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Abstract

HIV/AIDS and COVID-19 co-infection is a common global health and socio-economic prob-

lem. In this paper, a mathematical model for the transmission dynamics of HIV/AIDS and

COVID-19 co-infection that incorporates protection and treatment for the infected (and

infectious) groups is formulated and analyzed. Firstly, we proved the non-negativity and

boundedness of the co-infection model solutions, analyzed the single infection models

steady states, calculated the basic reproduction numbers using next generation matrix

approach and then investigated the existence and local stabilities of equilibriums using

Routh-Hurwiz stability criteria. Then using the Center Manifold criteria to investigate the pro-

posed model exhibited the phenomenon of backward bifurcation whenever its effective

reproduction number is less than unity. Secondly, we incorporate time dependent optimal

control strategies, using Pontryagin’s Maximum Principle to derive necessary conditions for

the optimal control of the disease. Finally, we carried out numerical simulations for both the

deterministic model and the model incorporating optimal controls and we found the results

that the model solutions are converging to the model endemic equilibrium point whenever

the model effective reproduction number is greater than unity, and also from numerical sim-

ulations of the optimal control problem applying the combinations of all the possible protec-

tion and treatment strategies together is the most effective strategy to drastically minimizing

the transmission of the HIV/AIDS and COVID-19 co-infection in the community under con-

sideration of the study.

1. Introduction

Infectious diseases are diagnostically proven illnesses caused by tiny microorganisms such as

viruses, bacteria, fungi, and parasites and have been the leading causes of death throughout the

world, for example; viruses cause both COVID-19 and HIV/AIDS infections [1–3].

Human immunodeficiency virus (HIV) is one of the most dangerous viruses that is spread-

ing around the world. AIDS, or acquired immunodeficiency syndrome, is one of the most
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devastating epidemics in history, caused by HIV, which has been a worldwide epidemic since

1981 [4–10]. It remains a significant world health issue that impacts almost seventy million

people worldwide and has been a significant cause of morbidity and mortality [11,12]. HIV is

transmissible through sexual contact, needle sharing, and direct contact with virus-infected

blood or other body fluids, as well as from mother to child during giving birth [10,13–15].

In early December 2019, a coronavirus called COVID-19 was reported in Wuhan, China,

with symptoms similar to pneumonia. According to reports, it is one of the most devastating

infectious diseases caused by the novel coronavirus SARS-CoV-2, which has been a significant

impact on the health, social, and economic integration of communities worldwide [16–29].

On March 11, 2020, the World Health Organization (WHO) confirmed it as a global pan-

demic, and on July 25, 2020, the world total number of COVID-19 infected individuals was

15,762,007, with 640,276 deaths [25,28,29]. It was suspected to be pneumonia or a common

cold-like illness, with symptoms such as fatigue, alter in taste, fever, muscular pains, shortness

of breath, ironical cough, and sore throat [25,27,30]. Despite massive efforts to reduce the vir-

us’s transmission and survivability, the death rate from COVID-19 remains high [15].

COVID-19 can be transmitted through sneezing or coughing droplets expelled from the

human lungs, as well as when humans come into contact with contaminated dispatched mate-

rials [17,26,31]. Among the unfortunate aspects of the COVID-19 pandemic is that patients

over the age of 60 are more likely to be infected than anyone below the age of 60 [31]. It is an

extremely infectious contagious agent that has spread throughout most of the world’s nations

and has a significant impact on the global economy and public health [24,32]. COVID-19

infection may be more common in people with compromised immunity from other infections

such as tuberculosis, HIV, pneumonia, and cholera [1,25,33–37]. WHO unanimously imple-

mented vaccination, quarantine, wearing face masks, hand washing with alcohol, and signifi-

cant discrepancies as possible prevention and control strategies [26,27,31]. Symptomless and

pre-symptomatic transmission, a low incidence or lack of dominant systemic symptoms such

as fever, airborne transmission that may require a high infectious dose and super-spread

events are the essential aspects of COVID-19 spreading that make it challenging to handle

[16].

A co-infection is the infection of a single individual with two or more different pathogens

or different strains of the same pathogens, leading to co-existence of strains (pathogens) at

population level [10]. Co-infection of two or more diseases in one individual is a regular occur-

rence in today’s society [2,14]. Different researchers have investigated that COVID-19 infec-

tion could be high in people living with other infections like TB, HIV, and cholera who have

compromised immunity [1,8,21,25,30,33–44].

Mathematical modelling approaches have been crucial to provide basic frameworks in

order to understand the transmission dynamics of infectious diseases [37]. Many scholars

throughout the world have been formulated and analyzed mathematical models to investigate

the transmission dynamics of different infectious diseases using ordinary differential equations

approach like [2,9,15,17,19,22,23,26–29,31,32,45–47] using stochastic approach like [48], and

using fractional order derivative approach like [1,5,49,50]. In the structure of this study, we

have reviewed research papers that have been done on the transmission dynamics of different

infectious diseases especially co-infections of HIV/AIDS and other infectious diseases. Teklu

and Rao [14] constructed and examined HIV/AIDS and pneumonia co-infection model with

control measures such as pneumonia vaccination and treatments of pneumonia and HIV/

AIDS infections. Hezam et al. [40], formulated a mathematical model for cholera and COVID-

19 co-infection which describes the transmission dynamics of COVID-19 and cholera in

Yemen. The model analysis examined four controlling measures such as social distancing,

lockdown, the number of test kits to control the COVID-19 outbreak, and the number of
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susceptible individuals who can get CWTs for water purification. Anwar et al. [15], con-

structed a mathematical model on COVID-19 with the isolation controlling measure on the

COVID-19 infected individuals throughout the community. Ahmed et al. [1] formulated and

analyzed HIV and COVID-19 co-infection model with ABC-fractional operator approach

to investigate an epidemic prediction of a combined HIV-COVID-19 co-infection model.

Numerical simulations were carried out to justify that the disease will stabilize at a later stage

when enough protection strategies are taken. Teklu and Terefe [3] analyze COVID-19 and

syphilis co-dynamics model to investigate the impacts of intervention measures on the disease

transmission.

Similarly, various Scholars have formulated and analyzed mathematical models with opti-

mal control strategies to investigate the effect of prevention and control measures on HIV/

AIDS, COVID-19, HIV/AIDS and COVID-19 co-infection and other various infectious dis-

eases transmission throughout nations in the world. For instance, Tchoumi et al. [37] pro-

posed and investigated the co-dynamics of malaria and COVID-19 co-dynamics: with optimal

control strategies. The numerical simulation results verifies the theoretical optimal control

analysis and illustrates that using malaria and COVID-19 protection measures concurrently

can help mitigate there transmission compared with applying single infections protection mea-

sures. Omame et al. [25] investigated a mathematical model for the dynamics of COVID-19

infection in order to assess the impacts of prior comorbidity on COVID-19 complications and

COVID-19 reinfection with optimal control strategies. The authors recommended that the

strategy that prevents COVID-19 infection by comorbid susceptible is the best cost-effective of

all the other control strategies for the prevention of COVID-19. Ringa et al. [43] formulated

and analyzed a mathematical model on HIV and COVID-19 co-infection with optimal control

strategies. Their analysis suggested that COVID19 only prevention strategy is the most effec-

tive strategy and it averted about 10,500 new co-infection cases. Keno et al. [51] investigated

an optimal control and cost effectiveness analysis of SIRS malaria disease model with tempera-

ture variability facto. Their result suggested that the combination of treatment of infected

humans and insecticide spraying was proved to be the best efficient and least costly strategy to

eradicate the disease. Keno et al. [52] investigated a mathematical model with optimal control

strategies for malaria transmission with role of climate variability. Their result suggested that

the combination of treated bed net and treatment is the most optimal and least-cost strategy to

minimize the malaria. Goudiaby et al. [39] formulated and analyzed a COVID-19 and tubercu-

losis co-dynamics model with optimal control strategies. They suggested that COVID-19 pre-

vention, treatment and control of co-infection yields a better outcome in terms of the number

of COVID-19 cases prevented at a lower percentage of the total cost of this strategy. Asamoah

et al. [53] constructed a mathematical model on COVID-19 to investigate optimal control

strategies and comprehensive cost-effectiveness. Okosun et al. [54] formulated a mathematical

model on HIV/AIDS to investigate the impact of optimal control on the treatment of HIV/

AIDS and screening of unaware invectives. Their analysis recommended that the combination

of all the control strategies is the most cost-effective strategy. Furthermore, notice that optimal

control modeling and cost-effectiveness analysis model have been applied in recent infectious

diseases models like [55,56].

As we observed from review of literatures done by various epidemiology and medical schol-

ars, HIV/AIDS and COVID-19 co-infection is a public health concern especially in developing

nations of the world. The main purpose of this paper is to investigate the impacts of COVID-

19 protection with quarantine, COVID-19 treatment, HIV protection and HIV treatment pre-

vention and controlling strategies on the transmission dynamics of HIV/AIDS and COVID-19

co-infection in the community with mathematical modelling approach. We have reviewed lit-

eratures [1,43] invested much effort in studying HIV/AIDS and COVID-19 co-infection, but
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did not considered COVID-19 protection with quarantine, COVID-19 treatment, HIV/AIDS

protection, and HIV/AIDS treatment as prevention and control strategies simultaneously in a

single model formulation which motivates us to undertake this study and fill the gap.

2. Mathematical model construction

2.1. Basic frameworks of the model

In this paper, we partitioned the total human population at a given time t denoted by N(t), into

eleven mutually-exclusive classes depending on their infection status: susceptible class to both

COVID-19 and HIV S(t)), COVID-19 protection by quarantine class (Cq(t)), HIV protected

(such as by using condom, limit sexual partners, creating awareness etc.) class (Hp(t)),
COVID-19 protection by vaccination class (Cv(t)), COVID-19 mono-infection class (Ci(t)),
HIV unaware mono-infection class (Hu(t)), HIV aware mono-infection class (Ha(t)), HIV

unaware and COVID-19 co-infection class (Mu(t)), HIV aware and COVID-19 co-infection

class (Ma(t)), COVID-19 recovery class (R(t)), and HIV aware treatment class (Ht(t)) so that;

N tð Þ ¼ S tð Þ þ Cq tð Þ þHp tð Þ þ Cv tð Þ þ Ci tð Þ þHu tð Þ þHa tð Þ þMu tð Þ þMa tð Þ þ Ct tð Þ þ R tð Þ:

Since HIV is a chronic infectious disease the susceptible individuals acquires HIV infection

at the standard incidence rate given by

lH tð Þ ¼
b1

N
Hu tð Þ þ r1Ha tð Þ þ r2Mu tð Þ þ r3Ma tð Þð Þ ð1Þ

where ρ3� ρ2� ρ1� 1 are the modification parameters that increase infectivity and β1 is the

HIV transmission rate. Since COVID-19 is a very acute infection the susceptible individuals

acquires COVID-19 infection at the mass action incidence rate as stated in [50,51,54].

lC tð Þ ¼ b2 Ci tð Þ þ o1Mu tð Þ þ o2Ma tð Þð Þ ð2Þ

where ω2 > ω1 > 1 are the modification parameters that increase infectivity and β2 is the

COVID-19 transmission rate.

Additional model assumptions

• k1, k2, k3, and k4 where k4 = 1 − k1 − k2 − k3 are portions of the number of recruited individu-

als those are entering to the susceptible class, the COVID-19 protected class, the HIV pro-

tected class and the COVID-19 vaccination class respectively.

• The susceptible class is increased by individuals from the COVID-19 vaccinated class in

which those individuals who are vaccinated against COVID-19 but did not respond to vacci-

nation with waning rate of ρ and from COVID-19 recovery with treatment class who develop

their temporary immunity by the rate η.

• COVID-19 vaccine is may not be 100% efficient, so vaccinated individuals also have a chance

of being infected with portion ε of the serotype not covered by the vaccine where 0� ε< 1.

• 0< υ� 1 is the modification parameter such that COVID-19 infected individual is less sus-

ceptible to HIV infection than a susceptible individuals due to morbidity.

• There is screening and testing mechanisms for the previous and current status in each class.

• The human population distribution is homogeneous in each class.

• HIV treated individuals do not transmit infection to others due to awareness.

• Population of human being is variable.

PLOS ONE Bifurcation analysis and optimal control for COVID-19 and HIV/AIDS co-infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284759 May 5, 2023 4 / 47

https://doi.org/10.1371/journal.pone.0284759


• There is no dual-infection transmission simultaneously.

• No vertical HIV transmission.

• No permanent immunity for COVID-19 infection.

In this section using parameters given in Table 1, model variables given in Table 2, and the

model basic frame work, and assumptions given in (2.1), the schematic diagram for the trans-

mission dynamics of HIV/AIDS and COVID-19 co-infection is given by Fig 1.

Table 1. Biological meaning of model parameters.

