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Abstract

Cannabis flower odour is an important aspect of product quality as it impacts the sensory

experience when administered, which can affect therapeutic outcomes in paediatric patient

populations who may reject unpalatable products. However, the cannabis industry has a

reputation for having products with inconsistent odour descriptions and misattributed strain

names due to the costly and laborious nature of sensory testing. Herein, we evaluate the

potential of using odour vector modelling for predicting the odour intensity of cannabis prod-

ucts. Odour vector modelling is proposed as a process for transforming routinely produced

volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informa-

tive to the overall product odour (sensory descriptor; SD). However, the calculation of OI

requires compound odour detection thresholds (ODT), which are not available for many of

the compounds present in natural volatile profiles. Accordingly, to apply the odour vector

modelling process to cannabis, a QSPR statistical model was first produced to predict ODT

from physicochemical properties. The model presented herein was produced by polynomial

regression with 10-fold cross-validation from 1,274 median ODT values to produce a model

with R2 = 0.6892 and a 10-fold R2 = 0.6484. This model was then applied to terpenes which

lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI

profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both

the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis sam-

ples and the accuracy of the predictions across the two datasets was compared. Out of the

13 SD categories modelled, OI profiles performed equally well or better than the volatile pro-

files for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p

= 0.031). The work herein is the first example of the application of odour vector modelling to

complex volatile profiles of natural products and demonstrates the utility of OI profiles for the

prediction of cannabis odour. These findings advance both the understanding of the odour

modelling process which has previously only been applied to simple mixtures, and the can-

nabis industry which can utilise this process for more accurate prediction of cannabis odour

and thereby reduce unpleasant patient experiences.
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1. Introduction

Cannabis sativa is an herbaceous plant that originated in Central Asia and has been utilised for

its industrial [1], ornamental [2], nutritional [3], medicinal [4], and recreational [5] potentials.

Odour is conferred by the detection of volatile compounds within the nasal cavity (olfactory sys-

tem) during inhalation of air, or consumption of food or liquid, via the ortho- or retro-nasal

routes, respectively [6, 7]. The detection and recognition of odours by the brain can illicit physi-

ological and psychological responses, due to the close association between odour processing

and memory [8, 9]. For Cannabis sativa—a medicinal flower with a strong odour often admin-

istered through inhalation—odour is closely associated with quality perception and can impact

the pleasantness of the medicinal experience, which in turn can impact the likelihood of redos-

ing [10]. Accurate descriptions and consistency of product odours are therefore important for

medicinal cannabis patients to promote the likelihood of achieving their therapeutic goals.

Within the cannabis industry, strain diversity is expanding, which is creating new pheno-

types that require the determination of odour prior to market presentation. New phenotypes

can also be created accidentally, when seed-propagated (cross-fertilised) plants are presumed to

maintain their parent strain traits without proper assessment, resulting in the mis-naming of

strains and associated misattribution of odour characteristics [11, 12]. Accordingly, all new

strains and seed-propagated plants should be phenotype-tested to avoid inaccurate descriptions

of medicinal products in the market. Whilst chemical composition (including volatiles) can be

determined relatively easily through established gas chromatography (G-C) analytical methods

[13, 14], these are only partially informative to odour prediction [15], and therefore current

methods for determination of sensory properties relies on a slow, costly, and subjective sensory

assessment by panellists [16]. Accordingly, there is a need for additional tools to measure canna-

bis odour and better understand the connection between volatile profiles and odour perception.

Various measures have been developed to aid in the characterisation of odours, including

odour detection threshold (ODT), which is the lowest concentration that 50% of participants

will detect a compound [17, 18], and odour descriptors (OD), which are common odours

(items) recalled from memory such as ‘floral’ or ‘balsamic’ when a compound is detected [19].

These measures are useful for describing odour perception for samples with a single com-

pound, however, they fail to inform the perception of mixtures. Whilst olfactory signals are

produced following the detection of an odorant individually and within a mixture, the process-

ing of the olfactory signals from a mixture occurs on a batch/ profile level, which results in the

perception of a single odour rather than multiple individual odours [20]. Even though individ-

ual odorants and their OD’s cannot be distinguished as part of a mixture, it is understood that

an odorant’s presence contributes to the overall odour [21]. Even low concentrations of com-

pounds—below their ODT—have been known to influence the perception of odorant mixtures

[22]. Whilst natural products tend to produce highly complex volatile profiles that are uniquely

perceived, volatile mixture complexity is not necessarily associated with increased odour com-

plexity, with some highly complex mixtures exhibiting similarity known as ‘olfactory white’

[23]. Accordingly, the relationship between volatile profiles and their perception is highly

complex and there is an interest to better understand how odorants interact/ add together to

produce an overall single odour. Such developments would push odour-chemistry knowledge

towards facilitating prediction and targeted creation of volatile mixture odours without the

need for sensory analysis.

