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Abstract

We have previously reported that L-arginine, a nitric oxide synthase substrate, inhibits the
basolateral 10-pS CI" channel through the cGMP/PKG signaling pathway in the thick
ascending limb (TAL). As a NO releasing agent, the effect of S-nitroso-N-acetyl-penicilla-
mine (SNAP) on the channel activity was examined in thick ascending limb of C57BL/6 mice
in the present study. SNAP inhibited the basolateral 10-pS CI channel in a dose-dependent
manner with an IC50 value of 6.6 uM. The inhibitory effect of SNAP was abolished not only
by NO scavenger (carboxy-PTIO) but also by blockers of soluble guanylate cyclase (ODQ
or LY-83583), indicating that the cGMP-dependent signaling pathway is involved. Moreover,
the inhibitory effect of SNAP on the channel was strongly attenuated by a protein kinase G
(PKG)-specific inhibitor, KT-5823, but not by the PDE2 inhibitor, BAY-60-7550. We con-
cluded that SNAP inhibited the basolateral 10-pS CI" channels in the TAL through a cGMP/
PKG signaling pathway. As the 10-pS CI” channel is important for regulation of NaCl absorp-
tion along the nephron, these data suggest that SNAP might be served as a regulator to pre-
vent high-salt absorption related diseases, such as hypertension.

Introduction

Hypertension is influenced by multiple risk factors, among which high NaCl intake is one of
the risk factors that has been studied the most. It is believed that increased NaCl intake elevates
blood pressure and thus favoring the development of hypertension [1]. Considerable evidence
indicated that it is the combination of Na* and CI, rather than Na" per se, is responsible for
the development of salt-sensitive hypertension [1-5]. For example, in Dahl rats (an animal
model of salt-sensitive hypertensive rat), selective loading with only Na™ or Cl” but not both
failed to induce changes in blood pressure [2,6,7]. It has been indicated that decrease in
absorption of Cl” in renal tubular might be the reason for why sodium salt in the absence of
chloride could not be able to increase blood pressure in the Dahl salt-sensitive rat [8]. Cl™ is
the richest anion in both extracellular and intracellular environments of our body [9]. There-
fore, it is not surprise that Cl~ transport along the nephron is important in the regulation of
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extracellular fluid volume as well as blood pressure [10,11]. These results suggest that control
of not only Na* absorption but also Cl™ absorption is critical for regulation of blood pressure
and thus contributes to the development of salt-sensitive hypertension [2,9,10,12].

The thick ascending limb (TAL) of the loop of Henle reabsorbs over one-fifth of the filtered
NaCl while absorbing no water. By doing so, the TAL segment helps the nephron to establish
and maintain the hypertonic medullary solute gradient, generate dilute tubular fluid, and thus
plays important roles in regulating fluid volume and blood pressure [13-15]. Improper regula-
tion of CI™ absorption by this segment has been implicated in salt-sensitive hypertension [14].
ClI” absorption is a two-step process in the TAL [16]. Cl” entries across the apical membrane
via Na*-K"-2Cl™ co-transporter. Generally, the proper function of Na*-K"-2CI™ co-transporter
requires the simultaneous presence of all three ions, which means that the transport of Na*
and Cl™ across the apical membrane is dependent on each other. Once inside the cell, Cl~ exits
across the basolateral membrane down a favorable electrochemical gradient through the baso-
lateral CI” channels. Ion-substitution experiment showed that the basolateral CI” channels
provide the major pathway for Cl~ exit [17]. These results suggest that CI” channels in the
basolateral membrane play an important role in controlling Cl™ absorption in the TAL.

