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Abstract

Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the

brain. Microglial activation leads to specific modifications, including proliferation, morpholog-

ical changes, migration to the site of insult, and changes in gene expression profiles. A

change in inflammatory status has been linked to many neurodegenerative diseases such

as Parkinson’s disease and Alzheimer’s disease. For this reason, the investigation and

quantification of microglial cells is essential for better understanding their role in disease pro-

gression as well as for evaluating the cytocompatibility of novel therapeutic approaches for

such conditions. In the following study we implemented a machine learning-based approach

for the fast and automatized quantification of microglial cells; this tool was compared with

manual quantification (ground truth), and with alternative free-ware such as the threshold-

based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on

brain tissue obtained from rats and non-human primate immunohistochemically labelled for

microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical

rodent model of Parkinson’s disease and demonstrated the robustness of the algorithms on

tissue obtained from mice, as well as from images provided by three collaborating laborato-

ries. Our results indicate that machine learning algorithms can detect and quantify microglial

cells in all the three mammalian species in a precise manner, equipotent to the one

observed following manual counting. Using this tool, we were able to detect and quantify

small changes between the hemispheres, suggesting the power and reliability of the algo-

rithm. Such a tool will be very useful for investigation of microglial response in disease
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development, as well as in the investigation of compatible novel therapeutics targeting the

brain. As all network weights and labelled training data are made available, together with our

step-by-step user guide, we anticipate that many laboratories will implement machine learn-

ing-based quantification of microglial cells in their research.

Introduction

Neuroinflammation is a complex multiphase response occurring within the central nervous

system (CNS) that involves different types of immune cells (e.g. astrocytes, microglia, endothe-

lial cells, peripherally derived immune cells), and is mediated by the production of various pri-

mary and secondary factors (e.g., cytokines, chemokines, reactive oxygen species) [1].

Microglial cells represent a small fraction of specialized tissue-resident macrophages of the

brain, carrying out various functions during both development and adulthood [2]. In adult

organisms, microglial cells are well known for constantly surveying the CNS [3] and protecting

it against pathological insults (e.g., brain injury, pathogen infiltration, proteins aggregation,

neurodegenerative diseases) [4]. Microglial cells are generally rapidly activated upon minimal

disruptive changes in the CNS, making them the first line of defence against any potential dele-

terious stimulus [5–8]. In physiological conditions, microglial cells interact with the local

microenvironment and with surrounding cells presenting a resting ramified morphology with

long processes extended in the proximal area [9]. When activated, microglial cells undergo

specific modifications that include changes in their migration and proliferation rates (fast

recruitment on the site of insult and in the near proximity) [10], changes in their morphology

(from resting ramified to a rod-like shape with hypertrophic process to an ultimate phagocytic,

ameboid shape with abundant cytoplasm and short processes) [6, 11, 12], changes in antigen

presentation [13, 14] and production/release of various inflammation-mediating factors [13,

15–18]. Neuroinflammation is a common feature of many of neurodegenerative diseases, such

as Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS) [19–27] and

post-mortem immunohistochemistry-based (IHC) quantification of neuroinflammation—

specifically of microglial cells—is crucial in the investigation of neurodegenerative diseases of

human brain tissue as well as preclinical animal model. We have previously applied manual/

semiautomated quantification and evaluation of microglial morphology in several rodent

models of stroke [28] and neurodegenerative diseases [29, 30] as well as in human brain sec-

tions [31]. The most common methods are based on qualitative anatomopathological evalua-

tion of cell morphology (e.g., resting vs activated status), area occupied by cells (e.g.,

threshold-based cell density), area/perimeter ratio (e.g., Scholl-based analysis), and cell num-

ber quantifications (number of cells in the target area) using either ImageJ, proprietary soft-

ware/scripts or manual procedures [32–42]. Many of these methods are time consuming, error

prone, require experienced users, and are very likely to introduce experimenter bias.

In this work, we developed and compared machine learning (ML)-based approaches for the

fast and automatized recognition and quantification of microglial cells in post-mortem tissues

using three different detector networks. Furthermore, we validated the ML approaches by

comparison to manual quantifications (ground truth), as well as threshold-based quantifica-

tions (Fiji), and Ilastik—an open-source machine-learning based software for image classifica-

tion and segmentation. After training, the three different neural networks (Faster R-CNN,

RetinaNet and YOLOv3), were validated on various animal species in our preclinical rodent

models of PD and AD—two neurodegenerative disorders where neuroinflammation is
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associated with the disease progression. We demonstrate that ML based automated quantifica-

tion is capable of recognition and quantification of microglial cells with equal accuracy to

manual quantifications performed by a trained researcher. The code and weights of the respec-

tive networks have been made available in the GitLab repository where they can be modified

to the individual researchers needs. We believe this new approach offers new tools to study

microglia alterations and facilitate more homogenised comparisons to be made between

results among researchers studying microglia in brain diseases.

Materials and methods

In the current manuscript we trained three different neural networks (Faster R-CNN, Retina-

Net, YOLOv3) on rat and non-human primates (NHP) tissues. We subsequently validated the

performance of the models against the ground truth (manual quantifications) and compared

the performance to the open-source software Fiji (ImageJ) and Ilastik on brain tissues obtained

from a PD rat model, an AD mouse model, and wild type NHP tissue. The study is reported in

accordance with ARRIVE guidelines.

