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Abstract

India’s expanding population has necessitated the development of alternate transportation

methods with electric vehicles (EVs) being the most indigenous and need for the current

scenario. The major hindrance is the undue influence on the power distribution system

caused by incorrect charging station setup. Renewable Energy Sources (RES) have a lower

environmental impact than the non-renewable sources of energy and due to which Plug-in

Hybrid Electric Vehicles (PHEV) charging stations are installed in the highest-ranking buses

to facilitate their effective placements. Based on meta-heuristic optimization, this study

offers an effective PHEV charging stations allocation approach for RES applications. The

primary objective of the developed system is to create a charging network at a reasonable

cost while maintaining the operational features of the distribution network. These trouble-

sare handled by applying meta-heuristic algorithms and optimum planning based on renew-

able energy systems to satisfy the outcomes of the variables. As a result, by adding

charging station parameters, this research proposes to conceptualize the distribution of opti-

mal charging stationsas multiple-objectives of the problem. Furthermore, the PHEV RES

and charging station location problem is handled in this study by deploying a novel hybrid

algorithm termed as Atom Search Woven Aquila Optimization Algorithm (AT-AQ) that

includes the ideas of both Aquila Optimizer (AO) and Atom Search Optimization (ASO)

Algorithms. In reality, Aquila Optimizer is a unique population-based optimization approach

energized by Aquila’s behaviour when seeking prey and it solves the problems of slow con-

vergence and local optimum trapping. According to the findings of the experiments, the pro-

posed model outperformed the other methods in terms of minimized cost function.

1. Introduction

Renewable Energy Sources have gained attention presently as potential replacements for fossil

fuels. This resource might be relocated closer to the load, reducing expenditures, losses, and

voltage variations [1]. In the power and transportation sectors, factors such as global warming,
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the depletion of fossil fuels, and increasing prices have led to significant shifts. Around one-

fifth of global energy consumption is consumed by the mobility sector [2]. As the establish-

ment of this resource was random, its extensive penetration into the grid might pose problems.

As a result, higher-capacity energy storage technologies are required to sustain the network. In

addition to solar and wind power, additional sustainable energy sources including geothermal,

biogas, biomass, and low-impact hydropower are considered. Electric car batteries may be

used to charge the campus or house via two-way charging, decreasing the need for non-renew-

able electricity from the grid. Because of their efficiency and ecologically friendly nature, plug-

in PHEVs have increased its popularity [3]. PHEVs, like HEVs, are hybrids with bigger batter-

ies. However, PHEVs can also be recharged by plugging them in, while HEVs only have built-

in batteries that can be recharged while driving [4, 5].

In [6, 7], cohesive dispatch uses a DC power flow model that takes into account both trans-

mission and distribution networks while taking into account voltage limits. The objective of

levying parking lots is to diminish distribution network losses. To do this, a PHEV charging

profile (PCP) for charging and discharging PHEVs is required. When designing PCP, the flat-

tening of the household load profile is to be considered and PHEV features must be defined to

attain PCP. Vehicle attributes are collected using the National Household Travel Survey

(NHTS). PHEVs are calculated using both the number of EVs and PHEV penetration rate.

Charging an enormous number of EVs at once creates a strain on the distribution system and,

in rare circumstances, can lead to grid instability. The most successful ways to improve smart

grid dependability are to properly allocate protection equipment [6, 8], DG units [9, 10], and

EV/PHEV charging stations [11, 12].

The Vehicle-to-Grid (V2G) system is an EV feature that enables us to store, utilize, and dis-

tribute electrical energy. Various manufacturers are still exploring and improving these cars in

terms of green technology and environmentally friendly conditions [13–15]. These EVs help

not just with mobility, but also with lowering dependency on fossil fuels during peak load

needs in the market’s early phases [16, 17]. The simplest way to overcome this problem is to

use charging synchronization. The idea is that EVs should submit data, such as battery SoC so

that a system may prioritize charging demands and decide which EV should charge during

this time slot, while delaying other demands to future time slots [18–21].

Over the past few years, works have been carried out in locating the charging stations for

ease of charging the electric vehicles and as well allocating these charging stations for optimal

charging of the energy to these PHEVs. Nojood O. Aljehane et al. [22] demonstrated an effi-

cient BWO-based allocation of RES and CS for PHEVs, with the MPC-based recommended

model. For comparing the performance of PHEVs with the present system, RES and CS are

designated by the Black Widow Optimization (BWO) algorithm, while the Deep Stacked auto-

encoder (DSAE) method determines the near-future velocity of HEVs. A large number of sim-

ulations were run, and the outcomes were analysed using various metrics. Finally, the experi-

mental results demonstrated that the provided model outperformed the other strategies under

consideration.

Mohammad Saadatmandi et al. [23] created a charge management approach to promote

penetration of renewable resources. Their findings reveal that this program is designed to

encourage consumers to use RES while minimizing the amount of power obtained from con-

ventional generators. Hasan Mehrjerdi et al. [24] created the best charging amenity and scope

for an EV charging station, as well as the charger nominal powers. Wind energy and energy

storage devices provide the power for the charging station that is connected to the electric grid.

The charging stations dimensions and functionalities have been optimized, and line reinforce-

ment strengthens the electrical grid. To manage uncertainty in wind power, stochastic pro-

gramming is used. It is a mixed-integer linear programming approach using the General
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Algebraic Modeling System (GAMS) toolkit. In their study, the fastest charging speed with 116

kW, the intermediate charging speed with 84 kW, and the slow charging speed with 52 kW

were found to be optimal.

Ali-Mohammad Hariri et al. [25] established a solitary optimization dilemma to boost

smart grid sustainability by assigning distributed generation units, EV/PHEV CSs, and defend-

ing components optically at the same time, while taking three optimization variables into

account as key contributions. In addition, Hierarchical optimization method (HOM) was cre-

ated to investigate the three phases and seven cases that are developed based on the optimiza-

tion factors, with findings produced in the Distributed Generation Allocation (DGA)-CSA-

Protective Device Allocation (PDA) scheme and test results were emphasized. Due to the seg-

mentation concept being applied, according to the test results, the suggested method can be

flexible in determining which DG units and CSs are needed in terms of power flow states as

well as consistency aspects.

Rouyi Chen et al. [26] framed the PHEV charging coordination crisis as a two-stage con-

strained optimization dilemma and devised an optimal charge control technique to solve it in

two stages. The suggested scheme has the advantages, such as it provides the lowest total charg-

ing cost for all PHEVs while flattening the power demand curves for the grid, and is also sim-

ple to execute in practice. Numerical simulations were performed to demonstrate the

efficiency of their strategy.

