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Abstract

Recent advances in single-cell sequencing techniques have enabled gene expression profil-

ing of individual cells in tissue samples so that it can accelerate biomedical research to

develop novel therapeutic methods and effective drugs for complex disease. The typical first

step in the downstream analysis pipeline is classifying cell types through accurate single-

cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called

GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larn-

ing), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity

network through the ensemble similarity learning framework, and employ a low-dimensional

vector representation for each cell through a graph autoencoder. Through performance

assessments using real-world single-cell sequencing datasets, we show that the proposed

method can yield accurate single-cell clustering results by achieving higher assessment

metric scores.

Introduction

Single-cell sequencing provides effective means to estimate gene expression profiles for indi-

vidual cells so that it can help deciphering complex biological mechanisms underlying each

cell [1–5]. Compared to the next-generation sequencing, where it can only capture the aver-

aged gene expression profiles of cells in a tissue, the distinctive advantages of the single-cell

sequencing can be more appealing methodology for biomedical researchers to expedite devel-

oping novel drugs and effective therapies for complex disease such as cancer and neurodegen-

erative disease.

Although single-cell sequencing techniques have attractive features for advanced biomedi-

cal research, there are critical drawbacks. Since it can capture the cell specific gene expression

profile through the cell dissection and isolation process, it cannot provide the cell type labels

for each cell, where it is crucial information in order to interpret a dynamic nature and hetero-

geneity of biological mechanisms across different cell types. Due to the inherent limitation of

single-cell sequencing techniques, the typical first step of a downstream analysis in the analysis

pipeline is predicting cell types for each cell in the sequencing result [6–10]. However, since
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the current single-cell sequencing can simultaneously profile the gene expression of the thou-

sands of (or millions of) cells per experiment, it is challenging to manually annotate the cell

types for numerous cells so that fully automated computational approaches would be the desir-

able and cost-effective way to deal with large-scale single-cell sequencing results. The general

approach to annotate cell type labels includes two steps: i) prediction for the clusters of single-

cells and ii) identification of cell types by using auxiliary information such as cell type specific

marker genes [11–13]. Hence, the accuracy of the cell type identification and consequential

downstream analysis highly depends on the quality of the single-cell clustering results, where it

motivates for developing sophisticated single-cell clustering algorithms.

To enhance the accuracy of the cell type identification process, several single-cell clustering

algorithms have been proposed based on different strategies and distinctions. Seurat [14]

constructs a K-nearest neighbors network based on the similarity between 10 principal compo-

nents for each cell. Then, it derives the clustering labels for each cell by optimizing a modular-

ity through Louvain algorithm [15]. To the best of our knowledge, CIDR [16] is the first

single-cell clustering algorithm that adopts the zero-inflated noise reduction module in the

clustering algorithm. It first reduces the artificial zeros in a single-cell sequencing data and it

estimates the dissimilarity among cells. Then, CIDR obtain the single-cell clustering through a

hierarchical clustering. SC3 [17] measures similarities between cells through Euclidean dis-

tance, Pearson and Spearman correlation. Next, it transforms the similarity measurements

into the normalized Laplacian and initial clustering through k-means clustering based on dif-

ferent number of eigen vectors. Finally, SC3 obtains the consensus matrix through cluster-

based similarity partitioning algorithm [18] and derive the clustering labels through a hierar-

chical clustering. pcaReduce [19] first obtains the naive single-cell clustering through K-means

clustering algorithm through principal components for each cell. Then, pcaReduce repeatedly

merges a pair of clusters with the highest similarity until it attains the user-defined number of

clusters. SinNLRR [20] estimates the cell-to-cell similarity through the low-rank representation

of each cell. In order to obtain the low-rank representation for each cell, SinNLRR constructs

the optimization problem based on the assumption that the gene expression of one cell can be

derived through the mixture of gene expression of cells in the same cell type. Once it obtains

the low-rank representation of each cell, SinNLRR derive the accurate single-cell clustering

through the spectral clustering [21]. scGNN [22] constructs KNN (K-nearest neighbors) graph

based on the Eculidean distance of gene expression profiles between cells in order to represent

the cell-to-cell similarities. Then, scGNN refines the cell similarity graph by pruning less rele-

vant neighboring nodes (i.e., cells) using the isolation forest algorithm [23]. Finally, it itera-

tively employs three multi-modal autoencoders to derive accurate single-cell clustering results.

scDSSC [24] also utilizes an autoencoder in order to obtain the low-dimensional embeddings

for each cell. To derive the proper loss function for the autoencoder, scDSSC adopts the self-

expressiveness property, where the gene expression for a cell can be represented as a linear

combination of the gene expressions of other cells [25]. Once scDSSC obtains the low-dimen-

sional vectors for cells, the accurate single-cell clustering can be derived through a spectral

clustering algorithm.

In this work, we propose a novel single-cell clustering algorithm, called GRACE (GRaph

Autheocoder based single-cell Clustering through Ensemble similarity learning). The pro-

posed method adopts an ensemble similarity learning framework in order to avoid solving the

optimal feature selection problem and derive the accurate cell-to-cell similarity measurement.

Moreover, the proposed method leverages the graph autoencoder to obtain effective low-

dimensional vector representations for each cell, where it can be applied to various single-cell

analysis algorithms. First, in order to reduce a computational complexity and improve the reli-

ability of the cell-to-cell similarity estimation, we collect a set of potential feature genes based
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on the variance of gene expressions across cells. Next, we iteratively estimate the cell-to-cell

similarities through the different subsets of potential feature genes in order to increase the

diversity of the similarity measurements. Then, we construct the ensemble cell-to-cell similar-

ity network by integrating multiple similarity estimates that are derived through different fea-

ture sets. We obtain the low-dimensional vector representations (i.e., node embedding) of

each cell by applying the ensemble cell-to-cell similarity network into a graph autoencoder.