Animals

PD model (rats). All the surgical and experimental procedures were designed, approved,

and performed in accordance with the EU directive for the use of animals in research (2010/

63/EU), approved by the local ethical committee and registered with the Swedish Department

of Agriculture (Jordbruksverket). Female Sprague-Dawley rats (Janvier–Germany) were kept

under a 12:12 hours light/dark cycle, constant temperature of 21˚ C, 50% humidity and ad libi-
tum access to water and food. The rats were acclimatized to the new environment for 5 days

before any experimental procedure.

AD model (mice). All the experimental procedures were designed, approved, and per-

formed in accordance with the EU directive for the use of animals in research (2010/63/EU),

approved by the local ethical committee (Dnr 5.8.18-01107/2018) and registered with the

Swedish Department of Agriculture (Jordbruksverket). Transgenic 5xFAD mice with C57/

BL6-SJL background, and age-matched mice as controls (WT) (Jackson Laboratory—USA)

were kept under a 12:12 hours light/dark cycle, constant temperature of 21˚ C, 50% humidity

and ad libitum access to water and food. Mice were acclimatized to the new environment for

few weeks before any experimental procedure. The 5xFAD mice carried three mutations in the

human APP transgene (the Swedish mutation, K670N/M671L; the Florida mutation, I716V;

and the London mutation, V717I) and two mutations in the human PSEN1 transgene

(M146L/L286V). These mutations are related to familial forms of AD, and the transgenes are

expressed under the neuron-specific Thy-1 promoter.

NHP

Archived control brain tissue from 3 middle aged (12 years old) African green non-human pri-

mates (Chlorocebus aethiops) was used for this study. Tissue harvest was performed in accor-

dance with RxGen Institutional Animal Care & Use Committee. All NHP in vivo procedures

using adult male, either colony-born or ethically sourced from the population on St. Kitts,

African green monkeys (AGMs; Chlorocebus sabaeus) were conducted by Virscio, Inc. at the

AAALAC accredited St. Kitts Biomedical Research Foundation, St. Kitts, West Indies. Institu-

tional Animal Care and Use Committee approval was in full compliance with the National

Research Council (US) Committee for the Update of the Guide for the Care and Use of Ani-

mals, facility standard operating procedures, and in accordance with AAALAC standards for

the use of animals in biomedical research. NHPs were housed in standard nonhuman primate
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cages with ad libitum access to water and fed primate chow (Enviro Teklad 8773) supple-

mented with local fruits and vegetables. Animals were provided environmental enrichment

toys to promote psychological wellbeing which was assessed twice daily by cage side observa-

tion by observers trained to monitor AGM behavior and general health. The number of food

biscuits consumed daily was qualitatively monitored at these times as well. Prior to necropsy,

monkeys were sedated with ketamine (8–10 mg/kg, IM) and euthanized with sodium pento-

barbital (100 mg/kg, IV).

In vivo experimental procedures

AAV production. AAV9-CBA-aSYN/aSYN (AAV-aSYN) and AAV9-CBA-noTG (AAV-

noTG) viruses were produced using chloroform extraction [43, 44]. HEK293T cells were triple

transfected with ITR-transgene, pAAV2/9n and the helper plasmid pXX6 using PEI. AAVs

were harvested 72h post-transfection using polyethylene glycol 8000 (PEG8000) precipitation

and chloroform extraction followed by PBS exchange in concentration columns. AAVs were

titered using droplet digital PCR (ddPCR) [45, 46], with primers specific for the ITRs (forward

primer 50-CGG CCT CAG TGA GCGA-30 and reverse primer 50-GGA ACC CCT AGT
GAT GGA GTT-30), and then normalized to a working titer of 2.5x1012 genome copies (gc)/

ml using modified Phosphate Buffer Saline (PBS) Mg++/Ca++.

PD model (rats). The preclinical rodent model of PD used in the present study is based

on adeno-associated viral vector (AAV9) overexpression of human WT alpha synuclein (h-

aSYN) as previously described [47]. As control, we used an identical construct lacking the

transgene (noTG), as described previously [47]. Prior to AAV delivery, animals were anesthe-

tised with a mixture of 5% isoflurane and oxygen and placed into a stereotactic frame. Injec-

tions were performed using a pulled glass capillary connected to a 10 μl Hamilton syringe [48].

2 μl of virus were unilaterally injected into the substantia nigra (SN) at two different sites (in

mm, from Bregma): 1) A/P: -5.3; M/L: -1.8; D/V: -8; and 2) A/P: -5.6; M/L: -2.5; D/V: -7.5,

with a speed of 0.5 μl/min. Once the delivery was completed, the needle was left in place for

additional 4 minutes to allow for diffusion.

Immunohistochemistry (IHC)

PD model (rats). Immunohistochemistry was performed as described previously [49]. In

brief, 12 weeks after the lesion, rats were sacrificed with an intraperitoneal injection of sodium

pentobarbital (1 mg/kg) and transcardially perfused with 50 ml 0.9% saline solution, followed

by 250 ml of 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) solution

(pH = 7.4). The brains were extracted and placed for 24 h post-fixation in PFA at 4˚C and

transferred into 25% sucrose until sunk. All brains were sectioned into 40 μm coronal 1:12

series using a freezing microtome (SM200R, Leica) and stored in antifreeze solution at -20˚ C

until use. DAB-immunohistochemistry (DAB-IHC) was performed as described previously

[47]. Briefly, the sections were removed from the anti-freeze solution and washed 3 times in

PBS (pH = 7.4), and subsequently incubated for 15 minutes in PBS with 3% H2O2 and 10%

methanol to quench endogenous peroxidase activity. Brain slices were then washed 3 times in

