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Abstract

The world has witnessed of many pandemic waves of SARS-CoV-2. However, the inci-

dence of SARS-CoV-2 infection has now declined but the novel variant and responsible

cases has been observed globally. Most of the world population has received the vaccina-

tions, but the immune response against COVID-19 is not long-lasting, which may cause

new outbreaks. A highly efficient pharmaceutical molecule is desperately needed in these

circumstances. In the present study, a potent natural compound that could inhibit the 3CL

protease protein of SARS-CoV-2 was found with computationally intensive search. This

research approach is based on physics-based principles and a machine-learning approach.

Deep learning design was applied to the library of natural compounds to rank the potential

candidates. This procedure screened 32,484 compounds, and the top five hits based on

estimated pIC50 were selected for molecular docking and modeling. This work identified two

hit compounds, CMP4 and CMP2, which exhibited strong interaction with the 3CL protease

using molecular docking and simulation. These two compounds demonstrated potential

interaction with the catalytic residues His41 and Cys154 of the 3CL protease. Their calcu-

lated binding free energies to MMGBSA were compared to those of the native 3CL protease

inhibitor. Using steered molecular dynamics, the dissociation strength of these complexes

was sequentially determined. In conclusion, CMP4 demonstrated strong comparative per-

formance with native inhibitors and was identified as a promising hit candidate. This com-

pound can be applied in-vitro experiment for the validation of its inhibitory activity.

Additionally, these methods can be used to identify new binding sites on the enzyme and to

design new compounds that target these sites.
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1. Introduction

The first case of atypical pneumonia, severe acute respiratory syndrome (SARS), was observed

in China Guangdong province, and since then it has spread to several other countries. Cough-

ing, a high temperature, chills, convulsions, headaches, dizziness, increasing radiographic

abnormalities of the chest, and lymphopenia are the most typical SARS symptoms. In recent

times, this viral infection has been renewed into the most lethal coronavirus pandemic in 2019

caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), which

spread globally and resulted in significant fatalities [1, 2]. According to the genomic data anal-

ysis, SARS-CoV-2 is most similar to SARS-CoV and MERS-CoV and shares 75–85% sequences

similarity with other coronavirus strains [3–7]. In humans, birds, and other animals, coronavi-

ruses have been linked to hepatitis, gastroenteritis, and other diseases [8–11]. It was found that

the coronavirus infection was also sensitive to several co-morbid illnesses [9, 10, 11]. Cancer,

diabetes, hypertension, cerebral infarction, chronic bronchitis, Parkinson’s disease, and

chronic obstructive pulmonary disease are only a few of the co-morbidities that can lead to

SARS-CoV-2 infections, especially among the elderly [12–14]. The development of anti-SARS

medications to prevent future outbreaks remains a serious problem on view of several variants

that appeared during prolong pandemic period with compromised vaccine efficacy [2, 7, 15,

16]. This raised an alarming condition where it is critical to identify a novel drug candidate

using in-silico based drug design approach.

There are only two known proteases encoded by the SARS-CoV-2 which include (a)

papain-like cysteine protease (PLpro) [17] and (b) chymotrypsin-like cysteine protease known

as 3C-like protease (3CLpro) [18–23]. The SARS-3CLpro is highly homologous with other

coronavirus 3C-like proteases and is fully conserved among all the known SARS coronavirus

genome sequences available. Some recent studies indicate the potential compound that could

inhibit the 3Cl protease of SARS-CoV-2 [24, 25]. The Leu-Gln motif is a conserved pattern of

the 3CLpro of SARS-CoV-2 and is involved at 11 positions in the cleavage of polyproteins, a

process initiated by the enzyme own autolytic cleavage (autoprocessing) [19, 26]. The catalytic

dyad His41 and Cys145 is present in the SARS-CoV2 3CLpro active site, which is positioned at

the center of cleft between domains I and II [20, 27, 28]. 3CLpro is an effective therapeutic tar-

get for treating corona-viral infection since the autocleavage process is crucial in virus propa-

gation [29]. The protease inhibitors are most effective at inhibiting replication [30–32], thus,

the 3CLpro enzyme was selected as a promising target for developing effective inhibitors

against SARS-CoV in this study.

The 3CLpro enzyme exists in a homodimeric state, wherein each monomer contributes to

the formation of an active site. Despite this, the monomeric form of 3CLpro has also been

observed to display enzymatic activity, albeit at a lower efficiency than the dimeric form.

While the dimeric form is the biologically relevant form of the enzyme, analyzing the mono-

meric form can provide valuable insights into potential inhibitors and their mechanism of

action for drug discovery. The monomeric form of 3CLpro acts as a precursor to the dimeric

form, with the enzyme initially synthesized as a monomer before undergoing a conformational

change that allows it to dimerize. Consequently, targeting the monomeric form may prevent

the formation of the active enzyme complex. By identifying compounds that effectively inhibit

the monomeric form, a better understanding of the structure-activity relationships underlying

inhibitor binding can be obtained, ultimately guiding the development of more effective inhib-

itors. Previous studies have investigated the binding of the inhibitor N3 to the monomeric

form of 3CLpro, with the PDB code 6LU7 being utilized in these in-silico analyses against

SARS-CoV [33–35]. It was concluded in other studies that the binding of N3 to the dimers has

an allosteric effect, which means that it allows for only one protomer at a time to be active [36].

PLOS ONE Compounds inhibiting SARS-CoV-2 3CL protease

PLOS ONE | https://doi.org/10.1371/journal.pone.0284301 April 14, 2023 2 / 27

Funding: This research was funded by the

Deanship of Scientific Research at King Khalid

University, Abha, KSA through a research group

program under grant number RGP. 2/181/43. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0284301


An initial in silico investigation employing various computational approaches could greatly

reduce the time needed for lead molecule discovery [37–39]. It is essential to determine the

molecular interaction of the ligands with the target protein to estimate the therapeutic and

inhibitory potential of a given compound. There has been a recent addition of a new dimen-

sion through the use of machine learning techniques with virtual drug screening methods for

the creation of novel medications [33, 35, 40–46], disabling multidrug resistance [47], and

applications in precision medicine to choose drugs for customised treatments [48, 49]. Several

studies were reported which demonstrate the application of machine learning for predicting

potential inhibitory compounds for SARS-CoV-2. In one of the study by Ton et al. [50] a deep

docking model was applied to screen compounds from the ZINC15 library and suggested the

top 1000 hits as potential SARS-CoV-2 3CLpro inhibitors. Similarly, another study used a

deep learning model to predict the inhibitory activity against 3CLpro in SARS-CoV for

unknown compounds in the virtual screening process, as reported by Kumari et al. [51]. Ran-

dom forest (RF) and support vector machine (SVM) models were used in a study by Liang

et al. to hunt novel anti-SARS-CoV-2 compounds from medicinal plants using traditional Chi-

nese medicine (TCM) principle applying machine learning methods [44]. One study also

developed a machine learning suite called “REDIAL-2020" to estimate small molecule activity

from molecular structure, for a range of SARS-CoV-2 related assays [52]. Attiq et al. used

machine learning algorithm of Flare by Cresset group which was employed with Field tem-

plate, 3D-QSAR, activity Atlas model and molecular docking for FDA approved M-pro

SARS-CoV-2 repurposed drugs were performed [53].