Vector addition has been proposed as a strategy for representing odorant addition within

mixtures [24]. The odour activity value (OAV) describes the relative strength of an odorant in

a mixture and is calculated as the ratio between its concentration and its ODT, which is then

used to calculate the odour intensity (OI) of an OD for that odorant [25]. The vector model
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hypothesises that the OIs (per OD per compound within a mixture) are vectors in n-dimen-

sional odour space (for n ODs), which can be added together using vector addition [24, 26].

The resulting estimate from the vector model is a profile of OI values, which represent the

combination and relative strengths of ODs imparted by the mixture. The odour vector model

has been successfully applied to binary [26–29], ternary [30], quaternary [31, 32], and quinary

mixtures [24]. However, noting that natural product odours—such as those from flowers or

fruits—are mixtures of larger numbers of volatile compounds, there is an interest in expanding

this modelling process to assess its utility within the context of representative profile

complexity.

One of the limitations to the application of the odour vector model to high-complexity vola-

tile mixtures, is the need for concentration and odour property data (ODT and ODs) for each

chemical, as this is used for the calculation of OI. Whilst measurement of volatile concentra-

tion is well established [33], identification of ODT and ODs for uncharacterised chemicals

generally requires sensory analysis, which is slow and costly. Chemical ODs have been identi-

fied for many volatiles due to their importance within the perfumery industry, and statistical

modelling has recently been applied for the prediction of uncharacterised chemical ODs [34,

35]. However, ODT data is less comprehensive, and no large-scale generalised statistical mod-

els have been published. Therefore, there is a need for additional tools to measure or predict

the ODT of uncharacterised chemicals in order to facilitate a vector modelling approach to

complex mixtures containing these compounds.

Statistical modelling can be used to predict chemical activities or properties from their

physicochemical data, which is known as quantitative structure–activity/property relationship

(QSAR/QSPR) modelling. This process and relationship has been demonstrated for a range of

properties including time of maximal phytochemical concentration in circulation following

ingestion and inhalation [36, 37], blood-to-liver partition coefficients of volatile compounds

[38], intestinal bioavailability and antioxidant activity [39], and perception of chemical odour

following inhalation [34]. Generation of these QSPR models is useful, particularly for measures

such as ODT which are laborious to measure and are required for OI calculation which is an

input for vector modelling [40]. Previous studies have identified that there is a relationship

between ODT and physicochemical properties, including carbon chain length and functional

group presence [41, 42]. Furthermore, statistical modelling of ODT from physicochemical

measures has been done for small data sets of chemical families including alkanes, esters, alde-

hydes, mercaptans, and aliphatic alcohols [43, 44]. However, no generalised model for the pre-

diction of uncharacterised compound ODT has been presented.

The aim of this study was to develop a generalised QSPR model for the prediction of ODT,

to enable OI calculation for uncharacterised compounds. Furthermore, this study explored the

application of the odour vector model to the complex volatile profiles of cannabis flowers to

produce OI profiles which could inform the overall sensory descriptor (SD) of the sample. The

findings from this work provide researchers and the odour industry with a tool for approximat-

ing ODT without the need for sensory testing and additionally, strengthen the understanding of

the utility of the odour vector model. The demonstration of the predictive capability of OI pro-

files over terpene profiles to cannabis SD is a step towards fast and reproducible prediction of

flower odour which has implications for both the recreational and medicinal cannabis markets.