Mostafa Rezaeimozafar et al. [27] described a new method for determining the best place-

ment and scope for RES and EV charging stations by taking into account the changes caused

by EVs. An enhanced Genetic Algorithm (GA)—Particle Swarm Optimization (PSO) is devel-

oped for resolving the specified optimization trouble, and its effectiveness is evaluated com-

pared to the Differential Evolution (DE) method for evaluating the developed approach. The

research also shows that using EVs as a vigorous power source with RES can lower losses, volt-

age variations, the response to input constraints, and the costs incurred by administrators and

recipients.

N. Tutkun et al. [28] employed off-grid sources to share power for charging PHEVs in

order to minimize system damage when a high number of vehicles were exploited, as well as

focusing on the layout of a grid-linked 30 kW photovoltaic powered PHEV charging station

with configurable battery storage units. It is accomplished by using Demand Side Management

(DSM) tactics to optimize PHEV charging times, which results in a highly anticipated seasonal

influence on maneuver costs in solar PV-powered systems, which can be decreased to a rea-

sonable level using well-designed optimization algorithms.

Zhaohao Ding et al. [29] suggested a stochastic resource planning strategy for PHEV CSs in

order to optimize energy utilisation on both the demand and supply areas. On the supply side,

acquisition verdicts for forward and spot markets are coordinated with internal generation

resource management decisions, and demand-side scheduling makes optimal use of two types

of charging loads. The effects on PHEV charging station operation turnover are proven using

numerical simulation results.

Table 1. presents the survey on the optical allocation of charging station and renewable

energy sources. At first, BWO Algorithm [22] assigns RES and charging sites for HEVs based

on a simulation of black widow spiders, promoting mating behaviour, however, the role of

machine learning tactics can be inspected to enrich future requirement precision and lower

the cost of imbalance. Furthermore, it can be used in a real-time setting. Binary conventional

generation (BCG) [23] flourishes a charging management programme to enhance penetration

of renewable resources, but the penetration can be improved by using a charge management

scheme. V2G technology [24] is quite sensitive to discharge depth, which limits the charging-

discharging regime’s time intervals limits that increases planning costs. The Hierarchical
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Optimization Method (HOM) [25] facilitated an analytical EV/PHEV charging station reliabil-

ity modelling, which is crucial in determining the best value for the third optimization phase.

DSM and Low Voltage Transformer (LVT) controller [26] minimizes the total charging cost

for all PHEVs while flattening the gird’s power demand curves and are simple to put into prac-

tice, but a high percentage of PHEVs on the road could overburden the electrical grid during

peak hours, raising PHEV charging costs.

Differential Evolution algorithm [27] can lower losses, voltage variations, system operators’

and subscribers’ costs, as well as the uncertainty of input parameters and it can be enhanced by

using high-speed wind. Buck-boost converter topologies [28] develop surplus energy when

integrating batteries into a PV system, which is a costly investment that might be termed

cheap energy storage, however, with traditional power generators; it is extremely complicated

to meet all the criteria due to the high unit cost. Stochastic Resource-Planning Scheme [29]

suggested that volatility risk can be adequately handled, however, PHEV charging stations

must strike a balance between cost and risk.

For fast charging of the lithium-ion battery, a model with reinforcement learning employ-

ing deep deterministic policy gradient has also been developed [30]. Soft actor-critic DRL algo-

rithm has also been developed in the work of Wu et al. for constrained energy management of

Sauer battery [31].Mohanty & Perli provided a Battle Royal Optimization algorithm based on

the fuzzy multi-objective functions used for two-stage and simultaneous optimal allocations of

electric vehicle charging stations [32]. Majhi et al. proposed a mixed-integer optimization

Table 1. Reviews on the optical allocation of RES and CS for PHEVs.

Author Adopted

methodology

Features Challenges

Nojood O. Aljehane

et al. [22]

BWO Algorithm It assigns RES and charging sites for HEVs based on

a simulation of black widow spiders promoting

mating behaviour.

The role of machine learning strategies can be examined to

improve future appeal attention and lower the cost of imbalance.

Furthermore, it can be used in a real-time setting.

Mohammad

Saadatmandi et al.

[23]

BCG Develops a charging management programme to

increase penetration of RES.

To improve the penetration of renewable energy, a charge

management scheme must be developed.

Hasan Mehrjerdi

et al. [24]

V2G technology It is quite sensitive to discharge depth. The V2G

charging-discharging operation is optimized.

Limiting the charging-discharging regime’s time intervals limits

planning flexibility and increases planning costs.

Ali-Mohammad

Hariri et al. [25]

HOM approach Analytical EV/PHEV charging station reliability

modelling is introduced.

Under varied scenarios, it is vital to establish the optimal value of

the third escalation phase, which must be smaller than any

derived objective of second phase.

Rouyi Chen et al. [26] DSM and LVT

controller

It minimizes the total charging cost for all PHEVs

while flattening the grid’s power demand curves.

It is simple to put into practice.

A high percentage of PHEVs on the road could overburden the

electrical grid during peak hours, raising PHEV charging costs.

Mostafa

Rezaeimozafar et al.

[27]

DE algorithm It can lower losses, voltage variations, system

operators’ and subscribers’ costs, as well as the

uncertainty of input parameters.

Computationally complex.

N. Tutkun et al. [28] Buck-boost

converter topologies

When surplus energy develops, integrating batteries

into a PV system is a costly investment that might

be termed cheap energy storage.

The unit cost of classical power generators makes attaining all of

the criteria challenging.

Zhaohao Ding et al.

[29]

Stochastic Resource-

Planning Scheme

The suggested scheme’s volatility risk can be

adequately handled.

PHEV charging stations must strike a balance between cost and

risk.

Following are the major contributions of this research study

➢ Proposes an enhanced Charging Station (CS) placement model for PHEVs.

➢ Proposes a new hybrid algorithm termed, “Atom Search Woven Aquila Optimization Algorithm (AT-AQ)”.

➢ The analysis of the suggested AT-AQ is done concerning total cost or voltage parameters, and the outcomes thus obtained are compared with the traditional

techniques to prove their superiority.

https://doi.org/10.1371/journal.pone.0284421.t001
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model to achieve a cost-effective solution for the optimal placement of dynamic charging facil-

ities on the large road network while maintaining an acceptable state-of-charge level [33]. Xu

& Huang (2022) developed a new hybrid clustering algorithm and a vehicle-pile resource

assignment model that considers user preferences and requirements in the upper layer, and

operational cost reduction in the lower layer [34].