Several researches using patch-clamp technique have found that two different CI” channels
exist in the TAL: the smaller one with conductance of ~10 pS and the larger one with conduc-
tance of ~30-40 pS. It has been demonstrated that the smaller one is the major type of the
basolateral CI” channels in the TAL [18-21]. For example, our previous study has showed that
the single channel activity of the 10-pS CI™ could be obtained in 314 patches among the total of
1,147 patches investigated, whereas the single channel activity of the 30-pS CI” channel was
observed in only 68 patches [21]. Furthermore, we have demonstrated that nitric oxide (NO)
synthase substrate (L-arginine) could inhibit the basolateral 10-pS CI~ channel in the TAL
through the cGMP/PKG signaling pathway [21]. As a NO releasing agent, S-nitroso-N-acetyl-
penicillamine (SNAP) might be a potential candidate for regulation of NaCl absorption by
affecting the basolateral 10-pS Cl™ channel activity. In the present study, we studied the
detailed molecular mechanism of SNAP on the regulation of this 10-pS Cl™ channel.

Materials and methods
Preparation of the TAL for single channel recordings

The pathogen-free C57BL/6 mice (male, 5 wks old) were from Laboratory Animal Center of
Xiamen University (Xiamen, China). All animal procedures were in strict accordance with the
National Institutes of Health’s Guidelines for the Care and Use of Laboratory Animals. All the
experimental protocols were approved by the Animal Care and Use Committee of Xiamen
University following the Guide for the Care and Use of Laboratory Animals [22]. The mice
had free access to water and were fed with a control diet. Every effort was made to minimize
the number of animals used and to minimize suffering. After the mice had been euthanized by
pentobarbital administration (150 mg/kg) followed by cervical dislocation, the kidneys were
removed immediately and thin coronal sections (1-mm) were cut with a razor blade. The
TALs were dissected in a HEPES-buffered NaCl solution containing 1 mg/mL collagenase type
1A (Sigma, St. Louis, MO) at 37°C for 55 minutes. Then, the dissected TAL was transferred
onto a cover glass (5 mm x 5 mm) that was coated with poly-lysine (Sigma) overnight to
immobilize the tubule. The cover glass was placed in a chamber mounted on an inverted
microscope (Olympus) for single channel recordings and the tubules were superfused with
HEPES-buftered NaCl solution containing (mM): 5 KCl, 140 NaCl, 1.8 MgCl,, 1.8 CaCl, and
10 HEPES with pH of 7.4.
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Single channel recordings

Single-channel recordings were obtained from cell-attached configuration of patch-clamp
technique. The pipette solution contains (mM): 1.8 MgCl,, 140 NaCl and 10 HEPES with pH
of 7.4. Single channel activity was defined as NP,, a product of channel number (N) and open
probability (P,). The NP, was calculated from single channel recordings using the following
equation:

NP, =Y (1t +2t, +...it) (1)

where ¢, is the fractional open time spent at each of the observed current levels. For the single
channel activity, the single channel recordings with duration of 60 seconds, which were
obtained at least 2 min after addition of SNAP, were analyzed.

Chemicals

KT-5823, SNAP, carboxy-PTIO and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)
were from Sigma (St. Louis, MO). LY-83583 and BAY-60-7550 were from Santa Cruz Biotech-
nology (Santa Cruz, CA). ODQ, LY-83583 and BAY-60-7550 were dissolved in dimethyl sulf-
oxide (DMSO). To ensure that the channel activity was not affected by DMSO, its final
concentration in the bath was less than 0.1%.

Statistical analysis

An IC50 value was obtained by fitting concentration dependence data from single channel
recordings to the following equation:

I (%) = [SNAP]"/(IC,," 4 [SNAP]") (2)

in which I (%) is the percentage of inhibition, H represents the Hill coefficient and [SNAP]
represents concentration of SNAP. The percentage of inhibition at the test potential is calcu-
lated by the following equation:

I(%) = [1 — NPosy,p/NPo, x 100 (3)

comrol)]

where NPosnapy and NPo(controly represent NPo of the channels in the presence of SNAP and
under control condition, respectively. Data are shown as mean + SEM. Differences in means
were tested with paired sample t-test and were accepted as significant if P < 0.05.