Parameters Biological definitions

μ Human natural mortality rate

Δ Recruitment of new born and immigrants

α1 COVID-19 protection lose rate

α2 HIV protection lose rate

ε Proportion not covered by the COVID-19 vaccine

θ Progression rate

ϕ1, ϕ2 Modification parameters

d1 COVID-19 death rate

d2 HIV/AIDS death rate for unaware

d3 HIV/AIDS death rate for aware

κ The rate at which COVID-19 infected are recovered by treatment

γ HIV aware infection treatment rate

ρ COVID-19 vaccination waning rate

υ Modification parameter

β1 HIV/AIDS transmission rate

β2 COVID-19 transmission rate

k1 Portion of recruitment entered to susceptible

k2, k3 Portion of recruitment entered to COVID-19 and HIV protections respectively

k4 Portion of recruitment entered to COVID-19 vaccination class

δ Co-infection progression rate

θ1, θ2 COVID-19 treatment rates

η The rate at which recovered individuals loss temporary immunity

d4, d5 Co-infected death rates

https://doi.org/10.1371/journal.pone.0284759.t001

Table 2. Biological definitions of model variables.

Variables Biological Definitions

S Susceptible class to both HIV and COVID-19 infections

Cq Individuals who are protected by quarantine against COVID-19

Hp Individuals who are protected against HIV infection

Cv COVID-19 vaccinated class

Ci COVID-19 infected class

Hu Individuals mono-infected with HIV and unaware

Ha Individuals mono-infected with HIV and aware

Mu Co-infected individuals unaware of HIV infection

Ma Co-infected individuals aware of HIV infection

R COVID-19 recovered class

Ht HIV/AIDS treated class

https://doi.org/10.1371/journal.pone.0284759.t002
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Now using Fig 1 the system of differential equations of the HIV/AIDS and COVID-19 co-

infection is given by

_S ¼ k1Dþ a1Cq þ a2Hp þ rCv þ ZR � lH þ lC þ mð ÞS;

_Cq ¼ k2D � lH þ a1 þ mð ÞCq;

_Hp ¼ k3D � a2 þ mþ lCð ÞHp;

_Cv ¼ k4D � rþ mþ lH þ εlCð ÞCv;

_Ci ¼ lCSþ lCCq þ εlCCv � mþ d1 þ kþ ulHð ÞCi;

_Hu ¼ lHSþ lHCq þ lHCv þ y1Mu � yþ mþ d2 þ �1lCð ÞHu;

_Ha ¼ yHu þ y2Ma � gþ d3 þ mþ �2lCð ÞHa;

_Mu ¼ �1lCHu þ ulHCi � mþ d4 þ dþ y1ð ÞMu;

_Ma ¼ dMu þ �2lCHa � mþ d5 þ y2ð ÞMa;

_R ¼ kCi � mþ Zð ÞR;
_Ht ¼ gHa � mHt;

ð3Þ

Fig 1. The schematic diagram of the HIV/AIDS and COVID-19 co-infection transmission dynamics.

https://doi.org/10.1371/journal.pone.0284759.g001
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with the corresponding initial conditions

S 0ð Þ > 0;Cq 0ð Þ � 0; Hp 0ð Þ � 0; Cv 0ð Þ � 0;Ci 0ð Þ � 0;Hu 0ð Þ � 0;Ha 0ð Þ � 0;Mu 0ð Þ

� 0;Ma 0ð Þ � 0; R > 0; andHt > 0:ð4Þ

The sum of all the differential equations in (3) is

_N ¼ D � mN � ðd1Ci þ d2Hu þ d3Ha þ d4Mu þ d5MaÞ: ð5Þ

2.2. The basic qualitative properties of the model (3)

The COVID-19 and HIV/AIDS co-infection model given in Eq (3) is both biologically and

mathematically meaningful if and only if all the model solutions (state variables) are non-nega-

tive and bounded in the invariant region

O ¼ S; Cq;Hp;Cv; Ci; Hu; Ha; Mu;Ma;R; Ht

� �
2 R11

þ
;N �

Λ
μ

� �

ð6Þ

Theorem 1 (Positivity of the model solutions)

Let us given the initial data in Eq (4) then the solutions S(t), Hp(t), Cv(t), Ci(t), Mu(t), Hu(t),
Ha(t), Ma(t), R(t), Cq(t), and Ht(t) of the COVID-19 and HIV/AIDS co-infection model (3) are

nonnegative for all time t> 0.

Proof: Let us consider S(0) > 0, Cq(0)> 0, Hp(0) > 0, Cv(0) > 0, Ci(0)> 0, Hu(0)> 0,

Ha(0) > 0, Mu(0)> 0, Ma(0)> 0, R(0)> 0, and Ht(0)> 0 then for all t > 0.

We have to show that S(t)> 0, Cq(t)> 0, Hp(t)> 0, Cv(t)> 0, Ci(t)> 0, Hu(t) > 0, Ha(t)>
0, Mu(t)> 0, Ma(t) > 0, R(0) > 0, and Ht(t)> 0.

Define: τ = sup{S(t) > 0, Cq(t)> 0, Hp(t)> 0, Cv(t) > 0, Ci(t)> 0, Hu(t)> 0, Ha(t)> 0,

Mu(t) > 0, Ma(t)> 0, R(0) > 0, and Ht(t)> 0}. Now since the entire co-infection model state

variables are positive and all the state variables are continuous, we can justify that τ> 0. If τ =

+1, then non-negativity holds. But, if 0< τ< +1 we will have S(τ) = 0 or Cq(τ) = 0 or Hp(τ)

= 0 or Cv(τ) = 0 or Ci(τ) = 0 or Hu(τ) = or Ha(τ) = 0 or Mu(τ) = 0 or Ma(τ) = 0 or R(τ) = 0 or

Ht(τ) = 0.

Here from the first equation of the COVID-19 and HIV/AIDS co-infection model (3) we

have got

_S þ lH þ lC þ mð ÞS ¼ k1Dþ a1Cq þ a2Hp þ rCv þ ZR:

and integrate using method of integrating factor we have determined the constant value

S tð Þ ¼ M1S 0ð Þ þM1

R t
0
exp
R

mþlH tð ÞþlC tð Þð Þdt
a1Cq þ a2Hp þ rCv þ ZR
� �

dt > 0

where

M1 ¼ exp
� mtþ

Rt

0

ðlH wð ÞþlC wð Þ

� �

> 0; S 0ð Þ > 0;

and from the meaning of τ, the solutions Cq(t)> 0, Hp(t)> 0, Cv(t)> 0, R(t) > 0. Moreover,

the exponential function is always positive, then the solution S(τ)> 0 hence S(τ) 6¼ 0. Thus fol-

lowing the same procedure for τ = +1, all the solutions of the COVID-19 and HIV/AIDS co-

infection system (3) are non-negative.
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Theorem 2 (The invariant region): All the feasible positive solutions of the co-infection

model (3) are bounded in the region (6).

Proof: Let S;Cq;Hp;Cv;Ci;Hu;Ha;Mu;Ma;R;Ht

� �
2 R11

þ
is an arbitrary non-negative

solution of the system (3) with initial conditions given in Eq (4). Now adding all the differential

equations given in Eq (3) we have got the derivative of the total population N which is given in

Eq (5) as

_N ¼ D � mN � ðd1Ci þ d2Hu þ d3Ha þ d4Mu þ d5MaÞ:

Then by ignoring the infections we have determined that _N � D � mN and using separa-

tion of variables whenever t!1, we have obtained that 0 � N � D

m
. Hence, all the positive

feasible solutions of the co-infection model (3) entering in to the region given in Eq (6).

Note: Since the model (3) solutions are both positive and bounded in the region (6) the

HIV/AIDS and COVID-19 co-infection model (3) is both mathematically and biologically

meaning full [45,47,57], then we can consider the two mono-infection models, namely; HIV

mono-infection and COVID-19 mono-infection models. This is fundamental for the analysis

of the COVID-19 and HIV/AIDS co-infection model.

3. Analytical result of the models

Before analyzing the HIV/AIDS and COVID-19 co-infection model given in Eq (3), it is very

crucial to gain some basic backgrounds about the COVID-19 and HIV/AIDS mono-infection

models.

3.1. Mathematical analysis of HIV/AIDS mono-infection model

In this subsection we assume there is no COVID-19 infection in the community i.e. Cq =,

Cq = Ci = Mu = Ma = R = 0 in (3) then the HIV/AIDS sub-model is given by

_S ¼ k1Dþ a2Hp � lH þ mð ÞS

_Hp ¼ k3D � a2 þ mð ÞHp

_Hu ¼ lHS � yþ mþ d2ð ÞHu

_Ha ¼ yHu � gþ d3 þ mð ÞHa

_Ht ¼ gHu � mHt;

9
>>>>>>>>=

>>>>>>>>;

ð7Þ

where the total population N1(t) = S(t) + Hp(t) + Hu(t) + Ha(t) + Ht(t), and the HIV sub-model

force of infection given by lH ¼
b1

N1
Hu þ r1Hað Þ and initial conditions S(0)> 0, Hp(0)� 0,

Ha(0)� 0, Hu(0)� 0 and Ht(0)� 0. In a similar manner of the full co-infection model (3) in

the region O1 ¼ S;Hp;Hu;Ha;Ht

� �
2 R5

þ
;N1 �

Δ
μ

� �

; it is sufficient to consider the dynam-

ics of the sub-model (7) in O1 as biologically and mathematically well-posed.

3.2. Disease-free equilibrium point of HIV mono-infection model (7) local

stability

The disease-free equilibrium point of the HIV mono-infection system in (7) is obtained by

making its right-hand side is equal to zero and setting the infected classes and treatment class

to zero as Hu = Ha = Ht = 0 which yields, SO ¼ k1D a2þmð Þþa2k3D

m a2þmð Þ
; H0

p ¼
k3D

a2þm
. Hence the disease-free

equilibrium point is given by E0
HM ¼ S0;H0

p ;H
0
u;H

0
a ;H

0
t

� �
¼

k1D a2þmð Þþa2k3D

m a2þmð Þ
;
k3D

a2þm
; 0; 0; 0

� �
.
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The local stability of the HIV mono-infection model (7) disease-free equilibrium point is

examined by its effective reproduction number denoted by RHM, which is calculated by using

the next generation operator method determined by Van den Driesch and Warmouth stated

in [2]. Applying the method stated in [29], the transmission matrix F and the transition matrix

V i.e., for the new infection and the remaining transfer respectively, are given by

F ¼

b1yS0

SO þH0
p

b1r1yS0

SO þH0
p

0

0 0 0

0 0 0

2

6
6
6
6
4

3

7
7
7
7
5
andV ¼

yþ mþ d2 0 0

� y gþ d3 þ m 0

0 � g m

2

6
4

3

7
5:

After some computations we have determined that

V � 1 ¼

1

yþ mþ d2ð Þ
0 0

y

yþ mþ d2ð Þ gþ mþ d3ð Þ

1

gþ mþ d3ð Þ
0

gy

m yþ mþ d2ð Þ gþ mþ d3ð Þ

g

m gþ mþ d3ð Þ

1

m

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

and

FV � 1 ¼

b1S0

ðS0 þH0
pÞ yþ mþ d2ð Þð Þ

þ
b1r1yS0

S0 þH0
p

� �
yþ mþ d2ð Þ gþ mþ d3ð Þ

b1r1yS0

S0 þH0
p

� �
gþ mþ d3ð Þ

0

0 0 0

0 0 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

Then, the effective reproduction number of the HIV mono-infection model (7) is defined

as the largest eigenvalue in magnitude of the next generation matrix, FV−1 given by

RHM ¼
b1 1 � k3ð Þ a2 þ mð Þ þ b1a2k3

a2 þ mð Þ yþ mþ d2ð Þ
þ
b1r1y 1 � k3ð Þ a2 þ mð Þ þ b1r1ya2k3

yþ mþ d2ð Þ gþ mþ d3ð Þ
:

The value RHM is defined as the total average number of secondary HIV unaware and HIV

aware infection cases acquired from a typical HIV unaware or HIV aware individual during

his/her effective infectious period in a susceptible population. The threshold result RHM is the

effective reproduction number for HIV mono-infection.

Theorem 3: The disease-free equilibrium point of the HIV mono-infection model given in

Eq (7) is locally asymptotically stable (LAS) if RHM < 1, and it is unstable if RHM > 1.

