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Abstract

Frequent cortical arousal is associated with cardiovascular dysfunction among people with

sleep-disordered breathing. Changes in heart rate variability (HRV) can represent pathologi-

cal conditions associated with autonomic nervous system dysfunction. Previous studies

showed changes in cardiac activity due to cortical arousals. However, few studies have

examined the instantaneous association between cortical arousal and HRV in an ethnically

diverse population. In this study, we included 1,069 subjects’ full night ECG signals from

unattended polysomnography in the Multi-Ethnic Study of Atherosclerosis dataset. An auto-

mated deep learning tool was employed to annotate arousal events from ECG signals. The

etiology (e.g., respiratory, or spontaneous) of each arousal event was classified through a

temporal analysis. Time domain HRVs and mean heart rate were calculated on pre-, intra-,

and post-arousal segments of a 25-s period for each arousal event. We observed that heart

rate and HRVs increased during the arousal onsets in the intra-arousal segments, regard-

less of arousal etiology. Furthermore, HRVs response to cortical arousal occurrence differed

according to gender and the sleep stages in which arousal occurred. The more intense

HRVs variation due to arousal in females can contribute to a potentially stronger association

between arousal burden and long-term mortality. The excessive abrupt sympathetic tone

elevation in REM caused by arousal may provide insights on the association between sleep

and sudden cardiac death.

Introduction

Cortical arousals during sleep are transient events that indicate temporary intrusion of wake-

fulness [1]. Sudden cortical arousals can be spontaneous or triggered by sleep-disordered

breathing (SDB) [2], periodic leg movements (PLM) [3], bruxism [4], pain [5], and noise [6].

Frequent cortical arousals can cause sleep fragmentation, poor sleep quality, and insufficient
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sleep. Additionally, arousals occurring in obstructive sleep apnea (OSA) patients are associated

with cardiovascular dysfunction [7].

Cortical arousals are currently characterized by electroencephalography (EEG) in polysom-

nography (PSG) or level 2 home sleep tests (HST) [8]. Several studies have found cortical

arousals can impact cardiac activity [9–12], therefore cortical arousal events related to auto-

nomic nervous system (ANS) activity can be detected via cardiac activity variations. Heart rate

variability (HRV) represents the beat-to-beat fluctuation of RR intervals and can reflect ANS

activity [13–15]. However, there are few data from racially/ethnically diverse and/or multi-

center cohorts, and the instantaneous association between cortical arousal and heart rate and

time domain HRV in the general population is unknown.

An emerging trend in healthcare is employment of deep learning techniques on large

amounts of clinical data to extract interpretable information and discover new knowledge

[16]. The deep learning approach is a data-driven algorithm that does not need domain knowl-

edge and can automatically learn from raw biomedical signals. This approach employs a deep

neural network consisting of multiple layers. Each layer includes multiple filters designed to

extract features at different levels. For example, in a classification task, higher-level layers

amplify aspects of the crucial inputs for discrimination and suppress irrelevant variations.

Compared to human-designed filters, a deep neural network discovers intricate patterns in

large data sets using backpropagation algorithms to indicate how a network should change its

filter weights [17]. Currently, however, most studies using a deep learning approach in the

sleep field only focus on identifying individuals with sleep disorders. Exploring novel uses of

deep learning in analyses of signals recorded from sleep studies is an emerging field with the

potential to provide insight into the pathophysiology of sleep disorders.

The objective of this study was to investigate the capability of applying a deep learning algo-

rithm to electrocardiographic signals (ECG) in order to better understand the coupling

between cortical arousal and HRV in the general population. Because cortical arousals are

transient events in sleep, the duration of cardiac changes is dynamic and short. Therefore, we

designed a deep learning algorithm to accurately locate the region of interest on the ECG for

the coupling analysis. Then, we performed an HRV analysis on the selected ECG segments.

Because cortical arousals can be elicited by respiratory disturbances or non-respiratory distur-

bances, we firstly compared the difference in cardiac responses between these two conditions.