Finally, based on the low-dimensional vector representations for each cell, where it can be

derived through the graph autoencoder, we estimate the number of clusters in a single-cell

sequencing and obtain an accurate single-cell clustering labels through the k-means clustering

algorithm. Based on the comprehensive assessments using real-world single-cell sequencing

datasets, we demonstrate that GRACE can yield an accurate and reliable clustering results.

Materials and methods

Motivation and overview

To obtain in-depth analysis results of a single-cell sequencing data and decipher complex bio-

logical mechanisms underlying gene expression patterns, an effective single-cell clustering is

an essential first step [6–10]. Although an accurate cell-to-cell similarity measurement plays a

pivotal role in developing effective single-cell clustering algorithms, there are several hurdles

for precisely estimating cell-to-cell similarities. First, although the domain knowledge helps

accurately estimating cell-to-cell similarities that can lead to a development of effective single-

cell clustering algorithms, it generally needs priceless resources such as human labour and cost

to generate the biological prior knowledge or domain knowledge may not available for some

cases. That is, if we can exploit a prior information such as marker genes, where it is exclusively

expressed only in a particular cell type, the optimal cell-to-cell similarity can be efficiently

derived. However, in a practical point of view, since a prior knowledge is typically unknown

and marker genes can be identified through biological experiments that require a huge amount

of valuable resources such as cost and time, it is challenging to directly employ these marker

genes to develop single-cell clustering algorithms. Next, although it can be a reasonable alter-

native to estimate cell-to-cell similarities based on the feature genes that can describe the

unique properties of a particular cell type rather than employing marker genes, we need to

define a tailored cost function to select an effective set of feature genes. It is still challenging to

determine the set of the optimal feature genes because the mathematical soundness may not

guarantee the biological soundness even if we can define the optimal cost function for identify-

ing the set of optimal feature genes in terms of mathematical perspectives. Furthermore, when

considering the scale of current single-cell sequencing protocols, it is still challenging to define

the optimal (or effective) cost function that can account a biological variability across a larger

number of cells. Finally, due to the technical limitation of sequencing protocols, single-cell

sequencing includes a larger number of dropout events that can be modeled as a zero-inflated

noise [26, 27] and these artificial zeros make it challenging to accurately estimate the cell-to-

cell similarities.

To overcome aforementioned technical challenges, we propose a novel single-cell clustering

algorithm based on the ensemble similarity learning method and graph autoencoder. First, to

obtain the reliable cell-to-cell similarity measurements without a biological prior knowledge

such as cell type specific marker genes, we adopt an ensemble similarity learning framework,

where it can obtain the reliable cell-to-cell similarities by incorporating a number of cell-to-

cell similarity measurements based on different feature genes [28]. The key idea of the ensem-

ble similarity learning approach is that, if two cells consistently achieve a high level of similarity

even though it estimates the similarity based on different features (or similarity metrics), the
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two cells have a high probability to be classified into the same cell type. Based on the ensemble

similarity learning framework, the cell type specific marker genes are not required and we can

simultaneously avoid the optimal feature selection problem that requires defining the optimal

cost function, but it can guarantee a decent performance by increasing the diversity of similar-

ity measurements. Furthermore, although single-cell sequencing can include excessive zeros

that can be modeled as zero-inflated noise, since the ensemble learning framework exploits

multiple similarity measurements based on different feature sets for computing the cell-to-cell

similarities, it can also mitigate the effect of zero-inflated noise. Then, after converting the esti-

mated cell-to-cell similarities into a graphical model (i.e., ensemble cell-to-cell similarity net-

work), we derive the effective low dimensional vector representations for each cell through a

graph autoencoder. Finally, a node embedding vector can be directly utilized for determining

the number of clusters and developing an accurate single-cell clustering algorithm. Based on

the above solutions, the proposed method consists of three major steps: i) ensemble similarity

learning for deriving a graphical model that can accurately represent cell-to-cell similarities, ii)

deriving a low-dimensional vector representation (i.e., node embedding) of each cell through

a graph autoencoder, and iii) clustering of single-cells based on the low-dimensional vector

representation. Note that Fig 1 provides a graphical overview of the proposed single-cell clus-

tering algorithm.

Fig 1. Graphical overview of the proposed single-cell clustering algorithm. GRACE includes three main steps to derive the accurate single cell

clustering. First, the proposed method constructs the ensemble cell-to-cell similarity network, where it can effective represent the similarities between

cells based on the multiple similarity measurements through different feature genes. Second, a graph autoencoder derives a low-dimensional vector

representation for each node (i.e., cell). Finally, GRACE predicts the optimal number of clusters and yields the accurate single-cell clustering based on

the low-dimensional vector representation for each node.

https://doi.org/10.1371/journal.pone.0284527.g001
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Data normalization

Suppose that we have a single-cell sequencing data that can estimate gene expression profiles

across cells. These gene expression values can be represented as a M by N dimensional matrix

X, where M is the number of genes and N is the number of cells. In order to alleviate a techni-

cal bias, we perform a library size normalization [29, 30]. Although there are various normali-

zation methods having distinctive advantages and we need to carefully exploit a sophisticated

normalization method that is tailored to a particular sequencing platform, we employ a simple

normalization method called the count per million (cpm), where it results the same library size

for each sample (i.e., cells), because a selection of normalization methods is beyond the scope

of this paper. After performing a library size normalization, since the distribution of gene

expression in a single-cell sequencing data has a wide range and skewed numerical values, we

also take a log-transformation in order to obtain a balanced range of expression values. Finally,

we have the normalized gene expression matrix Xn, where it is given by

Xn ¼ log
2
ð1þ XÞ: ð1Þ

Estimation of a cell-to-cell similarity through ensemble similarity learning

We supposed that the accurate estimation of the cell-to-cell similarity (or correspondence) is

the most important factor to yield reliable single-cell clustering results. To obtain the accurate

estimation of a cell-to-cell similarity, we adopt the ensemble similarity learning strategy [28].

