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Abstract

An electrocardiograph (ECG) is widely used in diagnosis and prediction of cardiovascular

diseases (CVDs). The traditional ECG classification methods have complex signal process-

ing phases that leads to expensive designs. This paper provides a deep learning (DL) based

system that employs the convolutional neural networks (CNNs) for classification of ECG

signals present in PhysioNet MIT-BIH Arrhythmia database. The proposed system imple-

ments 1-D convolutional deep residual neural network (ResNet) model that performs feature

extraction by directly using the input heartbeats. We have used synthetic minority oversam-

pling technique (SMOTE) that process class-imbalance problem in the training dataset and

effectively classifies the five heartbeat types in the test dataset. The classifier’s performance

is evaluated with ten-fold cross validation (CV) using accuracy, precision, sensitivity, F1-

score, and kappa. We have obtained an average accuracy of 98.63%, precision of 92.86%,

sensitivity of 92.41%, and specificity of 99.06%. The average F1-score and Kappa obtained

were 92.63% and 95.5% respectively. The study shows that proposed ResNet performs

well with deep layers compared to other 1-D CNNs.

Introduction

Cardiovascular diseases (CVDs) are one of the major threats faced by humans [1, 2]. Normal

heartbeat depends on factors such as age, body size, diet, emotions, and activity. Too fast or

slow heartbeat conditions is medically known as palpitations. The rhythmic irregularities of

heart are commonly known as arrhythmias or Cardiac Dysrhythmia. Arrhythmia is broadly

categorized into two types: non-life-threatening and life-threatening.

ECG is a very easy, non-invasive, highly efficient, and useful tool to monitor and identify

arrhythmia by measuring the electrical activity of heart [3]. In arrhythmias, there are three

main malfunctions of heart; heart beats become slow, i.e, below 60 bpm (Bradycardia), fast

over 100 bpm (Tachycardia), or irregular (Fibrillation), such that proper proportional of blood

to body parts cannot be maintained by heart. The precise and early-stage detection and classifi-

cation of ECG signals is critically essential for patient acute heart conditions and treatment [4].
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To obtain the proper ECG record doctors use Holter and loop recorder to the suspected

arrhythmias for a minimum duration of 24 hours. Later on, the ECG record is analyzed using

computer programs for detecting specific type of arrhythmia, which is time-consuming proce-

dure. Although arrhythmias have two types; non-life-threatening and life-threatening, how-

ever, arrhythmias are mostly detrimental. The type of arrhythmia is determined by the ECG

signal shape and other morphological factors.

The Association for the Advancement of Medical Instrumentation (AAMI) has categorized

five types of the non-life-threatening arrhythmia signals: non-ectopic beat (N), supra ventricu-

lar ectopic beat (SVEB or S), ventricular ectopic beat (VEB or V), fusion (F), and unknown

beat (Q). The typical ECG waveform constitutes of the primary wave groups, such as P wave,

QRS wave group, and T wave, which are all represented in a single ECG period. The energy

and physiological implications of each waveform information and distinctive wavelet is differ-

ent. The QRS wave group has more energy and amplitude than the P and T wave groups.

Feature extraction and pattern classification are employed in the classification of signals

or images. The easiest way of ECG feature extraction can be obtained by extracting sampled

points from an ECG raw signal. However, the extracted version has large features that severely

affects the classifier efficiency. Other methods used for feature extraction is the morphological

and/or statistical techniques. Another method for features extraction from raw signals is the

morphological and/or statistical techniques. An example of such technique is the one where

the RR interval measurement that uses time between the R peaks of two heartbeats, is used for

features. Another statistical method for obtaining ECG features is Independent Component

Analysis (ICA). In [5], training of an ECG classifier is conducted by morphological and statis-

tical features.

The literature presents numerous techniques for the detection of heartbeat diseases includ-

ing threshold-based methods [6], wavelet transform (WT) [7, 8], digital filter-based methods

[9], morphology-based methods [10], non-invasive methods [11], and so on. Feature extrac-

tion of ECG signal using WT includes discrete cosine transform (DCT), continuous wavelet

transform (CWT), and discrete wavelet transform (DWT). For instance, Khorrami et al.

extracted features in ECG classification using DCT coefficients [12]. Furthermore, they applied

CWT and DWT to obtain features for ECG classification, and provided performance classifi-

cation among DCT, CWT, and DWT. In [13], the wavelet packet decomposition (WPD) is

used to obtain ECG features and classification was calculated using wavelet packet entropy

(WPE) and random forests (RF).

Machine learning (ML), which is a subset of artificial intelligence is being utilized for the

detection and analysis of different diseases. The diagnostic tools are used in ML for the exami-

nation of diseases in human body [14, 15]. Deep learning (DL) is a subset of ML, have been

widely used for the diagnostic of ECG signals and other diseases. In bio-informatics, DL tech-

niques are extensively utilized due to their remarkable performance [14]. DL models utilize

deep neural networks (DNNs), which are further categorized into CNNs, long-term short-

term memory (LSTM), and recursive neural networks (RNNs). Among these, CNNs are exten-

sively applied in various fields. The CNNs [16] and DNNs [17] have been successfully applied

in classification of ECG signals.

In radiological image analysis, DL approaches are devised that provides outstanding perfor-

mance [18, 19]. Recently, CNNs have shown greatest research potential since they are suitable

for multi-dimensional inputs, such as ECG time series data (1-D), and images (2-D and 3-D)

input [20]. Owing to the wide utilization of CNN in diverse applications [21, 22], CNN have

proved effective in classification of ECG signals [23, 24]. CNN have been implemented for

ECG classification that provides better accuracy and performs feature extraction by directly

using input heartbeats [25, 26].
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In [27], RNN is investigated where the training process was performed using the feature

extraction obtaining an average accuracy of 98.06% for the classification of four different

types of arrhythmias. The classification and feature extraction of 1-D ECG is performed in

[26], where an adaptive CNN model is used enabling a classification accuracy of 96.72%.

Moreover, their CNN model is generic due to its parameter invariance making it applicable

to any real ECG dataset. Authors in [28] proposed an ECG classification model that provides

a Chi2 selector, homeomorphically irreducible tree (HIT) pattern feature generator, and

SVM classifier. Their model provides an accuracy of 92.95% and 97.18% classifcation accu-

racy for seven- and four-class ECG. A novel transformer-based DL model is presented in

[29] that performed remarkable for MIT-BIH arrhythmia and MIT-BIH atrial fibrillation

databases. In [30], an ECG classification model is investigated that employs a bidirectional

long short-term memory networks (Bi-LSTMs) and a generative adversarial network (GAN).