In this study, a combination of machine learning and physics-based techniques is reported

to screen potential compounds against the SARS-CoV-2 3CLpro protein. Virtual screening

was performed with machine learning pre-trained and deep learning models to study potential

inhibitory compounds against the 3CLpro of SARS-CoV-2. The most promising compounds

detected by these ML models were further used to perform molecular docking and molecular

dynamics simulation to study the binding characteristics of the compounds with 3CLpro pro-

tein. Overall, this study showed the application of ML models and physics-based methods

(molecular docking and MD simulation) to detect the potential compound against the 3CLpro

protein and further demonstrate the detailing of the protein-ligand interaction.

2. Methodology

2.1 Machine learning

a. Training compounds. Pretrained models used in this study were trained on the Bind-

ing DB database [54]. Compounds that had IC50 values reported in the database were used in

training the models. The SMILES (simplified molecular-input line-entry system) of these com-

pounds were collected and stored, which were later used to train the ML model using Deep-

Purpose framework. Each datapoint has a protein sequence (target) and SMILES (drug) with

their corresponding IC50. Illustrating the datapoint used these pretrained model, following

example is shown:

Drug: CC1 = C2C = C(C = CC2 = NN1)C3 = CC (= CN = C3)OCC(CC4 = CC = CC = C4)N

Target: MKKFFDSRREQGGSGLGSGSSGGGGSTSGLGSGYIGRVFGIGRQQVTVDEVL

AEGGFAIVFLVRTSNGMKCALKRMFVNNEHDLQVCKREIQIMRDLSGHKNIVGYIDSSI

NNVSSGDVWEVLILMDFCRGGQVVNLMNQRLQTGFTENEVLQIFCDTCEAVARLHQC

KTPIIHRDLKVENILLHDRGHYVLCDFGSATNKFQNPQTEGVNAVEDEIKKYTTLSYRA

PEMVNLYSGKIITTKADIWALGCLLYKLCYFTLPFGESQVAICDGNFTIPDNSRYSQDMH

CLIRYMLEPDPDKRPDIYQVSYFSFKLLKKECPIPNVQNSPIPAKLPEPVKASEAAAKKTQ

PKARLTDPIPTTETSIAPRQRPKAGQTQPNPGILPIQPALTPRKRATVQPPPQAAGSSNQ
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PGLLASVPQPKPQAPPSQPLPQTQAKQPQAPPTPQQTPSTQAQGLPAQAQATPQHQQQ

LFLKQQQQQQQPPPAQQQPAGTFYQQQQAQTQQFQAVHPATQKPAIAQFPVVSQGG

SQQQLMQNFYQQQQQQQQQQQQQQLATALHQQQLMTQQAALQQKPTMAAGQQP

QPQPAAAPQPAPAQEPAIQAPVRQQPKVQTTPPPAVQGQKVGSLTPPSSPKTQRAGHR

RILSDVTHSAVFGVPASKSTQLLQAAAAEASLNKSKSATTTPSGSPRTSQQNVYNPSEGST

WNPFDDDNFSKLTAEELLNKDFAKLGEGKHPEKLGGSAESLIPGFQSTQGDAFATTSFSA

GTAEKRKGGQTVDSGLPLLSVSDPFIPLQVPDAPEKLIEGLKSPDTSLLLPDLLPMTDPFGS

TSDAVIEKADVAVESLIPGLEPPVPQRLPSQTESVTSNRTDSLTGEDSLLDCSLLSNPTTDL

LEEFAPTAISAPVHKAAEDSNLISGFDVPEGSDKVAEDEFDPIPVLITKNPQGGHSRNSSG

SSESSLPNLARSLLLVDQLIDL.

Score (IC50): 7.365

These pretrained models were applied to an antiviral dataset to determine their applicability

for ranking antiviral compounds. The compound library for testing the machine learning

(ML) models was created using the ChEMBL database from EMBL-EBI [55, 56]. The virus

keyword was searched in the ChEMBL database, and 500 druggable targets were found.

Among them, only the single-stranded RNA viruses were chosen to filter the search hits, and

278 targets were further obtained. Afterwards, the targets were filtered with a single protein

parameter, which further cut down to the list of 100 targets. Here, 32 unique protein targets

(amino acid sequences) from these 100 hits were observed, these were collected and stored for

feeding the data in the machine learning model as protein target sequences. Later, the IC50 of

the compounds tested against these 100 targets was searched, which resulted in 3280 com-

pounds being obtained with their respective SMILES. Here, 2262 compounds were unique.

However, the SMILES (simplified molecular-input line-entry system) of these 3280 com-

pounds was collected and stored, which was later used to evaluate the pre-trained ML model

using the DeepPurpose framework.

b. Machine learning models. In this study, drug screening was performed using Deep-

Purpose architecture as a machine learning technique [57]. The DeepPurpose project aims to

provide a simple yet powerful toolkit for drug-target interaction (DTI) prediction and its

applications. It is a PyTorch-based deep learning framework that uses an encoder-decoder

function to input the drug target pair and output the binding activity (here, the IC50) of the

drug target pair. Here, using the DeepPurpose framework, the ML models were used to pro-

vide the binding activity (here the IC50) of screening compounds. The DeepPurpose Neural

Network follows the first step with data feeding, where the SMILES of BindingDB compounds

with their respective IC50 values paired with the target protein amino acid sequences were fed

to the model. Data encoding was performed at the encoder specification step, where the

encoder was used for the SMILES of the drug and the sequence of the protein. These encoders

are: (1) MPNN (message-passing neural network); (2) CNN (convolutional neural network on

SMILES). (3) Morgan (Extended-Connectivity Fingerprints) (4) Daylight (daylight-type fin-

gerprints), and (4) AAC (amino acid composition up to 3-mers). Here, Morgan and Daylight

are specific for drug compounds, while AAC is used only for protein sequences. The data set

during the training of the pretrained models was split into a train set, validation set, and test

set with percentages of 70%, 10%, and 20%, respectively. Later, the models were configured,

initialized, and trained. A neural network has multiple parameters in its training layers that

were configured and optimised in these pre-trained models. Critical parameters include (a)

epoch: the number of times all training datasets are iterated; (b) batch size: the number of data

samples propagated through the network; and (c) learning rate: controls the size of each batch

or epoch.
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2.2 Virtual screening library

The natural compounds were screened using trained ML models on the DeepPurpose frame-

work. Here, the PubChem database was searched to collect natural compounds where the Nat-

ural Products Atlas Classification category used and 32484 compounds were sourced [58, 59].

The Natural Products Atlas provides information on microbially-derived natural compounds

and information on the source organism, which are published in the peer-reviewed primary

scientific literature. Among the 32484 sourced compounds, 31401 unique compounds were

observed. Later, all compounds were screened with the ML models against the 3CLpro SARS--

CoV. The protein sequence 3CLpro of SARS-CoV was collected with the UniProt ID:

P0DTD1 from the UniProt database [60]. These 31401 natural compounds and the amino acid

sequence of 3CLpro were fed to the DeepPurpose trained ML models, and the compounds

were screened based on the ranking reflected by the predicted pIC50. Eventually, the top five

compounds were selected for later use in molecular modelling analysis.

2.3 Molecular docking

The crystal structure of the 3CLpro in complex with the inhibitor N3 with PDB code: 6LU7

[34] was retrieved from the RCSB Protein Data Bank (RCSB PDB) database [61]. The binding

pocket of the 3CLpro was determined with reference to the known inhibitor N3. PyMOL tool

was used to visualize the binding site residues of the protein that covered 6 Å circular sur-

rounding from the centre of the mass of the reference inhibitor N3 [62]. The binding pocket

residues were retrieved and stored to create the grid box for the virtual screening process. This

formed a grid box with dimensions of 24 Å×36 Å×30 Å on the x, y, and z axes, respectively,

while it is centered at [9.07, 36.82, 79.97]. This grid box was used for the docking during virtual

screening using the AutoDock Vina software [63]. The protein’s 3D structure was used for

docking preparation. The hydrogen atoms and charges were added to the protein molecule

using the AutoDock suite and converted to a PDBQT file. The docking parameters considered

during virtual screening were binding modes of 20, exhaustiveness of 100, and a maximum

energy difference of 4 (kcal/mol). Initially, the top five compounds were in SMILES format,

which was converted into 3D SDF files using Cactus tool [64]. Later, these 3D SDF structures

were converted into PDBQT files using Openbabel tool [65]. After the docking, the best

docked complex of top ligands was compared to the reference ligand and considered for inter-

molecular interaction analysis and molecular dynamics simulation.