The fundamental assumption of the ensemble similarity learning approach is that, if two cells

consistently achieve a high similarity score based on the diverse similarity measurements

according to different feature sets, the two cells can have a high chance to be classified into the

same cell type. To accommodate the ensemble similarity learning framework into the pro-

posed single-cell clustering algorithm, we obtain multiple estimations of a cell-to-cell similarity

through different similarity measurement methods based on different feature sets. Then, to

obtain the accurate cell-to-cell similarity, we integrate multiple similarity measurements in a

balanced manner, where it can also reduce a potential sampling bias.

Fist, we identify the feature gene candidates, where it can have a great potential to be a

marker gene for a particular cell type. Note that marker genes are typically highly expressed in

a specific cell type and rarely expressed in the rest of cell types. Additionally, our goal is not

precisely identifying the marker genes and it would be acceptable if we can collect a set of

genes that can have a discriminative power for separating different cell types. To collect the

feature gene candidates, we compute the variance of each gene across whole cells and collect

the top five percent genes having the largest variances, where it can be a set F of feature gene

candidates. Next, we repeatedly estimate the cell-to-cell similarities based on the subset of fea-

ture gene candidates (i.e., f� F). That is, to determine the l-th similarity measurement, we

obtain a subset fl of feature genes based on the random sampling strategy. Note that, for each

random sampling process to select the l-th subset fl, the seventy percent of genes are randomly

extracted from the feature gene candidates F. Then, we compute the cell-to-cell similarity

based on the correspondence between cells, where it can be determined by both clustering

algorithms and a low-dimensional representation for each cell that can be derived through t-

SNE [31]. If two cells are grouped together in a low dimensional space, we consider that the

two cells could belong to the same cell type (i.e. they are similar to each other), otherwise the

two cells could not be similar to each other. Note that, to enhance diversity of similarity mea-

surements, we adopt different clustering algorithms such as k-means and hierarchical cluster-

ing algorithms because each algorithm can have a particular strength to capture different

geometrical characteristics of a data distribution.
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Based on the cell-to-cell correspondence estimation through k-means clustering algorithm

over the low-dimensional space, the l-th similarity estimation can be represented a matrix Kl,

where it is given by

Kl i; j½ � ¼
1; cj 2 N KðciÞ; 8ci

0; o:w:
;

(

ð2Þ

where Kl[i, j] is an element in i-th row and j-th column of the matrix Kl and N KðciÞ is a set of

cells that are grouped together with the i-th cell ci through k-means clustering algorithm. Note

that i-th row and j-th column in the matrix Kl indicate the similarity between i-th cell ci and j-
th cell cj.

Similarly, a hierarchical clustering algorithm over the low-dimensional space can determine

the l-th similarity estimation that can be represented as a matrix Hl, where it is given by

Hl i; j½ � ¼
1; cj 2 N HðciÞ; 8ci

0; o:w:
;

(

ð3Þ

where Hl[i, j] is an element in i-th row and j-th column of the matrix Hl and N HðciÞ is a set of

cells that have the same clustering label to the i-th cell ci through a hierarchical clustering.

Additionally, i-th row and j-th column in the matrix Hl indicate the similarity between i-th cell

ci and j-th cell cj. Note that, we empirically set the number of clusters as 30 for each similarity

measurement using the k-means and hierarchical clustering. Since the goal of clustering for

measuring the cell-to-cell similarity is identifying highly consistent group of cells, even though

cells in the same type would be divided into different subgroups, it would be much appropriate

to derive a larger number of clusters to make homogeneous cell groups.

Finally, we integrate two matrices Kl and Hl and repeat the similarity estimation process for

a certain number of times in order to derive the ensemble cell-to-cell similarity A, where it is

given by

A ¼
XL

l¼1

ðKl þHlÞ: ð4Þ

Note that we empirically set the number of ensemble learning process as 20 in order to miti-

gate the effect of a sampling bias and enhance the accuracy of the similarity estimation by

increasing the diversity of measurements.

Single-cell clustering through a graph autoencoder

To obtain accurate single-clustering results, we leverage a graphical representation of cells

because a graphical model can provide an intuitive way of describing complex relationships

among a number of objects. Moreover, we can take advantage of numerous mathematical the-

ories and well-developed algorithms that are tailored to analyze graphical models [32–34]. To

bring the advantages of graphical models into the proposed method, suppose that we have a

graph G ¼ ðV; E;WÞ, where the i-th cell can be represented as a node vi 2 V, and the edge

ei;j 2 E indicates the binary correspondence between i-th and j-th cells, and their similarity can

be represented as a weight function W : E ! R that can represent the level of the similarity

between cells. Based on the graphical model, the ensemble cell-to-cell similarity measurement

A can be considered as an adjacency matrix of the graph G.

Next, we adopt a graph autoencoder (GAE) in order to obtain a low-dimensional vector

representation for each cell because GAE can effectively take both a topological structure (i.e.,
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similarity relationships among cells) of the graph and features for each node into account

to learn a low-dimensional vector representation [35]. In this work, the architecture of GAE

consists of an encoder and a decoder, where the encoder has a graph convolutional network

(GCN) with two layers that can yield a embedding for each node [36]. The encoder can yield

the low-dimensional embedding Z for each node, where it is given by

Z ¼ GCNðX;AÞ ¼ ~AReLUð~AXW0ÞW1; ð5Þ

where Wi indicates the weight matrix for the i-th layer, ~A is a symmetrically normalized adja-

cency matrix (i.e., ~A ¼ D� 1=2AD� 1=2) and ReLU(x) is a rectifier linear unit function that gives

max(0, x). Note that we set the initial values in the weight matrix Wi based on the method in

[37].