PBS and incubated for 1 hour at room temperature (RT) in a blocking solution (5% goat

serum and PBS-T (PBS containing 0.25% triton X-100)) and then transferred into the primary

antibody (IBA1, Rabbit, 1:1000 –WAKO 019–19741) in 5% serum and incubated overnight at

4˚C with gentle agitation. The following day, the sections were washed 3 times in PBS and

incubated for 1 hour at RT in blocking solution, followed by incubation in secondary antibody

(Anti-rabbit biotinylated, Goat, 1:200 –Vector Laboratories BA6000) in 5% serum for 1 hour

at RT. The sections were then washed 3 times in PBS and incubated for 1 hour with the ABC
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complex (ABC, Vector Laboratories) following the vendor’s protocol. After ABC incubation

they were washed 3 times in PBS and the colour reaction was produced by incubation in DAB

substrate (DAB, Vector Laboratories) with H2O2. Immunolabelled sections were washed in

PBS and mounted on gelatine-coated glass slides, airdried overnight, and then dehydrated for

5 minutes in increasing series of ethanol (2x 70%, 2x 95%, 2 x 99.5%) and lipids were removed

through 2x 5-minute incubation in Xylene before cover-slipping with DPX mounting medium

(Sigma).

AD model (mice). Mice were deeply anesthetized using pentobarbital and perfused with

saline, followed by 4% paraformaldehyde (PFA) fixation. Brains were post-fixed in the same

fixative overnight and then immersed in PBS with 30% sucrose until use. Brains were cut into

20 μm thick sections using a microtome (Leica SM2010R) and stored at -20˚ C in an anti-

freeze solution. DAB-IHC was performed as previously described in the PD model (rats).

NHP. Animals were deeply sedated and euthanized by transcardial saline perfusion. Fol-

lowing removal, brains were post-fixed with 4% formaldehyde for 48–72 hours and thereafter

transferred to a sucrose gradient. Sections were coronally cut with a thickness of 40 μm and

stored in cryoprotectant. IBA1 IHC was performed as previously described [50]. Briefly, tissue

was quenched in peroxide, and following a blocking step, incubated with the primary antibody

(Wako, Cat#019–19741) for 2 days at 4˚ C, and then treated with the Vector ABC detection

kit. Development was done in 0.5 mg/mL 3,30 diaminobenzidine and 0.015% hydrogen perox-

ide in Tris buffer. Sections were mounted on subbed slides, dehydrated with increasing con-

centrations of ethanol followed by Xylene, and coverslipped with cytoseal.

Image acquisition

Quantification of microglia was performed on one image of the central SN of the ipsilateral

and contralateral hemisphere (for PD model) and on one image of the central SN of the right

hemisphere for the AD model and NHP. For rats and mice, images were acquired in RGB

using a Leica DMI8 inverted microscope with a 20x objective and a z-step size of 1 μm though

the entire thickness of the tissue. Images were either saved as a multi-stack or processed to

extended depth of field (EDF) and then saved. Acquisition of NHP images was carried out

using a Nikon Eclipse Ni upright microscope provided with a 20x objective. Each image con-

sisted of 30 μm thick z-stack of a single image-tile sized to match the mice and rats’ files

acquired with a z-step of 1 μm.

Neural networks

Deep learning network architectures. We utilized a transfer learning approach where we

take weights of a pretrained model which was trained on a large dataset were used to enhance

the performance of model training on a small dataset. For training of the object detection

models, we used the ResNeXt-101 [51] and Darknet-53 [52] backbone architectures which

were trained on the ImageNet and the COCO dataset, respectively.

Faster R-CNN. Faster R-CNN (Fig 1A) [53] belongs to the family of region based convo-

lutional neural network models. It is a two-stage architecture, consisting of a Region Proposal

Network (RPN) to generate ROIs with a high chance of containing objects and a detection net-

work to classify and localize objects. The ResNext-101 architecture is used as a feature extrac-

tor generating feature maps by performing convolution operations on the input image. The

resulting feature maps are fed into the RPN. Non-Maximum Suppression takes the RPN’s gen-

erated region of interest and reduces the number of bounding boxes by removing the boxes

which are overlapping based on probability of containing object and area of overlap. The

resulting feature map generated by the feature extractor and resulting bounding box of the
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RPN are fed forward into the detection network. To deal with non-uniform size of the feature

map, a ROI pooling layer is added to scale and crop the feature map before feeding it to the

detection network. The detection network consists of a fully connected network and is fol-

lowed by a classification layer and a bounding box regression layer. The classification layer

returns the class probability, and the regression layer returns the coordinates of the bounding

box.

RetinaNet. RetinaNet (Fig 1B) [54] is a single-stage object detector a with feature pyramid

network to detect small and dense objects. In a single stage architecture, the training procedure is

dominated by easily classified background examples and it leads to the learning of foreground

examples difficult. RetinaNet uses the “Focal Loss” loss function to improve performance by bias-

ing the training towards more difficult examples. The RetinaNet architecture consists of a back-

bone network and is followed by two task specific subnetworks for bounding box regression and

classification. The backbone network has a ResNeXt-101 [51] for feature extraction and a “Feature

Pyramid Network” (FPN) [55] on the top of ResNeXt-101 for detecting objects of different scale

and sizes.

YOLOv3. YOLOv3 [52] is an improved version of YOLO (Fig 1C). It is a single stage

architecture, which gives the class probability as well as the objects’ location. Darknet-53 is

used as a feature extractor based on convolutional layers. YOLOv3 consists of a stack of 106

convolutional layers. YOLOv3 detects objects at three different scales with the help of a detec-

tion kernel on feature maps of three different sizes (Fig 1C). The shape of the detection kernel

is 1 x 1 x (B x (5 + C)), where B is the number of bounding boxes a cell on the feature map can

predict, 5 is for the 4 bounding box attributes and one object confidence, and C is the number

of classes. The detection kernels are added at the 81st, 94th and 106th layers to detect the object

at different scales. The resulting feature maps after 81st, 94th and 106th layers are responsible

for detection of small, medium, and large size objects, respectively.