Proof: The local stability of the disease-free equilibrium point of HIV mono-infection

model (7) is evaluated by applying the Routh-Hurwitz stability criteria stated in [52].
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The Jacobian matrix of the HIV mono-infection model given in Eq (7) at the disease-free

equilibrium point E0
HM is given by

J E0

HM

� �
¼

� m a2 �
b1S0

S0 þH0
p

�
b1S0r1

S0 þ H0
p

0

0 � a2 þ mð Þ 0 0 0

0 0
b1S0

S0 þH0
p

� yþ mþ d2ð Þ
b1S0r1

S0 þH0
p

0

0 0 y � gþ d3 þ mð Þ 0

0 0 0 g � m

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

:

Then the corresponding characteristic equation of the Jacobian matrix JðE0
HMÞ is given by

� m � l a2 �
b1S0

S0 þH0
p

�
b1S0r1

S0 þH0
p

0

0 � a2 þ mð Þ � l 0 0 0

0 0
b1S0

S0 þH0
p

� yþ mþ d2ð Þ � l �
b1S0

S0 þH0
p

0

0 0 y � gþ d3 þ mð Þ � l 0

0 0 0 g � m � l

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

¼ 0;

) � m � lð Þ � a2 þ mð Þ � lð Þ � m � lð Þ �
b1S0

S0 þH0
p

� yþ mþ d2ð Þ � l

 !

� gþ d3 þ mð Þ � lð Þ �
yb1S0r1

S0 þH0
p

" #

¼ 0:

Finally we have determined

� m � lð Þ � a2 þ mð Þ � lð Þ � m � lð Þ l
2
þ alþ b

� �
¼ 0;

where a ¼ gþ d3 þ mð Þ þ yþ mþ d2ð Þ �
b1S0

S0þH0
p
, and b ¼

�
b1S0

S0þH0
p
� yþ mþ d2ð Þ

� �
gþ d3 þ mð Þ �

yb1S0r1

S0þH0
p
¼ yþ mþ d2ð Þ gþ d3 þ mð Þ�

gþ d3 þ mð Þ
b1S0

S0þH0
p
�

yb1S0r1

S0þH0
p
¼ yþ mþ d2ð Þ gþ d3 þ mð Þ 1 �

b1r1y 1� k3ð Þ a2þmð Þþb1r1ya2k3

yþmþd2ð Þ gþmþd3ð Þ

� �
¼

yþ mþ d2ð Þ gþ d3 þ mð Þ 1 � RHMð Þ.

Then we have got λ1 = −μ< 0 or λ2 = −(α2 + μ)< 0 or λ3 = −μ< 0 or

l
2
þ alþ b ¼ 0 ð8Þ

On Eq (8) we applied Routh-Hurwitz stability criteria stated in [47] and we have deter-

mined that both eigenvalues are negative if RHM < 1. Furthermore, we can conclude that the

disease-free equilibrium point of the model (7) is locally asymptotically stable whenever

RHM < 1 since all the eigenvalues are negative when RHM < 1. The biological meaning of The-

orem 3 can be stated as HIV infection can be eradicated from the population (whenever

RHM < 1) if the initial size of the sub-populations of the HIV mono-infection model given in

Eq (7) is in the basin of attraction of the disease-free equilibrium point E0
HM.
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3.3. Existence of HIV mono-infection endemic equilibrium point(s)

Let E∗HM ¼ S∗;H∗
p ;H

∗
u;H

∗
a ;H

∗
t

� �
be an arbitrary endemic equilibrium point of the HIV mono-

infection model (7) which can be determined by making the right hand side of Eq (7) as zero.

The after a number of steps of computations we have got

S∗ ¼
k1Dm1 þ a2k3D

m1 l
∗
H þ m

� � ; H∗
p ¼

k3D

m1

; H∗
u ¼

k1Dm1l
∗
H þ a2k3Dl

∗
H

m1m2 l
∗
H þ m

� � ;

H∗
a ¼

k1Dym1l
∗
H þ a2k3Dyl

∗
H

m1m2m3 l
∗
H þ m

� � ; H∗
t ¼

k1Dygm1l
∗
H þ a2k3Dygl

∗
H

mm1m2m3 l
∗
H þ m

� � ;

ð9Þ

where m1 = (α2 + μ), m2 = (θ + μ + d2), and m3 = (γ + d3 + μ).

Now substitute H∗
u and H∗

a given in Eq (9) in to the HIV/AIDS force of infection

l
∗
H ¼

b1H∗
u þ r1H∗

a

S∗ þH∗
p þ H∗

u þH∗
a þH∗

t

:

Then we have the result

ðm5 þm6l
∗
H � m4Þl

∗
H ¼ 0: ð10Þ

where m4 = β1k1Δm1m3m3μ + β1α2k3Δm3m3μ + β1ρ1k1Δθm1m3μ + β1ρ1α2k3Δθm3μ, m5 =

k1Δm1m2m3μ + α2k3Δm2m3μ + k3Δm2m3μμ, m6 = k3Δm2m3μ + k1Δm1m3μ + α2k3Δm3μ +

k1Δθm1μ + α2k3Δθμ + k1Δθγm1 + α2k3Δθγ.

Then the non-zero solution of (10) is l
∗
H ¼

m4� m5

m6
. Therefore, the required non-zero solution

(force of infection is obtained as l
∗
H ¼

k1Dm1m2m3mþk3Dm2m3m a2þmð Þ½ � RHM � 1ð Þ

k3Dm2m3mþk1Dm1m3mþa2k3Dm3mþk1Dym1mþa2k3Dymþk1Dygm1þa2k3Dyg
.

Then we have got l
∗
H > 0 whenever RHM > 1. Thus, the HIV/AIDS mono-infection model (7)

has a unique positive endemic equilibrium point if and only if RHM > 1.

Theorem 4: The HIV/AIDS mono-infection model given in (7) has a unique endemic equi-

librium point if and only if RHM > 1.

3.4. COVID-19 sub-model analysis

The corresponding COVID-19 sub-model of the system (3) is determined by making Hp = Ha

= Hu = Mu = Ma = Ht = 0, and it is given by

_S ¼ k1Dþ a1Cq þ rCv þ ZR � lC þ mð ÞS;

_Cq ¼ k2D � a1 þ mð ÞCq;

_Cv ¼ k4D � rþ mþ εlCð ÞCv;

_Ci ¼ lCSþ εlCCv � mþ d1 þ kð ÞCi;

_R ¼ kCi � mþ Zð ÞR;

9
>>>>>>>>=

>>>>>>>>;

ð11Þ

with COVID-19 infection initial conditions S(0) > 0, Cq(0)� 0, Cv(0)� 0, Ci(0)� 0, R(0)� 0,

total population N2(t) = S(t) + Cq(t) + Cv(t) + Ci(t) + R(t), and COVID-19 force of infection

given by λC = β2Ci(t). Here like the full model (3) and the HIV/AIDS sub-model (7) in the

region O2 ¼ S;Cq;Cv;Ci;R
� �

2 R5

þ;N2 �
Δ
μ

� �

, it is sufficient to consider the dynamics of

model (11) in O2 be both biologically and mathematically meaningful.

3.4.1. Local stability of COVID-19 mono-infection model (11) Disease-free equilib-

rium. Disease-free equilibrium point of the COVID-19 mono-infection model (11) is
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obtained by making its right-hand side as zero and setting the infected class and recovered

with treatment class to zero as Ci = R = 0 and after some simple steps of calculations we have

determined that S0 ¼
k1Dða1þmÞ rþmð Þþa1k2D rþmð Þþk4Dr a1þmð Þ

m a1þmð Þ rþmð Þ
, C0

q ¼
k2D

a1þm
, and C0

i ¼
k4D

rþm
. Hence the

COVID-19 mono-infection model (11) disease-free equilibrium point is given by

E0

PM ¼ ðS
0;C0

q;C
0

v ;C
0

i ;R
0Þ

¼
k1Dða1 þ mÞðrþ mÞ þ a1k2Dðrþ mÞ þ k4Drða1 þ mÞ

mða1 þ mÞðrþ mÞ
;
k2D

a1 þ m
;

k4D

> rþ m
; 0; 0

� �

:

Here we are applying the Van Den Driesch and Warmouth next-generation matrix

approach stated in [2] to determine the COVID-19 mono-infection model (11) effective repro-

duction number RC. After long computations, we have determined the transmission matrix

given by

F ¼
b2S0 þ εb2C0

i 0

0 0

" #

;

and the transition matrix given by

V ¼
mþ d1 þ k

� k

0

mþ Z

" #

:

Then using Mathematica we have determined as

V � 1 ¼

1

mþ d1 þ k
0

k

mþ d1 þ kð Þ mþ Zð Þ

1

mþ Z

2

6
6
6
4

3

7
7
7
5
and FV � 1 ¼

b2S0 þ εb2C0
i

mþ d1 þ k
0

0 0

2

6
4

3

7
5:

The characteristic equation of the matrix FV−1 is

b2S0 þ εb2C0
i

mþ d1 þ k
� l 0

0 0 � l

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ 0.

Then the spectral radius (effective reproduction number RC) of FV−1 of the COVID-19

mono-infection model (11) is RC ¼
b2S0þεb2C0

i
mþd1þk

¼
b2k1Dða1þmÞ rþmð Þþb2a1k2D rþmð Þþb2k4Dr a1þmð Þþb2εk4Dm a1þmð Þ

m a1þmð Þ rþmð Þ mþd1þkð Þ
.

Theorem 5: The Disease-free equilibrium point E0
CM of the COVID-19 mono-infection

model (11) is locally asymptotically stable if RC < 1 otherwise unstable.

Proof: The local stability of the disease-free equilibrium of the system (11) at point E0
CM ¼

k1Dða1þmÞ rþmð Þþa1k2D rþmð Þþk4Dr a1þmð Þ

m a1þmð Þ rþmð Þ
;
k2D

a1þm
;
k4D

rþm
; 0; 0

� �
can be studied from its Jacobian matrix and

Routh-Hurwitz stability criteria. The Jacobian matrix of the dynamical system at the disease-
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free equilibrium point is given by

J E0

CM

� �
¼

� m a1 r

0 � a1 þ mð Þ 0

0 0 � ðrþ mÞ

0 0 0

0 0 0

� b2S0 Z

0 0

� b2εC0
i 0

b2A0
1
þ b2εC0

i � mþ d1 þ kð Þ 0

k � mþ Zð Þ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

Then the characteristic equation of the above Jacobian matrix is given by

� m a1 r

0 � a1 þ mð Þ 0

0 0 � ðrþ mÞ

0 0 0

0 0 0

� b2S0 Z

0 0

� b2εC0
i 0

M 0

k � mþ Zð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

¼ 0;

where M ¼ b2S0 þ b2εC0
i � mþ d1 þ kð Þ and after some steps of computations we have got λ1

= −μ< 0 or λ2 = −(α1 + μ) < 0 or λ3 = −(ρ + μ) < 0 or l4 ¼ b2S0 þ b2εC0
i � mþ d1 þ kð Þ ¼

mþ d1 þ kð Þ
b2S0þb2εC0

i
mþd1þk

� 1
h i

¼ mþ d1 þ kÞ RC � 1½ � < 0 if RC < 1 or λ5 = −(μ + η)< 0.

Therefore, since all the eigenvalues of the characteristics polynomials of the system (11) are

negative if RC < 1 the disease-free equilibrium point of the COVID-19 mono-infection model

(11) is locally asymptotically stable.

3.4.2. Existence of endemic equilibrium point (s) of the COVID-19 mono-infection

model. Before checking the global stability of the disease-free equilibrium point of the

COVID-19 mono-infection model (11), we shall find the possible number of endemic equilib-

rium point(s) of the model (11). Let E∗C ¼ ðS
∗;C∗

q;C
∗
v ;C

∗
i ; R

∗Þ be the endemic equilibrium

point of COVID-19 mono-infection and l
∗
C ¼ b2C∗

i be the COVID-19 mono-infection mass

action incidence rate (“force of infection”) at the equilibrium point. To find equilibrium point

(s) for which COVID-19 mono-infection is endemic in the population, the equations are

solved in terms of l
∗
C ¼ b2C∗

i at an endemic equilibrium point. Now setting the right-hand

sides of the equations of the model to zero (at steady state) gives

S∗ ¼
b5 b2 þ εl∗C
� �2

þ b6 b2 þ εl∗C
� �2

þ b7 b2 þ εl∗C
� �

þ b8l
∗
C

b1b3b4 b2 þ εl∗C
� �2

l
∗
C þ m

� �
� b1Zk b2 þ εl∗C

� �2
l
∗
C

; C∗
q ¼

k2D

b1

; C∗
v ¼

k4D

b2 þ εl∗C
� � ;

C∗
i ¼

b5 b2 þ εl∗C
� �2

l
∗
C þ b6 b2 þ εl∗C

� �2
l
∗
C þ b2b7l

∗
C þ b7εl

∗
C

2
� �

b12 b2 þ εl∗C
� �2

l
∗
C þ m

� �
� b13 b2 þ εl∗C

� �2
l
∗
C

þ
b8l

∗
C

2 þ b2b9 þ b9εl
∗
C

� �
l
∗
C

2 þ ml
∗
C

� �
� b10l

∗
C

2 � b11l
∗
C

3

b12 b2 þ εl∗C
� �2

l
∗
C þ m

� �
� b13 b2 þ εl∗C

� �2
l
∗
C

;

and

R∗ ¼
kB∗

5

b4

;

where b1 = α1 + μ, b2 = ρ + μ, b3 = μ + d1 + κ, b4 = μ + η, b5 = k1Δb1b3b4, b6 = α1k2Δb3b4, b7 =
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ρk4Δb1b3b4, b8 = k4Δb1ηκε, b9 = b1b3b4k4Δε, b10 = b2b1ηκk4Δε, b11 = b1k4Δεηκε, b12 =

b1b3b3b4, b13 = b1b3ηκ.