In the decoder block, GAE reconstructs the adjacency matrix Â through Â ¼ sðZZTÞ,

where σ(�) is a logistic sigmoid function. To learn the low-dimensional embedding Z for each

node, GAE minimizes the reconstruction error between Â and A by opmizing the objective

function. Note that we adopt the same objective function in [35]. Additionally, to describe the

feature X for each node, we employ the first 10 principal components for each cell because we

suppose that first 10 PCs can effectively capture the enough variance for each cell. Finally, we

set the number of hidden nodes in the first and second GCN layers as 32 and 16, respectively.

Based on the low-dimensional vector represemtaion derived by GAE, we estimate the

number of clusters through the elbow method and we obtain the single-cell clustering labels

through k-means clustering algorithm because, based on our experimental results, these com-

bination provides promising performances. Note that the algorithm 1 summarizes the pseudo-

code of the proposed method.

Algorithm 1: GRACE
Data: Single-cell sequencing data X
Result: Clustering labels for each cell
begin
Data normalization and log-transformation using Eq (1) Select a set

F of potential feature genes for l = 1 to L do
fl � F /* Random feature (gene) sampling */
x = t-SNE(fl) Perform k-means and hierarchical clustering Construct

the similarity matrix Al using Eqs (2) and (3)
end
A ¼ ∑Ll¼1ðA

lÞ /* Ensemble similarity matrix */
Z = GCN(A, X) /* Obtain a node embedding */
k = elbow(Z) /* Determine the number of clusters */
cl = kmeans(Z) /* Perform k-means clustering */

end

Results

Datasets

We evaluated the effectiveness of the proposed single-cell clustering algorithm against the

state-of-the-art algorithms through fourteen single-cell sequencing datasets. First, we accessed

NCBI GEO (Gene Expression Omnibus) and downloaded a raw count (or relative gene

expression) matrix. Next, we removed all genes that are not expressed across whole cells

because these genes would not be necessary but it can increase a computational complexity

and memory consumption in an algorithmic point of view. Then, we employed processed

real-world single-cell sequencing datasets to compare the performance of single-cell clustering

algorithms. Usoskin et al. [38] sequenced mouse sensory neurons and it provides gene
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expression values of four different cell types: peptidergic nociceptors (PEP), non-peptidergic

nociceptors (NP), neurofilament containing(NF), and tyrosine hydroxylase containing (TH).

Kolodziejczyk et al. [39] provided a gene expression for pluripotent cells under different envi-

ronmental conditions. Klein et al. provided a single-cell sequencing data for mouse embryo

stem cells [4]. Zeisel et al. [40] obtained the gene expression data for cells in the mouse somato-

sensory cortex and hippocampal CA1 region. Zeisel dataset includes seven major cell types,

where it can be categorized into 47 different subtypes. Among seven major cell types, since

the population of three cell types is relatively smaller than other types, we only retained the

following major cell types: interneurons, oligodendrocytes, pyramidal CA1 and pyramidal S1

neurons. Baron et al. [41] performed single-cell sequencing for cells in human and mouse pan-

creatic islets. For the same reason, we only employed six major populations such as alpha, beta,

delta, ductal, gamma, and acinar. Furthermore, for the sequencing data obtained from the

mouse pancreatic islets, acinar cells are also excluded as its population is relatively smaller

than other cell types. Manno et al. [42] provided the gene expression profile for cells in the ven-

tral striatum (mouse brain). We downloaded the preprocessed data from PanglaoDB [43].

Although the preprocessed data includes total 7,788 cells, we only retained the cells having a

cell type label and removed the cells without a specific label. We obtained the PBMC 8K data

from the 10X single-cell sequencing database. The PBMC 8K data includes overall 8,381 cells

that are obtained from the peripheral blood mononuclear cells. Wang et al. [44] sequenced T

cells from the peripheral blood of healthy individuals (Wang_H) and cells in the B cell-acute

lymphoblastic leukemia (B-ALL) patients (Wang_P). Although these datasets include overall

12,699 and 16,143 cells, respectively, we assessed the performance of each algorithm by sam-

pling about 8,000 cells because of the limited computational resources. Table 1 summarizes the

basic statistics of each single-cell sequencing data.

Parameter settings for each algorithm

We compared the performance of the proposed algorithm against cutting-edge single-cell clus-

tering algorithms: Seurat [14], CIDR [16], SC3 [17], scGNN [22], and scDSSC [24]. To obtain

single-cell clustering results for each algorithm, we employed the R packages for CIDR, SC3

and Seurat and python scripts for scGNN and scDSSC through the default or recommended

Table 1. Summary of single-cell sequencing datasets.

Dataset #Cells #Genes #Clusters Accession Tissue

Usoskin 622 19,534 4 GSE59739 Mouse sensory neurons

Kolod 704 10,684 3 E-MTAB-2600 Mouse embryo stem cells

Klein 2,717 24,047 4 GSE65525 Mouse embryo stem cells

Zeisel 3,005 19,968 7 GSE60361 Mouse brain

Baron_h1 1,622 15,452 6 GSE84133 Human pancreas

Baron_h2 1,562 15,810 6 GSE84133 Human pancreas

Baron_h3 3,333 16,386 6 GSE84133 Human pancreas

Baron_h4 1,225 15,285 6 GSE84133 Human pancreas

Baron_m1 687 13,757 5 GSE84133 Mouse pancreas

Baron_m2 932 14,105 5 GSE84133 Mouse pancreas

Manno 6,980 27,845 13 PRJNA438862 Mouse Ventral striatum

PBMC_8k 8,381 33,694 11 10x Genomics Database Peripheral blood mononuclear cells

Wang_H 8,234 13,466 9 GSE172158 Human peripheral blood

Wang_P 8,071 14,267 1 GSE172158 Human peripheral blood

https://doi.org/10.1371/journal.pone.0284527.t001
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parameter settings. Moreover, although the true number of clusters for each dataset is given,

we employed the estimated number of clusters because the true number of clusters is typically

unknown in a practical point of view. Note that, since each algorithm has a tailored method to

estimate the true number of clusters, each method can yield different number of clustering

labels. In the proposed method, we empirically set the model parameters. That is, we compared

the simulation results through real-world single-cell sequencing datasets based on the diverse

parameter settings and determined the following model parameters because it generally

showed promising performances. To learn a low-dimensional vector representation for each

node through GAE, we set the maximum number of iterations as 200 and selected the ADAM

optimizer with a learning rate of 0.01. We performed all simulations using a desktop computer

with Intel i5 processor having 12 cores, 48 GB system memory, and NVIDIA GTX 1060 GPU,

where it is running on Windows 10 operating systems.