Subsequently, we stratified the general population into subpopulations based on the gender to

compare differences in their cardiac responses. Because studies have found that the sleep stages

can also affect HRV [18, 19]. we also compared the cortical arousal induced cardiac responses

between rapid eye movement (REM) and non-rapid eye movement (NREM) sleep.

Methods

Data source

We used the Multi-Ethnic Study of Atherosclerosis (MESA) dataset for deep learning model

development, testing, and statistical analyses. MESA is a multi-center collaborative longitudi-

nal study that evaluates the progression of subclinical to clinical cardiovascular disease [20].

Between 2010 to 2012, 2237 of the original 6814 participants which included black, white, His-

panic, and Chinese-American men and women were enrolled in the Sleep Exam substudy.

The Sleep Exam included unattended full overnight polysomnography (PSG), 7-day wrist-

worn actigraphy, and a sleep questionnaire. The single-lead electrocardiogram (ECG) from

the PSG record was used to identify arousal events where ANS activities were affected by corti-

cal arousals. The sampling frequency of ECG was 256 Hz. The PSG and demographic data of

participants can be obtained publicly from https://sleepdata.org/datasets/mesa.
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Certified scorers visually scored cortical arousals manually based on American Academy of

Sleep Medicine (AASM) criteria [21]. The AASM defines cortical arousal as an abrupt shift in

EEG frequency, which may include alpha and/or theta waves and/or delta waves and/or fre-

quencies greater than 16 Hz lasting at least 3 seconds and starting after at least 10 continuous

seconds of sleep. In rapid-eye-movement (REM) sleep, an increase in the EMG signal is also

required. Interscorer reliability for identification of arousals is presented in the S1 File.

Subject exclusion

We excluded 1,168 subjects due to unreliable and/or missing scored events. The details are

provided in Fig 1. The final dataset consisted of 1,069 participants for cortical arousal and

HRV coupling analyses. The subject’s exclusion seems to be random regarding to gender or

ethnicity. The demographic statistical of subjects before and after the exclusion process was

included in the S1 Table in S1 File.

Model architecture

We used the pre-trained deep learning model reported in our previous study for arousal detec-

tion [22]. Specifically, the model took a 256 Hz ECG signal as input and output the sequence

of arousal probabilities at a one-second resolution based on the presence or absence of an

arousal previously scored in the MESA dataset. The detailed model architecture is described in

S1 Fig in S1 File.

Statistical analyses

Fig 2 shows the procedures for data processing and statistical analyses. The output of the deep

learning model was a sequence of arousal probability scores between 0 and 1. A decision

threshold was chosen using the geometric mean of probability scores to achieve a balance

between sensitivity and specificity, calculated by the maximum values of true positive rate * (1

–false-positive rate). Any score beyond the cut-off threshold indicated the presence of arousal

at the corresponding second. Moreover, we excluded false positive arousal predictions of the

model. These false positives may be linked with the cardiac activity changes due to other

events, such as sleep stage transition [14]. They hence cannot appropriately reflect the associa-

tion between HRV and cortical arousals.

We compared the HRV variations before and after the arousal events which were automati-

cally annotated by the deep learning model. All annotated arousal events met the criteria that

the duration was > 3 seconds and the interval between two arousal events was> 11 seconds

on ECG [23]. For each arousal event, three consecutive segments of equal length, pre-, intra-,

and post-arousal, were defined based on the maximum predicted probability of arousal via the

deep learning model, as shown in Fig 2. The impact of cortical arousals on HRV was examined

by comparing HRV extracted from these three ECG segments. Based on the previous studies

on ultra-short term HRV [12, 24], a segment of 25 seconds is sufficient for HRV time domain

analysis. Additionally, to reveal the association between different types of arousals and HRV, a

temporal analysis was conducted to determine the factor that resulted in each arousal. The eti-

ology for arousal was searched 10 seconds prior to the arousal onset as the autonomic nervous

system may have a delayed response to cortical arousal [25]. The etiologies were determined

using a priority order of OSA, central sleep apnea (CSA), hypopnea, PLM, undefined oxygen

desaturation (UOD), and spontaneous. Given that apneas and hypopneas were scored with at

least a 3% oxygen desaturation in MESA dataset, UOD arousals may also be triggered by

events such as OSA, CSA, or hypopnea but with an oxygen desaturation < 3%. Therefore, a

secondary search for UOD arousal was necessary to possibly identify the origin of an UOD
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arousal. Specifically, we further searched another 10 seconds prior to the oxygen desaturation

associated with UOD arousals. The UOD arousal events were re-classified if any events hap-

pened in the 10-second searching window, such as OSA or CSA.

