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Abstract

Several optimization problems can be abstracted into many-objective optimization prob-

lems (MaOPs). The key to solving MaOPs is designing an effective algorithm to balance

the exploration and exploitation issues. This paper proposes a novel many-objective Afri-

can vulture optimization algorithm (MaAVOA) that simulating the African vultures’ foraging

and navigation behaviours to solve the MaOPs. MaAVOA is an updated version of the Afri-

can Vulture Optimization Algorithm (AVOA), which was recently proposed to solve the

MaOPs. A new social leader vulture for the selection process is introduced and integrated

into the proposed model. In addition, an environmental selection mechanism based on the

alternative pool is adapted to improve the selection process to maintain diversity for

approximating different parts of the whole Pareto Front (PF). The best-nondominated solu-

tions are saved in an external Archive based on the Fitness Assignment Method (FAM)

during the population evolution. FAM is based on a convergence measure that promotes

convergence and a density measure that promotes variety. Also, a Reproduction of

Archive Solutions (RAS) procedure is developed to improve the quality of archiving solu-

tions. RAS has been designed to help reach out to the missing areas of the PF that the vul-

tures easily miss. Two experiments are conducted to verify and validate the suggested

MaAVOA’s performance efficacy. First, MaAVOA was applied to the DTLZ functions, and

its performance was compared to that of several popular many-objective algorithms and

according to the results, MaAVOA outperforms the competitor algorithms in terms of

inverted generational distance and hypervolume performance measures and has a benefi-

cial adaptation ability in terms of both convergence and diversity performance measures.

Also, statistical tests are implemented to demonstrate the suggested algorithm’s statistical

relevance. Second, MaAVOA has been applied to solve two real-life constrained engineer-

ing MaOPs applications, namely, the series-parallel system and overspeed protection for

gas turbine problems. The experiments show that the suggested algorithm can tackle
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many-objective real-world applications and provide promising choices for decision-

makers.

1. Introduction

MaOPs are optimization problems with more than three objectives that must be solved simul-

taneously [1]. Most real-world applications may have more than four conflicting objective

functions and are mathematically being modelled as MaOPs. Some of these applications

include automotive engineering, aerospace engineering, many-objective simplified nurse

scheduling problem, the five-objective water resource management problem, the ten-objective

general aviation aircraft design problem, the many-objective space trajectory design problem,

many-objective software refactoring, the hybrid car controller optimization problem with six

objectives, optimization of three centrifugal design problems having six to nine objectives, the

many-objective 0/1 knapsack problem, Heuristic Learning, Travelling Salesman Problem

(TSP), Job shop scheduling, flight control system, supersonic wing design, six-objective design

of a factory-shed truss [2], Big data applications which need sophisticated architectures with

inherent capabilities to be scaled and optimized [3], NP-hard workflow allocation problems in

cloud systems [4], Multicore computers are transforming the embedded computing market

[5], and recently Internet of Everything (IoE) [6]. The difficulty of the MaOPs returns to the

increase in the problem scale; as the number of objectives grows, the number of nondominated

solutions grows exponentially [1]. Solving MaOPs is more difficult for several reasons: the

high computational cost of PF approximation due to increased evaluation of several points, the

inability of existing evolutionary multi-objective algorithms to solve MaOPs, and the difficulty

of visualizing the PF with more than four objectives [2].

The difficulties that Multi-objective Evolutionary Algorithms (MOEAs) experience in solv-

ing MaOPs have raised the demand for the development and the deployment of evolutionary

algorithms for MaOPs. MOEAs are not scalable enough and have problems addressing the

MaOPs. These problems are summarized by [11] as follows: (1) As the number of objective

functions grows, the obtained results become non-dominated; (2) As the size of the objective

space grows, the conflict between diversity and convergence grows; (3) For computational effi-

ciency, the population size can be small; (4) Computational complexity grows exponentially as

the number of objectives grows (for example, hypervolume calculation); (5) Balancing diver-

sity and convergence becomes more complicated; and (6) Due to the vast dimensions, visualiz-

ing the Pareto-optimal front is difficult. Due to these challenging issues, MaOPs are more

complex and need to be handled using more effective and scalable evolutionary algorithms.

Various ways to solve MaOPs have been proposed as the MOEAs community pays more

attention. These approaches can be roughly divided into four categories [2].

1.1. Decomposition-based approaches

These non-Pareto-based methods combine the objectives into a scalar function. The weight

vector is a weighted coefficient that represents the relevance of each objective. A MaOP is split

into numerous single-objective sub-problems that can be optimized simultaneously using a set

of weighting vectors.

Scalarization techniques also balance the diversity and convergence of solutions in the

objective space. For dealing with MaOPs, [1] presented a new reference direction-based den-

sity estimator, a new FAM, and new environmental selection algorithms. To increase the

diversity of decomposition-based Evolutionary Algorithm (EA) [7], adopted a dynamical
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decomposition technique. Reference vectors were employed by [8] to break down the original

MaOP into several single objective subproblems and clarify user preferences to target a pre-

ferred subset of the entire PF. The reference points are automatically selected from the solu-

tions and matched to the PF pattern. As a result, these reference points might provide a

diversified range of possibilities for guiding the population to explore new areas.

Recently [9], suggested an adaptive decomposition EA (MaOEA/ADEI) based on environ-

mental information. The ecological information determines the penalty factor of Penalty

boundary intersection decomposition and includes population and weight vector distribution

information. In addition, the weight vectors adaptation approach is employed when dealing

with problems involving scaled targets.

1.2. The indicator-based approach

The value of the performance indicator is used to direct the search process in this approach.

The algorithm in this category used the performance indicator instead of fitness to select indi-

viduals. For example [10], introduced a hypervolume estimation algorithm. The exact Hyper-

volume Values (HV) were approximated using Monte Carlo simulation, and the solutions

were rated using the HV indication. An indicator based MOEA with reference point adaption

(ARMOEA) was presented by [11]. For MaOPs [12], presented a two-stage R2 indicator-based

EA (TS-R2EA). The primary selection is based on an R2 indicator-based achievement scalariz-

ing function. After that, the reference vector guided objective space partition approach is

applied as the second selection strategy. A two-stage selection technique yield a good mix of

convergence and diversity. In addition, several efficient and effective indicators based MOEAs

[13–15] have been presented in the context of these performance metrics.

1.3. Pareto-dominance approach

Is the most popular class of MaOPs. Some improved Pareto rank solutions are chosen using

dominance-based selection criteria in these approaches. In addition, a diversity-related

method will be used to ensure that the Pareto optimal solutions are distributed evenly. Grid

domination and grid difference were utilized to strengthen the selection pressure in the

authors’ [16] Grid-based many-objective evolutionary algorithm (GREA). In addition, to

introduce a fuzzy mechanism to Pareto dominance, the authors in [17] employed a continuous

function to quantify the degree of non-dominance between two solutions. As a result, solu-

tions with a higher non-dominance degree can be selected. In addition, a novel dominance

relation [18] and a reinforced dominance relation [19] were presented to classify just more

precisely the best convergent solutions as non-dominated, hence speeding up population con-

vergence. In addition, various efficient and effective Pareto-dominance strategies [20–22] for

solving MaOPs have recently been published.