Dataset. The initial dataset was divided into a training (n = 602), test (n = 100) and valida-

tion (n = 102) sets. Bounding boxes were created manually using the roboflow online annota-

tion tools and exported to coco format for subsequent training of the models. The final dataset

contained 21,363 total cells with an average of 26.6 cells per image and the majority of images

contained between 12 and 41 cells (Fig 1D). The following training script, which can be used

for retraining, can be found in the following link: https://colab.research.google.com/drive/

1FdFHsVhTU1-Xej8WIQiHqXTcVBJrmges?usp=sharing.

The training and validation datasets were organized as following described in Table 1.

Robustness. To further validate the robustness of our model we asked collaborators from 3

different laboratories (Barrow Neurological, BN; Michigan State University, MSU; University Col-

lege Cork, UCC) to test the CNNs on images taken with their respective IHC protocols and micro-

scopes (see Table 2). Furthermore, we downloaded Fluorescent IHC images from an online

database (https://github.com/tkataras/ACCT-Data-Repository [56]). The images (grayscale, PNG,

2–3 focal layers/image) were downloaded and processed in Fiji. We first generated a stack from the

focal layers and subsequently generated EDF images (Sorbel Projection) using the CLIJ2 plugin

(https://clij.github.io).

To demonstrate the best performance parameters of our algorithm we generated EDF

stacks at different exposures (25 ms to 400 ms) to utilize different dynamic ranges of the cam-

era when producing the images.

Fig 1. AI network overview and AI network characterization. A: Schematic representation of Faster R-CNN. B: Schematic representation of RetinaNet. C:

Schematic representation of YOLOv3. D: Overview of the distribution of IBA1+ cells detected in the analysed images. E: Curve of mean Average Precision

values in the test set versus epoch number. F: average time (s) for manual quantification, Faster R-CNN, RetinaNet and YOLOv3.

https://doi.org/10.1371/journal.pone.0284480.g001
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To demonstrate the best performance parameters of our algorithm we generated EDF

stacks at different exposures (25 ms to 400 ms) to utilize different dynamic ranges of the cam-

era when producing the images.

Download. The weights of the respective models as well as the annotated code can be

downloaded from our Gitlab repository (https://gitlab.com/cell-quantifications/Microglia).

The annotated images used in the present study for training and validation are available online

(https://www.kaggle.com/datasets/bnllund/microglia).

Quantifications

Comparison to other methods. We compared the performance of the networks by man-

ual quantification, as well as by other available tools as following described in Table 3.

AI models

The detectron-2 framework was used for model building and assigning parameters of Faster

R-CNN and RetinaNet. The stochastic gradient descent (SGD) method was used to train all

three architectures with varying learning rates. By applying a small penalty to the loss function,

typically the L2 norm of the weights, the optimizer with a weight decay of 0.0005 ensured a

regularization technique in Faster R-CNN and RetinaNet. At the time of inference, the proba-

bility threshold value was kept 0.5 for all the models. All three architectures used the stochastic

gradient descent method with momentum. We trained for 32 Epochs in batch sizes of 4 with a

learning rate of 0.001.

Ilastik. Ilastik is an open-source machine learning-based software for interactive image

classification, segmentation, and analysis (https://www.ilastik.org/index.html) [57]. IBA1+ cell

quantification was performed using the Pixel-classification tool, after a training of the algo-

rithm performed on 5 images.

Fiji. Microglia quantification using Fiji was performed using multi-stack images acquired

as described previously [58]. Briefly, images were imported as a 3D stack and an appropriate

threshold was applied and the number of 3D IBA1+ immunoreactive structures was obtained.

A microglial cell was defined as an IBA1+ immunoreactive structure with a size larger than

20 μm and a circularity of 0.25 to 1 [58]. The results are expressed as the total number of

IBA1+ cells in the quantified image.

Table 1. Overview of the images used for training dataset and validation dataset for the algorithms.

Species Model Location Hemisphere N of images for training N of images for validation

Rat PD SN Ipsilateral, Contralateral 521 90

NHP WT SN Right 81 12

Total N 602 102

https://doi.org/10.1371/journal.pone.0284480.t001

Table 2. Overview of images used for robustness testing.

University Species IHC Objective Microscope Images Parameters

UCC Rat DAB Iba 1 20x Olympus BX53-U 10 Threshold: 0.5 NMS: 0.5

MSU Rat Ni-DAB Iba1 20x Nikon Eclipse 80i 14 Threshold: 0.1 NMS: 0.5

BN Rat DAB Iba 1 20x Nikon Eclipse Ni-U 9 Threshold: 0.1 NMS: 0.1

Gitlab Mice FITC-Iba1 10x Zeiss 200 M 24 Threshold:0.1 NMS: 0.5

UCC = University College Cork, MSU = Michigan State University, BN = Barrow Neurological.

https://doi.org/10.1371/journal.pone.0284480.t002
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Manual quantification. Manual quantification of microglial cells was performed on the

same images used for AI-based quantification. All IBA1+ cells in the image were quantified

using the ImageJ cell counter tool by two experimenters blinded to the experimental group.