Balu & Mukherjee modelled a novel strategy for obtaining the best location of EVCS/

EVBSSs in the radial distribution system. Also, the EV charger has been modelled as constant

current load and the influence of EVCS/EVBSSs demand on the voltage profile, real power

loss, total voltage deviation, energy loss cost [35].Wei et al. proposed to optimize the battery

energy consumption and to reduce the tire slip loss simultaneously for EV charging [36].Yi

et al. performed a novel data-driven approach to optimize electric vehicle (EV) public charging

and translated the study area into a directed graph by partitioning it into discrete grids [37].

Cao et al. (2021) developed a dynamic programming description that could solve the optimal

power-flow in respect of EV charging station demand allocation [38].

Thangaraj et al. modelled a hybrid technique to Electric Vehicle (EV) based Grid connected

with Distributed Generation (DG). The proposed hybrid technique is the joint implementa-

tion of artificial longicorn transgender algorithm (ATLA) and Water strider algorithm (WSA)

[39]. Chen et al. (2023) proposed a real-time hierarchical effective and efficient co-optimiza-

tion control strategy for automated and connected PHEV to co-optimize vehicle velocity and

energy management in urban driving scenarios [40]. Kathiravan & Rajnarayanan considered

network loss minimization by the optimum placement of EVCS along with Distributed Gener-

ation [41].

An et al. analysed electric vehicle charging behavior characteristics, and investigated the EV

charging problem at the scheduling level. A mathematical model for coordinated charging of

EVs was proposed to minimize the total charging time for a given number of vehicles [42]. Liu

et al. proposed an imitation reinforcement learning-based algorithm with optimal guidance

for energy control of hybrid vehicles to accelerate the solving process [43]. Wang et al. (2023)

designed a multi-agent reinforcement learning (MARL) based optimal energy-saving strategy

for HEV, achieving a cooperative control on the powertrain [44]. Ahmad et al. modelled an

approach to optimally place the solar-powered charging stations in a distribution network

with improved voltage profile, minimum power loss and reduced cost [45].

The paper is segmented to be—Section 1 describes a brief preface to the paper, and the

reviews of conventional strategies are inclined in section 2. Section 3 deliberates the system

model of the proposed CS allocation system and section 4 demonstrates the phases of opera-

tion of the proposed AT-AQframework for the allocation of CS. Section 5 explains the out-

comes of the proposed model and section 6 concludes the findings of the paper.

2. System model of the proposed charging station allocation

system

PHEV charging stations installed in bus stations with the highest rating result in effective utili-

zation of the system. Based on meta-heuristic optimization, this research study proposes a new

PHEV charging station renewable energy source distribution approach. The primary objective

function is to create a charging infrastructure at a reasonable cost, while sustaining the opera-

tional attributes of the distribution network. As a result, the proposed approach aims to define

the RES and charging station allocation issue as a multiple-objective approach by integrating

charging station characteristics. Furthermore, a new hybrid algorithm that integrates the prin-

ciples of both the AO and ASO Algorithms have been developed to tackle the PHEV RES and

charging station location difficulty. Aquila Optimization is rather a unique population-based
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optimization process inspired by the way the bird hunts for its prey during the winter and it

solves the problems of slow convergence and local optimum trapping. Fig 1 presents the work-

ing principle of the proposed optimized charging station system to minimize the time delay

taken in case of more number of vehicles to be charged.

The PHEV analysed in these experimental studies is based on a prototype and has a sequen-

tial arrangement. An integrated-starter-generator (ISG) and a diesel engine are automatically

integrated to form an electric generating unit (EGU) capable of supplying electricity to the bat-

tery. The electric motor (EM)shall be used as a driving motor or generator. In reparative brak-

ing, the maximum produced power of EM is limited to thirty kilowatts due to battery health.

The equal energy efficacy of EGU is computed using the combination of break-specific fuel

consumption (BSFC) of the engine and generator efficacy, as depicted using optimal EGU fuel

rates. A similar electrical circuit for replicating the lithium-ion phosphate battery design was

Fig 1. Working principle of the proposed system.

https://doi.org/10.1371/journal.pone.0284421.g001
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described in [5]. The battery strategy’s power balance formula is equal to,

Pib ¼ Ptb þ Pil ¼ Ptb þ I2Rib ð1Þ

where, Pib symbolizes internal battery power, Ptb implies terminal battery power, Pil represents

battery internal power loss, I expresses electrical current, and Rib specifies equivalent internal

resistance. The battery dynamics ‘BSOC’ is given by,

BSOC ¼ F BSOCð Þ ¼
� VAB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

AB � 4RibPtb

p

2QibRib
ð2Þ

The vehicle level power balance formula for PHEV is equal to:

1

3600
MgFrrns þ

Zair

21:15
ns

3 þ xin
dns

dr
ns ¼ PomZem

sgnðPomÞ

� �

ð3Þ

Ptb þ PEGU ¼ Pom þ Pa ð4Þ

Here, ‘Mg’ refers to mass, Frr refers to rolling resistance coefficient, and Zair refers to air

resistance coefficient. A specifies the front area, νs defines the speed, ξin demonstrates equal

mass inertia, ηem defines the motor’s electric efficiency, and Pom specifies the total power

invested with the motor or the rehabilitated power during braking. When Pom is more than

zero (to propel), sgn equals one; when Pom is less than zero (to recuperate), sgn equals one. Fur-

thermore, PEGU denotes EGU output power, but Pa denotes power exhausted with auxiliary

metrics, namely the braking and electrical steering systems.