Then we have substituted C∗
i ¼

b5 b2þεl∗Cð Þ
2
l∗Cþb6 b2þεl∗Cð Þ

2
l∗Cþ b2b7l

∗
Cþb7εl∗C2ð Þ

b12 b2þεl∗Cð Þ
2
l∗Cþmð Þ� b13 b2þεl∗Cð Þ

2
l∗C

þ

b8l
∗
C

2þ b2b9þb9εl∗Cð Þ l∗C
2þml∗Cð Þ� b10l

∗
C

2 � b11l
∗
C

3

b12 b2þεl∗Cð Þ
2
l∗Cþmð Þ� b13 b2þεl∗Cð Þ

2
l∗C

in the COVID-19 force of infection given by l
∗
C ¼ b2R∗ we

have got the non-zero solution of l
∗
C is obtained from the cubic equation

c3l
∗
C

3 þ c2l
∗
C

2 þ c1l
∗
C þ a0 ¼ 0; ð12Þ

where

c3 ¼ b12ε
2 � b13ε

2 > 0

c2 ¼ 2b2b12εþ b12mε2 � 2b2b13ε � b5ε
2 � b6ε

2 � b9εþ b11;

c1 ¼ b2
2b12 þ b10 þ 2b2b12εm � b2

2b13 � 2b2b5ε � 2b2b6ε � b7ε � b8 � b2b9 � b9mε;

c0 ¼ b1b2b3b4 1 � RC½ � > 0 if RC < 1:

ð13Þ

It can be seen from and (13) that c3 > 0 (since the entire model parameters are nonnega-

tive). Furthermore, c0 > 0 whenever RC < 1. Thus, the number of possible positive real roots

the polynomial (12) can have depends on the signs of c1, and c2. This can be analyzed using the

Descartes’ rule of signs on the cubic f(x) = c3x3 + c2x2 + c1x + c0 (with = x ¼ l�C). Hence, the fol-

lowing results are established.

Theorem 6: The COVID-19 mono-infection model (11) could have

(a). a unique endemic equilibrium point if RC > 1 either of the following holds.

(i) c1 > 0 and c2 > 0.

(ii) c1 < 0 and c2 < 0.

(b). more than one endemic equilibrium point if RC > 1 either of the following holds.

(i) c1 > 0 and c2 < 0.

(ii) c1 < 0 and c2 > 0.

(c). two endemic equilibrium points if RC < 1; c1 < 0 and c2 < 0.

Here, item (c) shows the happening of the backward bifurcation in the model (11) i.e., the

locally asymptotically stable disease-free equilibrium point co-exists with a locally asymptoti-

cally stable endemic equilibrium point if RC < 1; examples of the existence of backward

bifurcation phenomenon in mathematical epidemiological models, and the causes, can be seen

in [8,17,26,31,58–60]. The epidemiological consequence is that the classical epidemiological

requirement of having the reproduction number RC to be less than one, even though neces-

sary, is not sufficient for the effective control of the disease. The existence of the backward

bifurcation phenomenon in sub-model (11) is now explored.

Theorem 7: The COVID-19 mono-infection model (11) exhibits backward bifurcation at

RC ¼ 1 whenever the inequality D2 > D1 holds, where

D1 ¼
� b2b

∗x0
1
rþmð Þ mþZð Þ� b2b

∗εx0
3
r mþZð Þ� b2εb∗εx0

3
mðmþZÞ

m rþmð ÞðmþZÞ
and D2 ¼

b2kZ rþmð Þ

m rþmð ÞðmþZÞ
.

In this section, we have used the center manifold theory stated in [60] to ascertain the local

asymptotic stability of the endemic equilibrium due to the convolution of the first approach

(eigenvalues of the Jacobian). To make use of the center manifold theory, the following change

of variables is made by symbolizing S = x1, Cp = x2, Cv = x3, Ci = x4 and R = x5 such that N2 = x1
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+ x2 + x3 + x4 + x5. Furthermore, by using vector notation X = (x1, x2, x3, x4, x5)T, the COVID-

19 mono-infection model (11) can be written in the form dX
dt ¼ F Xð Þ with F = (f1, f2, f3, f4, f5)T,

as follows

dx1

dt
¼ f1 ¼ k1Dþ a1x2 þ rx3 þ Zx5 � mx1 � lCx1;

dx2

dt
¼ f2 ¼ k2D � a1 þ mð Þx2;

dx3

dt
¼ f4 ¼ k4D � rþ mþ εlCð Þx3;

dx4

dt
¼ lCx1 þ εlCx3 � mþ d1 þ kð Þx4;

dx5

dt
¼ kx4 � mþ Zð Þx5;

ð14Þ

with λC = β2x4 then the method entails evaluating the Jacobian of the system (14) at the DFE

point E0
CM, denoted by JðE0

CMÞ and this gives us

J E0

CM

� �
¼

� m a2 r � b2x0
1

Z

0 � a1 þ mð Þ 0 0

0 0 � rþ mð Þ � b2εx0
3

0

0 0 0 b2x0
1
þ b2εx0

3
� mþ d1 þ kð Þ 0

0 0 0 k � mþ Zð Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Consider, RC ¼ 1 and suppose that β2 = β* is chosen as a bifurcation parameter. From

RC ¼ 1 as RC ¼
b2x0

2
þεb2x0

4

mþd1þk
¼

b2k1Dða1þmÞðrþmÞþb2a1k2DðrþmÞþb2k4Dða1þmÞðrþmεÞ
m a1þmð Þ rþmð Þðmþd1þkÞ

¼ 1.

Solving for β2 we have got b2 ¼ b
∗
¼

mða1þmÞðrþmÞðmþd1þkÞÞ

k1Dða1þmÞðrþmÞþa1k2DðrþmÞþk4Dða1þmÞðrþmεÞ.

Jb∗ ¼

� m a2 r � b
∗x0

1
Z

0 � a1 þ mð Þ 0 0

0 0 � rþ mð Þ � b
∗εx0

3
0

0 0 0 b
∗x0

1
þ b

∗εx0
3
� mþ d1 þ kð Þ 0

0 0 0 k � mþ Zð Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

After some steps of the calculation we have determined the eigenvalues of Jβ* as λ1 = −μ, λ2

= −(α1 + μ) or or λ3 = −(ρ + μ) or λ4 = 0 or λ5 = −(μ + η). It follows that the Jacobian J E0
CM

� �
of

Eq (14) at the disease-free equilibrium with β2 = β*, denoted by Jβ*, has a simple zero eigen-

value with all the remaining eigenvalues have negative real part. Hence, Theorem 2 of Castillo-

Chavez and Song stated in [60] can be used to analyze the dynamics of the model to show that

the model (11) undergoes backward bifurcation at RC ¼ 1.

Eigenvectors of Jβ*: For the case RC ¼ 1, it can be shown that the Jacobian of the system

(14) at β2 = β* (denoted by Jβ*) has a right eigenvectors associated with the zero eigenvalue
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given by u = (u1, u2, u3, u4, u5)T as

� m a2 r � b
∗x0

1
Z

0 � a1 þ mð Þ 0 0

0 0 � rþ mð Þ � b
∗εx0

3
0

0 0 0 b
∗x0

1
þ b

∗εx0
3
� mþ d1 þ kð Þ 0

0 0 0 k � mþ Zð Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

u1

u2

u3

u4

u5

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

0

0

0

0

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð15Þ

Then solving Eq (15) the right eigenvectors associated with the zero eigenvalue are given by

u1 ¼
� b

∗x0
1
u4 rþ mð Þ mþ Zð Þ � b

∗εx0
3
r mþ Zð Þu4 þ kZ rþ mð Þu4

m rþ mð Þ mþ Zð Þ
;

u2 ¼ 0; u3 ¼ �
b
∗εx0

3

rþ mð Þ
u4; u4 ¼ u4 > 0; u5 ¼

k

mþ Z
u4:

Similarly, the left eigenvector associated with the zero eigenvalues at β2 = β* given by v =

(v1, v2, v3, v4, v5)T as

v1

v2

v3

v4

v5

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

T

∗

� m a2 r � b
∗x0

1
Z

0 � a1 þ mð Þ 0 0

0 0 � rþ mð Þ � b
∗εx0

3
0

0 0 0 D 0

0 0 0 k � mþ Zð Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

0

0

0

0

0

0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

; ð16Þ

where D ¼ b∗x0
1
þ b

∗εx0
3
� mþ d1 þ kð Þ.

Then solving Eq (16) the left eigenvectors associated with the zero eigenvalue are given by

v1 = v2 = v3 = v4 = 0 and v4 = v4 > 0. After long steps of calculations the bifurcation coefficients

a and b are obtained as

a ¼
P5

i;j;k¼1
v4uiuj

@2f4
�

@xi@xj
¼ 2v4u1u4

@2f4
�

@x1@x4

þ 2v4u3u4

@2f4
�

@x3@x4

¼ 2v4u4 u1

@2f4
�

@x1@x4

þ u3

@2f4
�

@x3@x4

" #

;¼ 2v4u4 b2u1 þ b2εu3½ �

¼ 2v4u4
2 � b2b

∗x0
1
rþ mð Þ mþ Zð Þ � b2b

∗εx0
3
r mþ Zð Þ þ b2kZ rþ mð Þ � b2εb

∗εx0
3
m mþ Zð Þ

m rþ mð Þ mþ Zð Þ

� �

;

¼ 2v4u4 D2 � D1½ �;

where D1 ¼
� b2b

∗x0
1
rþmð Þ mþZð Þ� b2b

∗εx0
3
r mþZð Þ� b2εb∗εx0

3
mðmþZÞ

m rþmð ÞðmþZÞ
, and D2 ¼

b2kZ rþmð Þ

m rþmð ÞðmþZÞ
. Thus, the bifurcation

coefficient a is positive whenever D2 > D1.

Moreover

b ¼
X5

i;k¼1
vkui

@2fk
�

@xi@b
E0

CM

� �
¼
X5

i¼1
v4ui

@2f4
�

@xi@b
¼ v4u4

@2f4
�

@x4@b

¼ v4u4 x0

1
u1 þ εx0

3
u3

� �
> 0:
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Hence, from the theory of Castillo-Chavez and Song stated in [60] the COVID-19 mono-

infection model (11) exhibits a phenomenon of backward bifurcation at RC ¼ 1 and whenever

D2 > D1.

The diagram representation of this bifurcation is given in Fig 2 below.

Fig 2 shows the appearance of backward bifurcation, which results in the coexistence of sev-

eral equilibrium points. In such a case, the common conditions of disease eradication such as

making RC< 1 will not work, and the initial number of infected persons also plays a crucial

role.

3.5. Analytical result of HIV/AIDS and COVID-19 co-infection model

3.5.1. Disease-free equilibrium point. The disease free equilibrium point of the dynam-

ical system (3) when the state variable Ci = Hu = Ha = Mu = Ma = 0 is given by E0 ¼

S0; C0
q; H

0
p ;C

0
v ; C

0
i ; H

0
u;H

0
p ; M

0
u; M

0
a ;R

0; H0
t

� �
¼

k1D

m
þ

a1k2D

a1þm
þ

a2k3D

a2þm
þ

rk4D

rþm
;
k2D

a1þm
;
k3D

a2þm
;

k4D

rþm
; 0; 0; 0; 0; 0; 0; 0

� �
:

3.5.2. Effective reproduction number of the co-infection model. The effective reproduc-

tion number of the dynamical system (3) by applying the next generation operator method is

the largest (dominant) eigenvalue (spectral radius) of the matrix: FV � 1 ¼
@F i E0ð Þ

@Xj

h i
@ni E0ð Þ

@Xj

h i
,

where F i is the rate of appearance of new infection in compartment i, vi is the transfer of infec-

tions from one compartment i to another, and E0 is the disease-free equilibrium point. After

Fig 2. Backward bifurcation diagram.

https://doi.org/10.1371/journal.pone.0284759.g002
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some steps of calculations we have determined that

F ¼

@1 0 o1@1 o2@1 0 0 0

0 @2 r2@2 r3@2 r1@2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where @1 ¼ b2Sþ b2Hp þ εb2Cv; @2 ¼
b1

N Sþ Cq þ Cv

� �
, and

V ¼

mþ d1 þ kð Þ 0 0 0 0 0 0

0 yþ mþ d2ð Þ � y1 0 0 0 0

0 0 mþ d4 þ dþ y1ð Þ 0 0 0 0

0 0 � d mþ d5 þ y2ð Þ 0 0 0

0 � y 0 � y2 gþ d3 þ mð Þ 0 0

� k 0 0 0 0 mþ Zð Þ 0

0 0 0 0 � g 0 m

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Applying Mathematica we have determined as