2. Materials and methods

An overview of the methods utilised herein are presented in Fig 1, with further details on each

method presented in their respective subsections below and detailed further in the supplemen-

tal file.
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2.1. Sourcing of Cannabis headspace profiles

A set of 265 Cannabis sativa volatile terpene profiles (containing data for 18 compounds, Table S1

in S1 File) for named commercial cannabis verities were sourced from a commercial compliance

testing facility (CB Labs, Novato, CA). The online database, Leafly (https://www.leafly.com/,

accessed August 2022), was used to source the SDs for each named commercial variety, which

were the top 3 categories listed under the ‘strain flavour’ section of each named variety’s Leafly

entry. The samples were grouped into 13 SD categories (Table S2 in S1 File: Citrus, Tropical,

Berry, Tree Fruit, Earthy, Mineral, Animal, Roasted, Mellow, Warming, Herbal, Floral, and

Sweet), based on the location of the Leafly descriptors within a cannabis odour wheel [45]. The

ODs associated with each terpene were extracted from The Good Scents Company (http://www.

thegoodscentscompany.com/, accessed August 2022), as the odours listed under the ‘odor’ subsec-

tion of the ‘organoleptic properties’ section of each compound entry (Table S4 in S1 File). The

ODs associated with each compound were given a numerical ranking based on the ranking of the

organoleptic property for that chemical, wherein primary ranking was assigned as rank 1, second-

ary rank was assigned as rank 2, and so on to octonary, which was assigned as rank 8.

2.2. Sourcing of ODT and physicochemical measures

A set of 2,698 ODT measures of 1,274 chemicals (in water) were sourced from Van Gemert

[46]. Corresponding physicochemical measures for each chemical were sourced from

Fig 1. Overview of methods workflow. Cannabis flowers volatile profiles were converted into sample odour intensity

(OI) profiles via vector modelling, which utilised odour descriptor (OD) data, odour detection thresholds (ODT), and

compound concentrations as calculation inputs prior to vector addition. Sample OI profiles were compared to sensory

data which allowed for logistic regression and k-means clustering to predict sensory descriptor assignment.

https://doi.org/10.1371/journal.pone.0284842.g001
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ChemMine Tools (https://chemminetools.ucr.edu/, accessed August 2022), which included

the JoeLib descriptors: Fraction_of_rotatable_bonds, Kier_shape_2, Number_of_HBA_2,

Number_of_Br_atoms, Number_of_basic_groups, Geometrical_radius, Zagreb_group_in-

dex_2, Geometrical_diameter, and Number_of_N_atoms, the OpenBabel descriptors: abonds,

dbonds, MW, TPSA, and Log_P (Log_P_1), and the Smarts Search results: [#16X2H] (thiol),

[$([CX3] = [CX3])] (vinylic carbon), [#6][CX3] (= O)[OX2H0][#6] (ester), [#16X2H0] (sul-

fide), [CX3] (= O)[OX1H0-,OX2H1] (carboxylic acid), [CX3H1] (= O)[#6] (aldehyde), and

[#6][CX3] (= O)[#6] (ketone). The physicochemical measures Log P (Log_P_2) and nOHNH

were sourced for each compound from Molinspiration’s online property tool kit (http://www.

molinspiration.com, accessed August 2022).

2.3. Statistical modelling of ODT

Polynomial regression was performed in Minitab 19 statistical software package (Minitab Inc.,

State College, PA) to predict the natural log of the median ODT (ln ODT) for each of the 1,274

chemicals from their physicochemical properties listed in 2.2. Automated term inclusion was

performed using the step-wise method with an alpha value of 0.05 to enter and remove, begin-

ning with all combinations of terms up to and including 3rd order. Further manual term

removal was performed to achieve a model with only significant (P< 0.05) terms. Model vali-

dation was performed using the k-fold cross-validation technique, with k = 10. The accuracy

of the model predictions was compared with the variations in ODT measures used to calculate

the median ODT. This was done via paired t-test between the ratio of the standard deviation of

the natural log of the individual ODT values for each compound with the natural log of the

median ODT of each compound (ODT data variance) and the ratio of the model residual with

the natural log of the median ODT (model variance), for all chemicals in the modelling-data

set which were produced as a median of multiple values and had a non-zero ln ODT value (411

out of 1,274 chemicals).

2.4. Vector modelling to produce OI profiles

A vector modelling process, presented in Appendix 1 in S1 File, was adapted from Berglund

[24], Yan, Liu [31], Yan, Liu [30], and Niu, Liu [26], and was applied to each cannabis terpene

profile to produce a corresponding odour intensity (OI) profile. In short, the OI profile of the

mixture of compounds (OIM) was generated as a 33-term vector (1 term per OD) representing

the vector sum of individual compound OIs for that OD (Equation S8, Appendix 1 in S1 File).