Results

In most of the experiments, the NPo was different from different patches even under control
condition. To avoid the effect of the values of different NPo of different patches on the experi-
mental results, we applied different concentrations of SNAP on the same patch and then using
paired sample t-test for statistical analysis. Fig 1A is a set of representative single channel
recordings from the same cell-attached patch, showing that the NPo of the channel in the same
patch was gradually decreased with the increase in [SNAP] from 0 to 10 pM. The statistical
analysis on dose-response effect in Fig 1B showed that the mean NPo of the channel was

1.23 £ 0.08 before application of SNAP, and it decreased to 0.93 + 0.04, 0.74 £ 0.07,

0.56 + 0.07, and 0.48 + 0.11 when [SNAP] was increased to 2.5, 5, 7.5 and 10 pM, respectively.
A nonlinear curve fit of the Hill equation (Eq 2) to the data points in Fig 1C yielded an ICs
value of 6.62 + 0.20 uM and a Hill coefficient of 1.31 + 0.08 (n = 5), respectively. Because 5 uM
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Fig 1. Inhibitory effect of SNAP on the basolateral 10-pS CI” channel in the TAL. (A) Representative single channel traces of the
basolateral 10-pS Cl” channel at a holding potential of -60 mV in the control and during successive exposure to different concentration of
SNAP (2.5-10 uM) from the same patch in cell-attached configuration. The channel closed level is indicated by the dotted line and “C”. (B)
Statistical summary for dose-response effect of SNAP on the 10-pS CI” channels from 5 sets of experiments. Each set of experiment was
obtained by successive exposure to different concentration of SNAP (2.5-10 uM) from the same patch. Asterisk indicates the significant
difference between the control (no SNAP) and SNAP treated groups. (*: P < 0.05, **: P < 0.01, ***:P < 0.001, paired sample t-test). (C) The
curve is the best fit to percentage of inhibition (Eq 3) against the [SNAP] according to the Hill equation (Eq 2) with ICsq = 6.62 pM.

https://doi.org/10.1371/journal.pone.0284707.9001

SNAP was a suitable concentration to inhibit the channel, we used this concentration in the
following experiments.

To judge whether the inhibitory effect of SNAP on the single channel activity of the 10-pS
Cl channels is due to its release of NO, we used a NO scavenger (carboxy-PTIO) to eliminate
NO. Fig 2A illustrates a set of single channel recordings from the same patch under control
condition, in the presence of carboxy-PTIO as well as in the presence of both carboxy-PTIO
and SNAP. Application of 10 uM carboxy-PTIO alone did not affect the single channel activity.
However, SNAP failed to inhibit the channel activity if carboxy-PTIO was applied. Statistical
results from 6 set of experiments demonstrated that 10 uM carboxy-PTIO did not significantly
affect the single channel activity, but the inhibitory effect of SNAP on the CI” channels was
abolished in the presence of carboxy-PTIO (Fig 2B), suggesting that the effect of SNAP to
inhibit the channel was due to its release of NO.

To investigate whether soluble guanylate cyclase (sGC) was involved in the inhibitory effect
of SNAP on the channel activity, ODQ, a sGC inhibitor, was used in the following experi-
ments. Fig 3A is a set of single channel recordings from the same patch under control condi-
tion, in the presence of sGC blocker ODG (10 uM) as well as in the presence of both ODG
(10 uM) and SNAP (5 uM). Statistical results from 5 set of experiments demonstrate that ODG
alone did not affect the single channel activity. However, application of ODG blocked the
inhibitory effect of SNAP on the channels. To further confirm this result, we examined
whether LY-83583, another specific sGC blocker, could also prevent the effect of SNAP on the
channel. Fig 4A is a set of single channel recording from the same patch showing that even
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Fig 2. Scavenging NO diminishes the inhibitory effect of SNAP on the 10-pS CI” channels. (A) A set of singe channel recordings from the
same patch in a cell-attached patch under control condition, in the presence of 10 uM carboxy-PTIO alone as well as in the presence of 10 uM
carboxy-PTIO + 5 uM SNAP. The holding potential was —60 mV and the channel closed level is indicated by the dotted line and “C”. (B)
Statistical summary showing that carboxy-PTIO abolishes the inhibitory effect of SNAP on the channels (n = 6).

https://doi.org/10.1371/journal.pone.0284707.9002

though 10 uM LY-83583 alone did not affect the channel activity, it could prevent the inhibi-
tory effect of SNAP on the channels. Statistical analysis from 5 sets of experiments demonstrate
that application of SNAP did not significantly inhibit the Cl channel activity in the TAL that
was pre-treated with LY-83583 (Fig 4B). These results suggest that the inhibitory effect of
SNAP on the channel is due to its activation of sGC.