As reported therein, their model achieved an overall accuracy of 98.7%. On a sizable ECG

dataset with more than 10,000 12-lead ECGs, it achieved accuracy scores for seven- and

four-class arrhythmia classification of 92.95% and 97.18%, respectively. The accuracy of the

model is on level with a DL model.

A deeper 34-layer 1-D CNN model was proposed for the classification of twelve

arrhythmia types present in the time-series and obtained an average accuracy of 97.03%

[31]. Li presented a 1-D CNN with five layers in additional to input and output layers for

the classification of the five typical types of arrhythmias, i.e., normal, left bundle branch

block, right bundle branch block, atrial premature contraction and ventricular premature

contraction, achieving an accuracy of 97.5% [32]. A nine-layer 2-D CNN model was

applied for an automatic classification of five different heartbeat arrhythmia types achiev-

ing an accuracy of 94.03% and 93.47% in the arrhythmia classification in original and

de-noising heartbeats respectively [33]. An ECG monitoring system integrated with the

Impulse Radio Ultra Wideband (IR-UWB) radar using CNN is provided with an accuracy

of 88.89% [34].

Motivated by the above developments conducted in ECG classification, we have developed

an ECG classification mechanism using 1-D convolutional for deep layers ResNet. Following

are the main contributions of this study:

• Development of a model that does not require a separate feature extraction procedure, rather

employs convolutional and pooling layers in succession for robust features extraction from

the input ECG signals, therefore, the preprocessed ECG signals are trained and classified

directly.

• Integration of SMOTE that generates synthetic minority data samples using the k-nearest

neighbor technique enabling an equal number of samples for all the five heartbeat classes

that are used in appropriate training of the ResNet model.

• Designing a deeper ResNet model for ECG classification that performs significantly well

with an increase in depth of the network providing a high classification accuracy for the real

testing ECG dataset.

The rest of paper is organized such that Section II provides material and methods. In Sec-

tion III the proposed ResNet model is presented. Experimental setup and results are discussed

in Section IV and conclusions are highlighted in Section V.

Materials and Methods

The main procedure involved in the classification of ECG is provided in Fig 1.
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MIT-BIH dataset

The MIT-BIH databases comprises of numerous sub-databases that record specific types of

ECG. We have utilized PhysioNet MIT-BIH Arrhythmia [35], which is freely available and

widely utilized heartbeat dataset for performance evaluation of numerous ECG categorization

algorithms. This standard database comprises of a total of 48 two channels ECG signal re-

cordings taken from 47 individuals under observation. The length and sampling rate of the

recorded data are thirty minutes and 360 Hz respectively.

Fig 1. Main procedure involved in the classification of ECG.

https://doi.org/10.1371/journal.pone.0284791.g001
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MIT-BIH ECG dataset is a collection and processed data of heartbeat signal, which were

marked and manually interpreted by experts into 15 arrhythmia classes. However, AAMI Stan-

dard grouped these 15 arrhythmia classes into five types (one normal and four with arrhyth-

mia), which are described in Table 1.

ECG data preprocessing

The preprocessing of ECG signal is very useful in improving the efficiency of the dataset and

enables the extraction of different heartbeats from a particular ECG waveform. The prepro-

cessing stage usually involves the steps of noise removal from ECG waveform and peak detec-

tion for segmentation of ECG signal into different heartbeat classes.

In this study, the single heartbeats from the continuous ECG were obtained using the Pam-

Tompkins algorithm. Since QRS complex is the most prominent portion in the ECG, it serves

as the foundation for practically all computerized ECG diagnostic methods. Here detecting

every R peak is the same as obtaining a single heartbeat. The Pam-Tompkins algorithm uses a

number of steps in finding R-peaks in the ECG signal, including derivative, squaring, integra-

tion, edge recognition, and search approaches for R-peaks. Finally, after detecting the QRS

waveform and obtaining the P, R, and T peaks, segmentation of the single heartbeat is com-

pleted. The majority of pathological information is contained in each heartbeat, which is used

for disease finding. In this paper, there are a total of 109446 heartbeats with a sampling fre-

quency of 125 Hz taken from 44 records, which are utilized in the training and testing analysis

of the proposed 1-D convolution neural network model.

Data imbalance process using SMOTE

The distribution of heartbeats in the different classes of the MIT-BIH ECG database is not uni-

form as shown in Fig 2. According to ANSI-AAMI, approximately 80% of heartbeats belong to

N class, while the remaining 20% heartbeats are from V, S, F, and Q classes. Since, the heart-

beat samples in N class is far higher than the samples in minority class, therefore, MIT-BIH

classes presents a highly imbalance heartbeat dataset. Such class-imbalanced dataset results in

Table 1. MIT-BIH verses AAMI 5 heartbeat classes grouping.

AAMI 5 heartbeats MIT-BIH 15 heartbeats

Normal (N) • Normal beat

• Left bundle branch block beat (LBB)

• Right bundle branch block beat (RBB)

• Atrial escape

• Nodal (junctional) escape

Ventricular ectopic (V) • Premature ventricular contraction beat (PVC)

• Ventricular escape

Supraventricular ectopic (S) • Atrial premature contraction beat (APC)

• Supraventricular premature beat

• Aberrated atrial premature beat

• Nodal (junctional) premature beat

Fusion (F) Unknown (Q) • Fusion of non-ectopic and ventricular beat

• Paced beat

• Fusion of paced and normal beat

• Unclassifiable beat

https://doi.org/10.1371/journal.pone.0284791.t001
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misclassification due to the biased decision in favor of the majority class. There are different

methods to solve the issue of class imbalance in datasets that employs balancing at algorithm

level, data level, cost-sensitive methods, and integration methods [36]. Data-level approaches

are extensively applied due to their advantages of being algorithm-independent and simplified

operations. Its core concept is re-sampling, which includes both oversampling and under-sam-

pling. Random oversampling (ROS) and random under-sampling (RUS) are the most basic re-

sampling techniques. Other re-sampling techniques are EasyEnsemble [37], KNNOR [38], and

SMOTE [39].

SMOTE is a famous technique that can remove class-imbalance problem in dataset. In

traditional oversampling process, the minority data is merely duplicated from the minority

dataset. Although dataset samples are increased, the oversampling does not provides any addi-

tional knowledge or variation to the classification model.

SMOTE generates synthetic minority data samples using the k-nearest neighbor technique.