Assessment metrics

To assess the performance of the clustering algorithms, we leveraged the external information

such as the true cell type labels for each dataset. Based on the true cell type labels, we computed

four different performance metrics: i) adjusted rand index (ARI), ii) normalized mutual infor-

mation (NMI), iii) Jaccard index (JCCI), and iv) purity socre. To calculate the performance

metrics, suppose that there are the true cell type labels C ¼ ðc1; c2; . . . ::; cKÞ for each dataset

and we have the predicted clustering labels Y ¼ ðy1; y2; . . . ::; yJÞ, where it can be obtained

through each clustering algorithm.

First, the adjusted rand index is given by

ARI ¼

P
ij

ni;j
2

� �
�
P

i
ai
2

� �P
j
bj
2

� �h i
= n

2

� �

1

2

X

i
ai
2

� �
þ
X

j
bj
2

� �h i
�
X

i
ai
2

� �X

j
bj
2

� �h i
=

n
2

� � ; ð6Þ

where ni,j is the number of cells that are assigned to the i-th predicted label even though their

true label (i.e., the cell type) is the j-th label, ai = ∑i(nij), and bj = ∑j(nij).
Next, the normalized mutual information is given by

NMIðY; CÞ ¼
2� IðY; CÞ
HðYÞ þHðCÞ

; ð7Þ

where IðY; CÞ represents the mutual information between Y and C, and HðYÞ and HðCÞ are

the entropies of labels Y and C, respectively.

The Jaccard index (JCCI) is given by

JCCIðY;CÞ ¼
TP

TP þ FPþ FN
; ð8Þ

where TP is the number of correctly clustered cells, and FP is the number of cells in the same

cluster with different true cell type labels, and FN is the number of cells that are assigned to the

different predicted clustering labels but they have the same true cell type labels.

The purity score is given by

PurityðY;CÞ ¼
1

N

X

J

maxjjyi \ cjj; ð9Þ

where N is the number of cells, and J is the number of predicted clustering labels.
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We also compared the computational time of each clustering algorithm for different single-

cell sequencing datasets in order to assess the scalability and computational complexity.

Improved single-cell clustering through effective feature representations

The aim of a single-cell clustering algorithm is identifying a homogeneous group of cells so

that it can be employed to predict a cell type in a dataset without the help of biological valida-

tions, where it is a preliminary process in a single-cell analysis pipeline. To evaluate the consis-

tency of the clustering results for each algorithm, we evaluated the purity scores for each

algorithm. Among 14 single-cell sequencing datasets, GRACE achieved the highest purity

scores for four datasets and attained the second-best purity scores for eight datasets (Fig 2).

The average purity scores for scGNN, SC3, scDSSC, CIDR, Seurat, and GRACE were 0.422,

0.511, 0.575, 0.771, 0.685, and 0.805, respectively. Overall, although CIDR could be the stron-

gest competitor for GRACE as it showed the higher or comparable purity scores, GRACE typi-

cally achieved the highest mean purity score over 14 datasets. In fact, CIDR includes the zero-

inflated noise reduction process before deriving single-cell clustering results so that it can

achieve the higher purity scores than the other algorithms if the single-cell sequencing includes

larger number of artificial zeros. Based on our experimental results, we confirmed that

GRACE can achieve the higher purity score even though it does not have a noise reduction

step. This means that GRACE would have a possibility to further enhance the purity scores if it

adopts the similar noise reduction module. Additionally, when comparing GRACE with other

neural network based algorithms such as scGNN and scDSSC, the proposed method showed

substantially higher purity scores.

Next, we compared the Jaccard index for each clustering algorithm because, although the

purity score can effectively assess the consistency of the clustering results, it has a risk to yield

biased evaluations because the higher purity score can be easily achieved if the predicted

Fig 2. Purity scores for each clustering algorithm. Note that we performed 10 trials and visualize scattering points for each trial and

the bar plot represents the averaged purity scores for all trials.

https://doi.org/10.1371/journal.pone.0284527.g002
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clusters have a larger number of members. Given 14 experiments, we confirmed that GRACE

achieved the best mean JCCI scores. Note that the averaged JCCI score for scGNN, SC3,

scDSSC, CIDR, Seurat, and GRACE were 0.253, 0.271, 0.387, 0.507, 0.507, and 0.586, respec-

tively (Fig 3). Especially, GRACE showed remarkably higher JCCI score for Klein, Zeisel, Bar-

on_h2, Baron_h3, and Baron_h4 datasets. For instance, compared to the next-best algorithm

for aforementioned five datasets, GRACE achieved about 15, 80, 40, 11, and 6 percent

improvements. Although we confirmed that CIDR was the next best algorithm for the purity

score, CIDR and Seurat achieved the same mean JCCI scores. Based on our experiments,

CIDR tends to underestimate the number of clusters so that the number of clusters reported

by CIDR is typically smaller than the true number of clusters and it naturally yields clustering

results with a larger number of cells in each cluster. Hence, the purity score of CIDR may have

a chance to be biased or overrated due to the size of the clustering results. Interestingly, Seurat

showed the higher JCCI scores for the large-scale datasets including more than 6,000 cells.