1.4. Preference-based approach

This category has three types: a priori, interactive, and posterior. The preference information

is supplied before the search in an a priori class. The decision-maker is expected to offer pref-

erence information interactively in an interactive class. Similarly, the preference information

is introduced after the search in the a posteriori class. Several efficient and effective prefer-

ence-based EA approaches [23–25] have been proposed to solve MaOPs.

The authors in [26] presented a new nature-inspired metaheuristic algorithm called AVOA

in 2021, and it has since been used in several real-world engineering applications. AVOA was

created to simulate and model African vultures’ foraging behaviour and living habits. Com-

pared to state-of-the-art optimization techniques, the AVOA was determined to be very
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promising and powerful. In addition, this technique is substantially faster than any comparable

algorithms in terms of computational complexity and running time, and it works well in large-

scale applications. The population of African vultures is divided into three groups based on

their habits. The first group is to find the best feasible solution among all vultures. The second

group is to find the second-best feasible solution among all vultures. The final group is made

up of the surviving vultures. The rationale for the division is that each group of vultures has a

different ability to locate and consume food. It is assumed that the worst vultures are the weak-

est and hungriest vultures, and the best vultures are the strongest and most abundant vultures

at present. The strongest and best vultures are two of the best solutions in AVOA, while the

other vultures are trying to approach the best.

This paper presents a modified version of AVOA to handle MaOPs. This version is called

MaAVOA. The AVOA required two best vultures to guide the other vultures to reach the best

solution. A new selection process for the MaOPs is introduced and integrated into the pro-

posed model. In addition, an environmental selection mechanism based on the alternative

pool is adapted to improve the selection pressure to maintain diversity for approximating dif-

ferent parts of the whole PF. Also, an external Archive based on the FAM is set up to keep

track of the best non-dominant solutions as the population evolves. The FAM is based on a

convergence measure that promotes convergence and a density measure that promotes variety.

Furthermore, a RAS procedure is developed to improve the quality of archiving solutions. The

RAS procedure helps to reach out to the missing areas of the PF that the vultures easily miss.

The main contributions of this paper are summarized as follow:

• The proposed MaAVOA is a novel algorithm to solve many objectives problems which

achieves promising solutions that promotes diversity and fast convergence.

• The proposed MaAVOA is compared to certain current five best-practice algorithms and

achieves results superiority over them, including a unified evolutionary optimization algo-

rithm (U-NSGAIII) [27], a reference-point-based many-objective evolutionary algorithm

based on NSGA-II (NSGA-III) [28], A multi-objective evolutionary algorithm based on

decomposition (MOEA/D) [29], constrained two-archive evolutionary algorithm (CTAEA)

[30], and AGEMOEA adaptive geometry estimation based MOEA (AGE-MOEA) [31].

• The performance of the proposed MaAVOA was evaluated using benchmark functions for

DTLZ test suites with some objectives ranging from three to fifteen objectives.

• In addition, it was applied on two real life engineering applications to validate its perfor-

mance to tackle many-objective real-world applications.

The rest of the paper is organized as follows. The MaOPs and AVOA are presented in Sec-

tion 2. The proposed algorithm’s framework is illustrated in Section 3. The proposed frame-

work’s implementation methodology is presented, and the results are discussed in Section 4.

In section 5, two engineering applications are introduced. The paper’s conclusions and future

research initiatives are presented in Section 6.

2. Preliminaries

2.1. Many-objective optimization problem

Many-objective optimization problems (MaOPs) can be stated as follows:

Minimize FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ
T

ð1Þ
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Subjected to

QgðxÞ � 0; g ¼ 1; 2; . . . ;G

ElðxÞ ¼ 0; l ¼ 1; 2; . . . ; L

Where F:O!Rm is a set of m conflicting objective functions in the form of a vector, (m�4),

O ¼
Qn

i¼1
½lbi; ubi� � Rn is n-dimensional decision space, x = (x1, x2,. . .,xn)2O is a vector of n

decision variables (candidate solutions) and Rm is called the objective space [27].

Definition 1. (Pareto-dominance) A solution xp is considered to dominate another solution

xq (xp� xq) if and only if

ð8k � f1; 2; 3; . . . ;mg : fkðx
pÞ � fkðx

qÞÞᴧð9k � f1; 2; 3; . . . ;mg : fkðx
pÞ < fkðx

qÞÞ ð2Þ

Definition 2. (Pareto-optimal)

A solution xp is assigned to be Pareto optimal iff: 9xp2O: xp� xq

Definition 3. ((Pareto-optimal set (POS)): the set of non-dominant solutions POS includes

all solutions that balance the objectives in a unique and optimum manner.

POS ¼ fxpj:9xq 2 O : xp � xqg ð3Þ

Definition 4. ((Pareto-optimal front (POF)): The values of all the objective functions corre-

sponding to the Pareto-optimal solutions in POS are included in the set POF.

POF ¼ fðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ
T
jx � POSg ð4Þ

The dimension of the POF is expected to be m−1, and the POF is becoming more complex

with increasing the number of objective functions, which is the challenge of many-objective

optimization problems [7].

2.2. Standard African vulture’s optimization algorithm

Authors in [26] introduced a novel nature-inspired metaheuristic algorithm, AVOA, used to

solve several engineering applications [32]. AVOA was developed by simulating and modelling

African vultures’ foraging behaviour and living habits.

To simulate the AVOA biological life, four assumptions are considered:

• In the African vulture population, there are NpopF vultures. Each vulture’s position is n-

dimensional, with a maximum number of iterations (MaxIter). Xt
i ¼ ½x

t
1
; xt

2
; . . . ; xtn� can be

used to indicate the position of each vulture i (1�i�NpopF) at different iterations t
(1�t�MaxIter).

• The population of African vultures is classified into three groups based on their life habits.

The first group is to find the best feasible solution among all vultures. The second group is to

find the second-best feasible solution among all vultures. The final group is made up of the

surviving vultures.

• The division is that each group of vultures has a unique incapacity to discover and eat food.