This utilised calculation of compound OAV (Equation S1, Appendix 1 in S1 File), defined as

per Yan, Liu [30], wherein terpene median ODT (in water) was sourced from Van Gemert [46],

except for alpha bisabolol and alpha terpinene, which were estimated using the predictive ODT

model presented herein. Creation of individual compound odour profile vectors (Equation

S3A, Appendix 1 in S1 File)—defined following the linear OI-lnOAV relation of individual

odorants presented in Yan, Liu [31]—utilised the OD rankings presented in the GoodScents

database such that OI was defined as inversely proportionate to ranking when assigned, or 0

when not assigned. The angle between compound odour profile vectors (α) was defined as the

angle between vectors in 33-dimensional space due to the data covering measures across 33

ODs. For each OD, the OI of the mixture was calculated as per Berglund [24] and expanded for

summation across the 18 terpenes explored per mixture (Equation S5A, Appendix 1 in S1 File).

2.5. Statistical modelling of cannabis sensory descriptors

Cannabis sample terpene and OI profiles were utilised separately as inputs for binary logistic

regression (LR) with the logit function in Minitab 19 statistical software package (Minitab Inc.,

PLOS ONE Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour

PLOS ONE | https://doi.org/10.1371/journal.pone.0284842 April 25, 2023 5 / 14

https://chemminetools.ucr.edu/
http://www.molinspiration.com/
http://www.molinspiration.com/
https://doi.org/10.1371/journal.pone.0284842


State College, PA), to predict cannabis sensory descriptors. Automated step-wise term selec-

tion was utilised with an alpha value of 0.2 to enter and remove. An initial preliminary model

was created using all factors up to and including their second order terms, followed by further

development into a final model with an automated selection from the same terms plus all com-

binations of third order terms from the factors which were selected in the initial model. The

event probability (EP) outputs from LR were grouped into 2 groups using the k-means unsu-

pervised clustering method in Minitab 19, and the group with the higher centroid was assigned

the associated SD. The proportions of correct SD assignments were compared between terpene

and OI profiles for an SD using 2-proportions testing with a 95% confidence interval. The

overall performance of the modelling strategies using either terpene or OI data was compared

by paired t-test with 95% confidence level, on the proportions of correct assignments.

3. Results and discussion

Whilst cannabis is known for having a strong and distinct odour, there is considerable diver-

sity in the language used to describe cannabis odour [10]. With the recent acceptance of canna-

bis as a recreational drug and medicinal product, plant breeding has enabled the development

of many new varieties, which often have exotic odour-inspired names and rich odour descrip-

tions. However, cannabis naming is unregulated [47], and there is significant chemical and

genetic diversity between strains of the same name [48, 49], which has resulted in a reputation

within the industry of products having inaccurate descriptions or misleadingly suggestive

names [50–52].

A significant demographic of medicinal cannabis users are the paediatric and geriatric

patient populations, which have specific considerations for drug design and usability [53–56].

Paediatrics in particular, are sensitive to organoleptic properties such as taste and odour, with

rejection occurring from unpalatable medications [57–60]. Cannabis oils are reported to have

unpleasant organoleptic properties for both adults and children, which has resulted in canna-

bis capsule product developments [60, 61], however swallowing can be difficult in paediatrics

making this unavailable to those patients [62]. For liquid oral formulations such as Epidiolex,

strawberry flavouring is added [63], however no such alternative is available for raw flower

products. With the inconsistencies in product labelling and descriptions, there is a risk of these

special patient groups receiving medicinal products with different sensory properties to what

they expect, which may result in rejection and thereby negatively affect their therapeutic out-

comes. Accordingly, there is a need to increase the consistency and accuracy of cannabis label-

ling and descriptions to improve patient experiences and therapeutic outcomes.

The simplest measure of odour strength is OAV which is the ratio of the concentration of a

compound in a sample relative to its ODT. However, OAV doesn’t inform on how that chemi-

cal will be perceived by an individual or, if present in a mixture, how other compounds are

contributing to the overall odour. Odour intensity and vector addition are proposed as

improved methods for determining odour perception, particularly for mixtures. As OAV is an

input to OI calculation, ODT for each compound present in a mixture is required in order to

perform odour vector addition of OI. Accordingly, as cannabis and other natural products

contain many volatiles which have not been tested by sensory analysis to determine their

ODT, there is a need to predict ODT from in silico measures to enable vector modelling of pro-

files containing these compounds.