Statistics

All data were analysed using IBM-SPSS V.26 with a statistical alpha set at 0.05. For multigroup

comparison, one-way ANOVA was followed by Bonferroni post-hoc test. Data are expressed

with SEM error bars. Significance is displayed in comparison to the manual quantifications.

For correlation analysis we used linear (r coefficient of Spearman) regressions with a signifi-

cance level set at α = 0.05. Levels of significance are denoted in the Figures as * p< 0.05; **
p< 0.01, and *** p< 0.001.

Results

All three architectures were trained on the training set data and evaluated against the manually

annotated test set.

For the evaluation of the model, the mean Average Precision (mAP) and Average Precision

scores at 0.75 (AP_75) and 0.05 (AP_50) Intersection of Union (IoU) thresholds were taken

into consideration. The mean Average Precision (mAP) score is calculated by taking the mean

average precision over all the classes and/or overall Intersection of Union (IoU) thresholds.

Fig 1E displays the curve of mAP values in the test set versus epoch number. After 30 epochs,

the mAP approximates the horizontal asymptote (Fig 1E). The mean Average Precision (mAP)

score of the respective architectures was Faster R-CNN = 0.36, RetinaNet = 0.38, and

YOLOv3 = 0.39, respectively. AP_75 and AP_50 measure the average precision of a model

when the predicted bounding box overlaps with the ground truth bounding box by at least

75% and 50% respectively (see Table 4). Faster-RCNN is able to correctly detect and localize

12.79% and 88.89% of the objects in the image with an IoU overlap of at least 0.50 and 0.75

between the predicted and ground truth bounding boxes. RetinaNet localizes 14.79% and

90.61% of objects correctly at IoU overlap of 0.50 and 0.75 between the predicted and ground

truth bounding boxes and YoLOv3 localizes 13.87% and 89.27% correctly at IoU overlap of

0.50 and 0.75 between the predicted and ground truth bounding boxes. RetinaNet localizes the

objects better than our other implementation at IoU overlap of 0.50 and 0.75 between the pre-

dicted and ground truth bounding boxes. Training time per epoch was similar between the

three networks with Faster R-CNN = 541 seconds, RetinaNet = 539 seconds, and

YOLOv3 = 410 seconds (Fig 1F). The three architectures were trained on rat and NHP tissues.

To assess the robustness of the respective algorithms, we quantified microglial cell numbers on

specimens from three different mammalian species–rats, mice, and NHP, respectively. Using a

Table 3. Overview of the quantified images and validation of the algorithms with other methods.

Species Model Group Location Hemisphere Total N of quantified images Quantification tools

Rat PD AAV-noTG SN Ipsilateral 6 Manual

Faster R-CNN

RetinaNet

YOLOv3

Ilastik

FIJI

AAV-aSYN Contralateral 6

Mouse AD WT Right, Left 10

5xFAD 4

NHP WT WT Right 8

Abbreviations: NHP: Non-Human Primate, PD: Parkinson’s disease, AD: Alzheimer’s disease, WT: Wild-type, AAV: Adeno Associated Virus, noTG: no transgene,

aSYN: alpha-synuclein, 5xFAD: Alzheimer model with 5 AD linked mutations, SN: substantia nigra.

https://doi.org/10.1371/journal.pone.0284480.t003
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Windows laptop fitted with a AMD Ryzen 7 4800H 2.90 GHz processor, 16 GB RAM, and Nvi-

dia RTX 2060 graphic processing unit (GPU), each image was quantified with an average time

of 1–3 seconds (s) per image (Faster R-CNN = 2.5 seconds; RetinaNet = 1.4 seconds;

YOLOv3 = 1.5 seconds), whilst the average time for manual quantification was 220 s ± 9.11

(Fig 1G). However, it is important to mention that the time taken by each model cannot be

always constant, since it is directly influenced by PC proprieties, activity running at the same

time of analysis, as well as network performance. Overall, all the three AI-based tools per-

formed similarly in detecting microglial cells in rats (Fig 2A–2E; 2P–2S), mice (Fig 2F–2J; 2T,

2U) and NHP (Fig 2K–2O; 2V), when compared to manual quantifications. We first evaluated

whether an overall difference between the quantification methods was detectable among all

the analysed specimens (Fig 2W); we observed statistical differences within the methods (F5,270

= 8.47, p< 0.001), and Bonferroni post-hoc analysis revealed a significant difference between

manual and Fiji-based quantification (p< 0.001), but neither between manual quantifications

nor any other method (all t< 0.71, p = n.s.).

Rats

Overexpression of h-aSYN via AAV vector in the SN of rats is a widely used preclinical rodent

model of PD. The overexpression of h-aSYN is known to induce a neuroinflammatory

response in the area of injection (39, 47). Quantification of IBA1+ cells in the contralateral

(F5,30 = 0.653, p = n.s.) and ipsilateral (F5,30 = 0.753, p = n.s.) SN of rats receiving delivery of an

AAV-noTG did not show any significant difference between the methods (Fig 2Q and 2R),

with an overall quantified number of IBA1+ cells of 88.1 ± 5.95 and 102.4 ± 5.18 respectively.

Similarly, we did not observe statistical difference between the quantification methods in either

the contralateral (F5,30 = 5.33, p = n.s.) or ipsilateral (F5,30 = 1.85, p = n.s.) SN of rats receiving

delivery of the AAV-h-aSYN (Fig 2S and 2T), with an overall number of quantified cells in the

contralateral hemisphere of 88.3 ± 6.11, and 143.1 ± 8.44 in the ipsilateral hemisphere. Inter-

estingly, in the ipsilateral hemisphere of the rats injected with AAV-h-aSYN the Fiji-based

quantification returned a slightly higher number of cells when compared with other methods,

indicating skewed results using threshold-based methods; Bonferroni post-hoc analysis how-

ever did not reveal any significant difference when compared with the manual quantification.