• The worst vultures are thought to be the weakest and most hungry, while the best vultures

are the strongest and most numerous. The strongest and best vultures in AVOA are two of

the best solutions, and the other vultures aim to approach the best.
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3. The proposed many-objective African vulture optimization

algorithm (MaAVOA)

This paper presents a modified version of AVOA to handle MaOPs. This version is called

MaAVOA. Initially, NpopF Vultures are randomly generated in the decision space using a uni-

form distribution. After that, vultures are evaluated according to the fitness functions, and the

nondominated solutions are identified according to Pareto dominance of NSGA-III [31] then

stored in the external archive (ARC). The ARC is based on the FAM, created to keep track of

the best solutions as the population evolved. The AVOA required two best vultures to guide

the other vultures to reach the best solution. The proposed algorithm uses a set of social leader

vultures to guide solutions in the search space. Some of these social leader vultures are chosen

from the ARC to lead the other vultures in the population. The proposed algorithm uses FAM

in [33], focusing on convergence and diversity to select the first-social leader vultures from

ARC. FAM was employed with two objectives to enforce these potential leaders’ preferences

and learn more about them. MaAVOA iteratively performs a series of steps, the most impor-

tant of which are (1) obtaining the social leaders for the vultures and moving the solutions in

the decision space by using AVOA; (2) Applying polynomial mutation to 10% of the vulture

position (candidate solution) to enhance the diversity while avoiding the premature conver-

gence; (3) perform the environmental selection by using the alternative pool to select the best

NpopF vultures for the next generation and (4) Update the external archive to contain only the

non-dominated solutions; i,e based on the dominance relation on all objectives. The nondomi-

nated solutions in the alternative pool and the old archive are stored in the archive. These steps

are repeated up to MaxIter is reached. The parameter of the proposed algorithm is shown in

Table 1. The MaAVOA framework is shown in Fig 1 and Algorithm (1) and they are being

explained in greater depth in the following subsections.
Algorithm 1: MaAVOA
Input: population size NpopF, MaxIter, and the related parameters.
Output: The position of best vultures and their fitness value
Processing:
Initialize a random population of vultures Xv(v = 1,2,. . .,NpopF)
Use Pareto dominance of NSG-III to identify non-dominated solutions.
Save all non-dominated individuals in the archive (ARC)
While (stopping criteria are not met) do
• For v = 1: NpopF
• Select social leader Vultures (Algorithm 4)

Table 1. Parameters of the proposed algorithm.

Parameter Description

popsize The population size

MaxIter The maximum number of iterations.

ub, lb The upper and lower bounds of the solutions.

dim The dimension of the solutions.

Xt
v ¼ ½xt1; xt2; . . . ; xtn� The position of each vulture v (1�v�NpopF), (1�n�dim).

nRef Total number of reference points.

RP the set of reference points.

Nr1 and Nr2 The parameters controlling nRef along the boundary and inside of the Pareto optimal front.

FSLV The set of the first social leader vultures.

SSLV The set of the second-social leader vultures.

k This parameter denotes the likelihood of the vulture carrying out the exploitation stage.

https://doi.org/10.1371/journal.pone.0284110.t001
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• pop = the new position of vultures after updating their position by
AVOA
• pop = polynomial mutation to 10% of pop
• Evaluate the objective values for each individual in pop
• Combine the old and new offspring populations, denoted as px =

pop[Xv
• pop = sorting px by a non-dominated sorting technique of NSGA-III

and choosing NpopF solutions from px
• pop = Environment Selection from the alternative pool (Algorithm

5)
• Update the ARC by the nondominated solution in the alternative

pool.
end while
return the position of best vultures and their fitness value from

ARC

3.1. Fitness Assignment Method (FAM)

The MaAVOA’s FAM is presented in Algorithm (2) and is based on a convergence measure

that promotes convergence and a density measure that promotes variety. This method used a

set of reference points to calculate both metrics. These points are utilized to cluster the solu-

tions and, as a result, estimate their density in the objective space. These points are also used to

push solutions that are near to the PF.

MaAVOA uses a collection of reference points to find well-distributed solutions and near

the PF. A method for obtaining this set of points was proposed by [34]. This process produces

a set of evenly spaced reference points on a hyperplane in the objective space. This hyperplane

is in the first quadrant and intersects each axis equally. At position one on each axis, the inter-

ception is considered, followed by Nr divisions. As a result, (nRef ¼ CmþNr� 1
Nr ) gives the total

number of reference points nRef.

Fig 1. MaAVOA framework.

https://doi.org/10.1371/journal.pone.0284110.g001
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Algorithm 2: FAM
Input: a population of vultures Xv(v = 1,2,. . .,NpopF)
Output: the convergence and density measures
Processing:
• Calculate the fitness vector of each vulture.
• Determine the set of reference points RP = {rp1, rp2,. . .,rpnRef}
• Compute the approximated ideal point Pideal

• Compute the new extreme points Zextremet from Zextremet� 1
[ ARC

• Compute the hyperplane from extreme points.
• Compute the density measure and the convergence measure of each
solution

The basic steps for calculating the density measure and the convergence of the solutions in

ARC are illustrated in the following steps.

• Step1: Generate a set of reference points RP = {rp1, rp2,. . .,rpnRef} by using a method pro-

posed by [33], where nRef is the total number of reference points. For example, if m = 4

objective functions, the reference points are created on a rectangle with apex at (1, 0, 0,0), (0,

1, 0, 0), (0, 0, 1,0) and (0, 0, 0,1) with considering four divisions (Nr = 4), and 35 reference

points will be generated.

• Step 2: identify ideal point Pideal ¼ ðf min
1
; f min

2
; . . . ; f minm Þ, then each objective function for each

solution in ARC is transformed to F~ by subtracting the value in objective F(X) by Pideal, i.e.

the translated objective i is obtained from f �i ¼ fi � f mini .

• Step 3: Compute the set of the extreme solutions Zextremet from all solutions in ARC up to the

current iteration (t) of the algorithm. The solution i � ðARC [ Zextremet� 1
Þ is an extreme solution

for objective n if this solution i minimize the scalarizing achievement function (AS) as

follows.

AS xi; rpnð Þ ¼ maxmj¼1

f �j ðxÞ
rpnj

8i� ARC [ Zextremet� 1

� �
ð5Þ

where rpn = {rpn1, rpn2,. . .,rpnm} is a unitary vector that corresponds to the direction in the axis

n, that is, rpnj = 0 if n6¼j and rpnk = 1 otherwise in which n 2 {1, 2, . . ., m}. Using this method,

all the solutions found in the ARC thus far are used to update the set Zextremet extreme solutions.

Then, the m objective vectors of the in Zextremet are used to build a hyperplane in the objective

space and extended to reach these m objective vectors. The intercept di of the i-th objective

axis and the linear hyperplane can then be obtained by calculating the distance from the inter-

ception point and the origin and using this value to normalize the objective functions.

norFi xð Þ ¼
f �i ðxÞ

di � Pideali

ð6Þ

• Step 4: Associate the solutions in ARC to the reference point. For this purpose, each refer-

ence point is joined with the origin to construct a reference line corresponding to each refer-

ence point on the hyperplane. The distance perpendicular to each solution in ARC to the

reference lines is computed. Each solution is associated with the closest reference point,

whose reference line is closest to it in the normalized objective space. As a result, each refer-

ence point will have a set of solutions. Now the density around each reference point can be

estimated by, counting the number of ARC solutions linked to it. Therefore, the density

measure (Dmj) of each solution in ARC is equal to the size of the group in which it is
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associated with it. For example, if the solutions ωi = {x, w, y, z} form the cluster ωi of a refer-

ence point rpi, then the Dmj of these solutions is equal to 4.