3. Proposed hybrid AT-AQ optimization algorithm

3.1 Objectivefunction and solution encoding

Optimization is the way of assessing all feasible solutions to a function in order to optimize its

measurements. The bulk of real-world problems are complex and costly to resolve. As a result,

dealing with problems that include large expenditures connected with the installation of charg-

ing station motivates rigorous optimization of the charging infrastructure in terms of traffics

and the electric grid. The three primary criteria must be addressed in the formulation of the

charging station localization dilemma, such as cost, vehicle routing problem (VRP) index, and

accessibility index. To address these issues, a meta-heuristic algorithm is designed and devel-

oped, which intends to frame the allocation of RES and charging station issues as a multiple-

objective approach by including the parameters of the charging stations. As a result, the objec-

tive function is given by,

FobjðcostÞ ¼ costfixed þminðVRPindex;AindexÞ

VRPindex ¼ 24� Landcost � ConnectorsusedðNÞ � yearsðYÞ ð5Þ

Aindex ¼ Costchargerdevelop � ðN � 1Þ � Pratedpower connector

where, ‘cost’ accommodates CS installation and operation costs, ‘costfixed’ is the fixed cost ($),

‘VRPindex’ as given in Eq (5) indicates the reliability wherein ‘Landcost’ is the rental land cost,

‘N’ is the number of connectors in charging station, ‘Y’ is the study time for the particular

period of years, ‘Aindex’ reflects the charger developing cost based on charging connector

power rating and the number of connectors used for charging, ‘Costchargerdevelop’ specifies the

charger development cost, ‘Pratedpower_connector’ is the rated power of the charging connector in
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kW. The constraints in respect of the EVs shall be AC power and necessary inverter circuits

shall be employed for conversion of AC to DC and the DC power shall be stored in the batter-

ies. Making the EVs into the power grid shall result in voltage drop, energy loss and affecting

the peak load of the system. Thus, the constraints in respect of the EVs include,

• Cost of installation of the charging stations

• Increased distribution system power loss

• Difficulty in connecting the EVs for charging directly to the grid

• Problem in the source of electrical energy at a unity power factor and the voltage profile not

maintained due to the power system module

• Increased power losses

• Active power loss of the distributed power system network

The above are the specific constraints pertaining to the effective location of charging sta-

tions for the Electric Vehicles and all these are handled with the proposed optimization algo-

rithm and this intends to reduce the cost and the losses in the distribution system.

3.2 Proposed AT-AQ algorithm

Atom search optimization (ASO) [46] is a physics-inspired meta-heuristic optimization tech-

nique inspired by basic molecular dynamics and aimed to solve a variety of optimization prob-

lems. The atomic mobility model observable in reality is statistically simulated and mimicked

by ASO, wherein atoms combine via interaction force produced by the Lennard-Jones pro-

spective and constraining forces induced by the bond-length potential. It is easy and uncom-

plicated to employ, and it represents a reasonable alternative to the real-world engineering

challenges. Fig 2 provided the detailed flowchart of the AT-AQ model employed in this work

for charging station allocation optimization process.

Each atom’s location is represented by ASO as a solution, with a heavier mass representing

a better solution and vice versa. All atoms in the populace attract or repel each other depending

on the exact distance between them, causing the lighter atoms to drift towards the heavier

ones. Because larger atoms have a smaller acceleration, they are more inclined to seek effective

options in local spaces. Lighter atoms also have more acceleration, allowing them to survey a

larger region for new prospective positions. The algorithmic aspects engaged in the formation

of the suggested AT-AQ algorithm are also discussed in this section. The conventional

mechanics govern atomic motion. Based on Newton’s second law, if Fp is the interaction force

and Cp is the constraint force acting on the Pth atom, and the atom has mass mp, the atom’s

acceleration becomes,

Ap ¼
Fp þ Cp

mp
ð6Þ

i). Interaction force. The stimulating power of atomic motion is the interaction force

coming from the L−J potential. In Eq (3), the interaction force acted on the pth atom from the

qth atom at the tth iteration may be represented as,

Ur Rpq

� �
¼ 4x

W

Rpq

 !12

�
W

Rpq

 !6" #

ð7Þ
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where, ξ is the potential well’s depth, ϑ is the discretized scope at which the inter-particle

potential is zero, and Rpq = kq−kp, where kp = (kp1,kp2,. . .,kpn) and kq = (kq1,kq2,. . .,kqn) are the

pth and qth atom locations in the n-th dimension. As a result, the Euclidean distance between

kp and kq is given by,

Rpq ¼ kkq � kpk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkp1 � kq1Þ
2
þ ðkp2 � kq2Þ

2
þ . . .þ ðkpn � kqnÞ

2

q

ð8Þ

Fig 2. Flowchart of the proposed AT-AQ model.

https://doi.org/10.1371/journal.pone.0284421.g002
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The terms W

Rpq

� �12

and W

Rpq

� �6

represents attraction and repulsion respectively.The interac-

tion force exerted on the pth atom from the qth atom in the ith dimension at the tth time is inter-

preted by,

Fi
pq tð Þ ¼ � rUr Rpq

� �
¼

24xðtÞ
WðtÞ

2
W

Rpq

 !13

�
W

Rpq

 !7" #
Rpq

Ri
pq

ð9Þ

and

F0pq ¼
24xðtÞ
WðtÞ

W

Rpq

 !13

�
W

Rpq

 !7" #

ð10Þ

In Eq (9), the term ‘Fi
pqðtÞ’ specifies the force exerted from p-th atom to q-th atom, ‘Rpq’ is

the Euclidean distance, ‘Ur’ specifies the variation metric of the search space. The atoms retain

a relative distance from each other that fluctuates over time due to attraction or repulsion, and

the deviation in amplitude in repulsion contrasted to equilibrium distance is substantially

higher than attraction. Because attraction is positive and repulsion is negative, the atoms can-

not converge to a precise point. Eq (10) cannot be utilized adversely for optimization.

F0pq ¼ � ZðtÞ½ðHpqðtÞÞ
13
� ðHpqðtÞÞ

7
� ð11Þ

where, ‘Hpq’ specifies the relative Euclidean distance with the minimal and maximal variations

as given in Eq (13) and ‘η(t)’ is the depth task used to alter the repulsion or attraction zone,

and it is interpreted as follows:

Z tð Þ ¼ aw 1 �
t � 1

T

� �3

e� 20t
T ð12Þ

where, T denotes the count of iterations allowed and αw is the depth weight.

HpqðtÞ ¼

Hminif
RpqðtÞ
WðtÞ

< Hmin

RpqðtÞ
WðtÞ

ifHmin �
RpqðtÞ
WðtÞ

� Hmax

Hmaxif
RpqðtÞ
WðtÞ

> Hmax

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

ð13Þ

The lower and upper limits of Hpq are signified by Hmin and Hmax, accordingly. ϑ(t) is the

length scale s tð Þ ¼ kkpqðtÞ;
P

J2KBestkpqðtÞ

KðtÞ k; where KBest is a subset of K atoms having the best

function fitness values.