Mice

5xFAD mice are a well characterized transgenic mouse line which is widely used as a model of

AD and AD related phenotypes, presenting early intracellular amyloid β (Aβ), astrogliosis,

synaptic degeneration, neuronal loss, and impaired behavioural phenotype, which we have

used in various experimental studies [30, 31, 59–61]. Quantification of nigral IBA1+ cells was

performed in 6-months old WT mice as well as in 5xFAD transgenic mice. Quantification of

IBA1+ cells in the WT group (Fig 2U) revealed a significant difference between the quantifica-

tion methods (F5,54 = 5.33, p< 0.001), and Bonferroni post-hoc analysis returned a statistical

difference (p< 0.01) between the manual quantification and the Fiji-based quantification.

Similarly, the same trend was seen in the 5xFAD group of mice (Fig 2V), with an inter-method

Table 4. Average Precision (AP) score at different IOU threshold.

AI network AP75 AP50

Faster R-CNN 12.79 88.89

RetinaNet 14.79 90.61

YOLOv3 13.87 89.27

https://doi.org/10.1371/journal.pone.0284480.t004
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Fig 2. Quantification analysis of IBA1+ cells in three different mammalian species. A: Source image of rat SN immunolabelled for IBA1+ microglial cells. B:

Closeup of image A. C-E: output of AI-based quantification using Faster R-CNN, RetinaNet, and YOLOv3, respectively. F: Source image of mouse SN

immunolabelled for IBA1+ microglial cells. G: Closeup of image F. H-J: output of AI-based quantification using Faster R-CNN, RetinaNet and YOLOv3,

respectively. K: Source image of NHP SN immunolabelled for IBA1+ microglial cells. L: Closeup of image K. M-O: output of AI-based quantification using

Faster R-CNN, RetinaNet, and YOLOv3 respectively. For all images, each bounding box represents the detected, and therefore quantified cell. P-S: Comparison

of the different quantification methods for rats injected with the control vector on the contralateral (P) and ipsilateral side of injection (Q) as well as for rats
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difference (F5,18 = 9.86, p< 0.001), and a significant difference between the manual and Fiji

quantification (p< 0.001). Except for the Fiji-based quantification, the numbers of IBA1

+ cells in both the WT (103.6 ± 14.9) and 5xFAD (151.4 ± 23.3) animals are similar between all

the quantification tools.

NHP

NHP are frequently utilised in preclinical research due to their close phytogenic relationship

with humans and their physiological similarities [62–64]. Quantification of microglia from

naïve NHP midbrain tissues (Fig 2W) revealed similar results among all the quantification

methods with an overall detected number of IBA1+ cells of 38.5 ± 4.11 (F5,42 = 1.55, p = n.s.).

Interestingly, in this condition Faster R-CNN and RetinaNet slightly underestimated the num-

ber of IBA1+ cells when compared to the manual quantification, YOLOv3, Ilastik or Fiji; how-

ever, such difference was not statistically significant.

Correlation

To better understand the sensitivity of the methods and the differences among the other used

tools, we performed Spearman’s correlation analysis against the manual quantification (Fig 3).

For images derived from rats, we observed a strong positive association when correlating the

manual quantification with Faster R-CNN (R2 = 0.919; Fig 3A), RetinaNet (R2 = 0.935; Fig

3B), YOLOv3 (R2 = 0.942; Fig 3C) and Ilastik (R2 = 0.823; Fig 3D), and a moderate positive

association with Fiji (R2 = 0.621; Fig 3E). In addition, as we validated our model on rats,

mouse and NHP tissue, we performed an overall correlation analysis for the used tools. In this

condition, we observed a strong positive association when comparing the manual quantifica-

tion to Faster R-CNN (R2 = 0.847; Fig 3F), RetinaNet (R2 = 0.809; Fig 3G), YOLOv3 (R2 =

0.912; Fig 3H), a moderate positive correlation with Ilastik (R2 = 0.635; Fig 3I) and a weak pos-

itive correlation with Fiji (R2 = 0.269; Fig 3J) [65].

Robustness

To check whether our algorithm is suitable for images/IHC processed tissue by other laborato-

ries we asked three of our collaborators to test and validate our algorithm on their Iba1 immu-

nolabelled tissue, respectively. The correlations of our CNN with the respective ground truth

(manual quantifications) was r2 = 0.9714 (UCC; Fig 4A–4D), r2 = 0.8374 (MSU; Fig 4E–4H)

and r2 = 0.8398 (BN; Fig 4I–4L), respectively. Although not an exhaustive list, this demon-

strates that our method is suitable, with some tuning of the threshold and NMS parameters,

for images generated from different IHC protocols and microscope settings. In a first attempt

to extend the analysis to commonly used IF images we downloaded 24 images from a public

Iba1-immunolabelled library (https://github.com/tkataras/ACCT-Data-Repository). These

images were provided in grayscale with 2–3 individual focus layers. Using ImageJ we inverted

the images, generated a stack from the individual layers and subsequently generated an EDF

image (Sorbel projection) which we used for the analysis. As can be seen in Fig 4M–4P, the

algorithm is able to detect the majority of cells in the image (r2 = 0.6042), although there is a

substantial proportion of cells that are not detected (false negatives). In these and other

injected with the vector overexpressing h-aSYN on the contralateral (R) and ipsilateral (S) side of injection. T, U: Comparison of the different quantification

methods for the IBA1+ cells in the SN of WT (T) and 5xFAD mice (U). V: Comparison of the different quantification methods for the IBA1+ cells in the SN of