Since these four datasets are obtained 10X Genomics platform, we carefully deduced that Seu-

rat could have a strength on the sequencing datasets from 10X Genomics platform. Addition-

ally, although deep neural network based approaches show a favorable performance as the

scale of dataset increases, scGNN and scDSSD showed relatively low JCCI scores even though

they also adopt autoencoder. Since the single-cell sequencing datasets include the minor cell

types, where the number of samples for minor types is typically smaller than the major cells,

the sample imbalance could cause the degraded JCCI scores for two algorithms. We will dis-

cuss the sample imbalance in more detail (Discussion section).

We also evaluated the quality of clustering results through the adjusted rand index to fairly

show the effectiveness of the proposed algorithm. Although the Jaccard index score can pro-

vide reliable assessments for clustering algorithms because it takes a size factor of clustering

results into account, Jaccard index score does not consider the true negatives. Note that, given

Fig 3. Jaccard index scores for each single-cell clustering algorithm. Note that scattering points represent the Jaccard index scores for

10 trials, and the bar plot represents the averaged Jaccard index score for all trials.

https://doi.org/10.1371/journal.pone.0284527.g003
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two cells having a different true cell type labels in C, the true negatives count the case that the

two cells are not assigned to the same predicted clustering label in Y. The averaged ARI for

scGNN, SC3, scDSSC, CIDR, Seurat, and GRACE were 0.262, 0.309, 0.434, 0.514, 0.588, and

0.630, respectively (Fig 4). As we will show later, since SC3 overestimates the number of clus-

ters, it achieved the least ARI scores across all datasets and this result apparently supports the

importance of accurately estimating the number of clusters to yield reliable single-cell cluster-

ing results. Especially, only except the Usoskin and PBMC 8K datasets, GRACE achieved the

highest or next-best ARI scores. Surprisingly, scGNN achieved very low ARI scores for the

large-scale datasets. In these datasets, the number of major cells is much larger than the minor

cells and these sample imbalance can cause a negative effect for constructing the cell-to-cell

similarity graph by identifying KNN (K-nearest neighboring) cells, and inaccurate similarity

graph can intervene the learning process of the graph autoencoder, where it could be the main

reason resulting low ARI scores. Although GRACE adopts the graph autoencoder as well, it

showed comparable ARI scores to Seurat because the ensemble similarity learning can accu-

rately capture the cell-to-cell similarity correspondences and it can help the graph autoencoder

to effectively capture the feature of each cell. Finally, we also compared the NMI for each clus-

tering algorithm and we confirmed that it also showed the similar trends to other performance

metrics (Fig 5). Overall, based on diverse performance metrics, we confirmed that GRACE

outperforms the other competing algorithms, where it means that the proposed algorithm can

yield more accurate single-cell clustering results compared to the state-of-the-art algorithms.

Accurate prediction on the number of clusters

We compared the number of predicted clusters for each algorithm. In a practical point of

view, the exact number of clusters for single-cell sequencing experiments is generally unknown

and it is important to determine correct number of clusters for single-cell sequencing results

Fig 4. Adjusted rand index for each algorithm. Note that scattering points represent the ARI scores for 10 trials, and the bar plot

represents the averaged ARI score for all trials.

https://doi.org/10.1371/journal.pone.0284527.g004
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in order to accurately annotate the cell types, where it is the major application of single-cell

clustering algorithms. That is, if the predicted number of clusters is larger than the true num-

ber of clusters, cells in the same type can be divided into multiple subgroups. Additionally, if

the predicted number of clusters is much smaller than the true number, cells in different types

can be classified into the same partition. Although the accuracy of the clustering results is vul-

nerable to the predicted number of clusters, the importance of determining the number of

clusters is easily overlooked when developing clustering algorithms.

We compared the true and predicted number of clusters for 10 datasets (Fig 6). Note that,

since each algorithm has a tailored method to estimate the number of clusters in the dataset,

we employed a default setting in each algorithm to determine the predicted number of clusters.

Additionally, since GRACE and scGNN have a stochastic nature when it estimates the cell-to-

cell similarity through a random feature sampling, the number of predicted clusters could be

Fig 5. Normalized mutual information for each clustering algorithm. Note that scattering points represent the NMI scores for 10

trials, and the bar plot represents the averaged NMI score for all trials.

https://doi.org/10.1371/journal.pone.0284527.g005

Fig 6. Comparison of the true and predicted number of clusters for each algorithm.

https://doi.org/10.1371/journal.pone.0284527.g006
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different for each experiment and we showed all predicted results corresponding to the test

cases in a single figure. Note that, to assess the performance of GRACE we measured the pre-

dicted number of clusters for 10 times. As we can see, SC3 typically overestimates the number

of clusters so that it could have a risk to divide a consistent group of cells into multiple sub-

groups. It can affect the accuracy of the clustering results and it can be a possible answer for

the low purity, JCCI, and ARI scores achieved by SC3. Similarly, scGNN also overestimates

the number of clusters and it showed the larger standard deviations for the estimation results.