Hf0 f min
ðdf Þ

Hf0fmaxðdf Þ
upto ur ð14Þ

(

where ur is the upper limit and df is a drift function that assists the algorithm in devolving
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from exploration to exploitation and is given by:

df tð Þ ¼ 0:1� sin
p

2
�

t
T

� �

ð15Þ

The total force applied on pth atom from certain atoms is now the weighted sum of the

forces in the ith dimension:

F
i
P

J2KBest
RandqFi

pq

int ð16Þ

where, ‘F’ is the force exerted and the random number in [0, 1] is specified as Randq.

ii). Geometric constraints. The geometric restriction in molecular dynamics is critical in

the mobility of atoms. For the sake of versatility, in ASO an atom is supposed to have a cova-

lent bond with the best atom, therefore the best atom exerts a constraint force on each atom.

This constraint forces on the pth atom in the dth dimension, which stated as follows:

Cpq
i ¼ lðtÞðki

BestðtÞ � ki
pðtÞÞ ð17Þ

where, ‘Cpq’ indicates the constraint force and ‘λ(t)’ is the Lagrangian multiplier is defined as,

l tð Þ ¼ bwe20t
T ð18Þ

where, the multiplier weight is designated as βw.

iii). Atomic motion. Taking interaction force and geometric constraints into account,

acceleration of ith atom at a time t in the ith dimension becomes,

Ap
i tð Þ ¼

Fp
iðtÞ þ Cp

iðtÞ
mp

aw 1 �
t � 1

T

� �3

e� 20t
T ∗

X

J2KBest

Randq½2ðHpqðtÞÞ
13
� ðHpqðtÞÞ

7
�

mpðtÞ
ðkp

i
ðtÞ � kp

i
ðtÞÞ

kkpðtÞ; kqðtÞk2

þ bwe� 20t
T

FBest
iðtÞ � kp

i
ðtÞ

mpðtÞ
ð19Þ

where, Mp(t) represents the mass of pth atom at tth iteration. It is determined as:

Mp tð Þ ¼ e�
FtpðtÞ� FtBest ðtÞ

Ftworst ðtÞ� Ftbest ðtÞ ð20Þ

mp tð Þ ¼
MpðtÞ

PN
J¼1

MqðtÞ
ð21Þ

where, FtBestðtÞ ¼ minfi¼1;2;:::ng FtpðtÞ and, FtworstðtÞ ¼ maxfi¼1;2;:::ng FtpðtÞ. The pth atom’s posi-

tion and velocity at a time (t+1) are specified by,

Vp
iðt þ 1Þ ¼ Randp

iVp
iðtÞ þ Ap

iðtÞ ð22Þ

kp
i
ðt þ 1Þ ¼ kp

i
ðtÞ þ Vp

iðt þ 1Þ ð23Þ

Exploration ability must be strengthened before it can be used for the optimization issue.

As a result, in the early part, each atom must converse with a large number of atoms with

higher fitness values as neighbours, hence K must be huge. To improve exploitation near the

conclusion of the process, the number of neighbours K must be reduced. As a result, K, an
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exploration factor is computed as follows:

K tð Þ ¼ N � N � 2ð Þ

ffiffiffiffi
t
T

r

ð24Þ

After calculating the mass of an atom, hybridization between ASO and AO is performed.

iv). Expanded exploration phase. By high soaring with the vertical stoop in the expanded

exploration phase (K1), Aquila finds the prey location and chooses the optimum attacking

place. Here, the AO extensively explores the search region from a high altitude to discover

where the prey is. This behaviour is statistically represented as in Eq (19),

K1 t þ 1ð Þ ¼ KBest tð Þ � 1 �
t
T

� �

þ KMðtÞ � KBestðtÞ∗Randð Þ ð25Þ

where, K1(t+1) is the solution of iteration t produced by initial search procedure K1. KBest(t)
represents the best solution achieved till the tth iteration, and it represents the fairly accurate

location of the prey. The term 1 � t
T

� �
assist in the regulation of the number of iterations in

the expanded search (exploration phase). KM(t) Signifies the mean of current solutions linked

at the tth iteration, as determined by Eq (20). Rand is a number between 0 and 1. The values of

t and T represents the current and maximum iteration, respectively.

KM tð Þ ¼
1

N

XN

p¼1
Kp tð Þ; 8q ¼ 1; 2; . . . ;Dim ð26Þ

Atompopðp; :Þ ¼ SimpleboundsðAtompopðp; :Þ; low; upÞ ð27Þ

v). Narrowed exploration phase. During the Narrowed exploration phase, when the tar-

get zone is located from a higher flight, the Aquila loops over the desired target, approaches

the ground, and then strikes. It is regarded as a Contour flying with a brief gliding approach.

In this stage, AO closely searches the target prey’s chosen region in preparation for the attack.

Eq (22) represents this behaviour numerically.

K2ðt þ 1Þ ¼ KBestðtÞ � LevyðDÞ þ KRðtÞ þ ðy � xÞ∗Rand ð28Þ

where, K2(t+1) is the response of next iteration of t retrieved by K2, D is the dimension of

search space, and Levy(D) is the levy flight distribution function, which is derived using Eq

(23). At the pth iteration, KR(t) is a random outcome in the range [1, N].

Levy Dð Þ ¼ c�
m� W

jnj
1
t

ð29Þ

where, ‘c’ possess a fixed measureof 0.01, μ and ν are random integers ranging from 0 to 1. ϑ is

computed using Eq (30).

W ¼ I
1þ t� sine pt

2

� �

I 1þt

2

� �
� t� 2

t� 1
2ð Þ

 !

ð30Þ

 

where, τ is a fixed constant measure of 1.5. In Eq (28), the variables ys and xs are utilized to
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indicate the spiral form in the search process, and they are determined as follows:

ys ¼ R� cosðyÞ ð31Þ

xs ¼ R� sinðyÞ ð32Þ

where, R = R0+ur*t0; t0 = 1: Dim; ur = 0.0265; R0 = 10. Also,

y ¼ � Omega∗t0∗y0 ð33Þ

y0 ¼
3� p

2
ð34Þ

where, Omega = 0.005. Also, R1 seizes a value in the range 1 to 20, and S is a minimal value set

to 0.00565. I1is an integer number ranging from 1 to the maximum search space Dim, ω and is

a modest measure set to 0.005.

vi). Expanded exploitation phase. When the prey region is precisely identified and the

Aquila is set for landing and attack in the extended exploitation phase (K3), the Aquila stum-

bles upright with an opening strike to detect the prey response. This technique is known as

low flying with a gradual falling attack. AO uses the specified region of prey to come nea rit

and perform the hit. Eq (30) represents this behaviour statistically.