WT NHP. W: Comparison of the different quantification methods for the IBA1+ cells in all the three analysed species. Data are expressed as mean ± SEM; *** =

p< 0.001.

https://doi.org/10.1371/journal.pone.0284480.g002
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Fig 3. Correlation analysis of the different quantification methods. Correlation analysis for the AAV-noTG and AAV-aSYN (both ipsilateral and

contralateral hemisphere) groups comparing manual quantification vs A: Faster R-CNN; B: RetinaNet; C: YOLOv3; D: Ilastik; E: Fiji. Correlation analysis for

the AAV-noTG, AAV-aSYN rat group (both ipsilateral and contralateral hemisphere), WT and 5xFAD mice groups and WT NHP group comparing manual

quantification vs F: Faster R-CNN; G: RetinaNet; H: YOLOv3; I: Ilastik; J: Fiji.

https://doi.org/10.1371/journal.pone.0284480.g003
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instances where the performance of the algorithm is sub-optimal, further fine-tuning (i.e.

training) will be necessary. For that purpose, we provide a step-by-step training guide (see

materials and methods). Note that the images downloaded were different to our recommended

settings. We used EDF images generated from 1μm z-stacks through the entire thickness of the

section using an 20x objective whereas here we analysed images with only 2–3 focal planes

taken at 10x.

Although we have demonstrated that our algorithm can provide a fast and reliable method

to quantify microglial cells in thick tissue sections, the validity of the respective quantifications

will depend on the quality of the histology. Here we image our samples using an 20x objective

in colour in 1 μm z-steps through the entire thickness of the section and export the image as

EDF file for further processing. Outside these parameters the performance of the algorithm

will most likely be sub-optimal, for example when the image is taken in a single focal layer con-

taining out of focus cells in the background (see Fig 5A–5Eviii) or when the data is not spread

out over the entire range of values possible during image acquisition at the bit-depth supported

by the camera (i.e. using the camera’s dynamic range)(see Fig 5F–5Oviii).

Discussion

Current medical research needs unbiased standardised approaches to improve both experi-

mental reproducibility between researchers, but also to facilitate translational research efforts

from animal studies to clinical trials [66].

Unbiased quantification of cells number is a crucial tool in many pre-clinical and clinical

studies. Classic approaches are based on unbiased stereological approximation using the opti-

cal fractionator principle [67]. Even if unbiased stereology is precise, it is very time-consuming

and requires well trained user with specialized equipment as well as proprietary software. Fur-

thermore, the stereology principle is based on a relative homogeneous distribution of cells

within the area to be analysed, hence not all brain regions/nuclei lend itself to this form of

analysis. Recent developments in computations, algorithm design, and GPU based computing

have led to the exploration of machine learning in different domains of medicine and biologi-

cal sciences, including in cell quantification [68–81]. In recent years various tools have been

developed for characterization, detection, and classification of microglial and glial cells; all

these tools unfortunately require one or more pre-processing steps (e.g., application of filters

and threshold to enhance the structures of interest), as well as the use of several different soft-

ware packages for image preparation and subsequent quantification [69, 82, 83].

The aim of our study was to develop a novel AI workflow for the detection of microglial

cells, that limits the human manipulation and interference with the quantification process.

Using our method, the user will need to acquire images of the target area with the microscope

and directly process the files with the algorithm to obtain the microglial cell count. Depending

on the processing of the tissue (IHC protocol) and microscopy (image quality/resolution), fur-

ther training might be necessary. In the current work, we compared Faster R-CNN, RetinaNet

and YOLOv3 object detection CNNs, trained on post-mortem tissues (DAB-IHC) following

brightfield microscopy, to quantify microglial cells in relevant target structures. Faster R-CNN

has high accuracy, but limited inference speed, while RetinaNet and YOLOv3 are single stage

architectures, which directly give the bounding boxes coordinates and probability scores with-

out a region proposal network. However, single stage architectures give less accuracy than the

two stage architectures. To make the algorithm more competitive and to test its reliability, we

also compared the networks with current available open-source software (Ilastik and Fiji), as

well as with an unbiased researcher-blind manual quantification. In addition, to test the

robustness of the model we examined the performance on 3 different mammalian species
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(mouse, rats and NHP) that are frequently used in preclinical research. We observed that neu-

ral networks–in all the conditions—were able to detect and perform an accurate quantification

of microglial cells which was similar to the one obtained manually by an experienced user.

Fig 4. Robustness to images from other setups. Iba1-DAB immunolabelled brightfield images from three different laboratories (University College Cork,

UCC (A-C); Michigan State University, MSU (E-G) and Barrow Neurological, BN (I-K). A representative image from the respective data set is presented in A,

E, I and the processed image after object detection in B, F and J, respectively. A high magnification of detected cells is presented in C, G, and K. Correlations

between the manually quantified images and the quantifications by the algorithm are presented in D, H and L. Iba1-FL-IHC images (M) downloaded from an

online repository were inverted (N) and processed. A large proportion of visible cells can be detected by the algorithm (O). All manual quantifications

correlated highly with the automated quantification (D, H, L, and P).

https://doi.org/10.1371/journal.pone.0284480.g004
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Although we did not observe any significant difference between the AI algorithms, we

noticed a trend where YOLOv3 always slightly overquantified the number of microglial cells

in all the settings; however, in the NHP specimens, YOLOv3 performed better than Faster