SMOTE begins by selecting random data from the minority class, after which the k-nearest

Fig 2. Distribution of heartbeats in different classes of the MIT-BIH ECG database.

https://doi.org/10.1371/journal.pone.0284791.g002
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neighbors of data are determined. SMOTE synthetic data xsyn are generated by the following

mathematical relation:

xsyn ¼ xi þ ðxj � xiÞd ð1Þ

Where xi is the instance of minority class (sample) under consideration, xj is the K-nearest

neighbors of xi, δ is a vector with elements having random values from [0, 1]. Therefore, there

are two steps to generate synthetic data samples in SMOTE:

• Firstly, obtain the difference between the minority class (sample) under consideration and

its nearest neighbor. The obtained difference is multiplied by a vector δ.

• The calculated value is added to the minority class (sample) under consideration to generate

xsyn along the line between vectors xi and xj.

Table 2. provides class wise heartbeats before and after using SMOTE on training dataset.

SMOTE creates data balancing where all the heartbeat classes have an equal number of samples

in the training dataset. It is important to note that except majority class (N) all the other four

classes (S, V, F and Q) are oversampled using SMOTE.

Convolution neural network and residual neural networks

CNN are capable of extracting most appropriate features from input data by using convolution

operation. Since ECG and electroencephalogram (EEG) are time-series signals, therefore, 1-D

convolution is applied to process these signal.

In CNN, the input of each layer is obtained from the output of the preceding layer [40].

The fundamental unit of CNN is comprised of input layer, convolution layer, activation

function and output layer. For the input x, the overall operations involved in CNN can be

expressed as:

y ¼ f ðWx þ bÞ ð2Þ

where y represents the output, f denotes the ReLU function, W is the convolution matrix,

and b is the bias.

In complex CNN architectures, there are numerous other layers incorporated in basic

structure of CNN. These layers consist of multiple convolutional layers, pooling (down sam-

pling) layers, flatten layer, fully connected (FC) layer, and finally an output layer. CNN with

sequence of layers from input to output is provided in Fig 3. A brief description of CNN is pro-

vided here:

1. Input Layer-It is the first layer of CNN containing input data that may be time-series (1-D)

or images (2-D or 3-D).

Table 2. Total heartbeats in training dataset classes before and after SMOTE.

Heartbeat class Samples in actual dataset 80% Training samples 20% Testing samples SMOTE samples

N 90589 72471 18118 72471

Q 8039 6431 1608 72471

V 7236 5788 1448 72471

S 2779 2223 556 72471

F 803 641 162 72471

Total 109446 87554 21892 362355

https://doi.org/10.1371/journal.pone.0284791.t002
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2. Convolutional layers-These layers are responsible for convolutional operations on input

dataset to extract significant features.

3. Convolution layer employ kernels (filters) that has weight and a bias. The kernel has a

matrix of weights multiplied with input data to obtain features. For time series input data,

1-D convolution is used, while image have 2-D and 3-D convolutions.

4. Activation function-In a CNN model, each convolution layer is usually followed by an

activation function. The Rectified Linear Unit (ReLu) function is a popular choice for most

CNN models.

5. Pooling layers-Because the output of a convolutional layer contains redundancy, extracting

relevant features from an input data is difficult. The pooling layer reduces the number of

parameters by repeatedly extracting feature value from a group of cells by some pooling

method. There are a variety of pooling methods available for use in different pooling layers.

Tree pooling, gated pooling, average pooling, minimum pooling, maximum pooling, global

average pooling (GAP), and global maximum pooling are among some of the techniques

available. The most popular pooling methods are max, min, and GAP. The over-fitting and

extensive computations are reduced after processing through the pooling layer.

6. Dropout-The term “dropout” refers to the process of removing units (both hidden and

visible) from a neural network to considerably prevent the over-fitting of the underlying

model.

7. Flatten and FC layers-The flatten layers are placed before the output layer and they perform

the conversion of multidimensional output into a vector. Flatten layer output is used as

input for the FC layers. FC layers use the extracted features obtained from pooling layer

to perform early classification on input data. Basically, the output matrix from the pooling

layer is flattened to a one-dimensional vector and used as input for the FC layers.

8. Softmax/ logistic layer-It is connected at the end of FC layers and is used to finally classify

the training data into classes. For binary classification problem, logistic is used with sigmoid

activation function whereas softmax is for multi-classification.

The structure of a plain CNN is shown in Fig 4(a). The filtering process occurs whenever

the data goes from the convolution or pooling operations in previous layers. The overall objec-

tive of the processing on data is the size reduction of input vector. In general, it is desirable to

Fig 3. CNN with sequence of layers from input to output.

https://doi.org/10.1371/journal.pone.0284791.g003
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decrease network parameters so that the problem of over-fitting does not happen. Although

the learning potential of neural network increases with deepening the network, however,

increasing number of layers may cause gradient dissipation or gradient explosion, which will

degrade the performance and affects convergence [41]. To overcome gradient vanishing explo-

sion in deeper networks, we employ residual networks (ResNets). ResNets avoids the gradient

dissipation or gradient explo-sion issues in deep layer networks, thereby enabling improved

accuracy and optimised performance.

The ResNet building block is shown in Fig 4(b). The ResNet has input parameter x and out-

put target H(x) with a short circuit or skip connection structure. These shortcut connections

Fig 4. (a) Plain network and (b) A residual network.

https://doi.org/10.1371/journal.pone.0284791.g004
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in ResNet directly learn the residual given by the formula:

FðxÞ ¼ HðxÞ � x ð3Þ

The targeted output H(x), therefore, becomes:

FðxÞ ¼ HðxÞ þ x ð4Þ

In plain network structure, the processing of each layer comes from the output of the previ-

ous layer. In ResNet, input data do not merely depends on previous layer output but preceding

network structure. As a consequence, sufficient information is extracted from input features

[40]. The shortcut connections by-passes two or more layers and directly perform identity

mapping. Therefore, such networks avoid performance degradation and accuracy reduction

issues faced in plain networks due to large convolution layers.

Proposed resnet model

In DL, CNN has attracted popularity in recent years due to its outstanding performance for

image and speech recognition applications. In CNN, feature learning is achieved by extracting

useful local features from input data automatically.

Fig 5 provides the architecture of the proposed deep ResNet model. The proposed model

contains deep layer architecture with three residual convolution blocks preceding a classifica-

tion block. The input layer has 1-D ECG data with 188 samples. The number of channel is one

because the ECG data is taken from single lead. The proposed model has six convolutional lay-

ers and three max pooling layers providing robust features extraction from the input ECG sig-

nals. The proposed model layer-wise architecture is explained as follows.