2.4 Molecular dynamics simulation

In MD simulations, the three best hits based on the binding scores resulting from the re-dock-

ing data were selected. To comprehend the stability and flexibility of the protein-ligand com-

plexes, MD simulation was performed for 100 ns. The chosen complexes were simulated using

the GROMACS-2021 platform with the CHARMM27 force field [66, 67]. Small molecules

were prepared using the CGenFF tool to generate topologies and parameters consistent with

the CHARMM all-atom force field [68]. Moreover, the Ewald Particle Mesh method was used

to calculate electrostatic forces [69]. The system was neutralised with Na+ and Cl- ions, and the

TIP3P (transferable intermolecular potential with 3 points) water model was applied to the sol-

vation box. The complex was positioned in the middle of a solvated dodecahedron box, 1 Å
distance from the wall. Later, using the steepest descent (SD) algorithm, the protein-ligand sol-

vated complex was energetically minimized for 5000 steps. All hydrogen bonds were elimi-

nated using the SHAKE method, and the entire system was heated to 310K [70]. The system

was equilibrated to an ensemble of constant temperature (NVT) and pressure (NPT) condi-

tions at 310 K and 1 atm, respectively, for the timeframe of 1 ns each. An equilibrated system
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was used in the production run for 100 ns timescale. Temperature coupling was applied using

velocity-rescaling method [71] while the pressure was maintained with the Parrinello-Rahman

pressure method [72]. RMSD (root mean square deviation) and RMSF (root mean square fluc-

tuation) were the two most important metrics used to analyse the conformation with the GRO-

MACS internal tool.

2.5 MM/GBSA calculations

Using the gmx MMPBSA tool that based on the Molecular Mechanics Generalized Born Sur-

face Area (MM-GBSA) method, the binding free energy of the protein-ligand complex was cal-

culated [73, 74]. Last 20 ns of MD simulation trajectory, the ΔG binding free energy for the top

three hits was computed. The system salt concentration was 0.154 M, and its solvation parame-

ter (igb) was adjusted to 5. The internal dielectric constant was set to 1.0, while the exterior

dielectric constant was set to 80.0. These parameters were determined based on standard val-

ues utilised in a number of comparable in-silico research [75, 76].

Here, Eq 1 shows the MM-GBSA calculation method.

DG ¼< Gcomplex � ½Greceptor þ Gligand� > ð1Þ

The <> sign represents the average free energy of the complex, receptor, and ligand over

the course of the last 20 ns of simulation trajectory. The equations are applied to derive the

energetic components used in the ΔG computation are shown in Eqs (2–6).

DGbinding ¼ DH � TDS ð2Þ

DH ¼ DGGAS þ DGSOLV ð3Þ

DGGAS ¼ DEEL þ DEVDWAALS ð4Þ

DGSOLV ¼ DEGB þ DESURF ð5Þ

DESURF ¼ g:SASA ð6Þ

Here, ΔH is the enthalpy change consisting of gas-phase energy (GGAS) and solvation free

energy (GSOLV). TΔS represents the contribution of entropy to the free binding energy. Elec-

trostatic and van der Waals composed GGAS (EEL and EVDWAALS, respectively). GSOLV was

derived from the polar solvation energy (GSOLV) and the nonpolar solvation energy (ESURF)

was derived from the product of SASA and (solvent surface tension parameter).

2.6 Clustering and steered MD simulation

GROMACS g_cluster packages were used for clustering with an RMS threshold of 0.3 nm

using the gromos cluster technique. The middle structure from the most populated cluster was

selected for the Steered Molecular Dynamics (SMD) simulations.

In SMD simulations, a time-dependent external force is provided to the ligand to enable its

dissociation from the protein, which is not possible with traditional MD simulations. In SMD,

the transition between two states, bound and unbound, is achieved by adding a harmonic

time-dependent potential operating on a descriptor (protein-ligand distance) with the conven-

tional Hamiltonian. In the process of transition, the exerted force and external work produced

on the system was calculated. The starting structure was collected from the clustering of the

last 20 ns of the classical MD simulation that was performed earlier, and the middle structure

PLOS ONE Compounds inhibiting SARS-CoV-2 3CL protease

PLOS ONE | https://doi.org/10.1371/journal.pone.0284301 April 14, 2023 6 / 27

https://doi.org/10.1371/journal.pone.0284301


of the most populated cluster was used as the starting coordinate. The structure was prepared

again in the SMD with the addition of charge and hydrogen atoms. The complex was placed at

the centre of the cubic box of 6 Å of edge. Box was solvated with SPC water, and 100 mM NaCl

salt was added. The system was energetically minimised using steepest descent minimization.

NPT equilibrium was performed for 100 ps using the Berendsen pressure constant. Pulling

dynamics were applied for 500 ps that used harmonic potential to pull.

3. Results and discussions

3.1 Model building and screening compounds

This study deployed pre-trained models from DeepPurpose that use the BindingDB dataset to

train and test the model, this dataset consists of 2407381 datapoints with their respective pro-

tein target sequences and IC50 values. These IC50 values were represented in nM, and com-

pounds were represented in their SMILES. Protein primary sequence (single letter code of

amino acid) and SMILES of the compounds were encoded into a vector using different encod-

ers. These encoders convert the amino acid sequence and SMILES into a mathematical vector

that is further used as input to the machine learning model. The dataset used for training has a

large range of IC50 values to leverage diverse datapoints. Several datapoints in the dataset do

not have valid numeric IC50 values, and thus they were removed from the dataset. This

reduced the dataset to 1557202 entries. The IC50 values were converted into log scale for the

more robust regression and termed as pIC50. The maximum value of pIC50 in the dataset was

34.53, while the minimum value was -11.51. The dataset contains 6145 unique protein

sequences and 752171 unique compound SMILES. Further, the models built on the Binding

DB dataset were tested on the dataset collected from PubChem on the active compounds

against single stranded RNA viruses for different proteins. This data set has a pIC50 range of

4.13 to 27.86, and the performance of the machine learning model on the known antiviral

compounds could indicate the applicability of the model for the detecting the new potent anti-

viral compounds. There was total of 3200 data points in the known antiviral data set, where

2262 unique drugs and 32 unique protein sequences were found. Eventually, the model that

outperformed the known antiviral compounds was applied as a virtual screening protocol to

the natural compound library. The natural compound library contains 31401 compounds, and

their respective SMILES were fed to the model along with the amino acid sequence of 3CL pro-

tease to predict the pIC50.

3.1.1 ML model performance. Here, five different was ML models were used that trained

on the Binding DB dataset. These models were different in their training parameters. Table 1

shows the parameters and their corresponding values for each model. The major difference

was in the encoders uses for each models for encoding the drug SMILES and protein sequence.

Here, four encoders, (1) CNN (2) Morgan (3) MPNN and (4) Daylight were used for encoding

the drug SMILES. However, protein sequence was encoded using (1) CNN and (2) AAC tech-

niques. Combination of these encoders were used to build the final predictive models.