Polynomial regression was utilised to generate a model for the prediction of ln ODT from

physicochemical measures, which had an R2 = 0.6892 and a 10-fold R2 = 0.6484 (Fig 2,

Table S5 in S1 File). The similarity between the two R2 measures indicates comparable accu-

racy for both the training and the test sets across the fold splits, supporting that the model is
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not overfit [64]. The model includes 69 total 1st, 2nd, and 3rd order terms (Table S5 in S1 File),

which are all significant (P< 0.05). Of these 69 terms, 49 include terms relating to the presence

of functional groups, and 23 contain terms relating to molecular size. The inclusion of these

properties for the prediction of ODT is consistent with previous studies which identified that

ODT is impacted by the related measures of carbon chain length and functional group pres-

ence [41, 42, 65]. The model also included terms with measures relating to molecular proper-

ties (e.g. Log P), and types of bonds present (e.g. rotatable bonds), which may indicate their

association with ODT perception and could therefore be the targets for further studies on

physicochemical properties impacting ODT.

Previous studies have presented predictive models for ODT, however, these tend to utilise

small data sets. Polster and Schieberle [65] present an ODT model from 44 compounds with a

R2 of 0.89, Rodrı́guez, Teixeira [66] identified a model from 121 compounds with R2 of 0.769,

Anker, Jurs [67] and Junkes, Arruda [68] present models from 49 compounds with R2 of 0.863

and 0.765, respectively, whilst Pal, Mitra [44] utilised 42 compounds to develop a model with

R2 of 0.809 and an R2 of 0.813 when applied to a test set of 11 compounds. Abraham, Sánchez-

Moreno [43] also modelled a log transformation of ODT against two datasets containing 206

and 353 compounds to produce models with R2 of 0.748 and 0.759, respectively. These works

support the use of modelling of ODT from chemical properties, however, the data sets utilised

Fig 2. Prediction of ln ODT. Polynomial regression analysis with 10-fold cross-validation to predict ln ODT from

physicochemical measures utilising median ODT values from 1,274 volatile chemicals.

https://doi.org/10.1371/journal.pone.0284842.g002
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in these previous models are small compared to the 10,000 identified volatile odour chemicals

[69]. Therefore, as statistical models are limited in their application to compounds with prop-

erties similar to those within the modelling dataset, and the relatively small size of these models

means they only account for a small proportion of the diversity of properties across all volatile

compounds, these models are expected to have low generalisability for predicting ODT in new

compounds. By contrast, the model presented herein utilised data from 1,274 chemicals,

which is a substantial expansion in the breadth of chemical properties modelled (Table S6 in

S1 File) and therefore has greater generalisability to new compounds. Furthermore, the accu-

racy of the model herein was found to be relatively similar to the accuracy of empirical deter-

mination of ODT through human participant sensory testing. The ratios for the ODT data

variance and the model variance (defined in method 2.3 herein) were found to be on average

2.36 and 2.21, respectively (Table S7 and Fig S1 in S1 File), and were not significantly different

(p = 0.771), indicating that the predicted values fall within a similar range of the reported ODT

values to their median. Human olfactory sensitivity is known to be highly variable [70], and

for ODT specifically, variations of up to 4 or 5 magnitudes are reported between studies of the

same chemicals due to variations in sensory methodology [71]. Accordingly, the model herein

which has achieved prediction of comparable accuracy could be considered as a suitable substi-

tute for ODT in the absence of sensory testing.

It was hypothesised that odour vector modelling could be utilised to generate OI profiles

for the highly complex volatile mixtures present in cannabis flowers, and that these profiles

would be more informative to the overall odour than their associated terpene profiles. Addi-

tionally, whilst current odour vector modelling approaches utilise empirically solved values for

the angles between compound OI vectors, it was hypothesised herein that a calculated estima-

tion could be used in place of these values. Finally, the incorporation of OD ranking into OI

calculation was hypothesised to account for the relative strengths of ODs and thereby improve

the predictive power of the resulting OI profile.

Cannabis terpene and OI profiles were explored for the prediction of cannabis SD by LR

modelling. Of the 13 SD categories modelled, terpene data was able to produce models for 10

SDs (Equations S10–S19 in S1 File) whilst OI profiles could produce models for 12 SDs (Equa-

tions S20–S31 in S1 File). The performance of each model was assessed for its ability to accu-

rately assign SDs to each sample (Fig 3). Six SD categories were able to be modelled by OI

significantly (p < 0.05) better than terpene (herbal, sweet, berry, tree fruit, roasted, and mel-

low), 5 SD categories were modelled equally successfully for both OI and terpene data (min-

eral, earthy, tropical, warming, and floral), 1 SD category was modelled by terpene

significantly better than OI data (citrus), and 1 SD could not be modelled by either terpene or

OI data (animal). When comparing the overall performance of the two modelling strategies, it

was identified that OI data produced models with an average of 70.33% accuracy and models

produced from volatile data had an average of 48.39% accuracy, which was a significant

(p = 0.031) difference of 21.94%.