The ECG data is passed to down-sampling block, which consists of 1-D convolution and

BN layer, and a ReLU activation function. The convolution layer has 64 filters, a kernel of

3, and stride of 2. The first residual block constitutes of series of two sets of convolutional

layer with ReLU applied as an activation function and BN. The skip circuit follows this and

then a ReLU activation function is used to reduce over-fitting. After that, BN is used to

accelerate CNN training process by reducing internal covariate shift. The maximum-pool-

ing (also known as max-pool) is added, which computes the maximum value in each patch

of the feature map and enables to diminish the size of the feature. Maxpool1D with pool

size of 5 and strides of 2 is used that performs max-pooling operation on spatial domain

signal.

The second and third residual blocks have the same structure as the first residual block, i.e,

Convolutional layer-ReLU-BN that are added to the output of down-sampling block through a

skip connection, thereafter, ReLU, BN, and max pooling is performed.

Finally, the classification stage has a flatten layer that aims to translate the multi-dimen-

sional information into 1-D information. Following flatten layer, there are 2 full connection

dense layers with ReLU function and one dense layer with softmax for five heartbeats

classification.

The proposed ResNet model has advantage over the plain network such that the input

data does not merely depends on previous layer output but preceding network structure.

As a result, sufficient useful information is extracted from input features of ECG. Moreover,

the shortcut connections in the ResNet architecture by-passes two or more layers and

directly performs identity mapping. Therefore, proposed network avoids performance

degradation and accuracy reduction issues faced in plain networks due to large convolution

layers.
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Fig 5. The architecture of the proposed ResNet model.

https://doi.org/10.1371/journal.pone.0284791.g005
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Experimental setup and results

Training and testing

In this work, the real dataset is split into training and testing portions with 80:20 train-test

split. 10-fold cross validation was used during the training process. Inside the training data,

we further split into 80% to be the actual training data and 20% as a validation data. The valida-

tion data enables the monitoring of training process and prevent the model from over-fitting.

Due to imbalance nature of heartbeat classes in original data, the real training data was over-

sampled using the SMOTE. This data was provided as an input to proposed deep ResNet

model. After training the model, the testing procedure is conducted by using 20% of the real

test dataset that was not oversampled by any method. The testing data is, therefore, the original

data that the model has not seen in its learning or training phase.

The suggested model’s solidity was assessed using the ten-fold cross validation technique

[42]. First, using stratified random sampling, the EEG signals are randomly divided into 10

equal parts while maintaining the class label distribution for each fold. The model is trained

using 80% of the EEG segments from each fold, with the remaining 20% being utilized to eval-

uate the performance of the suggested model. To monitor the training process and avoid the

model over-fitting, we further divided the training data into actual training data (90%) and

validation data (10%). The procedure is repeated ten times, with each iteration training a

fresh model with fresh training and testing data. The validation set’s classification outcomes

are used to optimize the model after it has been trained using the training set.

In this study, four evaluation measures were used: accuracy, precision, sensitivity, and

specificity.

• The proportion of correctly identified instances to the total number of instances is repre-

sented by the accuracy (Acc). For the multi-class problem, Acc was calculated as follows:

Acc ¼
1

N

XN

ðC¼1Þ

ðTC
P þ TC

NÞ

ðTC
P þ TC

N þ FC
P þ FC

NÞ
ð5Þ

Where TP stands for true positives, FP stands for false positives, TN represents true negatives,

FN stands for false negatives, Cdepicts the class index, and N specifies the total number of

classes.

• Error rate or classification error shows the percentage of predictions that were incorrect. It is

calculated by (FP + FN)/(TP + TN + FP + FN).

• The precision (Prec) or positive predictive value (PPV) shows about the fraction of predic-

tions as a positive class were in actual positive. Prec is calculated as:

Prec ¼
1

N

XN

ðC¼1Þ

ðTC
P Þ

ðTC
P þ FC

P Þ
ð6Þ

• Sensitivity (Sen) or Recall is also called as True Positive Rate (TPR) or Probability of Detec-

tion. Sen basically provides the percentage of all positive samples that the classifier has accu-

rately predicted as positive. Sen is estimated as follows:

Sen ¼
1

N

XN

ðC¼1Þ

ðTC
P Þ

ðTC
P þ FC

NÞ
ð7Þ
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• Specificity (Sp) is also called as True Negative Rate (TNR) or selectivity. Sp identifies the per-

centage of all negative samples that the classifier has accurately predicted as negative. Sp is

estimated as follows:

Sp ¼
1

N

XN

ðC¼1Þ

ðTC
NÞ

ðTC
N þ FC

P Þ
ð8Þ

• False Positive Rate (FPR), or Type I Error is the samples incorrectly predicted as positive out

of total actual negatives. FPR is calculated by:

FPR ¼
FP

FP þ TN
ð9Þ

• False Negative Rate (FNR), or Type II Error is the samples incorrectly predicted as negative

out of total actual positives. FNR is calculated by:

FNR ¼
FN

FN þ TP
ð10Þ

• The F1 score was calculated using the precision (Prec) and (Sen) as,

F1 � Score ¼ 2� ð
ðPrec� SenÞ
ðPrecþ SenÞ

Þ ð11Þ

• The kappa coefficient (K) measures the agreement between predicted and true values. The

higher is the K value, the better the performance of the classifier, i.e, K = 1 represents perfect

agreement and K = 0 represents no agreement. K is computed as follows:

K ¼
c� s �

PN
n pn � tn

s2 �
PN

n pn � tn
ð12Þ

where c is the total number of elements that are correctly predicted, s is the total number of

elements, pn denotes the number of times that class n was predicted (the sum of column n),

tn is the number of times that class n truly occurs (the sum of row n), and N is the total num-

ber of classes.

Results

The ResNet model is build using Keras and Tensorflow GPU backend. After training process

of the model, the network parameters were saved in the HDF5. The learning rate and the batch

size have a key role in achieving the best accuracy in the automatic ECG classification. The

suggested model was tested in a variety of experiments with varied learning parameter values.

The speed of convergence was quite slow for a smaller value of the learning rate (i.e., less than

0.0005). The larger values also lead to low convergence. After several tests, the learning rate

was set to be 0.001 and the Adam optimizer is used.