• Step 5: Compute the convergence measure (convj) to promote convergence. For each solu-

tion in ARC, the AS function and associated reference point are calculated, which is the con-

vergence measure for this solution and donated by (convj). For each reference point rp, the

AS is calculated of the solutions from the external archive associated with this reference

point concerning it (using Eq (5)). Mathematically, the convergence measure of a solution j

(convj) is calculated as follows.

convj ¼ ASðxj; rpiÞ i 2 oi ð7Þ

Based on the above four assumptions of AVOA in section 2.2, To simulate the diverse vul-

ture behaviours in the foraging stages, MaAVOA can be divided into five phases. The first

phase is the social vulture’s selection, the rate of hunger of vultures is the second phase, the

exploration and exploitation phases are the third and fourth phases, respectively, and finally,

the environmental selection phase is to select the best NpopF vultures for the next generation.

The flowchart for simulating various vulture behaviours in the foraging stages is shown in Fig

2 and presented in more detail in next subsections.

3.2. The social leader vultures selection

MaAVOA needs two social leader vultures to guide the other vultures in the population.

According to MaOPs, there is no one best solution over the population for the investigated

problem. Instead, there are a set of non-dominated solutions, so we will select two sets of social

leader vultures. In the proposed MaAVOA, the social leader vultures will be divided into two

sets: the first social leader vultures (FSLV) and the second-social leader vultures (SSLV). The

FSLV set contains all non-dominated solutions in the ARC. For each vulture in the population,

the first social leader is chosen from the FSLV by using the measurements of diversity and con-

vergence in FAM to separate the ARC’s solutions such that the best solutions are chosen based

on these criteria The tournament selection procedure is used to assign the first social leader

vulture (fslv) from the FSLV to this solution v. A solution i 2 ARC is better than a solution j 2

ARC in the tournament selection procedure if it has a density value lower than the second one.

If the two solutions have the same density, the convergence measure determines which is pref-

erable. In the event of a tie, we choose solution i as a leader if Dmi<Dmj. Otherwise, solution j

is selected. Aside from that, solution j is chosen.

For the second-social leader vultures (SSLV) set, the guiding vultures, in this case, will be a

set of best solutions corresponding to each objective function from all vultures in the popula-

tion. This selection procedure aims to find the best solutions that are closer to the PF. As a

result, each iteration’s hyperplane is pushed closer to the PF, improving the convergence. The

set of second-social leader vulture position SSLV = {sl1, sl2,. . .,slm} consists of m best solutions,

one for each objective. Thus, each vulture in SSLV is dedicated to bringing the new vultures

closer to the PF’s ideal point. For selecting the second social leader sslv for a vulture v, the ran-

dom selection process assigns this leader from SSLV to this solution.

The selection process of the set of SSLV is given in Algorithm (3), and the social leader vul-

ture selection process (fslv and sslv) for each vulture in the population is given in Algorithm

(4).
Algorithm 3: Second-Social vulture set selection for each vulture
Input: population of vultures
Output: SSLV
Processing:
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• Compute the objective functions for each vulture.
• Assign the minimum objective function for each objective

Pideal ¼ ðf min
1
; f min

2
; . . . ; f minm Þ

• Define each vulture corresponding to each objective (i.e v1 corre-
sponding to f min

1
, v2 corresponding to f min

2
, vm corresponding to f minm )

• Output SSLV = {sl1, sl2,. . .,slm}
Algorithm 4: Social leaders vultures’ selection
for v = 1: NpopF)

[ARC(i), ARC(j)] = tournament selection (ARC)
Compute the density measure (DM) and the convergence measure(conv)

of each ARC(i) and ARC(j) (Algorithm 2)

Fig 2. The flowchart of simulating of various vulture behaviours in the foraging stages.

https://doi.org/10.1371/journal.pone.0284110.g002
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If Dmi<Dmj
fslv = ARC(i)

elseif Dmj<Dmi
fslv = ARC(j)

elseif Dmj = Dmi
if coni<conj
fslv = ARC(i)

else
fslv = ARC(i)

end
end
s = random[1, m]
sslv = SSLV(s)

end

3.3. Vultures’ hungry rate

The vulture has the strength to fly to obtain food if it is not hungry. If the vulture is very hun-

gry, it lacks the strength to fly large distances. As a result, hungry vultures will stick near the

vultures with food rather than searching for food on their own. The exploration and exploita-

tion stages of vultures can thus be formed based on the above behaviour. The degree of hunger

indicates when vultures are transitioning from the exploration to the exploitation stage. The ith

vulture’s hunger degree Fti at the tth iteration can be calculated by

Fti ¼ 2� randti1
� �

þ 1� zt � 1 �
t
T

� �

þ gt ð8Þ

gt ¼ ht � sink
p

2
�
t
T

� �

þ cos
p

2
�
t
T

� �

� 1

� �

ð9Þ

where randti1 is a random number between 0 and 1, zt is a random number between -1 and 1,

ht is a random number between -2 and 2, and k is a parameter that has been set in advance,

this denotes the likelihood of the vulture carrying out the exploitation stage.

When jFti j is greater than 1, vultures enter the exploration stage, searching for new food in

various locations. When jFti j is less than 1, vultures enter the exploitation stage, looking for bet-

ter food in the immediate vicinity.

3.4. Exploration stage

Vultures in AVOA can investigate different random locations using two alternative tactics,

which are selected using a parameter called p1. This parameter p1 is given with the algorithm’s

initialization, and the range is [0,1]. The exploration stage of the vulture can be expressed as

Xtþ1

i ¼
leaderti � D

t
i � F

t
i ; p

1
� randtp1

Rti � F
t
i þ rand

t
i2 � ððub � lbÞ � rand

t
i3 þ lbÞ; p1 < randtp1

ð10Þ

(

leaderti ¼
fsli if pr ¼ s1

ssli if pr ¼ s2
ð11Þ

(

where Xtþ1

i is the the ith vulture’s position at the t+1th iteration, randt
p1
; randt

i2; rand
t
i3 and pr

are random numbers that are uniformly distributed in the range [0,1]. leaderti is the social

leader vulture as fsl2FSLV and ssl2SSLV, which are chosen for vulture i in Algorithm (4). s1
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and s2 are parameters that were measured in advance, with values ranging from 0 to 1, and the

sum of both being one. Fti is calculated according to Eq (8), ub, lb represent the upper and

lower bounds of the solutions, and Dt
i represents the distance between the vulture and the cur-

rent optimal vulture and calculated by:

Dt
i ¼ jC � R

t
i � X

t
i j ð12Þ

where C is the vultures move randomly to protect food from other vultures.

