also several lim-

itations in the proposed model in this paper. This preliminary model that we have built cur-

rently only considers the mechanism of nucleotide substitution. However, in reality there are

other mutation mechanisms such as indels (the insertion or deletion of nucleotides) in the

virus genome, for which this rudimentary substitution model does not account for. Further-

more, the proposed model is focused on the arrival times of mutations, but does not contain

any information on the location of the mutagenic event along the virus genome.

5.4.4 Viral impact analysis. Lastly, although we are able to provide a prediction of the

Poisson mutation rate with its corresponding Markov nucleotide transition, the prediction

result bears no information on the impact of the mutation on the SARS-CoV-2 virus charac-

teristics. As such, further consultation with virologists is required to assess the impact of the

predicted mutation to ascertain whether the change is positive or negative in terms of the reali-

zations of the COVID-19 disease it causes [21]. Alternatively, we can explore some parametric

stochastic models in order to predict the emergence of VOCs by analyzing historical phylody-

namic data from the GISAID database.

6 Conclusions

Our study presents a simple time-series model to estimate the mutation rate of the SARS--

CoV-2 virus as a Markov Chain embedded Poisson process. The overall calculated Poisson

mutation rate is λt = 2.27 mutations per month, which closely matches the findings from exist-

ing literature [19]. We can thus expect a new mutation to occur with inter-arrival time given

by an exponential distribution with a mean of every 13 days. We found that the mutation rates

for each key VOC differs slightly, further noting that the pyrimidine nucleotides Thymine and

Cytosine have higher propensities to be substituted.

In the spatial gene sequence model, we calculated the interoccurrence distances between

nucleotide mutations to have an exponentially distributed mean of λs = 102 nucleotide dis-

tance, signifying a Poisson mutation occurrence pattern in the spatial domain. We also
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heatmapped the interoccurrence of mutations along the genome, observing a log-linear rela-

tionship between mutation distance and frequency in short-range nucleotide distances. This

finding draws significant parallels with the cancer mutation research by Muiño et al [4], being

of particular interest since it could be representing a part of a characteristic spatial gene

sequence pattern underlying the SARS-CoV-2 mutation mechanism. To our knowledge, we

are the first study to have characterized a pattern of interoccurrence distances between nucleo-

tide mutations in the SARS-CoV-2 genome. The contributions of this research could poten-

tially pave the way for future work, such as applying more advanced spatial pattern

recognition algorithms in order to characterize other different kinds of virus families.

As the SARS-CoV-2 virus continues to mutate, not only will the 5 dominant VOCs con-

tinue to descendant strains, there could be even more independent variants emerging. Many

of these variants are classified as variants of interest (VOIs) and are under careful investigation

by WHO due to their potential to become a VOC in the future [22]. As such, in the future we

hope to develop a suitable mutation model which can be applied to the descendants of the 4

VOCs, or onto the list of VOIs in order to understand their phylodynamics before they poten-

tially mutate into a more dangerous strain. As of this writing, the WHO has been investigating

two Omicron subvariant (BA.1, BA.2), which have shown “greater immune escape properties

and higher transmissibility”, threatening to unleash a new wave of infections around the world

[23]. Thus, the fortuitous timing of this work could contribute to the analysis of new variants

and subvariants in the ongoing fight against the COVID-19 pandemic.

Supporting information

S1 File.

(ZIP)

Acknowledgments

We sincerely acknowledge the GISAID and NCBI organizations for granting us access to the

GISAID EpiCoV™ and NCBI databases for the retrieval of SARS-CoV-2 genome submissions

data. We also extend our warmest gratitude to all contributing laboratories for sequencing and

publishing SARS-CoV-2 genome sequence data on these databases for shared research

purposes.

Author Contributions

Data curation: Maverick Lim Kai Rong.

Methodology: Maverick Lim Kai Rong.

Supervision: Ercan Engin Kuruoglu, Wai Kin Victor Chan.

Visualization: Maverick Lim Kai Rong.

Writing – original draft: Maverick Lim Kai Rong.

References
1. Worldometers. COVID Live Update. COVID-19 Coronavirus Pandemic. 2022;.

2. Tinker B, Fox M. So far, 5,800 fully vaccinated people have caught Covid anyway in US, CDC. CNN

Health. 2021;.

3. Inc RP. Regeneron COVID-19 Dashboard. Regeneron COVID-19 Dashboard. 2021;.

4. Muiño JM, Kuruoğlu EE, Arndt PF. Evidence of a cancer type-specific distribution for consecutive

somatic mutation distances. Computational Biology and Chemistry. 2014; 53:79.83. PMID: 25179009

PLOS ONE Modeling SARS-CoV-2 nucleotide mutations as a stochastic process

PLOS ONE | https://doi.org/10.1371/journal.pone.0284874 April 28, 2023 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0284874.s001
http://www.ncbi.nlm.nih.gov/pubmed/25179009
https://doi.org/10.1371/journal.pone.0284874


5. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral Mutation Rates. Journal of Virology.