FV � 1 ¼

@1

mþ d1 þ kð Þ
a21 0 0 0 0 0

0
@2

yþ mþ d2ð Þ
þ

r1@2y

yþ mþ d2ð Þ gþ d3 þ mð Þ
0 0 0 0 0

0 a23 0 0 0 0 0

0 a24 0 0 0 0 0

0 a25 0 0 0 0 0

0 a26 0 0 0 0 0

0 a27 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

After some computations and simplifications we have determined the dominant eigenvalue

in magnitude of the matrix FV−1 which is the HIV/AIDS and COVID-19 co-infection effective

reproduction number given by

RHC
0
¼ max RC; RHMf g ¼ maxf

b2k1Dða1 þ mÞ rþ mð Þ þ b2a1k2D rþ mð Þ þ b2k4Dr a1 þ mð Þ þ b2εk4Dm a1 þ mð Þ

m a1 þ mð Þ rþ mð Þ mþ d1 þ kð Þ

;
b1 1 � k3ð Þ a2 þ mð Þ þ b1a2k3

a2 þ mð Þ yþ mþ d2ð Þ
þ
b1r1y 1 � k3ð Þ a2 þ mð Þ þ b1r1ya2k3

yþ mþ d2ð Þ gþ mþ d3ð Þ
g;where RC ¼

b2S0þεb2C0
v

mþd1þk
¼

b2k1Dða1þmÞðrþmÞþb2a1k2DðrþmÞþb2k4Drða1þmÞþb2εk4Dm a1þmð Þ

m a1þmð Þ rþmð Þðmþd1þkÞ
is the COVID-19 effective repro-

duction number and RHM ¼
b1ð1� k3Þða2þmÞþb1a2k3

ða2þmÞðyþmþd2Þ
þ

b1r1yð1� k3Þða2þmÞþb1r1ya2k3

ðyþmþd2Þðgþmþd3Þ
is the HIV/AIDS effec-

tive reproduction number.
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3.5.3. Locally asymptotically stability of the disease-free equilibrium point. The Jaco-

bian matrix of the system (3) at disease free equilibrium point is given as

J E0ð Þ ¼

� m a1 a2 r � b2A1 �
b1

N
A1 �

b1

N
A1r1 � @4 � @6 Z 0

0 � a1 þ mð Þ 0 0 0 �
b1

N
A2 �

b1

N
A2r1 �

b1

N
A2r2 �

b1

N
A2r3 0 0

0 0 � a2 þ mð Þ 0 � b2A3 0 0 � b2A3o1 � b2A3o2 0 0

0 0 0 � rþ mð Þ � εb2A4 �
b1

N
A4 �

b1

N
A4r1 � @5 � @7 0 0

0 0 0 0 @3 0 0 o1@3 o2@3 0 0

0 0 0 0 0 @8 r1@8 r2@8 þ y1 r3@8 0 0

0 0 0 0 0 Y @9 0 y2 0 0

0 0 0 0 0 0 0 @10 0 0 0

0 0 0 0 0 0 0 d @11 0 0

0 0 0 0 k 0 0 0 0 � mþ Zð Þ 0

0 0 0 0 0 0 g 0 0 0 � m

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

where @3 ¼ b2 S0 þ Hp þ εCv

� �
� mþ d1 þ kð Þ; @4 ¼

b1

N r2 þ b2o1

� �
S0; @5 ¼

b1

N r2 þ εb2o1

� �
Cv; @6 ¼

b1

N r3 þ b2o2

� �
S0 and @7 ¼

b1

N r3 þ εb2o2

� �
Cv;@8 ¼

b1

N S0 þ Cq þ Cv

� �
� yþ mþ d2ð Þ; @9 ¼ � gþ d3 þ mð Þ; @10 ¼ � mþ d4 þ dþ y1ð Þ; @11 ¼

� mþ d5 þ y2ð Þ:

Then the eigenvalues of the matrix J(E0) are λ1 = −μ< 0 or λ2 = −(α1 + μ)< 0 or λ3 = −(α2

+ μ)< 0 or λ4 = −(ρ + μ)< 0 or λ5 = −μ< 0 or λ6 = −(μ + η)< 0 or l7 ¼

b2εk4D

rþmð Þ mþd1þkð Þ
RCM � 1ð Þ < 0 or λ8 = −(μ + d4 + δ + θ1)< 0 or λ9 = −(μ + d5 + Θ2)< 0 or λ2 + [(γ

+ d3 + μ) + (θ + μ + d2) −ℵ8]λ − [(ℵ8 − (θ + μ + d2))(γ + d3 + μ) + θρ1ℵ8] = 0.

Then after some calculations we have got the last two eigenvalues of the quadratic equation

as λ10 < 0 and λ11 < 0 whenever RHC
0
¼ max RC; RHMf g < 1. Thus, since all the eigenvalues

are negative, the disease-free equilibrium point of the full model (3) is locally asymptotically

stable whenever RHC
0
¼ max RC; RHMf g < 1.

3.5.4. Global asymptotic stability of disease-free equilibrium point. In this sub-section

we have used the method derived by Castillo-Chavez et al. and stated in reference [61] to look

into the global asymptotic stability (GAS) of the co-infection model (3) disease-free equilib-

rium point. We mention two requirements that, if satisfied, also ensure the disease-free equi-

librium is globally asymptotically stable. Then the new system (3) is rewritten as:

dC
dt
¼ F C;Υð Þ;

dΥ
dt
¼ G C;Υð Þ; G C; 0ð Þ ¼ 0;

whereC ¼ ðS; Cq; Hp; CvÞ 2 R
4

denotes the number of uninfected components and z ¼
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ðCi; Hu; Ha;Mu; Ma; R; HtÞ 2 R
7

denotes the number of infected components. P0 = (C0, 0),

denotes the disease-free equilibrium point of the system. The following requirements must be

satisfied to ensure the globally asymptotic stability:

(H1) For dC
dt ¼ F C; 0ð Þ, P0 is globally asymptotically stable.

(H2) G C;Υð Þ ¼ AΥ � bGðC;ΥÞ; bGðC;ΥÞ � 0, for (C, Y) 2 O, where A = DYG(C0, 0) is a

Metzler matrix (the off diagonal elements of A are nonnegative) and O is the region where

the model makes biological sense.

Theorem 8: The fixed point P0 = (C0, 0) is a globally asymptotically stable equilibrium

point of system (3) provided RHC
0
< 1 and the assumptions (H1) and (H2) are satisfied other-

wise unstable.

Proof: The system (1) is rewritten as

dC
dt
¼ F C;Υð Þ ¼

k1Dþ a1Cq þ a2Hp þ rCv þ ZR � lH þ lC þ mð ÞS

k2D � lH þ a1 þ mð ÞCq

k3D � a2 þ mþ lCð ÞHp

k4D � rþ mþ lH þ εlCð ÞCv

0

B
B
B
B
@

1

C
C
C
C
A
;

F C; 0ð Þ ¼

k1Dþ a1Cq þ a2Hp þ rCv � mS

k2D � a1 þ mð ÞCq

k3D � a2 þ mð ÞHp

k4D � rþ mð ÞCv

0

B
B
B
B
@

1

C
C
C
C
A
;

whereC represents the number of non-infectious compartments and Y represents the number

of infectious compartments.

And

G C;Υð Þ ¼

lCSþ lCHP þ εlCCv � mþ d1 þ kþ ulHð ÞCi

lHSþ lHCq þ lHCv þ y1Mu � yþ mþ d2 þ �1lCð ÞHu

yHu þ y2Ma þ y3Mu � gþ d3 þ mþ �2lCð ÞHa

�1lCHu þ ulHCi � mþ y3 þ d4 þ dþY1ð ÞMu

dMu þ �2lCHa � mþ d5 þ y2ð ÞMa

kCi � mþ Zð ÞR

gHa � mHt

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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Then G C;Υð Þ ¼ AΥ � bG C;Υð Þ, where,

A ¼

S1 0 0 b2o1ðSþHP þ εCvÞ b2o2ðSþHP þ εCvÞ 0 0

0 S2 S3

b1r2

N
Sþ Cq þ Cv

� �
þ y1

b1r3

N
Sþ Cq þ Cv

� �
0 0

0 y S4 y3 y2 0 0

0 0 0 � mþ y3 þ d4 þ dþY1ð Þ 0 0 0

0 0 0 d � mþ d5 þ y2ð Þ 0 0

k 0 0 0 0 � mþ Zð Þ 0

0 0 g 0 0 0 � m

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

where S1 ¼ b2 SþHP þ εCvð Þ � mþ d1 þ kð Þ; S2 ¼
b1

N Sþ Cq þ Cv

� �
� yþ mþ d2ð Þ; S3 ¼

b1r1

N Sþ Cq þ Cv

� �
and S4 = −(γ + d3 + μ), so that

AΥ ¼

lCðSþHP þ εCvÞ � mþ d1 þ kð ÞCi

� yþ mþ d2ð ÞHu þ lH Sþ Cq þ Cv

� �
þ y1Mu

yHu � gþ d3 þ mð ÞHa þ y3Mu þ y2Ma

� mþ y3 þ d4 þ dþY1ð ÞMu

dMu � mþ d5 þ y2ð ÞMa

kCi � mþ Zð ÞR

gHa � mHt

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

We have determined that,

bG C;Υð Þ ¼

lC
D

m
k1 þ

a1k2m

a1 þ m
þ

a2 þ 1ð Þk3m

a2 þ m
þ

rþ 1ð Þk4m

rþ m

� �

� lC Sþ Cq þ εCv

� �
þ ulHCi

lH
D

m
k1 þ

k2mða1 þ 1Þ

a1 þ m
þ
a2k3m

a2 þ m
þ
k4mðrþ 1Þ

rþ m

� �

� lH Sþ Cq þ Cv

� �
þ �1lCHu

�2lCHa

� �1lCHu � ulHCi

� �2lCHa

0

0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

It is clear from the above discussion, that, bG C;Υð Þ≱0. Hence by the same reason given by

results in reference [38], the disease-free equilibrium point may not be globally asymptotically

stable.
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4. Analysis of the optimal control strategy

In this section, we provide a thorough qualitative analysis of the time-dependent HIV/AIDS

and COVID-19 co-infection model (3). The Pontryagin’s Maximum Principle stated in litera-

tures [25,43,51,52,55] is used to describe this analysis, with the aim of minimizing the HIV/

AIDS infection aware individuals denoted by Ha, the COVID-19 infected individuals denoted

by Ci and the total HIV/AIDS and COVID-19 co-infected individuals denoted by Mu + Ma. In

the case of time-dependent optimal control, we employ Pontryagin’s Maximum Principle to

derive the necessary conditions for diseases control mechanisms. After incorporating the con-

trols into the HIV/AIDS and COVID-19 co-infection transmission model (3), the optimal

control problem is as follows:

_S ¼ k1Dþ a1Cq þ a2Hp þ rCv þ ZR � 1 � u1ð ÞlHS � 1 � u2ð ÞlCS � mS;

_Cq ¼ k2D � 1 � u1ð ÞlHCq � a1 þ mð ÞCq;

_Hp ¼ k3D � 1 � u2ð ÞlCHp � a2 þ mð ÞHp;

_Cv ¼ k4D � 1 � u1ð ÞlHCv � 1 � u2ð ÞεlCCv � rþ mð ÞCv;

_Ci ¼ 1 � u2ð ÞlCSþ 1 � u2ð ÞlCHp þ 1 � u2ð ÞεlCCv � 1 � u1ð ÞulHCi � mþ d1 þ u3kð ÞCi;

_Hu ¼ 1 � u1ð ÞlHSþ 1 � u1ð ÞlHCq þ 1 � u1ð ÞlHCv þ u3y1Mu � 1 � u2ð Þ�1lCHu � yþ mþ d2ð ÞHu;

_Ha ¼ yHu þ u3y2Ma � 1 � u2ð Þ�2lCHa � u4gþ d3 þ mð ÞHa;

_Mu ¼ 1 � u2ð Þ�1lCHu þ 1 � u1ð ÞulHHp � mþ d4 þ dþ u3y1ð ÞMu;

_Ma ¼ dMu þ 1 � u2ð Þ�2lCHp � mþ d5 þ u3y2ð ÞMa;

_R ¼ u3kA5 � mþ Zð ÞR;

_Ht ¼ u4gHp � mHt;

ð17Þ

with the corresponding initial conditions

S 0ð Þ > 0;Cq 0ð Þ � 0; Hp 0ð Þ � 0; Cv 0ð Þ � 0;Ci 0ð Þ � 0;Hu 0ð Þ � 0; Ha 0ð Þ � 0;Mu 0ð Þ

� 0;Ma 0ð Þ � 0;R 0ð Þ > 0; and Ht 0ð Þ > 0; ð18Þ

and 0 � u1 tð Þ � 1 represents HIV/AIDS infection protective control, 0 � u2 tð Þ � 1 repre-

sents the COVID-19 infections protective control using quarantine, 0 � u3 tð Þ � 1 represents

the COVID-19 infection treatment control, and 0 � u4 tð Þ � 1 represents the HIV/AIDS

treatment control.