After arousal events were identified and classified, the Pan-Tomkins algorithm [26] was

implemented using python to extract R peaks from pre-, intra-, and post-arousal segments for

Fig 1. Flow chart of data inclusion in this study. ECG: electrocardiogram; EEG: electroencephalogram.

https://doi.org/10.1371/journal.pone.0284167.g001

PLOS ONE Coupling analysis of HRV and arousal using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0284167 April 6, 2023 4 / 15

https://doi.org/10.1371/journal.pone.0284167.g001
https://doi.org/10.1371/journal.pone.0284167


HRV analyses. Data exclusion is essential for HRV analysis as abnormal beats may compro-

mise the reliability of HRV [27]. Karavirta stated that RR intervals between 400 to 2000 ms can

be considered normal at rest [28]. Therefore, the arousal events were excluded if abnormal RR

intervals (<400 ms or>2000 ms) were found in either of the three segments. Table 1 shows

the descriptions and expressions of HRV features and heart rate involved in this study.

Fig 2. Data processing flowchart for statistical analyses. Algo: Algorithm; HRV: Heart Rate Variability; Prob: probability.

https://doi.org/10.1371/journal.pone.0284167.g002

Table 1. The time domain parameters in this study.

Parameters Description Expression Unit
SDNN Standard deviation of normal RR intervals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� 1

XN

i¼1

ðRRi �
�RR�Þ

2

s
ms

RMSSD Square root of the mean squared differences between successive RR intervals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� 1

XN� 1

i¼1

ðRRi � RRiþ1Þ
2

s
ms

pNN50 Number of successive RR intervals pairs differing more than 50 ms divided by the total

number of RR intervals

CountðjRRiþ1 � RRij > 50 msÞ=ðN � 1Þ %

HR Heart rate 60∗1000= �RR� beats per

minute

N: total normal R peaks within the ECG segment; �RR�: average of RR intervals.

https://doi.org/10.1371/journal.pone.0284167.t001
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We first confirmed the data normality using Sharpiro-Wilk test [29]. Then we applied

paired t-tests to compare the means of HRV parameters between pre-/intra-, and intra-/post-

arousal segments of the same type of arousal. T-tests were used for the comparisons of means

of HRVs between different genders and sleep stages. We also implemented an alpha adjustment

based on Bonferroni corrections as multiple comparisons (192 in total) were made in this study.

Therefore, the p-values were adjusted with a multiplier of 200. We considered that adjusted p-

value< 0.05 indicated statistical significance in analysis. Model testing and analyses were per-

formed using Python v3.6 with package PyTorch v1.8, Scikit-learn v0.24, and SciPy v1.4.

Results

Subject characteristics

Subjects’ characteristics, including arousal duration extracted from annotation files, are pre-

sented in Table 2 Subjects were older; a slight majority of the 1,069 subjects were female and

had at least moderate sleep apnea (apnea hypopnea index [AHI]� 15 /h)

Model performance and arousal inclusion

Fig 3 shows the receiver operating characteristic (ROC) curve of the deep cortical arousal detec-

tion algorithm (DeepCAD) for arousal classification; the optimal cut-off threshold (0.063) is

depicted as the black dot. With the selected threshold, we initially included 85.2% (106,971 of

125,524) of the arousal events. We further excluded 16.76% (21,037 of 125,524) arousal events

due to the abnormal RR intervals on corresponding ECG segments. Finally, 68.4% (85,934 of

125, 524) of original arousal events were selected for final analysis. The distribution of arousal

etiologies and arousal lengths are shown in Table 2 and S2 Fig in S1 File, respectively. Most

Table 2. Descriptive characteristics of the subjects.