3.5. Exploitation stage at medium level

If the value of jFti j is less than 1, then AVOA enters the exploitation phase, divided into two

phases, each with two alternative methods (medium and later).

3.5.1. Competition for food. The weaker vultures try to exhaust the healthier vultures

and get food from them by congregating around them and provoking minor confrontations.

Based on this behaviour, the vultures’ position is updated and the updated formula can be

expressed as:

Xtþ1

i ¼ Dt
i � ðF

t
i þ rand

t
i4Þ � d

t
i ð13Þ

dti ¼ leaderti � X
t
i ð14Þ

3.5.2. Rotating flight of vultures. When a vulture is full and active, it will not only com-

pete for food but also hover at high altitudes, according to AVOA’s spiral model. The updated

formula can be expressed as:

Xtþ1

i ¼ leaderti � ðS
t
i1 þ S

t
i2Þ ð15Þ

Sti1 ¼ leaderti �
randti5 � X

t
i

2p

� �

� cosXt
i ð16Þ

Sti2 ¼ leaderti �
randti6 � X

t
i

2p

� �

� cosXt
i ð17Þ

3.6. Exploitation stage at later level

When the value jFti j is less than 0.5, almost all vultures in the population were full, but after a

long period of time, the best two species of vultures were hungry and feeble. Vultures will

attack food at this time, and several different vultures will congregate around the same food

source.

3.6.1. Aggregation behaviour. Vultures have digested a large portion of the food during

the late stages of AVOA. Where there is food, many vultures will congregate, and competition

will ensue. At this point, the vulture position update formula is as follows:

Xtþ1

i ¼
At
i1 þ A

t
i2

2
ð18Þ

At
i1 ¼ fslti �

fslti � X
t
i

fslti � ðXt
i Þ

2
� Fti ð19Þ
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At
i2 ¼ sslti �

sslti � X
t
i

sslti � ðXt
i Þ

2
� Fti ð20Þ

3.6.2.Attack behaviour. When AVOA is in its last stages, the vulture will flock to the best

vulture to scavenge the remaining food. The vultures’ position update formula can be

expressed at this point as in Eq (21).

Xtþ1

i ¼ leaderti � jd
t
i j � F

t
i � LevyðdimÞ ð21Þ

where dim represents the solution’s dimension, Levy(dim) represents the Levy flight [26], and

its calculation formula is given by the following Equation.

Levy dimð Þ ¼ 0:01�
r1�s

jr2j
1
d

ð22Þ

where r1 and r1 are uniformly distributed random numbers in the range [0,1], δ is a constant,

which is usually set to 1.5, and the calculation formula of σ is given by nest equation.

s ¼
G 1þ dð Þ � sin pd

2

� �

G 1þ dð Þ � d� 2
d� 1

2ð Þ

 !1
d

ð23Þ

where Γ(x) = (x−1)!

3.7. Environmental selection operator

The ARC stores non-dominated solutions found by the algorithm during the search process

until the algorithm is completed. The archive stores the nondominated solutions from all vul-

tures for information sharing. A vulture may have very poor values on some objectives when

the number of objectives increases. These poorly performing objectives need the solutions of

ARC for information sharing. Thereby the vulture is pushed to converge to the PF. Although

the MaAVOA’s environmental selection operator has achieved a reasonably balanced perfor-

mance in terms of convergence and diversity, the MaAVOA’s new progeny may have a diver-

sity problem with other solutions. The idea of integrating into the alternate pool is being tested

as a solution to this challenge. By integrating the reproduction generated by the genetic opera-

tors to the solutions in the ARC to construct the alternative pool containing the new offspring

generated by the MaAVOA operator and archive offspring generated by reproduction of

archive solutions to select the best NpopF vultures according to the dominance relation on all

objectives. Under the pressure of the alternative pool, the algorithm assures that the operators

work together to find more extended alternative solutions in the population’s evolutionary

process. As a result of the effect of the alternate pool, the algorithm’s overall evolutionary effi-

ciency improves. Population convergence and distribution are ensured because of the environ-

mental operator’s influence. We used some ideas and schemes from [35] to develop this

environmental selection.

Archive solutions (RAS) were reproduced on 50% of the ARC solutions. In RAS, crossover

and mutation processes inherit different dimensions from different solutions. Some parents

from the archive are selected randomly and then perform simulated binary crossover (SBX)

and polynomial mutation (PM), and these new solutions are then added into the alternative

pool then choose the best NpopF individuals according to the dominance relation on all

objectives.
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Algorithm 5: Environment Selection (RAS, pop) Operator.
Input: pop (offspring generated by the MaAVOA), ARC (solutions in
archive)
Output: pop (new generation of vultures).
Processing:
PAS = choose random 50%of vultures from ARC
RAS = Genetic operators to (PAS)
for i = 1 to |RAS|
for j = 1 to |pop|
Judge the dominance relation between RAS(i) and pop(j);
if the nondominated solution is located in pop
Retain the corresponding nondominated pop solutions;

end if
if the nondominated solution lies in RAS
add the corresponding nondominated RAS(i) 1to pop;
end if

end for
end for
if |pop| > Npop
Compute the fitness values using the FAM method; (Algorithm 2)
Remove some solutions with the worst fitness values;

end if
Output the pop with size NpopF for the next generation.
end

3.8. Updating the external archive

Because the social leader vultures are chosen from the ARC, good administration of this archive is

crucial and significantly impacts the algorithm’s performance. The external archive is updated at

each iteration. We attempt to place each non-dominated solution from the vultures obtained after

environmental selection in the external archive. If any archive solution dominates this added solu-

tion, it is neglected. Otherwise, this solution is saved to the external archive, and the solutions

dominated by this new non-dominated solution are deleted from the archive.

4. MaAVOA implementation

Five state-of-the-art algorithms are compared to our proposed algorithm, namely a unified evolution-

ary optimization algorithm (U-NSGAIII) [27], a reference-point-based many-objective evolutionary

algorithm following NSGA-II [28], A multi-objective evolutionary algorithm based on decomposi-

tion (MOEA/D) [29], constrained two-archive evolutionary algorithm (CTAEA) [30], and AGE-

MOEA adaptive geometry estimation based MOEA (AGE-MOEA) [31]. These algorithms have

been developed to solve MaOPs. The proposed and the state-of-the-art algorithms have been imple-

mented and added to the modern Multi-Objective Optimization package (Pymoo). To evaluate the

performance of the proposed algorithm, it is applied to both benchmark problems (DTLZ1-DTLZ7)

and two engineering application: Series-parallel system problem and Overspeed protection for gas

turbine [36] as case studies. Wilcoxon Test Statistic has applied on all the experiments.

All experiments are tested on a machine with the following specifications: CPU: Core i5

Processor 2.5 GHz /16GB RAM /500GB SSD, GPU: NVIDIA GeForce GTX1050 4GB, com-

pute capability 6.1.