The objective is to find the optimal control values u∗ ¼ u∗
1
; u∗

2
; u∗

3
; u∗

4

� �
of the

controls u ¼ u1; u2; u3; u4ð Þ such that the associated state trajectories

S∗; C∗
q; H

∗
p ;C

∗
v ; C

∗
i ; H

∗
u;H

∗
p ; M

∗
u; M

∗
a;R

∗; H∗
t

� �
are solution of the optimal control system (17)

in the intervention time interval [0, Tf] with initial conditions as given in (18) and minimize
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the objective functional given by

J u1; u2; u3; u4ð Þ

¼
R Tf

0
w1Ci þw2 Hp þw3Mu þw4 Ma þ

B1

2
u2

1
þ

B2

2
u2

2
þ

B3

2
u2

3
þ

B4

2
u2

4

� �
dt; ð19Þ

where the coefficientsw1;w2; w3;

andw4 are positive weight constants and
B1

2
;
B2

2
;
B3

2
and

B4

2
are the measure of relative costs

of interventions associated with the controls u1; u2; u3 and u4, respectively, and also balances

the units of integrand. In the cost functional, the termw1A5 refer to the cost related to

COVID-19 infected class, the termw2 Hu refer to the cost related to individuals mono-infected

with HIV and aware, the termw3A8 refer to the cost related to co-infected individuals unaware

of HIV infection and the termw4Ma refer to the cost related to co-infected individuals aware

of HIV infection.

I S; Cq;Hp;Cv; Ci; Hu; Ha; Mu;Ma;R; Ht; u
� �

¼ w1; Ci þw2 Ha þw3Mu þw4 Maþ

B1

2
u2

1
þ

B2

2
u2

2
þ

B3

2
u2

3
þ

B4

2
u2

4
, measures the current cost at time t. The set of admissible Lebes-

gue measurable control functions is defined by

Ou ¼ u1 tð Þ; u2 tð Þ; u3 tð Þ; u4 tð Þð Þ 2 L4 : 0 � u1 tð Þ; u2 tð Þ; u3 tð Þ; u4 tð Þ � 1; t 2 0;Tf

h in o
:ð20Þ

More precisely, we seek an optimal control pair

J u∗
1
; u∗

2
; u∗

3
; u∗

4

� �
¼ minOu J u1; u2; u3; u4ð Þ: ð21Þ

Theorem 9 (Existence Theorem): There exists an optimal control u∗ ¼ u∗
1
; u∗

2
; u∗

3
; u∗

4

� �
in

Ou and a corresponding solution vector S∗; C∗
q; H

∗
p ;C

∗
v ; C

∗
i ; H

∗
u; H

∗
a ; M

∗
u; M

∗
a; R

∗; H∗
t

� �
to

the optimal control dynamical system (17) with the initial values (18) such that

J u∗
1
; u∗

2
; u∗

3
; u∗

4

� �
¼ minOu J u1; u2; u3; u4ð Þ.

Note: We utilize Pontryagin’s Maximal principle stated in literatures [51,52,55], to deter-

mine the prerequisites for the optimal control model (17). The optimal control problem (17)

and (19) defined Hamiltonian (H) function is expressed as

H ¼ w1Ci þw2 Ha þw3Mu þw4 Ma þ
B1

2
u2

1
þ
B2

2
u2

2
þ
B3

2
u2

3
þ
B4

2
u2

4
þ
X11

i¼1
liGi; ð22Þ

where Gi stands for the ith state variable equation and λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t),
λ8(t), λ9(t), λ10(t) and λ11(t) are adjoint variables. Similarly to obtain the co-state variables by

using Pontryagin’s Maximum Principle stated in literatures [51,52,55], with the existence

result the following theorem is stated:

Theorem 10: Let u∗ ¼ u∗
1
; u∗

2
; u∗

3
; u∗

4

� �
be the optimal control and

S∗; C∗
q; H

∗
p ;C

∗
v ; C

∗
i ; H

∗
u; H

∗
a ; M

∗
u; M

∗
a; R

∗; H∗
t be the associated unique optimal solutions of the

optimal control problem (17) with initial condition (18) and objective functional (19) with

fixed final time Tf (20). Then there exists adjoint function l
∗
i �ð Þ; i ¼ 1; : : :; 11 satisfying the
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following canonical equations

dl1

dt
¼ 1 � u1ð Þl

∗
H l1 � l6ð Þ þ 1 � u2ð Þl

∗
C l1 � l5ð Þ þ ml1;

dl2

dt
¼ 1 � u1ð Þl

∗
H l2 � l6ð Þ þ a1 l2 � l1ð Þ þ ml2;

dl3

dt
¼ 1 � u2ð Þl

∗
C l3 � l5ð Þ þ a2 l3 � l1ð Þ þ ml3;

dl4

dt
¼ 1 � u1ð Þl

∗
H l4 � l6ð Þ þ 1 � u2ð Þεl∗C l4 � l5ð Þ þ r l4 � l1ð Þ þ ml4;

dl5

dt
¼ � w1 þ 1 � u2ð Þb2A

∗
1
l1 � l5ð Þ þ 1 � u2ð Þb2A

∗
3
l3 � l5ð Þ þ 1 � u2ð Þεb2A

∗
4
l4 � l5ð Þ þ

1 � u2ð Þ�1b2A
∗
6
l6 � l8ð Þ þ 1 � u2ð Þ�2b2A

∗
7
l7 � l9ð Þ þ 1 � u1ð ÞulH l5 � l8ð Þ þ mþ d1ð Þl5 þ u3k l5 � l10ð Þ;

dl6

dt
¼ 1 � u1ð Þ

b1

N
A∗

1
l1 � l6ð Þ þ 1 � u1ð Þ

b1

N
A∗

2
l2 � l6ð Þ þ 1 � u1ð Þ

b1

N
A∗

4
l4 � l6ð Þ þ

1 � u1ð Þu
b1

N
A∗

5
l5 � l8ð Þ þ 1 � u2ð Þ�1l

∗
C l6 � l8ð Þ þ mþ d2ð Þl6 þY l6 � l7ð Þ;

dl7

dt
¼ � w2 þ 1 � u1ð Þ

b1r1

N
A∗

1
l1 � l6ð Þ þ 1 � u1ð Þ

b1r1

N
A∗

2
l2 � l6ð Þ þ 1 � u1ð Þ

b1r1

N
A∗

4
l4 � l6ð Þ þ

1 � u1ð Þu
b1r1

N
A∗

5
l5 � l8ð Þ þ 1 � u2ð Þ�2l

∗
C l7 � l9ð Þ þ d3 þ mð Þl7 þ u4g l7 � l11ð Þ;

dl8

dt
¼ � w3 þ 1 � u1ð Þ

b1r2

N
A∗

1
l1 � l6ð Þ þ 1 � u2ð Þb2o1A

∗
1
l1 � l5ð Þ þ 1 � u1ð Þ

b1r2

N
A∗

2
l2 � l6ð Þ þ 1 � u2ð Þ

b2o1A
∗
3
l3 � l5ð Þ þ 1 � u1ð Þ

b1r2

N
A∗

4
l4 � l6ð Þ þ 1 � u2ð Þεb2o1A

∗
4
l4 � l5ð Þ þ 1 � u1ð Þu

b1r2

N
A∗

5
l5 � l8ð Þ þ u3y1

l8 � l6ð Þ þ 1 � u2ð Þ�1b2o1A
∗
6
l6 � l8ð Þ þ 1 � u2ð Þ�2b2o1A

∗
7
l7 � l9ð Þ þ mþ d4ð Þl8 þ d l8 � l9ð Þ;

dl9

dt
¼ � w4 þ 1 � u1ð Þ

b1r3

N
A∗

1
l1 � l6ð Þ þ 1 � u2ð Þb2o2A

∗
1
l1 � l5ð Þ þ 1 � u1ð Þ

b1r3

N
A∗

2
l2 � l6ð Þ þ 1 � u2ð Þb2o2A

∗
3

l3 � l5ð Þ þ 1 � u1ð Þ
b1r3

N
A∗

4
l4 � l6ð Þ þ 1 � u2ð Þεb2o2A

∗
4
l4 � l5ð Þ þ 1 � u1ð Þu

b1r3

N
A∗

5
l5 � l8ð Þ þ

1 � u2ð Þ�1b2o2A
∗
6
l6 � l8ð Þ þ u3y2 l9 � l7ð Þ þ 1 � u2ð Þ�2b2o2A

∗
7
l7 � l9ð Þ þ mþ d5ð Þl9;

dl10

dt
¼ � Zl1 þ mþ Zð Þl10;

dl11

dt
¼ ml11;

ð23Þ

with transiversality conditions

l
∗
i Tf

� �
¼ 0; i ¼ 1; 2; . . . ; 11: ð24Þ

Moreover, the corresponding optimal controls u∗
1
tð Þ; u∗

2
tð Þ; u∗

3
tð Þ; and u∗

4
tð Þ are given by

u∗
1
tð Þ ¼ max 0; min

l
∗
HS

∗ l6 � l1ð Þ þ l
∗
HC

∗
q l6 � l2ð Þ þ l

∗
HC

∗
v l6 � l4ð Þ þ ul

∗
HC

∗
i l8 � l5ð Þ

B1

; 1

� �� �

;

u∗
2
tð Þ ¼ max 0;min

l
∗
CS∗ l5 � l1ð Þ þ l

∗
CH∗

p l5 � l3ð Þ þ εl∗CC∗
v l5 � l4ð Þ þ �1l

∗
CH∗

u l8 � l6ð Þ þ �2l
∗
CH∗

p l9 � l7ð Þ

B2

; 1

� �� �

;

u∗
3
tð Þ ¼ max 0;min

Y1M∗
u l8 � l6ð Þ þY2M∗

a l9 � l7ð Þ þ kC∗
i l5 � l10ð Þ

B3

; 1

� �� �

;

u∗
4
tð Þ ¼ max 0;min

gH∗
p l7 � l11ð Þ

B4

; 1

� �� �

:

ð25Þ
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Proof: To obtain the form of the co-state equations we compute the derivative of the Hamil-

tonian function (H), given in (22), with respect to S∗; C∗
q; H

∗
p ;C

∗
v ; C

∗
i ; H

∗
u; H

∗
a ; M

∗
u; M

∗
a; R

∗

and H∗
t respectively. Then the adjoint or co-state equations obtained are given by:

dl1

dt
¼ �

@H
@S
¼ 1 � u1ð Þl

∗
H l1 � l6ð Þ þ 1 � u2ð Þl

∗
C l1 � l5ð Þ þ ml1;

dl2

dt
¼ �

@H
@Cq
¼ 1 � u1ð Þl

∗
H l2 � l6ð Þ þ a1 l2 � l1ð Þ þ ml2;

dl3

dt
¼ �

@H
@Hp
¼ 1 � u2ð Þl

∗
C l3 � l5ð Þ þ a2 l3 � l1ð Þ þ ml3;

dl4

dt
¼ �

@H
@Cv
¼ 1 � u1ð Þl

∗
H l4 � l6ð Þ þ 1 � u2ð Þεl∗C l4 � l5ð Þ þ r l4 � l1ð Þ þ ml4;

dl5

dt
¼ �

@H
@Ci
¼ � w1 þ 1 � u2ð Þb2A

∗
1
l1 � l5ð Þ þ 1 � u2ð Þb2A

∗
3
l3 � l5ð Þ þ 1 � u2ð Þεb2A

∗
4
l4 � l5ð Þ þ

1 � u2ð Þ�1b2A
∗
6
l6 � l8ð Þ þ 1 � u2ð Þ�2b2A

∗
7
l7 � l9ð Þ þ 1 � u1ð ÞulH l5 � l8ð Þ þ mþ d1ð Þl5 þ u3k l5 � l10ð Þ;

dl6

dt
¼ �

@H
@Hu
¼ 1 � u1ð Þ

b1

N
A∗

1
l1 � l6ð Þ þ 1 � u1ð Þ

b1

N
A∗

2
l2 � l6ð Þ þ 1 � u1ð Þ

b1

N
A∗

4
l4 � l6ð Þ þ

1 � u1ð Þu
b1

N
A∗

5
l5 � l8ð Þ þ 1 � u2ð Þ�1l

∗
C l6 � l8ð Þ þ mþ d2ð Þl6 þY l6 � l7ð Þ;

dl7

dt
¼ �

@H
@Ha
¼ � w2 þ 1 � u1ð Þ

b1r1

N
A∗

1
l1 � l6ð Þ þ 1 � u1ð Þ

b1r1

N
A∗

2
l2 � l6ð Þ þ 1 � u1ð Þ

b1r1

N
A∗

4
l4 � l6ð Þ þ

1 � u1ð Þu
b1r1

N
A∗

5
l5 � l8ð Þ þ 1 � u2ð Þ�2l

∗
C l7 � l9ð Þ þ d3 þ mð Þl7 þ u4g l7 � l11ð Þ;

dl8

dt
¼ �

@H
@Mu

¼ � w3 þ 1 � u1ð Þ
b1r2

N
A∗

1
l1 � l6ð Þ þ 1 � u2ð Þb2o1A

∗
1
l1 � l5ð Þ þ 1 � u1ð Þ

b1r2

N
A∗

2
l2 � l6ð Þ þ

1 � u2ð Þb2o1A
∗
3
l3 � l5ð Þ þ 1 � u1ð Þ

b1r2

N
A∗

4
l4 � l6ð Þ þ 1 � u2ð Þεb2o1A

∗
4
l4 � l5ð Þ þ 1 � u1ð Þu

b1r2

N
A∗

5

l5 � l8ð Þ þ u3y1 l8 � l6ð Þ þ 1 � u2ð Þ�1b2o1A
∗
6
l6 � l8ð Þ þ 1 � u2ð Þ�2b2o1A