R-CNN and RetinaNet, returning similar results to the manual quantification. With current

knowledge and state of technology, we are unable to provide an explanation for this pattern

[84]. In this work, we did not observe significant problems with false detection of cells neither

during the testing phase of the algorithm or during the main validation study; this important

issue has been avoided by always using two distinct and separate datasets for training protocols

and validation protocols. Timewise, single image AI quantification was achieved within sec-

onds, while the human user needed minutes, making this tool time and cost-efficient. On a

biological level, the obtained results are in accordance with what is expected from these models

and with previous published literature [39, 47, 85–87], confirming the reliability and sensitivity

of the tool in the three species. Recent clinical and genetical studies have enfolded the role of

microglial cells as an essential contributor in late onset Alzheimer’s disease [88, 89]. Hence,

the need for reproducible, translational, and effective analysis of microglial images is war-

ranted in the microglia research community.

Importantly, although the algorithms were trained on tissue obtained from rats and NHP,

they were robust and returned precise values of microglial cells obtained from mouse tissue. In

Fig 5. Optimal image settings for object detection of Iba1 immunolabelled cells in DAB. Original Iba1-DAB immunolabelled brightfield images from one

animal (A-BVII) as EDF image of the entire z-stack (A) or as individual focal planes (B-BVII). The corresponding analysed image (C-DVII) and a high

magnification of the analysed image (E-FVII) demonstrate that only the EDF image is able to identify the majority of immunolabelled cells in the stack correctly.

The same z-stack is imaged under different exposure settings (25ms– 400ms) to utilise different parts of the dynamic range of the camera chip. The images are

presented before processing (F-N) and after processing (FI-NI) as well as in high magnification (FII-NII). The histogram above the column displays the range of

pixel values taken at the respective exposure setting.

https://doi.org/10.1371/journal.pone.0284480.g005
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PD, the presence of h-aSYN is well known to induce an activation and increase of microglial

cells, possibly due to its synergistic interplay with h-aSYN in the midbrain environment [90–

92]. Various imaging [93, 94] and post-mortem [95–99] studies performed on pre-clinical

models of PD as well as on humans samples showed the clear link between inflammation and

the disease. In this work, AAV-9 mediated overexpression of h-aSYN produced an increase of

IBA1+ cells in the ipsilateral midbrain as compared with the contralateral hemisphere; these

results are in accordance with our previously published studies [39, 47, 100]. Interestingly, we

observed a slight increase of IBA1+ cells in the ipsilateral midbrain of the AAV-noTG rats

compared with the contralateral midbrain receiving no injection. This increase was however

lower than that observed with h-aSYN overexpression. This slight increase in microglial cell

number is most likely related to the surgical intervention.

The machine learning-based algorithms described here presents various advantages to

manual quantifications or traditional stereological approaches. Firstly, the analysis of large

dataset can be performed in short time. Secondly, computer-based quantifications minimize

the human user bias during quantification and thirdly the method presented here is freely

available and does not require subscription to proprietary software. Although the actual quan-

tification is detached from direct human manipulation, there are several stages where human

bias is introduced to machine learning approaches, such as the selection of training data (sam-

pling bias, group attribution bias, prejudice bias, confirmation bias), the labelling patterns,

data distribution and the model selection (algorithmic bias) itself. All of these parameters will

introduce a bias into the models’ predictions, hence the bias from the researcher will affect the

results of the prediction algorithm. As the current model is trained on a relatively small data

set, there are most certainly biases hardwired into the algorithm.

The algorithms presented here, including the network weights and a step-by-step user

guide allow users anywhere to take advantage of this type of high-throughput image process-

ing. The main limitations of machine learning based approaches come from the quality of

data/images used for the analysis. Tissue preparation and IHC is essential for a good and reli-

able analysis; it is crucial to have a selective labelling of microglial cells, with a well-performed

DAB revelation that let the positive-labelled cells clearly stand from the background. On this

regard, it is also important the thickness of the tissue, as ticker tissue might lead to partial anti-

body penetration and difficulties in finding the good contrast and crispness of single cells; in

this study we used tissues with a thickness of 20 μm and 40 μm, and we did not observe any

issue with antibody penetration. Another important factor is the microscopy image provided

as a higher-resolution input image results in improved single cell detection and quantification.

We provide the labelled training images, network weights and a step-by-step user guide online

(https://gitlab.com/cell-quantifications/Microglia; https://www.kaggle.com/datasets/bnllund/

microglia) which can be used for further fine-tuning of the model. The algorithm described

here is functional and validated for overall quantification of microglial cells in the species and

antibodies previously specified. Although several of our collaborators successfully imple-

mented the CNNs on their images, the algorithms here will not be generalizable to all tissue

types/settings. There is variation between laboratories in IHC approaches and the microscopy

available which influences the final images that needs to be processed. Further fine-tuning

until the level of accuracy required is achieved are easily implemented with the training guide

that is uploaded in conjunction with the model on our GitLab page. In case of different appli-

cations (e.g., different species, antibody type/target, object classification) further AI training

will be necessary. Future work will train an object-classifier to distinguish the activation status

of microglial cells which will provide another level of depth for the understanding of the

inflammation process. To conclude, we developed an algorithm for detection of microglial

cells in vivo, and we tested the reliability of the method on 3 different mammalian species. Our
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results are comparable to the manual quantification (but obtained in a faster way), showing

that the AI can overcome experimenter bias once the training period has been completed. The

algorithm in the future might need refinement (e.g., additional training) to improve the detec-

tion or to apply the same tool to different specimens or type of cells.
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