K3ðt þ 1Þ ¼ ðKBestðtÞ � KMðtÞÞ � a � Randþ ððUrB � LrBÞ � Randþ LrBÞ � d ð35Þ

where, K3(t+1) indicates the outcome of the following iteration of t produced by the third

search mechanism (K3). The approximate position of prey till the pth iteration (the best-

obtained solution) is denoted by KBest(t), and the mean of current solution at the tth iteration is

denoted by KM(t),and is found via Eq (26). Rand is a number varying in the limit of 0 to 1. α
and δ are adjustment parameters of exploitation, and in this work α and δ are set to a low mea-

sure of 0.1. The lower limit is denoted by LrB, while the upper bound is denoted by UrB in the

following problem.

vii). Narrowed exploitation phase. When the Aquila gets close to the victim during the

Narrowed exploitation phase (X4), the Aquila strikes the victim using stochastic action. This

technique is known as stroll and grabs prey. At the last step, the prey is attacked by the Aquila

at the final spot. Eq (36) represents this behaviour precisely.

K4ðt þ 1Þ ¼ QF � KBestðtÞ � ðR1 � KðtÞ � RandÞ � R2 � LevyðDÞ þ Rand�R1 ð36Þ

where K4(t+1) specifies the outcome of the fourth search method’s next iteration t. QF is a

quality function that assist in balancing the search methods and is determined using Eq (37).

QF tð Þ ¼ t
2�Rand� 1

ð1� TÞ2 ð37Þ

<1 indicates multiple AO movements utilized to monitor the prey during the chase, which

are created by Eq (38). <2 displays decreasing measures from 2 to 0, indicating the flight slope

of AO utilized to track the food at the time of trip from first(1) to last(t) position, as calculated

via. Eq (39). At the tth iteration, the present solution is K(t). The terms <1 and <2 are expressed

as,

R1 ¼ 2∗RandðÞ � 1 ð38Þ

R2 ¼ 2∗ð1 � ðItr=max I trÞÞ ð39Þ
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QF is a quality function that assist in balancing the search methods and is determined using

Eq (40).

QF ¼ max I tr^ðð2∗RandðÞ � 1=ð1 � max I trÞ^2Þ ð40Þ

The pseudo code of the developed AT-AO framework is presented below in Algorithm 1

and its flowchart is depicted in Fig 2.
Algorithm 1: Proposed AT-AQ Algorithm
Arbitrarily initialize a set of atoms. K (Solutions)and their velocity
V, and FtBest = Inf.
While the stop criterion is not satisfied do
For each atom Kp do
Compute the fitness value Ftp;
If Ftp<FtBest then
FtBest = Ftp;
KBest = Kp;

End if.
Evaluate the mass using Eq (20) and Eq (21);
Employing Eq (24), compute its K neighbors.
Utilizing Eq (16) and Eq (17), estimate the interaction force Fp

and the constraint force correspondingly.
Enumerate acceleration via Eq (19);
Modernize velocity via Eq (22);
Modernize position via Eq (23);

End for.
End while.
Evaluate best solution so far KBest
Initialize population K of the AO.
Initialize parameters.
While
Stopping condition is not satisfied
do

Estimate fitness measures
KBest(t) = Determinethebestobtainedsolution

accordingtothefitnessvalues.
for (i = 1,2. . .,N)

do
Modernize mean of current solution KM(t)
Modernize xs, ys, <1, <2, Levy(D), etc.
if t � 2

3

� �
∗T then

Modernize <2 and <1 use Eq (38) and Eq (39) correspondingly.
If Rand�0.5 then
Modernize current solution via Eq (25)
If Ft(K1(t+1))<Ft(K(t)) then
K(t) = K1(t+1)
If Ft(K1(t+1))<Ft(KBest(t)) then
KBest(t) = K1(t+1)

End if
End if
Else
Modernize current solution via Eq (28).
If Ft(K2(t+1))<Ft(K(t)) then
K(t) = K2(t+1)
If Ft(K2(t+1))<Ft(KBest(t)) then
KBest(t) = K1(t+1)

End if
End if
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End if
Else
If Rand>0.5 then
Modernize current solution via Eq (35).
If Ft(K3(t+1))<Ft(K(t)) then
K(t) = K3(t+1)
If Ft(K3(t+1))<Ft(KBest(t)) then
KBest(t) = K3(t+1)

End if
End if
Else
Modernize current solution via Eq (36).
If Ft(K4(t+1))<Ft(K(t)) then
K(t) = K4(t+1)
If Ft(K4(t+1))<Ft(KBest(t)) then
KBest(t) = K4(t+1)

End if
End if

End if
End if

End for
End while
Return KBest

4. Results and analysis

4.1 Simulation process

The proposed CS allocation system was implemented and analysed in MATLAB environment.

As a result, the proposed AT-AQ based model’s cost and time were compared to those of other

traditional schemes such as Monkey Search Algorithm (MS) [47], Genetic Algorithm (GA)

[48], Aquila Optimizer (AQ) [49], and Atom Search Algorithm (AT) [49]. The analysis was

carried out in two different scenarios. Different charging levels were assigned for 24 hours in

the first scenario, and in the next scenario. Initially, the cost of charging a CS is held at zero

time intervals and the charging cost varies with varied time intervals while charging. The per-

formance analysis was done with time intervals of 0, 5, 10, 15, 20, and 25 hours. Furthermore,

the analysis was conducted with regard to "Best, worst, mean, median and standard deviation

(STD)" to express the superiority of the AT-AQ model. The evaluation of the methods is car-

ried out by comparing the proposed algorithm with several state-of-art algorithms concerning

total cost, voltage profile and so on.