2010; 84(19):9733–9748. https://doi.org/10.1128/JVI.00694-10 PMID: 20660197

6. Crump KS, Hoel DG. Mathematical models for estimating mutation rates in cell populations. Biometrika.

1974; 61(2):237–252. https://doi.org/10.1093/biomet/61.2.237

7. De Maio N, Walker CR, Turakhia Y, Lanfear R, Corbett-Detig R, Goldman N. Mutation Rates and Selec-

tion on Synonymous Mutations in SARS-CoV-2. Genome Biology and Evolution. 2021; 13(5). https://

doi.org/10.1093/gbe/evab087

8. Weinstein EN, Marks DS. A structured observation distribution for generative biological sequence pre-

diction and forecasting. bioRxiv. 2021;. https://doi.org/10.1101/2020.07.31.231381

9. Nie Q, Li X, Chen W, Liu D, Chen Y, Li H, et al. Phylogenetic and phylodynamic analyses of SARS-

CoV-2. Virus Research. 2020; 287:198098. https://doi.org/10.1016/j.virusres.2020.198098 PMID:

32687861

10. Levinstein Hallak K, Rosset S. Statistical modeling of SARS-CoV-2 substitution processes: predicting

the next variant. Communications Biology. 2022; 5(1):285. https://doi.org/10.1038/s42003-022-03198-y

PMID: 35351970

11. Darooneh AH, Przedborski M, Kohandel M. A novel statistical method predicts mutability of the genomic

segments of the SARS-CoV-2 virus. QRB Discovery. 2022; 3:e1. https://doi.org/10.1017/qrd.2021.13

PMID: 35106478

12. Zheng X, Qin Y, Wang J. A Poisson model of sequence comparison and its application to coronavirus

phylogeny. Mathematical Biosciences. 2009; 217(2):159–166. https://doi.org/10.1016/j.mbs.2008.11.

006 PMID: 19073197

13. Nawaz MS, Fournier-Viger P, Shojaee A, Fujita H. Using artificial intelligence techniques for COVID-19

genome analysis. Applied Intelligence. 2021; 51(5):3086–3103. https://doi.org/10.1007/s10489-021-

02193-w PMID: 34764587

14. Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral evolution and escape. Science.

2021; 371(6526):284–288. https://doi.org/10.1126/science.abd7331 PMID: 33446556

15. Alam I, Radovanovic A, Incitti R, Kamau AA, Alarawi M, Azhar EI, et al. CovMT: an interactive SARS-

CoV-2 mutation tracker, with a focus on critical variants. The Lancet Infectious Diseases. 2021; 21

(5):602. https://doi.org/10.1016/S1473-3099(21)00078-5 PMID: 33571446

16. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality. Euro-

surveillance. 2017; 22(13). https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 PMID: 28382917

17. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of

pathogen evolution. Bioinformatics. 2018; 34(23):4121–4123. https://doi.org/10.1093/bioinformatics/

bty407 PMID: 29790939

18. Vilar S, Isom DG. One Year of SARS-CoV-2: How Much Has the Virus Changed? bioRxiv. 2020;.

https://doi.org/10.1101/2020.12.16.423071

19. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 vari-

ants, spike mutations and immune escape. Nature Reviews Microbiology. 2021; 19(7):409–424. https://

doi.org/10.1038/s41579-021-00573-0 PMID: 34075212

20. Liu Q, Zhao S, Shi CM, Song S, Zhu S, Su Y, et al. Population Genetics of SARS-CoV-2: Disentangling

Effects of Sampling Bias and Infection Clusters. Genomics, Proteomics Bioinformatics. 2020; 18

(6):640–647. https://doi.org/10.1016/j.gpb.2020.06.001 PMID: 32663617

21. Feil E. Can scientists predict all of the ways the coronavirus will evolve? The Conversation. 2021;.

22. WHO. SARS-CoV-2 Variants of Concern and Variants of Interest. Tracking SARS-CoV-2 variants.

2021;.

23. Constantino AK. HO says omicron BA.4 and BA.5 subvariants have spread to over a dozen countries.

CNBC Health and Science. 2022;.

PLOS ONE Modeling SARS-CoV-2 nucleotide mutations as a stochastic process

PLOS ONE | https://doi.org/10.1371/journal.pone.0284874 April 28, 2023 17 / 17

https://doi.org/10.1128/JVI.00694-10
http://www.ncbi.nlm.nih.gov/pubmed/20660197
https://doi.org/10.1093/biomet/61.2.237
https://doi.org/10.1093/gbe/evab087
https://doi.org/10.1093/gbe/evab087
https://doi.org/10.1101/2020.07.31.231381
https://doi.org/10.1016/j.virusres.2020.198098
http://www.ncbi.nlm.nih.gov/pubmed/32687861
https://doi.org/10.1038/s42003-022-03198-y
http://www.ncbi.nlm.nih.gov/pubmed/35351970
https://doi.org/10.1017/qrd.2021.13
http://www.ncbi.nlm.nih.gov/pubmed/35106478
https://doi.org/10.1016/j.mbs.2008.11.006
https://doi.org/10.1016/j.mbs.2008.11.006
http://www.ncbi.nlm.nih.gov/pubmed/19073197
https://doi.org/10.1007/s10489-021-02193-w
https://doi.org/10.1007/s10489-021-02193-w
http://www.ncbi.nlm.nih.gov/pubmed/34764587
https://doi.org/10.1126/science.abd7331
http://www.ncbi.nlm.nih.gov/pubmed/33446556
https://doi.org/10.1016/S1473-3099(21)00078-5
http://www.ncbi.nlm.nih.gov/pubmed/33571446
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
http://www.ncbi.nlm.nih.gov/pubmed/28382917
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1093/bioinformatics/bty407
http://www.ncbi.nlm.nih.gov/pubmed/29790939
https://doi.org/10.1101/2020.12.16.423071
https://doi.org/10.1038/s41579-021-00573-0
https://doi.org/10.1038/s41579-021-00573-0
http://www.ncbi.nlm.nih.gov/pubmed/34075212
https://doi.org/10.1016/j.gpb.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32663617
https://doi.org/10.1371/journal.pone.0284874