These models were named NET1, NET2, NET3, NET4, and NET5 as shown in Table 1.

Number of train epoch that governs the exhaustiveness of the training process that reflects in

the model accuracy was considered same for all the models. Thus, exhaustiveness for all the

models was the same. However, the encoding methods were different, which brought variety

to the model’s performance. Table 2 shows the performance of each model on the external

dataset that was not used in the training and testing of the model. As discussed earlier, this

external dataset consists of the known antiviral compounds against ssRNA viruses for large

protein targets. The performance of the model on this dataset indicates its possible applicabil-

ity to antiviral compound screening.
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Table 2 suggest that correlation of predicted pIC50 with the experimental pIC50 was highest

(r = 0.68) for NET1 that uses the CNN encoding for both SMILES and protein sequence.

NET4 showed the minimum error value, but the correlation of the predicted pIC50 with this

model was the lowest (r = 0.06), and thus ranking the compound would not be feasible with

this model. In addition, NET5 also showed a high correlation (r = 0.65) with a lower error rate

compared to NET1. Daylight and AAC methods were used in the encoding of drugs and pro-

teins during the training of the NET5 model. As per the performance shown in Table 2, both

NET1 and NET5 were selected for the screening and ranking of natural compounds against

3CL protease.

3.2 ML screening

NET1 and NET5 were used to screen 31401 compounds using their SMILES (Simplified

Molecular Input Line Entry System) and 3CL protease protein sequences. These compounds

are derived from microbial cultures curated from the scientific literature and deposited at Pub-

chem. The Rdkit package provides a module called QED63 that stands for quantitative estima-

tion of the drug-likeness. The QED score is based on molecular weight, logP, topological polar

surface area, the number of hydrogen bond donors and acceptors, the number of aromatic

Table 1. Parameters used in building the predictive models trained on the Binding DB database compounds with their pIC50.

Parameters input

dim drug

input dim

protein

hidden

dim drug

hidden dim

protein

cls hidden

dims

batch size train epoch test every X

epoch

LR drug

encoding

target

encoding

NET1 1024 8420 128 256 [1024 1024

512]

256 100 10 0 CNN CNN

NET2 1024 8420 128 256 [1024 1024

512]

256 100 10 0 Morgan CNN

NET3 1024 8420 128 256 [1024 1024

512]

256 100 10 0 Morgan AAC

NET4 1024 8420 128 256 [1024 1024

512]

256 100 10 0 MPNN CNN

NET5 2048 8420 128 256 [1024 1024

512]

256 100 10 0 Daylight AAC

Parameters cnn drug

filters

cnn drug

kernels

cnn target

filters

cnn target

kernels

mpnn

depth

random

seed

mlp hidden

dims drug

mpnn

hidden size

global

batch size

decay mlp hidden

dims target

NET1 [32 64 96] [4 8 12] [32 64 96] [4 8 12] 3 1 128 128 0

NET2 [32 64 96] [4 8 12] [32 64 96] [4 8 12] 3 1 [1024 256 64] 128 128 0

NET3 [32 64 96] [4 8 12] [32 64 96] [4 8 12] 3 1 [1024 256 64] 128 128 0 [1024 256 64]

NET4 [32 64 96] [4 8 12] [32 64 96] [4 8 12] 3 1 128 128 0 [1024 256 64]

NET5 [32 64 96] [4 8 12] [32 64 96] [4 8 12] 3 1 [1024 256 64] 128 128 0 [1024 256 64]

*Violet colours indicate that these parameters are not applicable for those networks.

https://doi.org/10.1371/journal.pone.0284301.t001

Table 2. Performance of the Binding DB pIC50 pre-trained models on the known set of antiviral compounds for ssRNA viruses.

Correlation Mean Absolute Error Mean Squared error Median Absolute Error

NET1 0.68 7.9 77.24 6.85

NET2 0.64 8.39 85.58 7.24

NET3 0.63 8.11 80.56 6.92

NET4 0.06 6.8 68.47 5.9

NET5 0.65 7.39 69.03 6.26

https://doi.org/10.1371/journal.pone.0284301.t002
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rings and rotatable bonds, and the presence of unwanted chemical functionalities for calculat-

ing the drug-likeness score. This score has a range of 0 to 1, where 0 refers to poor drug like-

ness and 1 signifies the maximum drug likeness. Fig 1 shows the QED scores for all 31401

compounds from the natural compound library.

As shown in Fig 1, the QED scores vary for the compounds, with a minimum value of 0.06

and a maximum value of 0.94. This implies that the dataset contains compounds with low

drug likeness. As the prime objective of the screening was to identify the compound with a

high pIC50 that corresponds to strong binding with the protein, a QED filter was applied post-

screening to select the most drug-like candidate molecule. The NET1 and NET5 models were

used on the dataset, and the top 10 unique compounds were selected based on the predicted

pIC50. High pIC50 shows better binding and is thus preferred in this study. Table 3 shows the

top 10 screened compounds from both models with their corresponding pIC50 values.

Two dimensional representations of the top 10 molecules screened from NET1 and NET5

models are shown in the Figs 2 and 3 respectively. Only structurally dissimilar compounds

were considered in the top 10 to cover the larger sample space. CMP4(NET5) and CMP10(NET5)

are very small compounds compared to other compounds. CMP8(NET5) does not have any ring

structure, while all the other compounds screened from both models had one or more ring

structures. CMP7(NET5) does not have any amine/hydroxyl/carboxyl group to act as donor or

acceptor for forming hydrogen bonds.

Later, these compounds (NET1 and NET5) were ranked based on the QED scores, as

shown in Table 4. Top 5 compounds were selected based on their QED scores, as highlighted

‘grey’ in table. Top 3 compounds in this bin were from NET5 model screening while the com-

pounds at 4th and 5th positions were from the NET1 models. The QED scores for these top 5

compounds range from 0.84 to 0.56.

Fig 1. Quantitative estimation of drug-likeness (QED) score of 31401 compounds from natural compound

library.

https://doi.org/10.1371/journal.pone.0284301.g001
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3.3 Reference structure

The 3CL Protease also known as the main protease, and it has 306 amino acids in a single

chain, while the active form of the protein is in a dimeric state. There are three structural

domains: I, II, and III, where domains I and II are involved in forming the active site of the

protein. Domain III is responsible for forming the dimer. This study used the 3CL protease

protein structure collected from the PDB database (PDB ID: 6LU7). This structure has single

chain submitted with an inhibitor N3 (N-[(5-METHYLISOXAZOL-3-YL)CARBONYL]ALA-

NYL-L-VALYL-N~1~-((1R,2Z)-4-(BENZYLOXY)-4-OXO-1-{[(3R)-2-OXOPYRROLIDIN-

3-YL]METHYL}BUT-2-ENYL)-L-LEUCINAMIDE). 3CL protease has a catalytic dyad His41

and Cys145. This inhibitor made direct hydrogen bond (H-bond) interaction with Cys145 while

hydrophobic contact with His41. This confirmed the inhibitory action of the co-crystallized

Table 3. SMILES of top 10 compounds screened using NET1 and NET5 model, ranked based on their predicted

pIC50 values.