4.1. Benchmark problems

In the proposed work, we used the DTLZ1-DTLZ7 benchmark problems, and they are com-

monly used due to their scalability for any number of objective functions. It is a widespread
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test suite conceived for MaOPs with scalable fitness dimensions [37]. All the problems in this

test set are scalable in the fitness dimension and are continuous n-dimensional many-objective

issues. The decision space has a dimension of k + m + 1, where m is the number of objectives,

with k = 5 for DTLZ1, k = 10 for DTLZ 2–6, and k = 20 for DTLZ7, as proposed in [37].

Table 2 lists the properties of the decision space and the PF for each problem.

4.2. Parameter settings

Concerning the recommended parameter settings for the compared algorithms, crossover and

mutation probabilities are set to 1 and 1/D, respectively. The mutation and crossover distribu-

tion parameters have been set to 20. The population size of all algorithms is set to be the same

to make a fair comparison with other algorithms. Table 3 shows the number of reference

points (nRef) for problems with different objectives. We set population size (popsize) equal to

nRef for both the state of the art and MaAVOA algorithms. We used the same settings in [38].

One layer of reference points for three- and five-objective problems and two layers of reference

points for eight-ten-fifteen-objective problems are used according to [39]. The reference points

(or popsize) are set according to parameters Nr1 andNr2 for the different number of objectives.

Nr1 and Nr2 are parameters controlling nRef along the boundary and inside of the Pareto opti-

mal front (used in the previously mentioned calculation of the number of reference points

(nRef ¼ CmþNr1� 1
Nr ).

For a fair comparison, each state-of-the-art algorithm is applied to solve the DTLZ bench-

mark functions using three different cases or scenarios to analyse the proposed algorithm’s

performance and discuss its weak points. The first case is terminating the algorithms after 500

generations for each test problem. The second case is terminating the algorithms after 100000

function evaluations for each run. The third case is setting the computational time of each run

Table 2. PF of DTLZ benchmark problems.

Benchmark
problem

Description

DTLZ1 The optimal Pareto front lies on a linear hyperplane
PM

m¼1
fm ¼ 0:5

DTLZ2 The search space is continuous, unimodal and the problem is not deceptive

DTLZ3 The search space is continuous, unimodal and the problem is not deceptive. It is supposed to

be harder to converge towards the optimal Pareto front than DTLZ2.

DTLZ4 The search space contains a dense area of solutions next to the fm/f1 plane.

DTLZ5 This problem will test an MOEA’s ability to converge to a curve and will also allow an easier

way to visually demonstrate the performance of an MOEA. Since there is a natural bias for

solutions close to this Pareto-optimal curve, this problem may be easy for an algorithm to

solve.

DTLZ6 A more difficult version of the DTLZ5 problem where the non-linear distance function g

makes it harder to convergence against the Pareto optimal curve.

https://doi.org/10.1371/journal.pone.0284110.t002

Table 3. Settings of the reference points and population size.

objectives Nr1 Nr2 nRef popsize
3 16 0 153 153

5 6 0 210 210

8 3 2 156 156

10 3 2 275 275

15 2 1 135 135

https://doi.org/10.1371/journal.pone.0284110.t003

PLOS ONE Many-objective african vulture optimization algorithm: A novel approach for many-objective problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0284110 May 17, 2023 15 / 36

https://doi.org/10.1371/journal.pone.0284110.t002
https://doi.org/10.1371/journal.pone.0284110.t003
https://doi.org/10.1371/journal.pone.0284110


to 3 seconds for all the algorithms. In each of the three scenarios, each algorithm is run 20

times separately on each test problem.

4.3. Performance indicators

Three widely used performance metrics are utilized to evaluate the performance of algorithms

in this paper. Generational Distance (GD), Inverted Generational Distance (IGD), and hyper-

volume (HV). All of them can be an indicator for the convergence and distribution of a solu-

tion set as comprehensive performance measures [40].

• Inverted Generational Distance (IGD) and Generational Distance (GD) are two measure-

ment indicators used to validate the results. The GD performance indicator measures the

solution’s distance to the PF. Let us assume the points found by our algorithm are the objec-

tive vector set A = {a1, a2,. . .,a|A|} and the set of evenly sampled solutions from the genuine

Pareto optimum front is Z = {z1, z2,. . .,z|A|} then,

GD Að Þ ¼
1

jAj
ð
PjAj

i¼1
dpi Þ

1=p
ð24Þ

where di represents the Euclidean distance (p = 2) from ai to its nearest reference point in Z.

Basically, this result is the average distance from any point A to the closest point in the PF.

• The IGD performance indicator inverts the generational distance and measures the distance

from any point in Z to the closest point in A.

IGD Að Þ ¼
1

jAj
ð
PjAj

i¼1
d̂pi Þ

1=p
ð25Þ

where d̂i represents the Euclidean distance (p = 2) from zi to its nearest reference point in A.

• Hypervolume (HV): The volume covered by the obtained PF in the object region, defined as

the HV between the front surface and the reference vector, is used to represent the volume

covered by the obtained PF in the object region. As a result, the HV reflects the PF’s solution

distribution. To calculate HV, we set the reference point of HV to p = (1,1,. . .,1)T [41]. To

guarantee that the individuals in the population can contribute to HV as much as possible,

the objective values are normalized by 1.1 times the nadir point of the PF. The HV metric is

calculated accurately when the number of objectives is less than 5. When the number of

objectives is greater than 5, the Monte Carlo method is adopted to calculate HV. We used

106 sample points for a more accurate result.

4.4. Results and discussion

This section analyses all the outcomes acquired from various experiments conducted through-

out the implementation phase in this paper.

4.4.1 Convergence analysis. The ability of the global search method to converge is a criti-

cal performance criterion for MaOPs. This part looked at the MaAVOA’s convergence as a

function of the number of iterations using the IGD measure. The convergence trajectories

have been chosen randomly from 30 algorithm runs of the MaAVOA and the other five algo-

rithms on DTLZ1-4 with three and ten objectives in Fig 3.

In case of DTLZ1 and DTLZ4 with 3 and 10 objectives, all algorithms exhibit a similar and

strong ability to converge to PF, except CTAEA and AGE-MOEA have the worst convergence

in all test problems. In addition, it is noted that the convergence of the proposed MaAVOA
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towards PF is better than the convergence of NSGAIII in most problems. This returns to MaA-

VOA uses an external archive where the non-dominated solutions found by the algorithm dur-

ing the search process are stored through the algorithm. In contrast, NSGA-III worked only

on the updated population. The solutions in the external archive are used to lead the other

solutions in the population, and the MaAVOA uses FAM with two objectives having the

simultaneous goal of imposing preferences among these potential social leaders. The proposed

approach uses Pareto dominance and information about density and proximity to push the

Fig 3. Convergence trajectories of seven algorithms on DTLZ1-4 with 3 and 10 objectives.

https://doi.org/10.1371/journal.pone.0284110.g003
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vultures towards the PF, which comprises a significant difference between the proposed MaA-

VOA and NSGA-III.