4.2 Performance analysis

The dataset employed to test the proposed optimization model is the usage of electric vehicles

in the campus of Georgia Tech, Atlanta, USA and the vehicles were charged at the conference

centre parking station and 150 vehicles were flying around the campus. The mean driving dis-

tance of the vehicles is 31 km. The regional distribution will be around the campus of Georgia

Tech, Atlanta, USA in this research study and the datasets is as in reference [50]. Performance

analysis curves are displayed along the x and y axes for conventional cost and time values. The

charging cost of multiple scenarios was shown by the characteristics curve at varied time inter-

vals of 0, 5, 10, 15, 20, and 25. Three alternative situations may be used to determine the total

cost necessary for a specific time period of the CS allocation model. The cost ofthe models was

taken as Total cost, C1 Cost, and C2 Cost for case 1 and Case 2 with three different scenarios,
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such as Scenario 1, Scenario 2, and Scenario 3, correspondingly. Three scenarios have been

employed for this study, the scenarios include,

Scenario 1: Optimal placement based on distribution system conjunction with transporta-

tion system

Scenario 2: Optimal placement based on distribution generators with previous optimal

charging load

Scenario 3: Allocation of distribution generators and charging station in distribution system

optimally based on earlier optimal load

As a result, the performance of the characteristics curve was depicted for relevant cost val-

ues in the range of 1011 for Case 1, 108 Case 2 and 108 for Case 3.More specifically, the pro-

posed approach has needed lower charging costs than the earlier models. That is, the

developed charging station allocation model outperforms traditional models, such as MS, GA,

AQ, and AT. Furthermore, the analysis was carried out in terms of "best, worst, mean, median,

and STD" to demonstrate the efficiency of the AT-AQ model. The performance measurements

demonstrate how effective the CS model is based on the suggested work. As a result, the imple-

mented AT-AQ technique has achieved a low-cost value for specific time periods. This

research demonstrates the superiority of the proposed AT-AQsystem in charging the CS

model. Tables 2–4 reveals the effectiveness of the proposed system’s “C1 Cost” over the con-

ventional schemes by best, worst, mean, median and STD parameters forcase 1, case 2, and

case 3accordingly.

Table 2. Scenario 1.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best (e+11) 1.227 1.2272 1.2272 1.2274 1.2271

Worst (e+11) 2.5493 2.5487 2.5493 2.5491 2.4451

Mean (e+11) 1.8034 1.9029 1.8756 1.9869 1.6131

Median(e+11) 2.07 2.07 2.07 2.2389 1.2278

STD(e+11) 0.55882 0.50724 0.57967 0.56821 0.52029

https://doi.org/10.1371/journal.pone.0284421.t002

Table 3. Scenario 2.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best (e+11) 1.227 1.2271 1.2273 1.2271 1.2272

Worst(e+11) 2.5476 2.5482 2.5492 2.5497 2.5489

Mean(e+11) 1.7104 1.914 1.8892 1.9603 1.713

Median(e+11) 1.2281 2.0713 2.0712 2.2394 1.2277

STD(e+11) 0.55057 0.5159 0.54485 0.59209 0.55258

https://doi.org/10.1371/journal.pone.0284421.t003

Table 4. Scenario 3.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+11) 1.227 1.2271 1.2273 1.2272 1.2273

Worst(e+11) 2.5492 2.549 2.5483 2.5495 2.549

Mean(e+11) 1.8989 1.7317 1.8535 1.9286 1.8377

Median(e+11) 2.1548 1.6489 2.2387 2.071 2.07

STD(e+11) 0.54688 0.53683 0.55042 0.53209 0.59366

https://doi.org/10.1371/journal.pone.0284421.t004
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Tables 5–7 reveals the effectiveness of the proposed system’s “C2 Cost” over the conven-

tional schemes by best, worst, mean, median and STD parameters for case 1, case 2, and case 3

accordingly.

Tables 8–10 reveals the effectiveness of the proposed system’s “total cost” over the conven-

tional schemes by best, worst, mean, median and STD parameters for case 1, case 2, and case 3

accordingly.

The statistics precisely demonstrated that the proposed charging strategy outperforms the

standard parameters in terms of performance. The newly modelled AT-AQ optimizer outper-

forms the MS [47], GA [48], AQ [49], and AT [49] models in terms of the best solution. Fur-

thermore, it achieved best, worst, mean, median, and standard deviation than conventional

systems. As a result, the suggested strategy is more effective than the existing optimization

techniques.

Table 5. Scenario 1.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+8) 1.9904 1.9915 1.9907 1.9903 1.9881

Worst(e+8) 2.4351 2.4403 2.095 2.2225 1.9889

Mean(e+8) 2.2139 2.2056 2.0356 2.0141 1.9884

Median(e+8) 2.228 2.1887 2.0429 2.0013 1.9884

STD(e+8) 0.14264 0.13299 0.3324 0.48252 0.00019

https://doi.org/10.1371/journal.pone.0284421.t005

Table 7. Scenario 3.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+8) 2.0418 1.9943 1.9883 1.998 1.9896

Worst(e+8) 2.4261 2.425 1.9888 2.394 2.0125

Mean(e+8) 2.2136 2.2137 1.9886 2.1062 1.9973

Median(e+8) 2.2238 2.2052 1.9886 2.0624 1.9977

STD(e+8) 0.11544 0.13678 0.000118 0.10933 0.0058

https://doi.org/10.1371/journal.pone.0284421.t007

Table 6. Scenario 2.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+8) 2.0237 2.0099 1.9968 1.9911 1.9881

Worst(e+8) 2.4224 2.4274 2.4213 2.1609 1.9887

Mean(e+8) 2.23 2.2211 2.2002 2.0483 1.9884

Median(e+8) 2.2342 2.2323 2.1845 2.041 1.9885

STD(e+8) 0.11681 0.11359 0.013074 0.044462 0.00015

https://doi.org/10.1371/journal.pone.0284421.t006

Table 8. Scenario 1.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+11) 1.229 1.2293 1.2293 1.2294 1.2291

Worst(e+11) 2.5515 2.551 2.5513 2.5511 2.4471

Mean(e+11) 1.8056 1.914 1.8892 1.9603 1.713

Median(e+11) 2.0724 2.0732 2.0725 2.2409 1.2298

STD(e+11) 0.55879 0.50721 0.57966 0.56821 0.52029

https://doi.org/10.1371/journal.pone.0284421.t008
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Figs 3A–5B exhibits the charging station allocation model’s charging cost at varying time

transients during the first case for scenario 1, 2, and 3 respectively. Also, 3b, 4b, and 5b are the

convergence plots for the plots 3a, 4a, and 5a respectively. The performance curve is presented

here for various strategies with costs of 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, and 2.6 with the time peri-

ods of 0, 5, 10, 15, 20 and 25. The graphs proved that the proposed model charged faster than

the existing models, requiring a lower charging cost.