Name pIC50 Model

CC(C)C[C@@H]1C (= O)N2[C@@H](C[C@]3([C@@H]2NC4 = CC = CC = C43) [C@]56C[C@H]

7

C (= O)N[C@@H](C (= O)N7[C@H]5NC8 = CC = CC = C68)CC(C)C)C (= O)N1

7.46 NET1

CC(C)[C@@H]1C (= O)N2[C@@H](C[C@]3([C@@H]2NC4 = CC = CC = C43)

[C@]56C[C@H]7C (= O)N[C@@H](C (= O)N7[C@H]5NC8 = CC = CC = C68)C(C)C)C (= O)N1

7.44 NET1

CCC (= O)[C@H](CC1 = CNC2 = CC = CC = C21)NC (= O)[C@H](CO)NC (= O)

[C@H] ([C@@H](C)O)NC (= O)C(C)C (= O)N[C@@H](CC3 = CC = CC = C3)C (= O)O

7.43 NET1

CC1 = C2C[C@@](C[C@]23C (= O)[C@]4(C15CC5)CCC6 = C7

[C@H]4[C@H] (O3)O[C@@]7([C@@H]8CC(C = C8C6 = O)(C)C)C)(C)CO

7.41 NET1

CO[C@H]1C2 = NC3 = CC = CC = C3C (= O)N2[C@@H](C[C@]

4([C@@H]5N1C6(CC6)C (= O)N5C7 = CC = CC = C74)O)C (= O)OC

7.40 NET1

CCCCCCCCCCC[C@H](CC (= O)N[C@@H](CC (= O)N)C (= O)N

[C@@H](C(CC (= O)N)O)C (= O)N[C@@H](CC(C)C)C = O)O

7.38 NET1

C[C@H]1C (= O)N2[C@@H](C[C@]3([C@@H]2NC4 = CC = CC = C43)

C5 = CC6 = C(C = C5)C (= CN6)C[C@H]7C (= O)N8CCC[C@H]8C (= O)N7)C (= O)N1

7.37 NET1

CC(C)C[C@H](CC (= O)NO)C (= O)N1CCC[C@H]1C (= O)N[C@@H](C(C)C)C (= O)O 7.36 NET1

CC (= CCN1C2 = C(C = CC (= C2)OC)C3 = C1[C@@H] (N4C (= O)

[C@@H]5CCCN5C (= O)[C@]4([C@H]3OC)O)C = C(C)C)C

7.36 NET1

CC1(C = CC2 = C(O1)C = CC3 = C2N(C4 = C3[C@H]5[C@]67C(C4(C)C)C[C@@]8

(CCCN8C6 = O)

C (= O)N7C9[C@]51C2 = C(C3 = C(C = C2)OC(C = C3)(C)C)[N+] (= C1C([C@H]1C92C (= O)

N3CCCC3(C1)C (= O)N2)(C)C)[O-])O)C

7.34 NET1

CC(/C = C(\\C)/C = C/C (= O)NO)C (= O)C1 = CC = C(C = C1)N(C)C 7.30 NET5

CCCCCCCCC[C@@H]1C[C@@H]([C@H]2CN1O[C@@H]2C3 = CC = CC = C3)O 7.07 NET5

C[C@H](CCC (= C)C(C)C)C1CC (= O)N = C2[C@@]1

(CCC3 = C2CC[C@@H]4[C@@]3(CC[C@@H](C4)O)C)C

6.93 NET5

C[C@@]12CCN([C@@H]1N(C3 = C2C = C(C = C3)OC (= O)NC)C)C 6.93 NET5

C1C(NC (= N1)NCC(C(C(CCO)O)O)NC (= O)CC(CCCN)N)C(CN)(C = O)O 6.88 NET5

CCCC[C@@H](C)C[C@@H](C)C (= O)N(C)[C@@H](CC(C)C)C (= O)N[C@@H]

([C@@H](C)OC (= O)C)C (= O)N(C)[C@@H](C(C)C)C (= O)N1C[C@H](C[C@H]1C (= O)N2

[C@H](C = CC2 = O)C)O

6.83 NET5

CC1 = C2C3 = C(C = CC2 = CC = C1)C4 = CC[C@@H]([C@]4(CC3)C)[C@H](C)/C = C/

[C@@H](C)C(C)C

6.82 NET5

CN(NC (= O)[C@H](CCCN = C(N)N)N)P (= O)(C(C (= O)OC)O)O 6.82 NET5

CCCC[C@@H](C)C[C@@H](C)C (= O)N(C)[C@@H](C[C@H](C)CC)C (= O)N

[C@@H]([C@@H](C)OC (= O)C)C (= O)N(C)[C@@H](C(C)C)C (= O)N1C[C@H](C[C@H]1C

(= O)N2[C@H](C = CC2 = O)C)O

6.82 NET5

CC(C)([C@H]1CC2 = C(O1)C = CC (= C2)O)O 6.80 NET5

https://doi.org/10.1371/journal.pone.0284301.t003

PLOS ONE Compounds inhibiting SARS-CoV-2 3CL protease

PLOS ONE | https://doi.org/10.1371/journal.pone.0284301 April 14, 2023 10 / 27

https://doi.org/10.1371/journal.pone.0284301.t003
https://doi.org/10.1371/journal.pone.0284301


molecule N3. Glu166 mutation in 3CL protease showed its significant role in the biological

activity of the protein [77]. This residue made a hydrogen bond with the N3 inhibitor in its

crystal structure as shown in Fig 4. Gly143 is considered as the most preferred residue for form-

ing H-bond with the ligand molecule along with Cys145, and His163, and Glu166. Inhibitor N3

has H-bonds formed with Gly143 and Glu166 of the protein, which further indicated its strong

binding. In addition, Thr190 showed H-bond formation with the co-crystallized inhibitor N3.

In conjunction with N3, which serves as a covalent inhibitor, a reversible non-covalent

inhibitor called OEN was employed as an additional reference ligand, sourced from the PDB

structure with PDB ID: 7L0D. S1 Fig illustrates the interaction plot between OEN and the 3CL

protease. The interactions demonstrated by OEN were notably similar to those of N3, with

Asn142 and Gly143 representing the two key residues that formed hydrogen bonds with OEN,

similar to their direct interaction with N3. N3 had a broader range of interactions due to its

extended structure. As a result, this study utilized the N3 interacting residues in the binding

site design to allow for a more extensive conformational search.

Fig 2. 2D representation of the top 10 compounds screened using NET1 model based on the predicted pIC50. (a)

CMP1(NET1) (b) CMP2(NET1) (c) CMP3(NET1) (d) CMP4(NET1) (e) CMP5(NET1) (f) CMP6(NET1) (g) CMP7(NET1) (h)

CMP8(NET1) (i) CMP10(NET1) (j) CMP4(NET1).

https://doi.org/10.1371/journal.pone.0284301.g002

Fig 3. 2D representation of the top 10 compounds screened using NET5 model based on the predicted pIC50. (a)

CMP1(NET5) (b) CMP2(NET5) (c) CMP3(NET5) (d) CMP4(NET5) (e) CMP5(NET5) (f) CMP6(NET5) (g) CMP7(NET5) (h)

CMP8(NET5) (i) CMP10(NET5) (j) CMP4(NET5).

https://doi.org/10.1371/journal.pone.0284301.g003
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3.4 Hit compounds docking

The 3CL protease structure from 6LU7 was prepared using the AutoDock Tool (ADT) kit that

adds hydrogen to the 3D coordinates and Gasteiger charges on each atom of the protein,

which is based on the partial equalisation of orbital electronegativity. Further, the top 5 hits

shown in Table 4 were also prepared using ADT. The grid box for docking was designed based

on the inhibitor N3 position in the 6LU7 structure. Table 5 shows the binding energies calcu-

lated by AutoDock Vina for the 20 poses generated for each candidate.