By selecting the batch size to be 32 and epochs equal to 50, the plots for training and test-

ing accuracy were obtained as shown in Fig 6. It is evident from Fig 6 that training and
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testing accuracy increases with epochs. Initially, there were few valleys in the testing accuracy

but after 9th epoch both curves become converging and reaches a stable state. Fig 7 shows

training and testing loss curves. Initially, the testing loss shows abrupt characteristics but

after 9th epoch the testing loss becomes steady with no abnormal fluctuations. 10-fold cross

validation is employed to evaluate the model performance. The fold-wise accuracy plot is

shown in Fig 8 providing the highest accuracy of 99.05% and average accuracy of 98.62% for

the ten-folds. Without using SMOTE, the average accuracy achieved is 95%, which is far low

than the accuracy obtained by employing SMOTE. Fig 9 provides the performance of pro-

posed model using confusion matrices for all five classes without and with normalization.

The diagonal elements reflect successfully categorized classes, while anything off the diagonal

indicates improper categorization. The averaging of the diagonal values in the normalized

confusion matrix provides the average accuracy of the classification system. Using 10-fold

CV on ECG test dataset, Table 3 provides average values of different metrics such as preci-

sion, recall, F1-score, and K. Prec and Sen values for five classes are depicted in Fig 10. The

10-fold cross validation provides an average Prec and Sen values of 92.86% and 92.41%

respectively, while the average K value is 95.5% (0.955). In DL, there are several challenges

involved in the robust architecture of CNN. Among them, the appropriate hyper-parameters

adjustment is a crucial as it will have an impact on the network’s performance as it

Fig 6. Training and testing accuracy (batch size = 32).

https://doi.org/10.1371/journal.pone.0284791.g006
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approaches convergence. One of the most important hyperparameters to consider is the

batch size. The batch size is the number of ECG data that will be utilized in the gradient esti-

mation process, and it is one of the most important hyper-parameters to tune before starting

the training process. By setting different batch size, we have evaluated the impact of batch

size on network performance in terms of overall accuracy and convergence. In general, a

small batch can converge more quickly than a large batch, while a large batch can achieve an

optimum minimum that is not possible with small batch.

In this paper, the learning rate and the batch size are two important optimization

factors that are used in the proposed model to evaluate the performance. These two op-

timization parameters must be carefully chosen to get the best accuracy in the automatic

categorization of arrhythmia using ECG signals in order to increase performance. The

suggested model was evaluated with different learning rates and batch sizes using Adam

optimizer.

Firstly, we used different learning rates with the batch sizes B = [32, 64, 100, 500, 1024,

2048, 3000, 4000, 6000, 8000, 10000] for fine-tuning the network. The number of epochs was

set at 50 for consistency of results and due to the huge size of the ECG dataset. For leaning

rates less than 0.0001, the speed of convergence is very slow. The stability and speed of conver-

gence are improved as learning rate is increased.

Fig 7. Training and testing loss.

https://doi.org/10.1371/journal.pone.0284791.g007
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When learning rate was set as 0.0001, Table 4 provides accuracy value for different batch

sizes with fixed learning rate of 0.0001. The accuracy was highest and reached a stable state

for a batch size of 1024. When leaning rate is set to 0.001, an optimum value of accuracy is

obtained with stable state for a batch size of 32. Table 5 provides accuracy value for different

batch sizes with fixed learning rate of 0.001. In this case, a general trend of decrease in accuracy

is observed as batch size increases.

Discussion

Table 6 highlights the performance comparison works published in literature by numerous

ECG classification algorithms employing ML and DL concepts. Using the MIT-BIH arrhyth-

mia database, these approaches had the best overall classification performance. The existing

models utilize different training and testing datasets and diverse CNN architectures with

numerous classification classes. Therefore, it is not suitable to directly compare the proposed

deep ResNet model with existing techniques. Numerous ECG classification approaches for the

categorization of arrhythmia have employed 1-D approach to their models using approaches

such as SVM, K-NN, LSTM and CNN. In [43] authors proposed a DL based ResNet-LSTM

classier combined with genetic algorithm for optimal feature combination. Their model is

computationally complex and provides an average classification accuracy of 98%. However,

our proposed 1-D deep ResNet classier provides superior performance in terms of average

accuracy.

Conclusion

In this paper, 1-D convolutional ResNet model is proposed for the classification of five heart-

beat types taken from PhysioNet MIT-BIH Arrhythmia database, which is freely available and

Fig 8. Accuracy using 10-Fold cross validation.

https://doi.org/10.1371/journal.pone.0284791.g008
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widely utilized database for Arrhythmia classification. The entire data was divided into 80-20

train test split. We used SMOTE on training dataset only whereas testing dataset was not over-

sampled to preserve its originality. SMOTE creates data balancing where all the heartbeat clas-

ses have an equal number of samples in the training dataset. The training data is passed to the

Fig 9. Classifier performance using confusion matrix (a) Without normalization (b) With normalization.

https://doi.org/10.1371/journal.pone.0284791.g009
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Fig 10. Precision and sensitivity values for five classes.

https://doi.org/10.1371/journal.pone.0284791.g010

Table 3. Statistical performance on ECG test dataset.

Class Prec% Sen% Sp% FPR(%) Type-I error FNR(%) Type-II error Error rate F1-Score(%) Accuracy(%) K(%)

N 99.17 99.43 96.01 0.040 0.006 0.0116 99.38 - -

S 87.43 82.55 99.69 0.003 0.174 0.0075 84.92 - -

V 97.13 95.86 99.80 0.002 0.0414 0.0047 96.50 - -

F 81.18 85.19 99.85 0.001 0.148 0.0026 83.14 - -

Q 99.38 99.01 99.95 0.000 0.00996 0.0013 99.19 - -

Average 92.86 92.41 99.06 0.009 0.076 0.0054 99.63 98.63 95.53

https://doi.org/10.1371/journal.pone.0284791.t003

Table 4. Performance on ECG test dataset using different batch size for a learning rate of 0.0001.

Batch size Accuracy

32 98.30

64 98.25

100 98.54

500 98.42

1024 98.63

2048 98.33

3000 98.11

4000 98.12

6000 97.84

8000 97.66

10000 97.62

https://doi.org/10.1371/journal.pone.0284791.t004
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deep layer 1-D convolutional ResNet classifier. The model provides an average accuracy of

98.63% to classify different heartbeat signals. Therefore, the proposed model can provide effec-

tive diagnostic mechanism for heartbeat classification problems.

The procedures involved in finding the cardiac arrhythmias is a time-consuming process

that requires a clinical professional to carefully observe recordings that can last for hours.

CNN classifiers can enhance the performance of clinical specialists through these automated

features learning CNN. This would help to enhance the clinical diagnosis and treatment of

some of the most serious cardiovascular diseases.

Author Contributions

Conceptualization: Xiaojun Yu, Zhaohui Yuan.

Data curation: Fahad Khan.