Characteristics Subjects (n = 1069)
Female (%) 53.5%

AHI> = 15 (with > = 3% oxygen desaturation or with arousal) 55.9%

Age (mean ± SD) 69.0 ± 8.9

Race
Black, African American 25.7%

Caucasian, White 40.2%

Chinese American 11.3%

Hispanic 22.8%

Arousal index (mean ± SD) 22.2±11.8

Arousal event duration [seconds] (mean ± SD) 9.08±5.95

Number of OSA Arousals 9745

Number of CSA Arousals 851

Number of Hypopnea Arousals 21646

Number of PLM Arousals 5304

Number of UOD Arousals 25825

Number of Spontaneous Arousals 22563

Number of NREM Arousals 76279

Number of REM Arousals 9655

Number of Arousals for Male 44889

Number of Arousals for Female 41045

AHI: Apnea-Hypopnea Index; OSA: Obstructive Sleep Apnea; CSA: Central Sleep Apnea; PLM: Periodic Leg

Movements; REM: Rapid Eye Movement; NREM: Non-rapid Eye Movement; UOD: undefined oxygen desaturation.

https://doi.org/10.1371/journal.pone.0284167.t002
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arousal events lasted less than twenty seconds, implying a 25-second intra-segment is sufficient

to record the HRV changes resulting from arousal. According to Table 2, UOD, spontaneous,

and hypopneic arousals were the majority of arousal events. Furthermore, greater than 85% of

UOD arousals were not related to other arousal etiologies after the secondary search.

Comparison of HRV parameters among arousals etiologies

The HR and following HRV parameters were analyzed for each arousal: SDNN, RMSSD,

pNN50 (See Abbreviations for definitions). Table 3 compares the HRV parameters between

two segments pairs, pre- versus intra-, and intra- versus post-arousal, within the specific type

of arousal event. The means of pNN50, and HR were significantly higher during the arousal

onset compared to both pre- and post-arousal segments in all types of arousals. Except for

CSA induced arousals, the mean of SDNN in intra-arousal segment was also significantly

higher compared to pre- and post-arousal segments. The mean of RMSSD were observed a sig-

nificant increase during intra-arousal segment in OSA, UOD and spontaneous arousal events

whereas no significant increasing were found in CSA arousal events. No significant differences

were found between pre- and post-arousal segments. P-values after adjustment and effect sizes

(Cohen’s d) for HRV parameter comparisons within pairwise segments are presented in S2

Fig 3. The receiver operating characteristic (ROC) curve for arousal classification using the deep learning model.

https://doi.org/10.1371/journal.pone.0284167.g003
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Table in S1 File. As shown in Table 3, pairwise comparison showed a significant change in the

HRVs and heart rate in the presence of all types of arousals, suggesting an elevation of cardiac

sympathetic tone due to arousal onset.

Comparison of HRV parameters associated with different types of arousals

between male and female

Fig 4 shows the comparison of the means of HRVs between genders across three segments,

pre-, intra-, and post-arousal. Means and standard deviations of HRVs, and adjusted p-values

Table 3. Comparison of HRV parameters and heart rate between pre- vs intra-arousal and intra- vs post-arousal.

Pre-arousal Intra-arousal Post-arousal Paired t-test result
Mean ± Standard deviation