For instance, the estimated number of clusters for the Wang_P datasets ranges 12 to 17 even

though the true number of clusters is 11. For the same single-cell sequencing data, if the esti-

mated number of clusters is spread across wide ranges, it is challenging to select the proper

number of clusters. Seurat tends to identify more number of clusters compared to the

true number of clusters for all test cases. Additionally, the estimation error of Seurat would

increase as the true number of clusters increases, where it can cause more severe effects on the

clustering results for single-cell sequencing having a larger number of subtypes. However,

except large-scale datasets, GRACE showed the relatively smaller and balanced estimation

error for most test cases. That is, except the single-cell sequencing datasets having more than

6,000 cells, the absolute differences between the true and predicted number of clusters were

less than or equal to 2. Please note that, for the large-scale datasets that are sequenced from the

peripheral blood mononuclear cells, they have multiple CD4 and CD8 subtypes that can be

considered as a T-cell, and GRACE may not correctly separate these cell families so that it can

cause relatively larger estimation error. Although GRACE showed relatively larger estimation

error for the large-scale single-cell sequencing datasets, the average estimation error of

GRACE is smaller than 3, where it is still smaller than the benchmarking algorithms. Note

that, to quantitatively determine the estimation error, we computed the average estimation

error through 1

N

PN
n¼1

PL
i¼1
jKn � xn;ij, where N is the number of datasets, L is the number of

trials, Kn is the true number of clusters for n-th dataset, and xn,i is the estimated number of

clusters for the n-th datasest and i-th trial. The accurate prediction for the number of clusters

can be a strong evidence for the effectiveness of both the ensemble similarity learning and low-

dimensional representation through GAE that are core processes in the proposed algorithm.

Separability of the clustering labels in a low-dimensional space

In order to intuitively analyze a large-scale single-cell sequencing data, visualizing cells in a

two dimensional space is an effective and powerful approach [31, 45]. However, although

there is the optimal low-dimensional representation method that can perfectly and clearly sep-

arate different cell types in a low-dimensional space, if there is no auxiliary information such

as true cell types or if we have incorrect clustering labels, visualization of single-cells in a low-

dimensional space does not provide meaningful insights for in-depth analysis.

To quantitatively evaluate the separability of cells in a two-dimensional space based on the

predicted clustering labels, we assumed that, if the predicted clustering labels are correct or

highly accurate, different cell types in a low-dimensional space can be clearly separated with an

enough distance among different groups. Note that the goal of this assessment is comparing

the performance of clustering algorithms without external information such as the true cell

type labels. To compare the distance and separability between each group in a low dimensional

space, we first derived the low-dimensional vector representation for each cell using UMAP

[45], where it can generally provide a clear separation between different cell types. Next, we

trained a linear SVM (support vector machine) based on the low-dimensional representation

of randomly selected 80 percent cells and their predicted clustering labels. Note that, to

train the linear SVM, we employed the same two vector dimensional representation (i.e.,
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coordinates in a two dimensional space) for each cell but different clustering labels that are

derived through different clustering algorithms. Then, based on the trained SVM, we classified

the clustering labels for the rest of cells and determined the classification accuracy by compar-

ing the classification results and the true cell type labels. In order to reduce the variance of the

experiments, we perform the same experiments for 10 times and reported the averaged classifi-

cation accuracy.

Based on 10 trials, we compared the averaged classification accuracy of cell types through a

linear support vector machine (Table 2). Seurat achieved the highest accuracy for Kolod. data,

and CIDR showed the best performance for Usoskin, Braon_h1, Braon_m1, Braon_m2, and

Wang_P datasets. GRACE recorded the highest accuracy for eight datasets and attained the

best runner-up for six datasets. On average, GRACE achieved the highest classification accu-

racy, where it is a clear evidence that GRACE can lead to an improved separability of cells in a

low-dimensional space. Since the clear separability of cells in a low-dimensional space can

help understanding large-scale single-cell sequencing datasets in an intuitive way, GRACE can

provide pivotal the stepping-stones and insights for comprehensive analysis and understand-

ing of single-cell sequencing results.

In order to intuitively verify the separability of clustering results for each algorithm, we plot

the low dimensional visualizations for the clustering results through t-SNE (Fig 7). First of all,

we obtained two dimensional coordinates for each dataset, and highlighted the predicted clus-

tering results through different colors. Then, we compared the color annotations for each algo-

rithm to the visualization results with the true cell type labels. For the Klein data, although

GRACE and Seurat showed the good agreement to the ground truth, CIDR showed noticeable

error for the cells that are located at the upper-right part. Other algorithms such as scGNN and

scDSSC resulted prominent mismatches for most cell typtes. For the Zeisel data, except the

visualization result of GRACE, two major cell types were divided into multiple clusters so that

their annotation seems to be mixed by multiple color highlights. Note that, for the color anno-

tation of the Zeisel data with the true cell type labels, two major cell groups are highlighted as

purple and green colors. GRACE showed relatively good agreements to the ground truth and

other visualization results also showed the similar trends.

Computation time

We compared the computation time for each clustering algorithm according to the number of

cells in order to compare the scalability of algorithms (Fig 8). As we can see, scGNN requires

the longest computation time for most cases because it integrates three multi-modal autoenco-

ders in an iterative manner, where it naturally requires a huge amount of tensor computations.

SC3 also needs relatively longer computation time for most cases because it requires a consen-

sus clustering based on different similarity measurements. Although CIDR requires the least

computation time for datasets having a relatively small scale, its computation time sharply

increases as the scale of the datasets increases. That is, the scalability of CIDR would not be as

good as other algorithms. Seurat showed the least computation time and superior scalability

for most cases. Although GRACE requires slightly longer computation time compared to Seu-

rat, it achieved an acceptable computation time and scalability even though it adopts ensemble

similarity learning framework. Although scDSSC also adopts the autoencoder-based frame-

work, its scalability would be slightly better than GRACE. Since GRACE constructs cell-to-

cell similarity through ensemble similarity learning approach, it could be a bottleneck of the

proposed method. However, GRACE still has a room for accelerating the computation time

through parallel processing and powerful GPUs because the current version only employ a sin-

gle core.
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Discussions and conclusion

We propose an effective single-cell clustering algorithm by leveraging the ensemble similarity

learning framework and a graph autoencoder. First, in order to avoid the optimal feature gene

selection problem, we collect a set of genes that can have a high probability to be a marker

gene for each cell type based on a variance of the gene expressions across cells. Second, we

determine multiple cell-to-cell similarity measurements based on the different subsets of the

potential marker genes that can be obtained by a random gene sampling process. Next, we

derive the accurate cell-to-cell similarity estimation by incorporating multiple similarity mea-

surements in order to reduce a smapling bias. Based on the integrated similarity measurement,

where it can be considered the graphical representation of cell-to-cell similarity, we obtain the

low-dimensional vector representation for each cell through a graph autoencoder. Based on

the low dimensional vector representation for each cell, we determine the number of clusters

by using the elbow method and obtain the final single-cell clustering labels through the k-

means clustering algorithm. Based on the real-world single-cell sequencing datasets, we con-

firm the effectiveness of the proposed single-cell clustering algorithm over the state-of-the-art

algorithms.