Although MaAVOA and U-NSGAIII have approximately the same convergence, MaAVOA

is still better in convergence in all the problems except DTLZ with 3 objectives. In addition,

MOED/D shows a decrease in convergence in the case of DTLZ1 and DTLZ 4 with 3 objectives

and DTLZ 3 and DTLZ 4 with 10 objectives. Furthermore, MaAVOA shows great perfor-

mance on DTLZ1 with 3 or 10 objectives, DTLZ3 with 3 or 10 objectives, and DTLZ2 and

DTLZ 4 with 10 objectives. This demonstrates its great ability to solve MaOPs problems with

concave PF. We can observe that the proposed algorithms show terrible performance on

DTLZ2 and DTLZ 4 with 3-objectives compared to those with 10 objectives. This returns to

MaAVOA new strategy to choose social leader vultures that guide the other vultures to PF. On

several tests, it demonstrates good scalability in terms of the number of decision variables and

it is concluded that the suggested algorithm has a promising convergence ability to PF.

The other obtained PFs for all DTLZs can be found on https://github.com/tfarrag2000/

MaAVOA.We can clearly observe the convergence and diversity of MaAVOA solutions for

the high dimensional MaOPs.

In Figs 4 and 5, the approximate PF obtained by the six competing algorithms on DTLZ3

and DTLZ7 with 3,4, and 10 objectives problems is presented to further explain the results.

As shown in Fig 4, NSGA-III, CTAEA, MOEA/D, and MaAVOA have a good distribution,

indicating that they performed well on DTLZ3 with three objectives. But U-NSGA-III is

unable to maintain convergence and distribution of the solutions. In addition, AGEMOEA

failed to converge to the true PF. When the algorithms being tested on DTLZ7 with 3 objec-

tives, MaAVOA and UNSGA-III show superior performance than the other algorithms. It is

well observed that the proposed MaAVOA has great diversity and convergence but NSGA-III,

CTAEA, AGEMOEA and MOEA/D cannot converge to the true PF on DTLZ7 with 3

objectives.

As shown in Fig 5, NSGA-III, U-NSGA-III, and MaAVOA demonstrate a good dispersion,

displaying their excellent performance on DTLZ3 and DTLZ7 with 10 objectives, while

CTAEA, AGEMOEA and MOEA/D have a bad ability of convergence and diversity. Figs 4

and 5 show that MaAVOA has shown a good dispersion, demonstrating their superior

performance.

4.4.2 Results for GD, IGD, and hypervolume. Case 1: the termination condition is set to
be 500 generation.

The IGD results of the six algorithms on the seven DTLZ tasks with 3,5,8, and 10 objectives

are presented in Table 4 while Table 5 shows the values of the GD results of several algorithms

and Table 6 shows the values of the HV results as well.

The results of Tables 3 and 4, show that the proposed MaAVOA has achieved competitive

performance for most test cases, indicating that MaAVOA can better balance convergence and

diversity than the five comparative algorithms.

Case 2: the termination condition is set to be 100000 function evaluations.
Tables 7–9 give the values of the three metrics IGD, GD, and HV of the six algorithms on

the seven DTLZ problems with 3,5,8 and10 objectives when the termination condition of all

algorithms is set to be 100000 function evaluations.

As seen from Tables 7–9, MaAVOA has achieved competitive performance for most test

problems.

Case 3: The termination condition is set to be computational time equal 30 seconds
Tables 10–12 gives the values of the three metrics IGD, GD, and HV of different algorithms

on the seven DTLZ problems with 3,5,8 and10 objectives when the termination condition of

all algorithms is set to be 30 seconds. In addition, Table 13 compares the proposed MaAVOA
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with the other algorithms in terms of the number of generations and number of function eval-

uations on DTLZs in the case of the computational time being 30 seconds.

As shown in Table 13, when all algorithms end after 30 seconds, the MaAVOA has achieved

competitive performance for most test problems, the same as in the other two previous cases. On

the other hand, Table 13 shows that the proposed algorithm has implemented for several genera-

tions that is smaller than the NSGAIII, U-NSGAIII, and AGEMOEA and also several function

evaluations of MaAVOA is smaller than NSGAIII and U-NSGAIII as well for 30 seconds.

Fig 4. The parallel coordinates of the non-dominated front obtained by each algorithm (used in the comparison) on DTLZ3 and

DTLZ7 with 3 objectives.

https://doi.org/10.1371/journal.pone.0284110.g004
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5. MaAVOA for engineering applications

In this section, the performance of the proposed MaAVOA has been tested on two real-life

engineering applications, namely, the Series-parallel system and Overspeed protection for gas

turbine. These applications are used to show the efficiency and effectiveness of the proposed

MaAVOA in real-life problems. Since the optimal Pareto front is not known for real-life

Fig 5. The parallel coordinates of non-dominated front obtained by each algorithm (used in the comparison) on DTLZ3 and DTLZ 7 or

any function with 10 objectives.

https://doi.org/10.1371/journal.pone.0284110.g005
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applications, a reference set for the real-life problem was used for computing the IGD and HV,

which was formed with the non-dominated solutions resulting from the union of all the

approximation sets to the PF obtained by each algorithm at the end of every run.

5.1 Series-parallel system problem

The series-parallel system has subsystems in series and parallel combinations. Fig 6 shows an

example of a series-parallel system with five subsystems where the final reliability function is

divided into two parts. The first part contains subsystems 1 and 2, and the second part has sub-

systems 3, 4, and 5. For the first part, as subsystems are in series, therefore the product of R1

Table 4. Performance comparison between the proposed MaAVOA and other algorithms in terms of IGD.

PROB. MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

OBJ. IGD IGD IGD IGD IGD IGD

DTLZ1 3 1.54E-02(7.07E-07) 1.55E-02 (3.18E-05) 1.55E-02 (2.19E-05) 1.56E-02 (1.52E-04) 1.54E-02 (1.77E-05) 3.68E-02 (6.76E-05)

5 5.28E-02 (8.27E-05) 5.28E-02 (9.55E-05) 5.28E-02 (2.30E-04) 5.29E-02 (2.63E-04) 5.31E-02 (7.78E-06) 1.89E+00 (2.74E-05)

8 1.23E-01 (1.64E-03) 1.22E-01 (2.69E-04) 1.24E-01 (7.50E-04) 1.21E-01 (4.74E-04) 1.26E-01 (2.04E-03) 2.53E+00 (5.22E-05)

10 1.41E-01 (8.70E-04) 1.43E-01 (2.97E-04) 1.43E-01 (1.09E-03) 1.37E-01 (7.85E-04) 1.42E-01 (1.13E-03) 2.07E+00 (1.27E-05)