Table 5. Performance on ECG test dataset using different batch size for a learning rate of 0.001.

Batch size Accuracy

32 98.72

64 98.58

100 98.56

500 98.50

1024 98.34

2048 98.26

3000 98.15

4000 98.22

6000 97.71

8000 97.61

10000 96.93

https://doi.org/10.1371/journal.pone.0284791.t005

Table 6. Comparison results with the state of the art.

Authors Year Proposed model/classifier No. of classes Accuracy(%) Prec(%) Sen(%) Sp(%)

Kallas et al. [44] 2012 KPCA + SVM 3 97.17 - - -

Kumar and Kumaraswamy [45] 2012 RF 92.12 - - -

Martis et al. [46] 2013 Neural Network and SVM 5 93.48 99.33 99.27 98.31

Park et al. [47] 2013 K-NN 17 97.02 - 97.1 96.9

Lin et al. [48] 2014 Linear discriminant 4 93 - - -

Raj et al. [49] 2015 Rule based approach 4 97.96 96.46 97.72 99.09

Li et al. [13] 2016 RF, SVM, DT, PNN, K-NN 5 94.61 - - -

Acharya et al. [33] 2017 Deep CNN 5 94.03 97.86 96.71 91.54

Sahoo et al. [50] 2017 DWT, SVM 4 98.39 96.85 96.86 98.92

Yang et al. [51] 2018 Linear SVM 5 97.94 - - -

Kachuee et al. [52] 2018 Deep CNN 5 93.4 - - -

Oh et al. [42] 2018 LSTM and CNN 5 98.10 - 97.50 98.70

Rajkumar, A. et al. [53] 2019 1-D CNN 7 93.60 - - -

Izci, E. et al. [54] 2019 2-D CNN 5 97.42 - - -

Pandey SK, and Janghel RR. [55] 2019 11-layer CNN 5 98.3 86.06 95.51 -

Proposed 2023 Deep ResNet 5 98.63 92.86 92.41 99.06

https://doi.org/10.1371/journal.pone.0284791.t006

PLOS ONE ECG classification using 1-D convolutional deep residual neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0284791 April 25, 2023 19 / 22

https://doi.org/10.1371/journal.pone.0284791.t005
https://doi.org/10.1371/journal.pone.0284791.t006
https://doi.org/10.1371/journal.pone.0284791


Formal analysis: Xiaojun Yu.

Investigation: Fahad Khan.

Methodology: Fahad Khan, Zhaohui Yuan, Atiq ur Rehman.

Supervision: Xiaojun Yu, Zhaohui Yuan.

Validation: Xiaojun Yu, Zhaohui Yuan.

Visualization: Atiq ur Rehman.

Writing – original draft: Fahad Khan.

Writing – review & editing: Atiq ur Rehman.

References
1. McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are

pharmacists getting involved? Integrated Pharmacy Research and Practice. 2021; 9:1–12.

2. Al-Absi HR, Refaee MA, Rehman AU, Islam MT, Belhaouari SB, Alam T. Risk factors and comorbidities

associated to cardiovascular disease in Qatar: A machine learning based case-control study. IEEE

Access. 2021; 9:29929–29941. https://doi.org/10.1109/ACCESS.2021.3059469

3. Oresko JJ, Jin Z, Cheng J, Huang S, Sun Y, Duschl H, et al. A wearable smartphone-based platform for

real-time cardiovascular disease detection via electrocardiogram processing. IEEE Transactions on

Information Technology in Biomedicine. 2010; 14(3):734–740. https://doi.org/10.1109/TITB.2010.

2047865 PMID: 20388600

4. Mustaqeem A, Anwar SM, Majid M. A modular cluster based collaborative recommender system for

cardiac patients. Artificial intelligence in medicine. 2020; 102:101761. https://doi.org/10.1016/j.artmed.

2019.101761 PMID: 31980098

5. Afkhami RG, Azarnia G, Tinati MA. Cardiac arrhythmia classification using statistical and mixture

modeling features of ECG signals. Pattern Recognition Letters. 2016; 70:45–51. https://doi.org/10.

1016/j.patrec.2015.11.018

6. Plaza-Florido A, Alcantara JM, Amaro-Gahete FJ, Sacha J, Ortega FB. Cardiovascular risk factors and

heart rate variability: impact of the level of the threshold-based artefact correction used to process the

heart rate variability signal. Journal of medical systems. 2021; 45(1):1–12. https://doi.org/10.1007/

s10916-020-01673-9

7. Merah M, Abdelmalik T, Larbi B. R-peaks detection based on stationary wavelet transform. Computer

methods and programs in biomedicine. 2015; 121(3):149–160. https://doi.org/10.1016/j.cmpb.2015.06.

003 PMID: 26105724

8. Yochum M, Renaud C, Jacquir S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal

based on CWT. Biomedical signal processing and control. 2016; 25:46–52. https://doi.org/10.1016/j.

bspc.2015.10.011

9. Phukpattaranont P. QRS detection algorithm based on the quadratic filter. Expert Systems with Applica-

tions. 2015; 42(11):4867–4877. https://doi.org/10.1016/j.eswa.2015.02.012

10. Yazdani S, Vesin JM. Extraction of QRS fiducial points from the ECG using adaptive mathematical mor-

phology. Digital Signal Processing. 2016; 56:100–109. https://doi.org/10.1016/j.dsp.2016.06.010

11. Ijaz M, Rehman AU, Bermak A. Prediction of heart rate and blood oxygen from physiological signals. In:

2021 4th International Conference on Circuits, Systems and Simulation (ICCSS). IEEE; 2021. p. 244–

248.

12. Khorrami H, Moavenian M. A comparative study of DWT, CWT and DCT transformations in ECG

arrhythmias classification. Expert systems with Applications. 2010; 37(8):5751–5757. https://doi.org/

10.1016/j.eswa.2010.02.033

13. Li T, Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy. 2016; 18

(8):285. https://doi.org/10.3390/e18080285

14. Rehman AU, Alam T, Belhaouari SB. Investigating potential risk factors for cardiovascular diseases in

adult Qatari population. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Tech-

nologies (ICIoT). IEEE; 2020. p. 267–270.