The proposed single-cell clustering algorithm has several appealing advantages. First of all,

it can avoid the optimal feature gene selection problem that is the essential and pivotal process

to yield an accurate single-cell clustering. Second, thanks to the effective learning process in

the graph autoencoder, the low-dimensional representation of each cell can be employed in

the other single-cell analysis. Third, GRACE has a compatibility with other single-cell analysis

algorithms because it does not require preprocessing steps to yield tailored data format. That

is, since the proposed algorithm only requires a gene expression matrix, where it is typically

Fig 7. Low dimensional visualization of clustering results. Low-dimensional coordinates are derived through t-SNE and predicted clusters are

annotated through different colors.

https://doi.org/10.1371/journal.pone.0284527.g007
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required information for single-cell analysis pipeline, and it does not change the dimension of

the input data, GRACE can be easily employed as a part of single-cell analysis pipeline. Fur-

thermore, GRACE is a fully automated python script, where it does not require any biological

domain knowledge such as cell type specific marker genes or the number of cell types. Since

the prior knowledge is typically unknown before analyzing a single-cell sequencing data, the

proposed algorithm is suitable for the first analysis step to derive a domain knowledge such

as the number of cells in the dataset without biological experiments that require valuable

resources such as cost and time.

Although the proposed method can yield accurate single-cell clustering results, there are

unavoidable limitations. First, since the proposed method can only yield single-cell clusters

that have a high probability to be the same cell type, it still requires additional biological cross

validation such as verifying marker gene expression in order to clearly determine a specific cell

type. Additionally, although it shows a moderate scalability and computational time, it still has

a room to accelerate the computation speed through effective software implementation. More

importantly, although the zero-inflated noise induced by dropout events has negative effects

on the single-cell analysis results, the proposed method does not deal with the zero-inflated

noise. To bridge these gaps, we would leverage a CPU parallel computing framework and a

powerful GPU acceleration to reduce computational time and increase scalability of the

Fig 8. Computation time of each algorithm. All experiments were performed on Intel i5 processor with 12 cores, 48GB system memory, and NVIDIA

GTX 1060 GPU. Note That the base clock frequency of the CPU is 4.10 GHz.

https://doi.org/10.1371/journal.pone.0284527.g008
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method. To reduce the negative effect of zero-inflated noise on the analysis results, we would

integrate a zero-inflated noise reduction module in the proposed algorithm. For instance,

since an autoencoder is an effective method to reduce outliers such as the salt-pepper noise

(i.e., extreme values) in images, we expect that the effective modification of the graph autoen-

coder can be a great candidate to remove such extreme values including artificial zeros.

In the future, we will consider the following research directions in order to develop an user-

friendly single-cell analysis preprocessing pipeline. First of all, we will develop sophisticated

single-cell data processing methods in order to increase the performance of the proposed

method. That is, although GRACE adopts a graph autoencoder, where it typically shows

improved performance as the scale of the dataset increases, we confirmed that the performance

of autoencoder based algorithms such as GRACE and scGNN would not being surprisingly

increased. Generally, a graph autoencoder effectively learns the hidden patterns underlying

complex datasets when we have enough number of samples for each class. However, single-cell

sequencing datasets includes minor cell types and the number of samples for the minor cells is

typically much smaller than the major cells, and these sample imbalances can play as a hurdle

to simultaneously take advantages of a graph autoencoder and large-scale datasets. To over-

come the sample imbalance, we will examine the data augmentation methods that can generate

artificial training datasets by taking the crucial features of single-cell sequencing data into

account [46, 47]. Next, effective graph learning methods should be further investigated in

order to increase the performance of graph-based clustering algorithms. Although both

GRACE and scGNN adopt the graph autoencoder for deriving single cell clusters, they yield

different performance metrics. One key difference between GRACE and scGNN is the method

to construct the cell-to-cell similarity graph. That is, scGNN constructs KNN (K-Nearest

neighbor) graph based on the Euclidean distance of the gene expression profile for each cell.

Then, it refines the KNN graph by removing less-relevant neighboring cells through the isola-

tion forest algorithm. However, GRACE constructs the cell-to-cell similarity graph through

the ensemble similarity learning, where it can increase the diversity of similarity measure-

ments. Based on the comparison results, we carefully conclude that the graphical representa-

tion is one of the pivotal step to develop a reliable and accurate graph based analysis

algorithms. Recently, automated graph learning algorithms have been proposed and they show

the promising results on diverse applications [48, 49]. Graph-based single-cell clustering algo-

rithms can have increased performance headroom if we can integrate accurate graph learning

algorithms. Moreover, since cell types can be classified into multiple categories, integrating

multilayer graph clustering would be a reasonable alternative for the classical clustering algo-

rithms such as K-means or spectral clustering algorithms [50–53]. In order to enhance the

usability, it should be necessary endeavor for developing an effective graph clustering algo-

rithm, where it can effectively take multiple subtypes of cells into consideration. Finally, to

maximize the compatibility of the proposed algorithm, we would develop a comprehensive

single-cell analysis pipeline based on an user-friendly cloud platform, where it can be

employed diverse research groups without software experts or enough computing resources.
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