To examine whether cGMP-dependent protein kinase (PKG) signaling pathway is involved,
the effect of SNAP on the 10-pS Cl™ channels was investigated in the TAL pretreated with PKG
inhibitor KT-5823. A set of single channel recordings from the same patch (Fig 5A) and statis-
tical summary (Fig 5B) showed that KT-5823 (5 uM) alone had no significant effect on the sin-
gle channel activity of the 10-pS CI” channel. However, inhibition of PKG could eliminate the
effect of SNAP on the channel activity after the TAL was pretreated with KT-5823.
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Fig 3. Soluble guanylyl cyclase (sGC) inhibitor ODQ blocks the inhibitory effect of SNAP on the 10-pS CI” channels in the TAL. (A)
Representative single channel recordings from the same cell-attached patch under control condition, in the presence of 10 uM ODQ alone as well
as in the presence of both ODQ (10 uM) and SNAP (5 uM). The holding potential was —60 mV and the channel closed level is indicated by the
dotted line and “C”. (B) The bar graph showing that ODG abolishes the inhibitory effect of SNAP on the channels (n = 5).

https://doi.org/10.1371/journal.pone.0284707.9003
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Fig 4. Soluble guanylyl cyclase inhibitor LY-83583 prevents the effect of SNAP on the 10-pS CI” channels. (A) Representative single channel
recordings from the same cell-attached patch under control condition, in the presence of 10 uM LY-83583 alone as well as in the presence of
both LY-83583 (10 uM) and SNAP (5 uM). The holding potential was -60 mV and the channel closed level is indicated by the dotted line and
“C”. (B) The bar graph showing that LY-83583 eliminates the inhibitory effect of SNAP on the channel.

https://doi.org/10.1371/journal.pone.0284707.g004

Finally, to test whether the cGMP-stimulated phosphodiesterase II (PDE2) is involved,
BAY 60-7550, a specific PDE2 inhibitor was used in the following experiment. A set of single
channel recordings from the same patch (Fig 6A) and statistical summary (Fig 6B) showed
that BAY-60-7550 alone did not significantly affect the 10-pS CI”~ channel activity. However,
SNAP has the similar inhibitory effect on the channel even in the presence of BAY-60-7550,
suggesting that PDE2 is not involved in mediating the inhibitory effect of SNAP on the single
channel activity of the 10-pS Cl” channel.

Discussion

The basolateral Cl” channels of the TAL belong to the CIC family. Two family members of CIC
are found in the TAL: CIC-K1 and CIC-K2, corresponding to CLC-NKA and CLC-NKB in

humans. For a functional channel, barttin subunit is necessary to facilitate the insertion of the
channel into the plasma membrane of the cell [23,24]. Although both CIC-K1 and CIC-K2 are
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Fig 5. Inhibition of PKG abolishes the effect of SNAP on the 10-pS CI" channels in the TAL. (A) Representative single channel recordings
from the same cell-attached patch under control condition, in the presence of 10 uM KT5823 alone as well as in the presence of both KT5823
(10 uM) and SNAP (5 uM). The holding potential was -60 mV and the channel closed level is indicated by the dotted line and “C”. (B) The bar
graph showing that KT5823 eliminates the inhibitory effect of SNAP on the channel.

https://doi.org/10.1371/journal.pone.0284707.9005

PLOS ONE | https://doi.org/10.1371/journal.pone.0284707  April 21, 2023 6/11


https://doi.org/10.1371/journal.pone.0284707.g004
https://doi.org/10.1371/journal.pone.0284707.g005
https://doi.org/10.1371/journal.pone.0284707

PLOS ONE

SNAP on CI" channel in TAL

1.5
A h] 1A B P=10.01386
Control P ° P=0.52571
=
C - .
IR VBN WO TR L T N L
o | &
=z
BAY-60-7550 °
) =
C - A L - Il ) —
| MLt W | by bk | m | g 0.5 -
Q
BAY-60-7550+SNAP