15. Shafiq M, Yu X, Bashir AK, Chaudhry HN, Wang D. A machine learning approach for feature selection

traffic classification using security analysis. The Journal of Supercomputing. 2018; 74(10):4867–4892.

https://doi.org/10.1007/s11227-018-2263-3

PLOS ONE ECG classification using 1-D convolutional deep residual neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0284791 April 25, 2023 20 / 22

https://doi.org/10.1109/ACCESS.2021.3059469
https://doi.org/10.1109/TITB.2010.2047865
https://doi.org/10.1109/TITB.2010.2047865
http://www.ncbi.nlm.nih.gov/pubmed/20388600
https://doi.org/10.1016/j.artmed.2019.101761
https://doi.org/10.1016/j.artmed.2019.101761
http://www.ncbi.nlm.nih.gov/pubmed/31980098
https://doi.org/10.1016/j.patrec.2015.11.018
https://doi.org/10.1016/j.patrec.2015.11.018
https://doi.org/10.1007/s10916-020-01673-9
https://doi.org/10.1007/s10916-020-01673-9
https://doi.org/10.1016/j.cmpb.2015.06.003
https://doi.org/10.1016/j.cmpb.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26105724
https://doi.org/10.1016/j.bspc.2015.10.011
https://doi.org/10.1016/j.bspc.2015.10.011
https://doi.org/10.1016/j.eswa.2015.02.012
https://doi.org/10.1016/j.dsp.2016.06.010
https://doi.org/10.1016/j.eswa.2010.02.033
https://doi.org/10.1016/j.eswa.2010.02.033
https://doi.org/10.3390/e18080285
https://doi.org/10.1007/s11227-018-2263-3
https://doi.org/10.1371/journal.pone.0284791


16. Andersen RS, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of

atrial fibrillation. Expert Systems with Applications. 2019; 115:465–473. https://doi.org/10.1016/j.eswa.

2018.08.011

17. Pourbabaee B, Roshtkhari MJ, Khorasani K. Deep convolutional neural networks and learning ECG

features for screening paroxysmal atrial fibrillation patients. IEEE Transactions on Systems, Man, and

Cybernetics: Systems. 2018; 48(12):2095–2104. https://doi.org/10.1109/TSMC.2017.2705582

18. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convo-

lutional neural networks: a review. Journal of medical systems. 2018; 42(11):1–13. https://doi.org/10.

1007/s10916-018-1088-1 PMID: 30298337

19. Irmakci I, Anwar SM, Torigian DA, Bagci U. Deep learning for musculoskeletal image analysis. In: 2019

53rd Asilomar Conference on Signals, Systems, and Computers. IEEE; 2019. p. 1481–1485.

20. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural net-

works. Pattern recognition. 2018; 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

21. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based

on physiological signals: A review. Computer methods and programs in biomedicine. 2018; 161:1–13.

https://doi.org/10.1016/j.cmpb.2018.04.005 PMID: 29852952

22. LeCun Y, Bengio Y, Hinton G, et al. Deep learning. nature, 521 (7553), 436–444. Google Scholar Goo-

gle Scholar Cross Ref Cross Ref. 2015;.

23. Xiang Y, Luo J, Zhu T, Wang S, Xiang X, Meng J. ECG-based heartbeat classification using two-level

convolutional neural network and RR interval difference. IEICE TRANSACTIONS on Information and

Systems. 2018; 101(4):1189–1198. https://doi.org/10.1587/transinf.2017EDP7285

24. Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG

arrhythmia classification. Expert Systems with Applications: X. 2020; 7:100033. https://doi.org/10.1016/

j.eswax.2020.100033

25. Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using

different intervals of tachycardia ECG segments with convolutional neural network. Information sci-

ences. 2017; 405:81–90. https://doi.org/10.1016/j.ins.2017.04.012

26. Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neu-

ral networks. IEEE Transactions on Biomedical Engineering. 2015; 63(3):664–675. https://doi.org/10.

1109/TBME.2015.2468589 PMID: 26285054

27. Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni I, et al. Magnetic resonance

imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Fron-

tiers in neuroscience. 2015; 9:307. https://doi.org/10.3389/fnins.2015.00307 PMID: 26388719

28. Baygin M, Tuncer T, Dogan S, Tan RS, Acharya UR. Automated arrhythmia detection with homeomor-

phically irreducible tree technique using more than 10,000 individual subject ECG records. Information

Sciences. 2021; 575:323–337. https://doi.org/10.1016/j.ins.2021.06.022

29. Hu R, Chen J, Zhou L. A transformer-based deep neural network for arrhythmia detection using continu-

ous ECG signals. Computers in Biology and Medicine. 2022; 144:105325. https://doi.org/10.1016/j.

compbiomed.2022.105325 PMID: 35227968

30. Sun L, Wang Y, Qu Z, Xiong NN. BeatClass: a sustainable ECG classification system in IoT-based

eHealth. IEEE Internet of Things Journal. 2021; 9(10):7178–7195. https://doi.org/10.1109/JIOT.2021.

3108792

31. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with

convolutional neural networks. arXiv preprint arXiv:170701836. 2017.

32. Li D, Zhang J, Zhang Q, Wei X. Classification of ECG signals based on 1D convolution neural network.

In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services

(Healthcom). IEEE; 2017. p. 1–6.

33. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural net-

work model to classify heartbeats. Computers in biology and medicine. 2017; 89:389–396. https://doi.

org/10.1016/j.compbiomed.2017.08.022 PMID: 28869899

34. Yin W, Yang X, Zhang L, Oki E. ECG monitoring system integrated with IR-UWB radar based on CNN.

IEEE Access. 2016; 4:6344–6351.

35. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine

and Biology Magazine. 2001; 20(3):45–50. https://doi.org/10.1109/51.932724 PMID: 11446209

36. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big

data. Journal of Big Data. 2018; 5(1):1–30. https://doi.org/10.1186/s40537-018-0151-6

37. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class

imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on

PLOS ONE ECG classification using 1-D convolutional deep residual neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0284791 April 25, 2023 21 / 22

https://doi.org/10.1016/j.eswa.2018.08.011
https://doi.org/10.1016/j.eswa.2018.08.011
https://doi.org/10.1109/TSMC.2017.2705582
https://doi.org/10.1007/s10916-018-1088-1
https://doi.org/10.1007/s10916-018-1088-1
http://www.ncbi.nlm.nih.gov/pubmed/30298337
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.cmpb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29852952
https://doi.org/10.1587/transinf.2017EDP7285
https://doi.org/10.1016/j.eswax.2020.100033
https://doi.org/10.1016/j.eswax.2020.100033
https://doi.org/10.1016/j.ins.2017.04.012
https://doi.org/10.1109/TBME.2015.2468589
https://doi.org/10.1109/TBME.2015.2468589
http://www.ncbi.nlm.nih.gov/pubmed/26285054
https://doi.org/10.3389/fnins.2015.00307
http://www.ncbi.nlm.nih.gov/pubmed/26388719
https://doi.org/10.1016/j.ins.2021.06.022
https://doi.org/10.1016/j.compbiomed.2022.105325
https://doi.org/10.1016/j.compbiomed.2022.105325
http://www.ncbi.nlm.nih.gov/pubmed/35227968
https://doi.org/10.1109/JIOT.2021.3108792
https://doi.org/10.1109/JIOT.2021.3108792
https://doi.org/10.1016/j.compbiomed.2017.08.022
https://doi.org/10.1016/j.compbiomed.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28869899
https://doi.org/10.1109/51.932724
http://www.ncbi.nlm.nih.gov/pubmed/11446209
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1371/journal.pone.0284791


Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2011; 42(4):463–484. https://doi.

org/10.1109/TSMCC.2011.2161285

38. Islam A, Belhaouari SB, Rehman AU, Bensmail H. KNNOR: An oversampling technique for imbalanced

datasets. Applied Soft Computing. 2022; 115:108288. https://doi.org/10.1016/j.asoc.2021.108288

39. Ishaq A, Sadiq S, Umer M, Ullah S, Mirjalili S, Rupapara V, et al. Improving the prediction of heart failure

patients’ survival using SMOTE and effective data mining techniques. IEEE access. 2021; 9:39707–

39716. https://doi.org/10.1109/ACCESS.2021.3064084

40. Huang JS, Chen BQ, Zeng NY, Cao XC, Li Y. Accurate classification of ECG arrhythmia using MOWPT

enhanced fast compression deep learning networks. Journal of Ambient Intelligence and Humanized

Computing. 2020; p. 1–18.

41. Xie L, Li Z, Zhou Y, He Y, Zhu J. Computational diagnostic techniques for electrocardiogram signal anal-

ysis. Sensors. 2020; 20(21):6318. https://doi.org/10.3390/s20216318 PMID: 33167558

42. Oh SL, Ng EY, San Tan R, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN

and LSTM techniques with variable length heart beats. Computers in biology and medicine. 2018;

102:278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002 PMID: 29903630

43. Hammad M, Iliyasu AM, Subasi A, Ho ES, Abd El-Latif AA. A multitier deep learning model for arrhyth-

mia detection. IEEE Transactions on Instrumentation and Measurement. 2020; 70:1–9. https://doi.org/

10.1109/TIM.2020.3033072

44. Kallas M, Francis C, Kanaan L, Merheb D, Honeine P, Amoud H. Multi-class SVM classification com-

bined with kernel PCA feature extraction of ECG signals. In: 2012 19th International Conference on

Telecommunications (ICT). IEEE; 2012. p. 1–5.

45. Kumar RG, Kumaraswamy Y, et al. Investigating cardiac arrhythmia in ECG using random forest classi-

fication. International Journal of Computer Applications. 2012; 37(4):31–34. https://doi.org/10.5120/

4599-6557

46. Martis RJ, Acharya UR, Mandana K, Ray AK, Chakraborty C. Cardiac decision making using higher

order spectra. Biomedical Signal Processing and Control. 2013; 8(2):193–203. https://doi.org/10.1016/

j.bspc.2012.08.004

47. Park J, Lee K, Kang K. Arrhythmia detection from heartbeat using k-nearest neighbor classifier. In:

2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE; 2013. p. 15–22.

48. Lin CC, Yang CM. Heartbeat classification using normalized RR intervals and morphological features.

Mathematical Problems in Engineering. 2014;2014. https://doi.org/10.1155/2014/712474

49. Raj S, Maurya K, Ray KC. A knowledge-based real time embedded platform for arrhythmia beat classifi-

cation. Biomedical Engineering Letters. 2015; 5(4):271–280. https://doi.org/10.1007/s13534-015-0196-

9

50. Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution wavelet transform based feature extraction

and ECG classification to detect cardiac abnormalities. Measurement. 2017; 108:55–66. https://doi.org/

10.1016/j.measurement.2017.05.022

51. Yang W, Si Y, Wang D, Guo B. Automatic recognition of arrhythmia based on principal component anal-

ysis network and linear support vector machine. Computers in biology and medicine. 2018; 101:22–32.

https://doi.org/10.1016/j.compbiomed.2018.08.003 PMID: 30098452

52. Kachuee M, Fazeli S, Sarrafzadeh M. Ecg heartbeat classification: A deep transferable representation.

In: 2018 IEEE international conference on healthcare informatics (ICHI). IEEE; 2018. p. 443–444.

53. Rajkumar A, Ganesan M, Lavanya R. Arrhythmia classification on ECG using Deep Learning. In: 2019

5th international conference on advanced computing & communication systems (ICACCS). IEEE;

2019. p. 365–369.

54. Izci E, Ozdemir MA, Degirmenci M, Akan A. Cardiac arrhythmia detection from 2d ecg images by using

deep learning technique. In: 2019 Medical Technologies Congress (TIPTEKNO). IEEE; 2019. p. 1–4.

55. Pandey SK, Janghel RR. Automatic detection of arrhythmia from imbalanced ECG database using

CNN model with SMOTE. Australasian physical & engineering sciences in medicine. 2019; 42(4):1129–

1139. https://doi.org/10.1007/s13246-019-00815-9 PMID: 31728941

PLOS ONE ECG classification using 1-D convolutional deep residual neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0284791 April 25, 2023 22 / 22

https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1016/j.asoc.2021.108288
https://doi.org/10.1109/ACCESS.2021.3064084
https://doi.org/10.3390/s20216318
http://www.ncbi.nlm.nih.gov/pubmed/33167558
https://doi.org/10.1016/j.compbiomed.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29903630
https://doi.org/10.1109/TIM.2020.3033072
https://doi.org/10.1109/TIM.2020.3033072
https://doi.org/10.5120/4599-6557
https://doi.org/10.5120/4599-6557
https://doi.org/10.1016/j.bspc.2012.08.004
https://doi.org/10.1016/j.bspc.2012.08.004
https://doi.org/10.1155/2014/712474
https://doi.org/10.1007/s13534-015-0196-9
https://doi.org/10.1007/s13534-015-0196-9
https://doi.org/10.1016/j.measurement.2017.05.022
https://doi.org/10.1016/j.measurement.2017.05.022
https://doi.org/10.1016/j.compbiomed.2018.08.003
http://www.ncbi.nlm.nih.gov/pubmed/30098452
https://doi.org/10.1007/s13246-019-00815-9
http://www.ncbi.nlm.nih.gov/pubmed/31728941
https://doi.org/10.1371/journal.pone.0284791