OSA
SDNN [ms] 56.77 ± 50.60 74.87 ± 45.69 55.36 ± 48.19 a, b

RMSSD [ms] 55.31 ± 79.80 58.96 ± 70.62 54.09 ± 77.71 a, b

pNN50 [%] 15.01 ± 20.83 18.19 ± 20.14 14.60 ± 20.81 a, b

HR [bpm] 63.47 ± 8.35 67.73 ± 8.23 63.66 ± 8.50 a, b

CSA
SDNN [ms] 70.08 ± 65.91 73.93 ± 58.97 62.71 ± 60.24 b

RMSSD [ms] 69.25 ± 104.47 72.45 ± 98.00 67.11 ± 98.90

pNN50 [%] 14.54 ± 21.42 18.02 ± 22.97 14.60 ± 21.88 a, b

HR [bpm] 63.79 ± 8.87 66.59 ± 8.40 63.49 ± 8.86 a, b

Hypopnea
SDNN [ms] 45.90 ± 47.16 58.76 ± 44.99 48.88 ± 47.38 a, b

RMSSD [ms] 48.54 ± 75.30 50.36 ± 70.74 49.11 ± 75.66 a

pNN50 [%] 11.92 ± 19.22 12.92 ± 18.36 12.01 ± 19.03 a, b

HR [bpm] 65.82 ± 8.65 68.04 ± 8.68 65.71 ± 8.69 a, b

PLM
SDNN [ms] 50.37 ± 45.60 61.46 ± 42.57 50.60 ± 43.41 a, b

RMSSD [ms] 48.39 ± 69.73 50.55 ± 65.22 47.83 ± 67.87 b

pNN50 [%] 13.10 ± 19.08 14.52 ± 18.97 13.02 ± 19.03 a, b

HR [bpm] 64.62 ± 8.56 65.81 ± 8.51 64.53 ± 8.70 a, b

UOD
SDNN [ms] 52.26 ± 52.67 65.89 ± 48.50 53.19 ± 51.66 a, b

RMSSD [ms] 54.16 ± 84.85 55.89 ± 77.77 54.32 ± 83.75 a, b

pNN50 [%] 13.38 ± 20.49 14.84 ± 19.76 13.39 ± 20.28 a, b

HR [bpm] 64.89 ± 8.68 67.89 ± 8.73 64.81 ± 8.76 a, b

Spontaneous
SDNN [ms] 43.54 ± 46.80 60.43 ± 45.03 48.25 ± 46.47 a, b

RMSSD [ms] 47.88 ± 74.16 50.19 ± 68.98 47.36 ± 71.49 a, b

pNN50 [%] 12.53 ± 20.02 13.64 ± 18.75 12.60 ± 19.55 a, b

HR [bpm] 65.08 ± 8.49 67.22 ± 8.61 65.18 ± 8.74 a, b

Paired t-test was considered statistically significant if adjusted p-value < 0.05
a Statistical significance difference between pre- and intra-arousal event
b Statistical significance difference between intra- and post-arousal event

bpm: Beats per minute; CSA: Central Sleep Apnea; HR: Heart rate; OSA: Obstructive Sleep Apnea; PLM: Periodic Leg Movements; pNN50: Number of successive RR

intervals pairs differing more than 50 ms divided by the total number of RR intervals; RMSSD: Square root of the mean squared differences between successive RR

intervals; SDNN: Standard deviation of normal RR intervals; UOD: Undefined oxygen desaturation.

https://doi.org/10.1371/journal.pone.0284167.t003
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with effect sizes (Cohen’s d) for HRV parameter comparison within pairwise segments for dif-

ferent genders are shown in S3 and S4 Tables in S1 File, respectively. All means of HRVs and

heart rate were greatest during the arousal regardless of gender. Except for CSA arousal events,

the means of HRVs, including SDNN, RMSSD and pNN50 were significantly higher in males

regardless of arousal segments, whereas the mean of heart rate was higher in the female. More-

over, more intensive variation was observed in females regardless of arousal types. Taking

OSA arousal as an example, the mean of SDNN increased by 40.24% [before arousal: 48.77,

arousal onset:68.40] in females while it increased by 28.35% [before arousal: 61.08, arousal

onset:78.40] in males. The mean of RMSSD among females increased by 13.74% [before

arousal: 43.03, arousal onset: 48.94] whereas that among males increased by only 3.93% [before

arousal:61.94, arousal onset: 64.38]. A similar result was also observed in the mean of pNN50

where females increased by 27.85% [before arousal: 11.33, arousal onset: 14.48] whereas males

increased by 18.74% [before arousal: 17.02, arousal onset: 20.21].