Here, the best docking energy was shown by CMP4(NET1) of -7.1 kcal/mole for the first

pose. Followed by this compound, CMP4(NET5) and CMP9(NET1) showed strong binding

energy of -6.9 kcal/mole. Other two compounds, CMP10(NET5) and CMP2(NET5) showed rela-

tively poor binding energy in their docked poses, the best docked pose for these compounds

showed -5.8 kcal/mole and -5.6 kcal/mole. CMP9(NET1) had the best average binding energies

of -6.1 kcal/mole while the second-best average energy was shown by CMP4(NET1) with -6.07

kcal/mole. The best pose was considered for further analysis as it showed the best binding

energy. S2 Fig shows the 3D and 2D interaction poses of all hits with the protein. Each candi-

date showed a hydrogen bond except the CMP4(NET5) molecule. CMP10(NET5) formed two H-

bond, with Glu166 and Tyr54. Glu166 that considered as critical active site residue was also

involved in the forming H-bond with CMP9(NET1). Gln189 forms an H-bond with the

CMP2(NET5). Finally, CMP4(NET1) formed an H-bond with Asn142. Here, it was observed that

His41 from the catalytic dyad was involved in hydrophobic contact with CMP2(NET5),

CMP4(NET5) and CMP10(NET5) in its complex.

Table 4. Top 20 compounds screened using NET1 and NET5 model, further ranked on QED score. Top 5 com-

pounds (highlighted grey) were selected for next phase of docking and simulation.

S No. Screened Hits QED Value

1 CMP4(NET5) 0.84

2 CMP10(NET5) 0.71

3 CMP2(NET5) 0.65

4 CMP9(NET1) 0.64

5 CMP4(NET1) 0.56

6 CMP5(NET1) 0.54

7 CMP3(NET5) 0.5

8 CMP7(NET5) 0.47

9 CMP2(NET1) 0.44

10 CMP1(NET1) 0.42

11 CMP7(NET1) 0.4

12 CMP8(NET1) 0.34

13 CMP1(NET5) 0.27

14 CMP10(NET1) 0.16

15 CMP6(NET5) 0.15

16 CMP9(NET5) 0.14

17 CMP5(NET5) 0.1

18 CMP3(NET1) 0.09

19 CMP8(NET5) 0.06

20 CMP6(NET1) 0.05

https://doi.org/10.1371/journal.pone.0284301.t004
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3.5 Molecular dynamics simulation analysis

In this study, molecular dynamics (MD) simulation was used to estimate the contact intensity

of the protein-ligand binding of the selected top five hits. The post-dynamics simulation analy-

sis for protein-ligand complexes gives important information on the system’s flexibility. The

best docked pose of the selected top hits was used in the MD simulation. The root mean square

deviation (RMSD) was calculated over the 100 ns simulation for the five hits to filter out only

the stable complexes. Later, only the top two were selected for evaluating additional properties,

Fig 4. Interaction plot of native inhibitor N3 with 3CL protease in the protein crystal structure 6LU7. Hydrogen

bonds are shown in the green dashed line. Other residues formed hydrophobic contacts.

https://doi.org/10.1371/journal.pone.0284301.g004

Table 5. Binding energies (kcal/mole) calculated by AutoDock for the top 20 poses generated in docking of top 5 hits with 3CL protease.

Compounds P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P 15 P 16 P 17 P 18 P 19 P 20

CMP4(NET5) -6.9 -6.5 -6.4 -6.2 -6.2 -6.1 -6.1 -6.1 -6 -6 -5.9 -5.8 -5.8 -5.7 -5.7 -5.7 -5.7 -5.6 -5.6 -5.6

CMP10(NET5) -5.8 -5.6 -5.5 -5.5 -5.5 -5.4 -5.4 -5.4 -5.3 -5.3 -5.3 -5.2 -5.2 -5.2 -5.1 -5.1 -5 -5 -5 -5

CMP2(NET5) -5.6 -5.5 -5.5 -5.5 -5.5 -5.5 -5.4 -5.4 -5.3 -5.3 -5.3 -5.3 -5.2 -5.2 -5.2 -5.2 -5.1 -5.1 -5.1 -5.1

CMP9(NET1) -6.9 -6.8 -6.7 -6.7 -6.7 -6.5 -6.3 -6.2 -6.1 -6.1 -6 -6 -6 -5.8 -5.8 -5.8 -5.8 -5.7 -5.7 -5.7

CMP4(NET1) -7.1 -6.9 -6.8 -6.5 -6.2 -6.2 -6.1 -6.1 -6 -6 -6 -5.8 -5.8 -5.8 -5.8 -5.8 -5.7 -5.7 -5.6 -5.6

https://doi.org/10.1371/journal.pone.0284301.t005
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Fig 5. The RMSD of the ligands calculated over 100 ns MD simulation trajectories for the top five hits

(CMP4(NET1), CMP9(NET1), CMP10(NET5), CMP2(NET5), CMP4(NET5)) and the reference ligand N3. The bigger plot

zooms the RMSD of native inhibitor N3, CMP2(NET5) and CMP4(NET5).

https://doi.org/10.1371/journal.pone.0284301.g005

Fig 6. The RMSD of the protein molecule calculated over 100 ns MD simulation trajectories for the selected hits

CMP2(NET5) and CMP4(NET5) and the reference ligand N3.

https://doi.org/10.1371/journal.pone.0284301.g006
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including the root mean square deviation (RMSD), the root mean square fluctuation (RMSF),

binding free energy on the MMGBSA protocol, and pull force in steering dynamics.

3.5.1 Root Mean Square Deviation (RMSD)

The stability of the compound with respect to binding to the protein was investigated through

root mean square deviation (RMSD). The RMSD determined the measure of conformational

variation that proteins and ligands undergo upon binding. Fig 5 shows the RMSD of the

ligands when they are in bound state with the protein. Here, it was observed that the com-

pounds CMP2(NET5) and CMP4(NET5) showed stable and consistent conformation with RMSD

of ranged from 0.4 nm to 1 nm. Both the compounds had RMSD of 0.5 nm for the last 20 ns

simulation. However, the compounds CMP4(NET1), CMP9(NET1), CMP10(NET5) showed high

RMSD compared to the other two hits. The RMSD of CMP4(NET1) peaked relatively the highest

RMSD value of 8 nm during the 100 ns simulation, while CMP10(NET5) stayed stable with

RMSD of 0.4 nm for 85 ns simulation but peaked to 7.5 nm for the rest of the simulation.

Here, the compound CMP9(NET1) peaked to 2.5 nm during the 100 ns simulation. S3 Fig

shows the dissociation of ligand molecules during simulation. The smaller plot in Fig 5 showed

that these compounds (CMP4(NET1), CMP9(NET1), CMP10(NET5)) did not exhibit the bound

state conformation with the proteins. The reference ligand N3 showed highly stable and con-

sistent RMSD of 0.4 nm to 0.5 nm during the 100 ns simulation. As shown in the bigger plot of

Fig 5, the compounds (CMP2(NET5) and CMP4(NET5)) showed a similar trend of RMSD with

the reference ligand N3, therefore they were selected for further analysis. This plot also shows

that native inhibitor N3 had a jump in the conformational space for the first 10–12 ns of the

simulation but then it stabilized. Visual inspection of this compound verified its large molecu-

lar structure, which has a certain scope for rotation. However, no significant translational

motion was observed. Similar behaviour was shown by CMP2(NET5) and CMP4(NET5) where

the compounds showed high rotational motion that caused RMSD to reach 0.75 nm.