The results indicate that odour vector modelling produces profiles which are more informa-

tive for predicting overall cannabis odour (SD) than profiles of terpene data produced by rou-

tine testing within the Californian cannabis industry. The transformation of these relatively

easy-to-produce terpene profiles, into OI profiles which are more informative for odour pre-

diction is a promising development in achieving more consistent labelling and product

descriptions within the cannabis industry. Noting that these routine profiles contain only 18

volatiles of the more than 200 which contribute to the cannabis odour [72], increasing the pre-

dictive capability of these (if possible) may require considerable expansion of the breadth of

chemical profiling. This increased volatile profiling would result in greater costs to manufac-

turers and possibly consumers and patients. Improving on the current practices is therefore
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the easiest and cheapest way to confer benefits to the industry and the patients. However, as

some of the SDs were not able to be modelled well by either the terpene or the OI data sets (flo-

ral and animal), expansion of the volatile profiling or cannabis sample data may still be desir-

able to achieve more accurate modelling of these SDs. As the expansion of the volatile profiles

also adds data to the corresponding OI profiles, and expansion of cannabis sample data pro-

vides more data points for the modelling, these strategies may increase the accuracy of either

the terpene or the OI modelling strategies. Furthermore, the application of this strategy to

explore statistical relationships between volatile and sensory profiles is not limited to the can-

nabis industry. Industries wherein volatile chemical profiles and sensory data are both readily

collected—such as perfume or food industries—could potentially utilise this strategy to

improve predictive capabilities and eventually guide alterations to volatile profiles to achieve

targeted changes to sensory profiles.

4. Conclusion

The medicinal cannabis industry has a reputation for having inconsistent labelling and prod-

uct descriptions, which contributes to a misalignment between patient sensory expectations

and experiences. For special patient populations such as geriatrics and particularly paediatrics,

this is of concern as they are sensitive to unpleasant sensory experiences, and this can affect

their likelihood of redosing and thus achieving their therapeutic outcomes. Current routine

testing procedures involve the production of volatile profiles; however, these have limited util-

ity for the accurate determination of product odour. Accordingly, the study herein demon-

strates how these routinely produced volatile profiles can be transformed through odour

vector modelling to produce OI profiles which predicted cannabis SD equally well or better

than terpene profiles for 11 out of 13 SD categories, equating to a significant (p = 0.031) aver-

age improvement of 21.9% accuracy. This process utilised ODT inputs which were in part pro-

duced from a novel QSPR predictive model, that was developed using an extensive dataset of

1,274 median ODT values and their physicochemical properties to achieve a regression model

with a R2 = 0.6892 and a 10-fold R2 = 0.6484. Of note, these models utilised data from 18 vola-

tile compounds, whilst cannabis odour is comprised of hundreds of compounds. As such, pro-

gressions on the work presented herein may benefit from utilisation of more comprehensive

volatile profiles. Nonetheless, these findings are significant to both the cannabis industry

wherein improved accuracy of odour prediction will benefit patients, as well as broader odour

industries wherein expansion of the odour vector modelling process to highly complex natural

odour mixtures is a substantial progression in this field with potential further applications to

food products and perfumes.

Supporting information

S1 File. Appendix 1. Methods and equations for odour vector modelling containing Equa-

tions S1-S8, Appendix 2. Table S1-S8 and Fig S1, and Appendix 3. Equations for prediction of

Fig 3. Prediction of cannabis sensory descriptors (SD) from volatile data, and OI data produced through odour

vector modelling. Logistic regression analysis and k-means unsupervised cluster analysis (k = 2) to predict the SD of

265 cannabis samples. Data represent the percentage of strains correctly assigned for each SD (for each data type), with

error bars representing the 95% confidence interval. A) the set of 6 SDs which were predicted significantly more

accurately with OI than terpene data, B) the set of 5 SDs which were predicted with equal accuracy for both OI and

terpene data, and C) the single SD which was predicted significantly more accurately with terpene than OI data.

Significant differences between volatile and OI data for an individual SD are indicated by * for p< 0.05, and *** for

p� 0.001 calculated by Student’s t-test.

https://doi.org/10.1371/journal.pone.0284842.g003
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