Figs 6A–8B shows the CS allocation model’s charging cost at varying time transients during

the second case for scenario 1, 2, and 3, respectively. Here, 6b, 7b, and 8b are the convergence

plots for 6a, 7a, and 8a respectively. The performance curve is presented here for various strat-

egies with costs of 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, and 2.45 with the intervals of 0, 5,

Table 10. Scenario 3.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+11) 1.229 1.2294 1.2293 1.2293 1.2293

Worst(e+11) 2.5515 2.5514 2.5503 2.5518 2.551

Mean(e+11) 1.9012 1.7339 1.8555 1.9307 1.8397

Median(e+11) 2.157 1.6513 2.2407 2.0732 2.0721

STD(e+11) 0.54689 0.53681 0.55042 0.53209 0.59366

https://doi.org/10.1371/journal.pone.0284421.t010

Table 9. Scenario 2.

MS [47] GA [48] AQ [49] AT [49] Proposed AT-AQ optimizer

Best(e+11) 1.2293 1.2293 1.2295 1.2292 1.2292

Worst(e+11) 2.5499 2.5503 2.5513 2.5517 2.5508

Mean(e+11) 1.7126 1.9163 1.8914 1.9623 1.715

Median(e+11) 1.2302 2.0736 2.0733 2.2415 1.2297

STD(e+11) 0.55056 0.51591 0.54481 0.59209 0.55258

https://doi.org/10.1371/journal.pone.0284421.t009

Fig 3. a Cost 1 Vs Time Scenario 1. b Convergence plot Scenario 1b.

https://doi.org/10.1371/journal.pone.0284421.g003
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10, 15, 20 and 25. The graphs revealed that the proposed model charged faster than the existing

models, requiring a lower charging cost.

Figs 9–11 showcase the Reserve cost of the diesel fuel engine with varying time instants for

scenario 1, 2, and 3, respectively. From the graphs, it is clearly depicted that the proposed

model has attained improved efficacy than the conventional schemes such as MS, GA, AQ,

and AT optimizations.

Figs 12A–14B depict the total cost of the system with varying time intervals for scenario 1,

2, and 3, respectively. Also, 12b, 13b and 14b are the convergence plots for 12a, 13a and 14a

respectively. Here the total cost of the proposed system is obtained by evaluating the sum of

both the cases. i.e; Total cost = C1Cost+C2Cost. Moreover, the above graphs clearly depicted

Fig 5. a Cost 1 Vs Time Scenario 3. b Convergence plot Scenario 3.

https://doi.org/10.1371/journal.pone.0284421.g005

Fig 4. a Cost 1 Vs Time Scenario 2. b Convergence plot Scenario 2.

https://doi.org/10.1371/journal.pone.0284421.g004
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that the proposed framework has a faster charging capacity than the classical schemes and

hence required lower costs. Also, the proposed scheme converges more efficiently than the

existing schemes.

On performing the necessary simulation process employing the proposed AT-AQ optimi-

zation algorithm, it has been observed that the cost incurred during the charging mechanism

has significantly been reduced. The total cost incurred were evaluated for the two costs C1 and

C2 and for the total cost as well. For the considered three scenarios, the variation in the

Fig 6. a Cost 2 Vs Time Scenario 1. b Convergence plot Scenario 1.

https://doi.org/10.1371/journal.pone.0284421.g006

Fig 7. a Cost 2 Vs Time Scenario 2. b Convergence plot Scenario 2.

https://doi.org/10.1371/journal.pone.0284421.g007
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Fig 8. a Cost 2 Vs Time Scenario 3. b Convergence plot Scenario 3.

https://doi.org/10.1371/journal.pone.0284421.g008

Fig 9. Reserve cost Scenario 1.

https://doi.org/10.1371/journal.pone.0284421.g009
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Fig 10. Reserve cost Scenario 2.

https://doi.org/10.1371/journal.pone.0284421.g010

Fig 11. Reserve cost Scenario 3.

https://doi.org/10.1371/journal.pone.0284421.g011
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standard deviation evaluated using simulation is 0.52029, 0.55258 and 0.59366. In respect of

the cost C2, it has been noted that the standard deviation parameter includes 0.00019, 0.00015

and 0.0058. The median variation of the total cost is observed to be 1.2298, 1.2297 and 2.0721

for the scenarios respectively. It confirms that the cost gets minimized to the most possible

extent proving the versatility of the proposed AT-AQ optimization algorithm in respect of

improvement in the exploration and exploitation mechanism. The force exerted and the

update mechanism results in attainment of global stability with minimized cost-effective value.

Fig 12. a Total cost Vs Time Scenario 1. b Convergence Plot Scenario 1.

https://doi.org/10.1371/journal.pone.0284421.g012

Fig 13. a Total cost Vs Time Scenario 2. b Convergence Plot Scenario 2.

https://doi.org/10.1371/journal.pone.0284421.g013
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5.Conclusion

A systematic optimization approach of charging electric vehicles (EVs) as well as allocating

a better place for their installations has been presented in this research study. The main des-

tination purpose is to establish a charging network at an affordable cost while maintaining

the distribution network’s operating qualities. To fulfill the consequences of the variables,

these challenges are handled using meta-heuristic algorithms and optimum planning based

on renewable energy sources. As a result, this study proposed a novel strategy to conceptual-

ize the distribution of RES and charging station problems as a multiple-objectives strategy

by including charging station characteristics. A novel optimizer called Atom Search Woven

Aquila Optimization Algorithm (AT-AQ) that incorporates the concepts of both Aquila

Optimizer (AO) and Atom Search Optimization (ASO) Algorithms was devised and utilized

to execute the charging station distribution process. The effectiveness of the proposed

method has been analyzed with respect toBest, Worst, Mean, Median, and STD parameters

in the charging stations, and the results thus obtained are compared with the conventional

strategies.

Significantly, the total cost incurred using the proposed technique for the three scenarios

includes, 1.713, 1.715 and 1.8397 respectively proving the efficacy of the approach. The mod-

elled optimizer has been superior to other existing strategies in terms of its charging efficiency

in a short duration of time at a lower cost. When comparing the cost efficiency of the proposed

AT-AQ model to the conventional MS, GA, AQ and AT strategies, the proposed AT-AQ

model has an enhanced best solution of 1.2271e+11 in case 1 and 1.9881e+08 in case 2, which

is better than the existing MS, GA, AQ and AT models. A comprehensive set of simulations

was done to express the achievement of the suggested methodology, and the outcomes were

evaluated using various metrics. The experimental outcomes demonstrated that the proposed

framework outperformed the other conventional strategies. The method also offers strong and

effective steady-state performance and rapid dynamic response in respect of the charging sta-

tion allocation.

Fig 14. a Total cost Vs Time Scenario 3. b Convergence Plot Scenario 3.

https://doi.org/10.1371/journal.pone.0284421.g014
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