In contrast, the other three ligands CMP4(NET1), CMP9(NET1), and CMP10(NET5) showed

very high translational motion and moved out of the binding site. Protein Cα RMSD was also

calculated for these two selected compounds and the native inhibitor, shown in Fig 6. RMSD

of the protein showed a high consistent behaviour where it ranged under 0.3 nm for most sim-

ulation frame. In CMP4(NET5), proteins showed some fluctuation between 70–80 ns time

frame. However, it quickly gets stabilized under 0.3 nm as shown in Fig 6.

Fig 7. The RMSF for CMP2(NET5), CMP4(NET5) and reference ligand N3 complexes, calculated over 100 ns MD

simulation trajectories for (a) protein and (b) ligands.

https://doi.org/10.1371/journal.pone.0284301.g007
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NVT and NPT ensemble equilibrium graphs are shown in S4 Fig. Temperature was fixed to

310 K and system achieved this during NVT equilibrium. Pressure was 1 bar for the system,

and as it can be seen in S4 Fig, pressure has fluctuated under the acceptable range. The struc-

tural influence of ligand binding has also been estimated by calculating the radius of gyration

(Rg) which measures the globularity of the system. Supplementary S5 Fig shows the Rg of the

protein under three states when it bound with hits CMP2(NET5) and CMP4(NET5) and the refer-

ence ligand N3, respectively. Here, the protein structure showed similar globularity trend for

all three complexes. However, few peaks were observed for the protein bound with

CMP2(NET5) and CMP4(NET5) compounds, but they quickly settled to the initial state. Average

Rg of the protein shown in all three complexes was 2.25 nm. Fig 6, S4 and S5 Figs collectively

showed that the complexes for these three compounds (1) CMP2(NET5) (2) CMP4(NET5) and

(3) reference ligand N3 were stable in 3D space, and both the hits behaved similarly with the

reference ligand.

3.5.2 RMSF analysis. RMSF values were calculated for the protein and three molecules

(CMP2(NET5), CMP4(NET5) and reference ligand N3) after binding to estimate the individ-

ual fluctuations of each residue/atom. Fig 7(A) shows the RMSF of the protein structure upon

binding of the ligands. The RMSF of the protein for the CMP4(NET5) showed maximum

peaks during the for 23 residues with RMSF > 0.3 nm. The protein structure bound to the

CMP2(NET5) and reference ligand N3 showed similar trend with 10 and 14 residues with

RMSF > 0.3 nm. Overall, the RMSF of the proteins showed a similar trend of fluctuations with

marginal abruption with peak.

Fig 8. Solvent accessible surface area (SASA) of protein in bound state with CMP2(NET5), CMP4(NET5) and

reference ligand N3 over the period of 100 ns MD simulation.

https://doi.org/10.1371/journal.pone.0284301.g008
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The RMSF calculated over each atom for the ligands is shown in Fig 7(B). Here, the RMSF

for the reference ligand N3 was found to have a higher number of peaks,14 atoms with

RMSF > 0.3 nm compared to others. The CMP2(NET5) showed similar trend, 4 atoms with

RMSF > 0.3 nm. However, CMP4(NET5), showed the lowest fluctuation with no atoms with

RMSF > 0.3 nm.

3.5.3 SASA (solvent accessible surface area). The SASA (solvent accessible surface area)

of a protein is the area on its surface that is most proximal to the surrounding solvent and thus

exhibits the greatest degree of direct interaction with it. Throughout the 100 ns MD simula-

tion, the SASA values of the protein bound with the CMP2(NET5), CMP4(NET5) and reference

ligand N3 were calculated, and the graphs were plotted, as shown in the Fig 8. SASA measure-

ments showed that protein in all three complexes had SASA of 148–158 nm2. However, a

minor rise to 160 nm2 in SASA was detected in the CMP2(NET5), CMP4(NET5) and reference

ligand N3 at the 50 ns, 60 ns and 30 ns, respectively, due to the exposure of internal residues

caused by a change in the protein’s conformation.

3.5.4 Hydrogen bonds

Intermolecular hydrogen bonding can be utilized as a metric to evaluate the degree of protein-

ligand binding as well as the stability of the complex. During a 100 ns simulation, the total

number of hydrogen bonds formed by three compounds ranged from 1 to 8, as depicted in Fig

9. The native inhibitor N3 exhibited 2–3 hydrogen bonds with high fluctuations and 3–6

hydrogen bonds in a stable configuration. Fig 9(C) illustrates two frames, one from 0 ns to 10

ns and the other from 10 ns to 20 ns, where 3–6 hydrogen bonds and 2–4 hydrogen bonds

were detected in the protein-ligand complex of the native inhibitor N3. CMP4(NET5) formed

1–2 hydrogen bonds with the binding pocket residues of the protein with minimal fluctuation,

and 0–1 hydrogen bonds with high fluctuation, as shown in Fig 9(A). Furthermore,

CMP2(NET5) displayed 0–1 hydrogen bonds with high fluctuations and 1–3 hydrogen bonds

with minimal fluctuation during the 100 ns MD simulation, as depicted in Fig 9(B). The native

inhibitor N3-protein complex formed the highest number of hydrogen bonds during the simu-

lation in comparison to the other two top hits. Additionally, it was observed that CMP2

(NET5) demonstrated the consecutive highest number of hydrogen bonds.

3.5.5 MD simulation protein-ligand interaction. Later, the complexes formed in the

simulation were collected at different timeframe to read the positional and interaction variabil-

ity. As it was observed in the RMSD plot (Fig 6) the native inhibitor is stabilized throughout

Fig 9. Hydrogen bond counts over the 100 ns MD simulation trajectories for the protein-ligand complexes (a)

CMP4(NET5) (b) CMP2(NET5) and (c) native inhibitor N3.

https://doi.org/10.1371/journal.pone.0284301.g009
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the simulation. However, CMP2(NET5) showed conformational stability from 10–70 ns simula-

tion time and later from 80–100 ns. Thus, three structures were extracted from the simulation

trajectory at 0 ns (initial state), 50 ns (first stable zone), and 90 ns (second stable zone). Simi-

larly, CMP4(NET5) also had similar stable time zones, and their three structures were also

extracted from the trajectory at 0 ns, 50 ns, and 90 ns. Native inhibitor N3 simulation trajec-

tory was also treated similarly to match with the hit compounds. However, in the native inhibi-

tor, there is only one single stable zone (10–100 ns). Figs 10, 11 and S6 Fig shows the 3D and

2D interaction plot of protein-ligand at 0, 50, and 90 ns respectively.

Native inhibitor N3 interaction plot for the poses generated at 0, 50 and 90 ns are shown in

S6 Fig. Here, the highest number of H-bonds is shown in the first pose (0 ns). In this pose, six

residues were involved in H-bonding, they are: His163, His164, Gly143, Gln189, Glu166, and

Fig 10. 3D and 2D interaction plot of CMP4(NET5) with the 3CL protease protein at (a-b) 0 ns (c-d) 50 ns, and (e-f) 90

ns of the simulation trajectory.

https://doi.org/10.1371/journal.pone.0284301.g010
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Thr190. Both catalytic residues were found in the interacting range. However, when structure

moved to 50 ns, H-bonds were reduced to two where Gln189 was from the earlier list while

Thr26 was added as new H-bond forming residue. Pose collected at 90 ns showed highly simi-

lar interaction behaviour as 50 ns pose.

Fig 10 shows the interactions detected in the complex of CMP4(NET5) with 3CL protease

protein in 3D and 2D formats. In CMP4(NET5), the first pose at 0 ns did not show any polar

contact. However, His41 and Cys145 were observed in the interaction plot under interacting

range. Another critical residue of 3CL protease, Glu166 was also found in the interacting vicin-

ity. Later, at 50 ns, Cys145 got disappeared, but additional H-bond formed with Gln189 and

Tyr54. Moreover, His41 was still there in the interacting zone. This shows the high possibility of

CMP4(NET5) interacting with His41 either in hydrophobic contact or in H-bond. Eventually, at

90 ns the H-bonds lost but Cys145 appeared in the neighbourhood of the compound.