C_HMM \ i

A ol 0 \4
ContY - A\z—m—'ﬁ: o 55g+SNP>
BAY

Fig 6. Inhibition of PDE2 fails to abolish the effect of SNAP on the 10-pS CI channels in the TAL. (A) Representative single channel
recordings from the same cell-attached patch under control condition, in the presence of 10 uM BAY-60-7550 alone as well as in the presence of
both BAY-60-7550 (10 uM) and SNAP (5 uM). The holding potential was -60 mV and the channel closed level is indicated by the dotted line and
“C”. (B) The bar graph showing that BAY-60-7550 plays no role in the inhibitory effect of SNAP on the 10-pS CI’ channels.
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expressed in the TAL, several lines of evidence indicate that CIC-K2 is the basolateral 10-pS
channel [13]; 1) Only CIC-K2 can be observed by immunohistochemistry technique in the
basolateral membrane of the TAL [25,26]; 2) Judged by electrophysiological properties, espe-
cially ion selectivity of the channel, it has been suggested that CLC-K2 is the dominant CI
channel in the TAL [27]; 3) Single channel recordings indicated that the 10-pS channel is dom-
inant Cl” channel in the TAL [18,21]. 4) Electrophysiological study on knockout mice has
showed that CIC-K2 is the 10-pS Cl channel and it accounts for most of the basolateral CI
current in the TAL [13].

Furthermore, as the major pathway for Cl” exits across the basolateral membrane [26,28],
this 10-pS CIC-K2 channel has been suggested to be essential for NaCl absorption in the TAL,
which in turn plays roles in salt-sensitive increases in extracellular fluid volume and blood
pressure regulation [13,29]. Mutations that lead to loss-of-function of the channel cause Bart-
ter’s syndrome in humans indicates that CIC-Kb is responsible for NaCl absorption in the
TAL [30-32]. Importantly, overexpression of CIC-K2 in Dahl rats increased Cl” channel activ-
ity, which might contribute to the elevation of blood pressure of the rats [33]. It has been
found that T481S mutation in CIC-Kb strongly increased the CI- conductance by a factor of 20
[34]. Interestingly, there is a strong association between the CIC-Kb"**'® carriers and higher
average blood pressure as well as fraction of participants who had hypertensive blood pressure
levels, suggesting that the mutation CIC-Kb™*8'$
ment of hypertension [35,36]. Electrophysiological studies performed on knockout mice indi-
cate that CIC-K2 is essential for salt absorption in the TAL [13]. Taken together, these results
suggest that increase in salt absorption by activation of the basolateral 10-pS CI” channel
(CIC-K2) in the TAL is associated with hypertension.

Historically, the sodium absorption pathways have been studied much more than that of
the chloride pathways. However, as a matter of fact, the absorption of both ions is mutually
dependent with each other, which is critical for regulation of extracellular fluid volume as well
as blood pressure [10]. In the present study, we found that SNAP inhibited this basolateral
10-pS CI' channel in the TAL in a dose-dependent manner with an IC50 value of 6.6 pM. Fur-
thermore, we showed that the inhibitory effect of SNAP on the channel was through activation
of the cGMP-dependent PKG pathway but not through the cGMP-stimulated PDE2 pathway.
A model of the signaling pathway for the inhibitory effect of SNAP on the basolateral 10-pS CI’

of the channel may predispose to the develop-
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channel in TAL is presented in Fig 7. NO is released exogenously by SNAP (NO donor), dif-
fuses across the plasma membrane. In the cytoplasm, NO reacts with GC, and stimulates the
production of cGMP. This intracellular messenger in turn activates PKG, and inhibits the
basolateral 10-pS Cl channels in TAL. Increase in activity of this channel in the TAL has been
shown to be associated with hypertension [13,35,36]. It is reasonable to assume that inhibitors
of the 10-pS Cl-channel, such as SNAP, may have the potential of being developed as anti-
hypertension agents.
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