∗
7
l7 � l9ð Þ þ mþ d4ð Þl8 þ d l8 � l9ð Þ;

dl9

dt
¼ �

@H
@Ma

¼ � w4 þ 1 � u1ð Þ
b1r3

N
A∗

1
l1 � l6ð Þ þ 1 � u2ð Þb2o2A

∗
1
l1 � l5ð Þ þ 1 � u1ð Þ

b1r3

N
A∗

2
l2 � l6ð Þ þ

1 � u2ð Þb2o2A
∗
3
l3 � l5ð Þ þ 1 � u1ð Þ

b1r3

N
A∗

4
l4 � l6ð Þ þ 1 � u2ð Þεb2o2A

∗
4
l4 � l5ð Þ þ 1 � u1ð Þu

b1r3

N
A∗

5
l5 � l8ð Þ þ

1 � u2ð Þ�1b2o2A
∗
6
l6 � l8ð Þ þ u3y2 l9 � l7ð Þ þ 1 � u2ð Þ�2b2o2A

∗
7
l7 � l9ð Þ þ mþ d5ð Þl9;

dl10

dt
¼ �

@H
@R
¼ � Zl1 þ mþ Zð Þl10;

dl11

dt
¼ �

@H
@Ht
¼ ml11;

ð26Þ

with transiversality conditions

l
∗
i Tf

� �
¼ 0; i ¼ 1; 2; . . . ; 11: ð27Þ

To obtain the control values, we compute the partial derivative of the Hamiltonian, given

by:

@H
@ui
¼ 0; for i ¼ 1; 2; 3; 4 ð28Þ

PLOS ONE Bifurcation analysis and optimal control for COVID-19 and HIV/AIDS co-infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284759 May 5, 2023 25 / 47

https://doi.org/10.1371/journal.pone.0284759


Moreover, the corresponding optimal controls with the boundary condition of each control

u∗
1
tð Þ; u∗

2
tð Þ; u∗

3
tð Þ; and u∗

4
tð Þ are given by

u∗
1
tð Þ ¼ max 0; min

l
∗
HS

∗ l6 � l1ð Þ þ l
∗
HC

∗
q l6 � l2ð Þ þ l

∗
HC

∗
v l6 � l4ð Þ þ ul

∗
HC

∗
i l8 � l5ð Þ

B1

; 1

� �� �

;

u∗
2
tð Þ ¼ max 0;min

l
∗
CS

∗ l5 � l1ð Þ þ l
∗
CH

∗
p l5 � l3ð Þ þ εl∗CC

∗
v l5 � l4ð Þ þ �1l

∗
CH

∗
u l8 � l6ð Þ þ �2l

∗
CH

∗
p l9 � l7ð Þ

B2

; 1

� �� �

u∗
3
tð Þ ¼ max 0;min

Y1M∗
u l8 � l6ð Þ þY2M∗

a l9 � l7ð Þ þ kC∗
i l5 � l10ð Þ

B3

; 1

� �� �

;

u∗
4
tð Þ ¼ max 0;min

gH∗
p l7 � l11ð Þ

B4

; 1

� �� �

:

ð29Þ

From the previous analysis, to get the optimal point, we have to solve the system

_S∗ ¼ k1Dþ a1C∗
q þ a2H∗

p þ rC
∗
v þ ZR

∗ � 1 � u∗
1

� �
l
∗
HS

∗ � 1 � u∗
2

� �
l
∗
CS

∗ � mS∗;

_C∗
q ¼ k2D � 1 � u∗

1

� �
l
∗
H þ a1 þ m

� �
C∗

q;

_H ∗
p ¼ k3D � a2 þ mþ 1 � u∗

2

� �
l
∗
C

� �
H∗

p;

_C∗
v ¼ k4D � rþ mþ 1 � u∗

1

� �
l
∗
H þ ε 1 � u∗

2

� �
l
∗
C

� �
C∗
v;

_C∗
i ¼ 1 � u∗

2

� �
l
∗
CS

∗l
∗
CH

∗
p þ ε 1 � u∗

2

� �
l
∗
CH

∗
p � u 1 � u∗

1

� �
l
∗
HC

∗
i � mþ d1 þ u

∗
3
k

� �
C∗
i ;

_H ∗
u ¼ 1 � u∗

1

� �
l
∗
HS

∗ þ 1 � u∗
1

� �
l
∗
HC

∗
q þ 1 � u∗

1

� �
l
∗
HC

∗
v þ u

∗
3
y1M∗

u � 1 � u∗
2

� �
�1l

∗
CH

∗
u � yþ mþ d2ð ÞH∗

u;

_H ∗
a ¼ YH

∗
u þ u

∗
3
Y2M∗

a � 1 � u∗
2

� �
�2l

∗
CH

∗
a � u∗

4
gþ d3 þ m

� �
H∗

a ;

_M∗
u ¼ 1 � u∗

2

� �
�1l

∗
CH

∗
u þ 1 � u∗

1

� �
ul

∗
HC

∗
i � mþ d4 þ dþ u

∗
3
Y1

� �
M∗

u;

_M∗
a ¼ dM

∗
u þ 1 � u∗

2

� �
�2l

∗
CH

∗
a � mþ d5 þ u

∗
3
y2

� �
M∗

a;

_R∗ ¼ u∗
3
kC∗

i � mþ Zð ÞR∗;
_H ∗
t ¼ u

∗
4
gA∗

7
� mH∗

t ;

with the Hamiltonian

H ¼ w1C∗
i þw2 H∗
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5. Numerical results

In this section we have presented the numerical result we have obtained using the parameters

value collected in Table 3 below. We have collected data from a variety of sources, and have

compiled the values in the table for the convenience of the constructed model numerical simu-

lations and to verify the analytical results.

5.1. Numerical simulations and discussions of the deterministic model (3)

In this section, a numerical simulation of the entire HIV/AIDS and COVID-19 co-infection

model given in Eq (3) is performed. We used ode45 fourth order Runge-Kutta scheme to

examine the effect of various parameters on the spread and control of COVID-19 mono-infec-

tion, HIV/AIDS mono-infection, and HIV/AIDS and COVID-19 co-infection. The parameter

Table 3. Parameter values used for the co-infection model simulation.

Symbol Value Source

Δ 2500 [32]

μ 0.019 [32]

α1 0.31 Assumed

α2 0.43 Estimated from [1]

d1 0.33 [39]

d2 0.315 [26]

θ 0.21 [43]

θ1 0.30 [43]

θ2 0.30 [43]

θ3 0.38 Assumed

υ 0.3 [43]

ϕ1 1 [43]

ϕ2 1 [43]

ρ1 1.25 Assumed

ρ2 1.5 Assumed

ρ2 1.8 Assumed

γ 0.2 [10]

d3 0.34 Assumed

d4 0.42 Assumed

d5 0.51 Assumed

η 0.200 [26]

δ 0.53 Assumed

ε 0.002 [14]

β1 0.3425 [43]

β2 0.1175 [43]

ω1 1.1 Assumed

ω2 1.4 Assumed

k1 0.40 [27]

k2 0.20 Assumed

k3 0.20 Assumed

k4 0.20 Assumed

ρ 0.30 Assumed

κ 0.05 [23]

υ 0.85 Assumed

https://doi.org/10.1371/journal.pone.0284759.t003
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values presented in Table 3 are used for numerical simulation. Moreover, we have investigated

the stability of the endemic equilibrium point of the co-infection model (3), the effects of

parameter on reproduction numbers, and the impact of treatment primarily on dually-infected

individuals in the community.

5.2. Simulation of co-infection model (3) whenever RHC
0
¼ 3:2 > 1

The above Fig 3 was plotted using ode45 Runge-Kutta fourth order method to observe the

numerical simulation of the full co-infection model (3) by using parameter values from

Table 3. We can deduce from the figure that after a year, the solutions of the COVID-19 and

HIV/AIDS co-infection dynamical system (3) are approaching the endemic equilibrium point

of the given dynamical system whenever the co-infection effective reproduction number

RHC
0
¼ maxfRHM;RCMg ¼ max 2; 3:2f g ¼ 3:2 > 1.

5.3. Numerical simulation to show the effect of k3 on RHM

The effect of the HIV protection rate on the HIV/AIDS effective reproduction number RHM is

depicted in Fig 4. The graph shows that as the value of protection rate k3 increases, the effective

reproduction number RHM decreases and for k3 > 0.771 indicates that RHM is reduced to less

than one. As a result, the public health and policymakers must focus on increasing the values

of the HIV/AIDS protection rate k3 in order to control HIV/AIDS spread which may causes

for existence of co-infection in the community.

Fig 3. The feature of the co-infection model (3) solutions atRHC
0 ¼ 3:2>1.

https://doi.org/10.1371/journal.pone.0284759.g003
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5.4. Simulation to show the effect of κ on RC

A numerical simulation in order to show the effect of COVID-19 treatment on the COVID-19

effective reproduction number RC is given by Fig 5. The graph shows that as the value of the

treatment rate raises, the COVID-19 basic reproduction number decreases and for the value of

κ> 0.776 implies that RC < 1.

Fig 5. Simulation of COVID-19 treatment rate κ versus RC.

https://doi.org/10.1371/journal.pone.0284759.g005

Fig 4. Simulation of HIV protection rate k3 versus RHM.

https://doi.org/10.1371/journal.pone.0284759.g004
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5.5. Numerical simulation to show the effect of k2 on RCM

Fig 6 depicted the effect of the COVID-19 protection rate k2 on the COVID-19 effective repro-

duction number RC. As we can observe from the graph as the value of k2 increases, the

COVID-19 effective reproduction number decreases, and k2 > 0.654 implies that RC < 1. As

a result, all the stakeholders must focus on increasing the values of COVID-19 quarantine rate

k2 in order to prevent and control COVID-19 spread in the community. Biologically, this

means that COVID-19 infection decreases as the quarantine rate k2 rises.

5.6. Numerical simulation to show effect of β2 on RC

Fig 7 shows the influence of the COVID-19 transmission rate β2 on the COVID-19 effective

reproduction number RC. The graph shows that as the value of β2 rises, so does the COVID-

19 effective reproduction number and the value of β2 < 0.225 means that RC < 1. As a result,

public health authorities must focus on reducing the value of COVID-19 transmission rate β2

in order to avoid and regulate COVID-19 spread in the community.

5.7. Simulation to show effect of β1 on RHM

Fig 8 depicts a numerical simulation on the influence of HIV transmission rate β1 on the HIV/

AIDS effective reproduction number RHM. The graph shows that as the value of β1 grows, so

does the HIV/AIDS effective reproduction number and whenever β1 < 0.193 significantly

RHM reduces to less than unity. Therefore it is recommendable to give an attention on mini-

mizing the value of the HIV transmission rate β1 to prevent and control HIV/AIDs expansion

Fig 6. Numerical simulation of COVID-19 protection rate k2 versus RCM.

https://doi.org/10.1371/journal.pone.0284759.g006
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Fig 8. Numerical simulation on β1 versusRHM.

https://doi.org/10.1371/journal.pone.0284759.g008

Fig 7. Numerical simulation on β2 versus RC.

https://doi.org/10.1371/journal.pone.0284759.g007
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in the community. Biologically, this indicates that the HIV/AIDS infection lowers as the trans-

mission rate β1 drops.

5.8. Simulation to show effect of k4 on RC

Fig 9 looked at how the COVID-19 immunization (vaccination) rate k4 affected the COVID-

19 effective reproduction number RC. The graph shows that when the value of k4 grows, the

COVID-19 effective reproduction number decreases, and values of k4 > 0.9 suggest that

RC < 1: As a result, public health authorities must focus on increasing the COVID-19 immu-

nization rate k4 in order to prevent and control COVID-19 spread in the community. Biologi-

cally, this indicates that the COVID-19 infection reduces as the immunization rate k4 rises.