Fig 11. 3D and 2D interaction plot of CMP2(NET5) with the 3CL protease protein at (a-b) 0 ns (c-d) 50 ns, and (e-f) 90

ns of the simulation trajectory. 2D interaction map was formed using LigPlus.

https://doi.org/10.1371/journal.pone.0284301.g011
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Consistent proximity of CMP4(NET5) shows its high interaction probability with the catalytic

dyad, which can lead to the protein’s activity inhibition. Fig 10 showed that compound confor-

mation at 90 ns was significantly different compared to 0 and 50 ns poses. Compound orienta-

tion was majorly shifted in this region, and the same was shown in the RMSD plot of this

compound.

Fig 11 shows the interaction details of CMP2(NET5), His41 was involved in forming the H-

bond in the pose formed at beginning of the simulation (0 ns). Cys145 was also observed in the

interaction range. This confirmed the presence of a catalytic dyad in the interaction range of

CMP2(NET5). Moreover, Glu166 which considered as critical residue for 3CL protease was also

marked in the interaction map at 0 ns of simulation. Other two poses at 50 ns and 90 ns were

devoid of H-bond. However, His41 and Cys145 were found at 50 ns and 90 ns respectively.

Fig 12. MM/GBSA binding free energies for the (a) CMP4(NET5) (b) CMP2(NET5) and (c) native inhibitor N3, various

energetic components are shown in different colour. Gmx MMGBSA tool was used for plotting.

https://doi.org/10.1371/journal.pone.0284301.g012

Table 6. Clustering result for last 20 ns time frame of MD Simulation for the top two hits and the native inhibitor

of 3CL protease.

Compound Number of Clusters Population (number of structure)

3CL protease 1 2001

CMP2(NET5) 1 2001

CMP4(NET5) 1 2001

https://doi.org/10.1371/journal.pone.0284301.t006
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Structure, formed at 50 ns was extracted from the most stable zone of the simulation for both

hit compounds. In this poses (50 ns), CMP4(NET5) showed stronger interaction and involve-

ment of catalytic residues compared to CMP2(NET5). 3D depiction of both hits shows their

binding at a similar binding site, but rotational motion within the molecule (resulting from the

degree of freedom) allowed them to change their conformations.

3.5.6 MD simulation protein-ligand interaction. Binding free energies (ΔG) for all three

complexes CMP4(NET5), CMP2(NET5) and the reference ligand N3 were calculated for the last

20 ns of the simulation and averaged to estimate the overall binding strength. Fig 12 showed

the binding free energies (ΔG) of CMP4(NET5), CMP2(NET5) and the reference ligand N3.

Native inhibitor showed the most minimum ΔGTotal that composed of different components

mentioned in method section. Electrostatic and van der Waal showed the best performance in

stabilizing the complex. Average electrostatic energy in native inhibitor complex was –23.11

kcal/mole while the van der Waal energy was -43.43 kcal/mole as shown in Fig 12(C). This

made the overall binding energy -29.18 kcal/mole after adding the solvation term of 37.36

kcal/mole. Moreover, CMP4(NET5), CMP2(NET5) compounds showed similar ΔG binding free

energies. Their total ΔG binding energies were -13.32 kcal/mole (Fig 12(A)) and -16.71 kcal/

mole (Fig 12(B)) for, CMP4(NET5) and CMP2(NET5), respectively. This showed that hit com-

pounds had acceptable range of ΔG and formed a stable complex with the 3CL protease pro-

tein. However, none of the compounds showed better binding strength compared to the native

inhibitor N3.

3.6 Steered MD simulation

Later, steered MD simulation was carried out to estimate the dissociation magnitude for all the

three complexes. The starting structure for the steered MD simulation was obtained from the

clustering over the trajectory resulting from the classical MD simulation that was performed

Fig 13. Force on harmonic spring showed by three complexes (one native inhibitor and two hit compound)

during the 500 ps timescale od steered MD simulation.

https://doi.org/10.1371/journal.pone.0284301.g013
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earlier. Table 6 shows the clustering results for the last 20 ns, all three compounds, including

the native inhibitor, showed only one cluster formed at the RMS cut-off of 0.3 nm. The central

structure of these clusters was used as starting co-ordinate in steered dynamics. In the steered

dynamic, compounds dissociated from the protein over the period of 500 ps where the poses

were saved after every 1 ps. Initially, there was minor displacement of the ligand molecule

from the binding site of the protein and then force of the spring reached to the restoring force

within the protein-ligand complex. This is represented as the peak in Fig 13 that shows the

force on the spring in the steered dynamics. Native inhibitor had the maximum resistance

(610.57 kJ/mol/nm) to the dissociation as shown by the highest peak in Fig 13. CMP4(NET5)

also showed comparable resistance (586.04 kJ/mol/nm) for the dissociation and showed the

similar peak as native inhibitor. However, it reached the dissociation state earlier than the

native inhibitor. In contrast, CMP2(NET5) did not show high restoring force in the complex

state, which showed relatively easier dissociation from the protein molecule. Fig 13 shows the

high binding of the native inhibitor and CMP4(NET5) compared to CMP2(NET5). Moreover, the

close behaviour of CMP4(NET5) with native inhibitors makes it a promising hit candidate.

4. Conclusions

Currently, the world is experiencing periodic peaks in COVID-19 instances. That demands for

a therapeutic molecule with the minimum toxic effect that can inhibit essential protein of

SARS-CoV-2. 3CL protease of SARS-CoV-2 has been established as a potential drug target and

the structure of the protein has also been solved, which catalyze the structure-based drug

design. In this perspective, this study demonstrated an application of machine learning com-

bined with a physics-based simulation technique to identify efficient inhibitor compounds

against 3CL protease. A natural compound library was screened, and the top-ranked candi-

dates were validated using sophisticated computational techniques. These compounds (CMP2

and CMP4) have shown promising results in the in-silico study and can be explored via in-
vitro and in-vivo experiments.

Supporting information

S1 Fig. Interaction plot of reversible non-covalent 3CLpro inhibitor, 0EN with 3CL prote-

ase in the protein crystal structure 7L0D. Hydrogen bonds are shown in the green dashed

line. Other residues formed hydrophobic contacts.

(TIF)

S2 Fig. 3D and 2D interaction plots for the top five hits ranked from the list of ten com-

pounds selected from NET1 and NET5. Plots are shown for the best pose generated after the

molecular docking.(a, b) CMP4(NET5) (c, d) CMP10(NET5) (e, f) CMP2(NET5) (g, h) CMP9(NET1)

(i, j) CMP4(NET1).

(TIF)

S3 Fig. Pictorial representation of CMP4(NET1), CMP9(NET1), CMP10(NET5) unbound state

with the protein.

(TIF)

S4 Fig. NVT and NPT equilibrium of protein ligand complex for CMP2(NET5) and

CMP4(NET5) and the reference ligand N3 for temperature and pressure.

(TIF)
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S5 Fig. Radius of gyration for the protein in bound states with CMP2(NET5) and

CMP4(NET5) and the reference ligand N3.

(TIF)

S6 Fig. 3D and 2D interaction plot of native inhibitor N3 with the 3CL-protease protein at (a,

b) 0 ns (c, d) 50 ns, and (e, f) 90 ns of the simulation trajectory. 2D interaction map was formed

using LigPlus.

(TIF)
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