Comparison of HRV parameters associated with different types of arousals

between REM/NREM stages

The comparison of HRV means across the three segments in REM and NREM stages are

shown in Fig 5. For all arousal types, the means of SDNN, RMSSD, and pNN50 were lower in

REM compared to NREM, while the mean of heart rate was higher in REM. The only excep-

tion was for PLM arousal events where the means of RMSSD were nearly the same. Further-

more, at arousal onset, the variations of SDNN were larger in REM than in NREM stage

regardless of arousal types. For instance, in OSA-induced arousal events, the mean of SDNN

during REM stage increased by51.82% [from 49.46 to 75.09] due to arousal onset while NREM

only increased by 28.62% [from 58.17 to 74.82]. No significant differences were observed

regarding the mean of SDNN in intra-arousal segments due to more intensive variations of

SDNN during REM stage. Means with standard deviation, and adjusted p-values and effect

sizes (Cohen’s d) for HRV parameter comparisons within pairwise segments for REM/NREM

are presented in S5 and S6 Tables in S1 File.

Discussion

We demonstrate that the deep learning model can provide insights into the instantaneous

association between cortical arousal and HRV using a single-lead ECG. Importantly, compari-

sons of HRVs between various arousal etiologies and different subpopulations further reveal

the magnitude and characteristics of associations between cortical arousal and HRV parame-

ters in the general population.

Previous studies examined the association between arousal and cardiovascular activity

change either using short term (~ 5 min) [9] or long-term (overnight) ECG measurements in a

general population [11] or ultra-short-term (< 5mins) ECG measurements only among OSA

populations [12]. The instantaneous response of cardiovascular activity to cortical arousal

among a general population is still unknown. In the present study, we employed a deep learn-

ing model, DeepCAD, to annotate arousal events with 1-second resolution on the ECG,

Fig 4. Bar plot of parameters calculated from ECG signal across three defined segments of different arousal

events between male and female. The asterisks indicate the pairwise statistical significance (adjusted p-value< 0.05).

Error bar indicates standard deviation. CSA: Central Sleep Apnea; PLM: Periodic Leg Movements; SDNN: Standard

deviation of normal RR intervals; RMSSD: Square root of the mean squared differences between successive RR

intervals; pNN50: Number of successive RR intervals pairs differing more than 50 ms divided by the total number of

RR intervals; HR: Heart rate.

https://doi.org/10.1371/journal.pone.0284167.g004

PLOS ONE Coupling analysis of HRV and arousal using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0284167 April 6, 2023 10 / 15

https://doi.org/10.1371/journal.pone.0284167.g004
https://doi.org/10.1371/journal.pone.0284167


Fig 5. Bar plot of parameters calculated from ECG signal across three defined segments of CSA induced arousal

events between REM and NREM. The asterisks indicate the pairwise statistical significance (adjusted p-value< 0.05).

Error bar indicates standard deviation. CSA: Central Sleep Apnea; SDNN: Standard deviation of normal RR intervals;

RMSSD: Square root of the mean squared differences between successive RR intervals; pNN50: Number of successive

RR intervals pairs differing more than 50 ms divided by the total number of RR intervals; HR: Heart rate. REM: Rapid

Eye Movement; NREM: Non-rapid Eye Movement.

https://doi.org/10.1371/journal.pone.0284167.g005
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making it possible to analyze the short-term effects that arousal onsets have on cardiac activa-

tion among the general population. We also distinguished the arousal based on the causes via a

temporal analysis.

For the overall population, except for the RMSSD of OSA induced arousals, we found sig-

nificant variations in HR and HRVs in every type of arousal, with increasing magnitude during

arousal onset and reduced to baseline level after arousal. The results of HR change were consis-

tent with a previous observation [9] that arousal increases sympathetic tone. A substantial

impact from parasympathetic withdrawal is represented by the rapid surge in heart rate during

arousal onset [30]. It is noteworthy that our analysis revealed an increase in heart rate variabil-

ity (HRV) during intra-arousal segments. Arousal may also lead to the induction of abnormal

heartbeat patterns [31, 32], resulting in irregular RR intervals. Given that our analysis of HRVs

was based on ultra-short-term recordings, this may have a more significant impact compared

to HRV calculations using a longer window size. It should also be noted that the magnitude of

variations for CSA-induced arousal are less intense in the SDNN and RMSSD components of

HRV in comparison to other arousal types. This is likely to result from clinical differences

between different types of arousals [33].