5.9. Numerical simulation to show effect of κ on COVID-19 infectious (Ci)

Fig 10 examined the effect of COVID-19 treatment rate on the number of COVID-19 mono-

infectious population. The graph shows that when the value of κ increases, the number of

COVID-19 mono-infectious people decrease. As a result, public officials should focus on

increasing the value of the treatment rate at which COVID-19 infected individuals recovered

from COVID-19 illness increase.

5.10. Simulation to show effect of θ1 on the co-infectious (Mu)

Fig 11 looked at how θ1 affected the number of COVID-19 and HIV/AIDS co-infected individ-

uals. The graph shows that when the value of COVID-19 treatment rate θ1 rises, the number of

COVID-19 and HIV/AIDS co-infected individuals’ decreases. As a result, public officials

should focus on maximizing the value of COVID-19 treatment rate θ1 in COVID-19 infected

persons.

Fig 9. Numerical simulation on k4 versusRC.

https://doi.org/10.1371/journal.pone.0284759.g009
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Fig 10. Numerical simulations of κ versus Ci.

https://doi.org/10.1371/journal.pone.0284759.g010

Fig 11. Numerical simulation on θ1 versus Hu.

https://doi.org/10.1371/journal.pone.0284759.g011
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5.11. Simulation to show effect of θ2 on the co-infectious (Ma)

Fig 12 show that the impact of θ2 on the number of COVID-19 and HIV/AIDS co-infected

people. The graph shows that when the value of the COVID-19 treatment rate θ2 rises, the

number of COVID-19 and HIV/AIDS co-infected individuals decrease. As a result, public offi-

cials must focus on maximizing the value of COVID-19 treatment rate θ2 in COVID-19

infected persons.

5.12. Numerical simulations of optimal control strategies

To verify the analytical results, the optimal control model system (17) is simulated using the

parameter values given in Table 3 with positive weight constants w1 = w2 = w3 = w4 = 18. The

optimal control system is composed of two dynamical systems, the state dynamical system

(17) and the adjoint dynamical system (27), each with its own initial and final-time conditions,

with the control value state in Eq (26). The fourth forward-backward Runge-Kutta iterative

method is used to solve this optimality system. The state Eq (17) is solved with the initial values

of state variables using the fourth-order forward Runge-Kutta method. We used backward

fourth order Runge-Kutta to solve the adjoint equations once we had the solution of the state

functions and the value of optimal controls. To determine the impact of control measures on

the reduction of the HIV/AIDS and COVID-19 co-infection we have the following three cases

of optimal control strategies:

Fig 12. Numerical simulation on θ2 versus Ma.

https://doi.org/10.1371/journal.pone.0284759.g012
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Case 1: Controlling HIV infection Ha with the combinations of strategies: strategy 1: use

u1 ¼ 0, and u4 6¼ 0, strategy 2: use u1 6¼ 0, and u4 ¼ 0 and strategy 3: use u1 6¼ 0 and

u4 6¼ 0.

Case 2: Controlling COVID-19 infection Ci with the combinations of strategies: strategy 1: use

u2 ¼ 0, and u3 6¼ 0, strategy 2: use u2 6¼ 0, and u3 ¼ 0 and strategy 3: use u2 6¼ 0, and

u3 6¼ 0.

Case 3: Controlling the total HIV/AIDS and COVID-19 co-infection Mu + Ma with the combi-

nations of strategy 1: use the strategy u1 ¼ 0, u2 6¼ 0, u3 6¼ 0, and u4 6¼ 0 strategy 2: use the

strategy u1 6¼ 0, u2 ¼ 0, u3 6¼ 0, and u4 6¼ 0 strategy 3: use the strategy u1 6¼ 0, u2 6¼ 0,

u3 6¼ 0, and u4 6¼ 0 strategy 4: use the strategy u1 6¼ 0,

5.13. HIV infection (Ha) simulation with strategy 1 (u1 ¼ 0, and u4 6¼ 0)

In this subsection simulation is done for the HIV/AIDS infection (Ha) when there is no control

strategy in place and when there is only HIV/AIDS treatment control measure. Fig 13 shows

that the HIV/AIDS treatment control measure efforts are implemented then the number of

individuals infected with HIV decreases throughout time to zero.

5.14. HIV infection simulation with strategy 1 (u1 6¼ 0, and u4 ¼ 0)

In this subsection simulation is done for the HIV/AIDS infection (Ha) when there is no control

strategy in place and when there is only HIV/AIDS protection control measure. Fig 14 shows

that the HIV/AIDS protection control measure efforts are implemented then the number of

individuals infected with HIV decreases throughout time to zero.

Fig 13. Simulation of HIV infection (Ha) with HIV/AIDS treatment strategy.

https://doi.org/10.1371/journal.pone.0284759.g013
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5.15. HIV infection simulation with strategy 1 (u1 6¼ 0, and u4 6¼ 0)

In this subsection simulation is done for the HIV/AIDS infection (Ha) when there is no control

strategy in place and when there are HIV/AIDS protection and treatment control measures.

Fig 15 shows that the HIV/AIDS protection and treatment control measures efforts are

Fig 15. Simulation of HIV infection (Ha) with both HIV/AIDS protection and treatment strategies.

https://doi.org/10.1371/journal.pone.0284759.g015

Fig 14. Simulation of HIV infection (Ha) with HIV/AIDS protection strategy.

https://doi.org/10.1371/journal.pone.0284759.g014
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implemented then the number of individuals infected with HIV/AIDS decreases rapidly to

zero after seven years.

5.16. COVID-19 infection simulation with strategy 1 (u2 ¼ 0, and u3 6¼ 0)

In this subsection simulation is done for the COVID-19 infection (Ci) when there is no control

strategy in place and when there is COVID-19 treatment control measure. Fig 16 shows that

the COVID-19 treatment control measure effort is implemented then the number of individu-

als infected with COVID-19 decreases to zero through time.

5.17. COVID-19 infection simulation with strategy 1 (u2 6¼ 0, and u3 ¼ 0)

In this subsection simulation is done for the COVID-19 infection (Ci) when there is no control

strategy in place and when there is COVID-19 protection control measure. Fig 17 shows that

the COVID-19 protection control measure effort is implemented then the number of individu-

als infected with COVID-19 decreases to zero after five years.

5.18. COVID-19 infection simulation with strategy 1 (u2 6¼ 0, and u3 6¼ 0)

In this subsection simulation is done for the COVID-19 infection (Ci) when there is no control

strategy in place and when there are COVID-19 protection and treatment control measures.

Fig 18 shows that the COVID-19 protection and treatment control measures efforts are imple-

mented then the number of individuals infected with COVID-19 decreases quickly to zero.

5.19. Co-infection simulation with strategy 1 (u1 ¼ 0, u2 6¼ 0, u3 6¼ 0, and

u4 6¼ 0)

In this subsection simulation is done for the cumulated HIV/AIDS and COVID-19 co-infec-

tion when there is no control strategy in place and when there are controls involving COVID-

Fig 16. Simulation of COVID-19 infection (Ci) with treatment strategy.

https://doi.org/10.1371/journal.pone.0284759.g016
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19 protection, treatments for both HIV and COVID-19 single infections without HIV protec-

tion measure. Fig 19 shows the result that all the prevention and control strategies except HIV

protection efforts are implemented, the number of individuals co-infected with HIV and

COVID-19 decreases drastically to zero after year seven.

Fig 18. Simulation of COVID-19 infection (Ci) with both protection and treatment strategies.

https://doi.org/10.1371/journal.pone.0284759.g018

Fig 17. Simulation of COVID-19 infection (Ci) with treatment strategy.

https://doi.org/10.1371/journal.pone.0284759.g017
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5.20. Co-infection simulation with strategy 2 (u1 6¼ 0, u2 ¼ 0, u3 6¼ 0, and

u4 6¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are controls involving HIV protection, treatment strategies for both HIV and COVID-19 sin-

gle infections without COVID-19 protection measure. Fig 20 shows the result that all the pre-

vention and control strategies except COVID-19 protection efforts are implemented, the

number of individuals co-infected with HIV and COVID-19 decreases drastically to zero.

5.21. Co-infection simulation with strategy 3 (u1 6¼ 0, u2 6¼ 0, u3 ¼ 0, and

u4 6¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are controls involving HIV protection, COVID-19 protection, and HIV treatment without

COVID-19 treatment measure. Fig 21 shows the result that all the prevention and control

strategies except HIV treatment strategy efforts are implemented, the number of individuals

co-infected with HIV and COVID-19 decreases drastically to zero after 7 years.

5.22. Co-infection simulation with 4 (u1 6¼ 0, u2 6¼ 0, u3 6¼ 0, and u4 ¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are controls involving HIV protection, COVID-19 protection, and COVID-19 treatment with-

out HIV treatment measures. Fig 22 shows the result that all the prevention and control strate-

gies except HIV treatment strategy efforts are implemented, the number of individuals co-

infected with HIV and COVID-19 decreases drastically to zero after 8 years.

Fig 19. Simulation of the co-infection with COVID-19 protection and COVID-19 and HIV/AIDS treatments

strategies.

https://doi.org/10.1371/journal.pone.0284759.g019
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Fig 20. Simulation of the co-infection with HIV protection and COVID-19 and HIV/AIDS treatments strategies.

https://doi.org/10.1371/journal.pone.0284759.g020

Fig 21. Simulation of the co-infection with HIV protection, COVID-19 protection and HIV/AIDS treatment

strategies.

https://doi.org/10.1371/journal.pone.0284759.g021
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5.23. Co-infection simulation with strategy 5 (u1 ¼ 0, u2 ¼ 0, u3 6¼ 0, and

u4 6¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are controls involving treatment strategies for COVID-19 and HIV single infection without

HIV and COVID-19 protection measures. Fig 23 shows the result that treatment strategies

efforts are implemented without protection strategies, the number of individuals co-infected

with HIV and COVID-19 decreases drastically to zero in the long run.

5.24. Co-infection simulation with strategy 6 (u1 6¼ 0, u2 6¼ 0, u3 ¼ 0, and

u4 ¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are control strategies involving protection strategies for COVID-19 and HIV single infection

without HIV and COVID-19 treatment measures. Fig 24 shows the result that protection strat-

egies efforts are implemented without treatment strategies, the number of individuals co-

infected with HIV and COVID-19 decreases drastically to zero after 8 years later.

5.25. Co-infection simulation with strategy 7 (u1 6¼ 0, u2 6¼ 0, u3 6¼ 0, and

u4 6¼ 0)

In this subsection simulation is done when there is no control strategy in place and when there

are all the control strategies involving protection and treatment for both COVID-19 and HIV

single infections. Fig 25 shows the result that all the protection and treatment strategies efforts

are implemented, the number of individuals co-infected with HIV and COVID-19 decreases

drastically to zero after 3.

Fig 22. Simulation of the co-infection with HIV protection, COVID-19 protection and COVID-19 treatment

strategies.

https://doi.org/10.1371/journal.pone.0284759.g022

PLOS ONE Bifurcation analysis and optimal control for COVID-19 and HIV/AIDS co-infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284759 May 5, 2023 41 / 47

https://doi.org/10.1371/journal.pone.0284759.g022
https://doi.org/10.1371/journal.pone.0284759


6. Conclusions

In this paper, we formulated and investigated a continuous time dynamical model for the

transmission of HIV/AIDS and COVID-19 co-infection with protection and treatment strate-

gies. The mode incorporate four non-infectious groups the susceptible group, the HIV

Fig 24. Simulation of the co-infection with only HIV and COVID-19 protections strategies.

https://doi.org/10.1371/journal.pone.0284759.g024

Fig 23. Simulation of the co-infection with only HIV and COVID-19 treatments strategies.

https://doi.org/10.1371/journal.pone.0284759.g023
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protection group, the COVID-19 protection group, and the COVID-19 vaccinated group and

this made the model highly nonlinear and challenging for the qualitative analysis of the co-

infection model. The model has been mathematically analyzed both for the sub-models associ-

ating the cases that each disease type is isolated and in the case when there is co-infection. In

addition an optimal control problem model that minimizes the cost of the infection as well as

minimizes the control efforts to control the diseases transmission in the community is formu-

lated and analyzed. The model includes the intervention strategies, protective as well as treat-

ment and numerical simulations of both the deterministic model and optimal control problem

models are presented. In the analysis it has been indicated that the effect of protection as well

as treating the infected ones with the available treatment mechanisms affects significantly the

optimal control strategy and its outcome. From the optimal control problem simulation results

it can be concluded that applying both protective and treatment control mechanisms at the

population level yields both economic as well as epidemiologic gains. Therefore, we recom-

mended to the stake holders to give more attention and the overall optimal effort to implement

both the protective as well as treatment control strategies to minimize the single infections as

well as the co-infection diseases transmission in the community.

This study did not considered the stochastic method, fractional order method, impacts of

the environment, structure of human age, the spatial structure, and real population primary

epidemiological data. Based on these limitations potential researcher can consider to extend

this study.
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