Stratified analysis based on different genders revealed cardiovascular response differences

to the occurrences of cortical arousal. The result in Fig 4 is consistent with documentation that

females have a higher heart rate but lower HRVs [34, 35]. However, we did not observe the sig-

nificant differences between male and female on the HRVs and HR among CSA-induced

arousals. One of the possible reasons is the limited number of the CSA arousal events, as

shown in Table 2. The different intensity of HRV responses to cortical arousal onsets resulted

in statistically significant changes among the pre-, intra- and post- segments. Specifically, the

SDNN, RMSSD and pNN50 components of females increased more than those of males in all

types of arousals, which can potentially result in different levels of long-term cardiac burden.

Shahrbabaki et. al [11] calculated arousal burden through the cumulative duration of arousal

events and total sleep time, and observed females have a stronger association between arousal

burden and long-term cardiovascular morbidity as well as overall mortality in comparison to

males. One possible reason is the different sympathetic nervous system responses during

arousal between males and females as discussed above.

The result in Fig 5 showed the lower HR and higher HRVs in NREM and opposite trends

in REM sleep stage, which is consistent with the sympathetic nervous system activity during

REM sleep. Moreover, we observed greater variations of HRVs due to arousal onset during

REM compared to NREM sleep in particular with SDNN in all types of arousals. Though the

sympathetic activation in REM is well known, the instantaneous and intensive variation of the

sympathetic tone due to cortical arousal in REM may further stress cardiac function and

potentially be a factor in inducing sudden cardiac death [36]. Thus, it is essential to understand

the spontaneous impacts of sleep stages and arousal on HRVs and their potential adverse

effects on cardiac function.

Several limitations of this study should be noted. First, the conclusion depends on the reli-

able arousal and sleep stage scoring as most of the excluded subjects were due to the arousal/

sleeping stage scoring uncertainties. Second, all findings were based on the MESA dataset.

Thus, additional investigation will be required in other populations. Third, cortical arousal

and HRV response may not always be synchronous due to delayed reflection. Therefore, this

study focused only on the cortical arousal events that overlap with deep learning model anno-

tated arousal events for coupling analysis. Nevertheless, most of the cortical arousal events

(n = 106,971) were included with the selected threshold. Moreover, the precision of the oxime-

try sensor may also affect the total counts of apneic and UOD arousals, as the apneic events

were scored with a desaturation threshold of 3%. However, most of the UOD arousals (85%)
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in this study were not related to arousal etiologies after the secondary search. Lastly, in this

study, a twenty-five second segment was employed to calculate ultra-short-term HRVs based

on the analysis of the MESA dataset. A different window size may need to be selected for other

populations.

Although this study has several limitations, our coupling analysis of arousal and HRVs has

many strengths. To our knowledge, this is the first study to demonstrate HRV variations

resulting from different cortical arousals using a large multi-center and multi-ethnic cohort.

Arousal events can be accurately located using the deep learning model, leading to a better

understanding of the instantaneous association between arousal and the cardiovascular sys-

tem. Importantly, HRVs are associated with long-term cardiovascular disease (CVD) out-

comes and altered HRVs may occur years earlier than the development and clinical

recognition of CVD [37, 38]. The distinctiveness of HRVs between different genders and sleep

stages found in this study may provide insights on association between arousal burden, long-

term mortality and cardiac sudden death.

In conclusion, all arousals in this study were associated with an increased heart rate and

HRVs. However, cardiovascular responses were also dependent on arousal causes, gender, and

sleep stage during which arousal occurred. This study suggests that deep learning techniques

can help analyze the instantaneous association between HRV and arousal in the general popu-

lation. Future studies of arousal burden may take subpopulation and arousal types into

account.
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