15 3.31E-01 (4.24E-02) 2.18E-01 (3.54E-03) 2.06E-01 (2.03E-02) 1.35E-01 (2.40E-03) 2.05E-01 (2.44E-02) 6.95E-01 (1.03E-05)

DTLZ2 3 4.09E-02 (2.83E-06) 4.09E-02 (7.07E-06) 4.09E-02 (4.24E-06) 4.09E-02 (7.07E-07) 4.10E-02 (4.95E-06) 5.31E-02 (4.17E-05)

5 1.65E-01 (1.34E-05) 1.65E-01 (1.41E-05) 1.65E-01 (4.24E-05) 1.65E-01 (0.00E+00) 1.65E-01 (6.36E-05) 2.32E-01 (3.02E-05)

8 3.59E-01 (1.41E-05) 3.60E-01 (4.67E-04) 3.60E-01 (2.55E-04) 3.59E-01 (1.41E-05) 3.59E-01 (1.27E-04) 4.25E-01 (7.25E-06)

10 4.59E-01 (2.62E-04) 4.60E-01(1.98E-04) 4.60E-01 (7.07E-05) 4.58E-01 (2.12E-05) 4.49E-01 (1.41E-05) 6.13E-01 (8.46E-05)

15 6.34E-01 (8.49E-05) 6.35E-01 (1.41E-05) 6.35E-01 (1.20E-04) 6.31E-01 (9.26E-04) 6.32E-01 (9.33E-04) 6.39E-01 (4.68E-05)

DTLZ3 3 4.10E-02 (1.40E-04) 4.45E-02 (8.85E-04) 4.31E-02 (1.47E-03) 4.65E-02 (2.69E-03) 5.21E-02 (3.65E-03) 1.02E+00 (2.10E-05)

5 1.66E-01 (1.20E-03) 1.66E-01(4.81E-04) 1.84E-01 (2.44E-02) 1.71E-01 (4.92E-03) 2.81E+00 (4.74E-01) 1.33E+01 (3.22E-06)

8 4.02E-01 (1.64E-02) 4.34E-01 (2.84E-02) 8.40E-01 (5.97E-01) 7.46E-01 (5.39E-01) 3.04E+00 (1.16E+00) 1.37E+01 (8.85E-05)

10 4.60E-01 (1.04E-02) 4.62E-01 (4.04E-03) 4.64E-01 (4.04E-03) 1.14E+00 (5.80E-03) 1.50E+00 (3.65E-01) 2.96E+01 (7.79E-05)

15 4.53E+00 (2.26E+00) 6.51E-01 (1.70E-02) 2.40E+00 (7.41E-01) 1.29E+00 (6.36E-04) 1.53E+00 (1.24E+00) 2.07E+01 (1.77E-05)

DTLZ4 3 4.09E-02 (1.41E-06) 4.09E-02 (5.66E-06) 4.09E-02 (9.90E-06) 5.41E-01 (0.00E+00) 4.10E-02 (6.15E-05) 5.16E-02 (7.16E-05)

5 1.65E-01 (1.41E-05) 1.65E-01 (2.12E-05) 1.65E-01 (1.41E-05) 5.16E-01 (4.96E-01) 1.65E-01 (9.19E-05) 2.54E-01 (8.84E-06)

8 3.59E-01 (1.48E-04) 3.59E-01 (3.54E-05) 3.59E-01 (1.41E-05) 4.11E-01 (7.41E-02) 3.59E-01 (5.66E-05) 4.52E-01 (3.35E-05)

10 4.58E-01 (4.24E-05) 4.58E-01 (5.66E-05) 4.58E-01 (7.07E-06) 6.77E-01 (5.25E-02) 4.57E-01 (0.00E+00) 5.63E-01 (6.92E-05)

15 6.33E-01 (4.95E-05) 6.32E-01 (7.07E-05) 6.32E-01 (7.78E-05) 7.31E-01 (1.93E-02) 6.32E-01 (1.98E-04) 5.79E-01 (8.86E-05)

DTLZ5 3 3.03E-02 (3.09E-03) 2.83E-02 (7.62E-04) 2.86E-02 (4.93E-04) 2.54E-02 (4.95E-06) 5.22E-03 (2.62E-04) 6.71E-03 (3.80E-05)

5 1.35E-01 (2.50E-03) 1.27E-01 (3.71E-02) 1.50E-01 (3.56E-02) 2.24E-02 (2.89E-04) 6.67E-02 (4.29E-03) 1.24E-01 (2.92E-05)

8 1.36E-01 (2.11E-03) 3.87E-01 (3.41E-02) 3.56E-01 (5.66E-03) 6.87E-02 (2.12E-06) 4.43E-01 (9.79E-03) 1.85E-01 (1.50E-05)

10 1.77E-01 (5.42E-02) 3.22E-01 (8.58E-02) 3.76E-01 (8.99E-02) 6.62E-02 (1.13E-05) 4.06E-01 (5.14E-02) 3.32E-01 (4.52E-05)

15 2.60E-01 (7.41E-02) 3.45E-01 (1.66E-02) 5.67E-01 (2.35E-02) 1.41E-01 (1.56E-04) 3.73E-01 (1.01E-01) 5.24E-01 (2.14E-05)

DTLZ6 3 2.84E-02 (1.27E-03) 2.93E-02 (6.02E-03) 3.70E-02 (2.74E-03) 2.54E-02 (1.27E-05) 8.16E-02 (7.54E-02) 5.70E-03 (3.10E-06)

5 7.54E-01 (1.25E-01) 2.17E+00 (3.13E-01) 1.92E+00 (1.76E-02) 2.25E-02 (2.12E-06) 3.82E+00 (2.40E-01) 7.24E+00 (4.22E-05)

8 1.08E+00 (1.01E+00) 3.28E+00 (6.02E-02) 3.47E+00 (1.02E-01) 6.87E-02 (2.26E-05) 2.42E+00 (1.59E-01) 7.50E+00 (2.72E-05)

10 1.15E+00 (2.20E-01) 3.52E+00 (8.77E-02) 3.57E+00 (2.98E-01) 4.67E-01 (7.54E-01) 2.25E+00 (1.30E-01) 8.25E+00 (1.23E-05)

15 1.01E+00 (6.79E-03) 3.51E+00 (6.75E-01) 3.22E+00 (1.12E-02) 1.40E-01 (3.54E-05) 2.33E+00 (3.37E-02) 7.01E+00 (4.99E-05)

DTLZ7 3 7.33E-02 (3.17E-04) 7.28E-02 (4.70E-04) 7.24E-02 (1.60E-04) 1.02E-01 (7.50E-04) 6.05E-02 (2.72E-04) 4.29E-02 (5.31E-05)

5 3.73E-01 (1.17E-02) 3.60E-01 (5.54E-03) 3.59E-01 (1.98E-04) 5.18E-01 (3.23E-02) 2.86E-01 (4.07E-03) 2.43E-01 (8.59E-05)

8 1.17E+00 (1.98E-03) 1.27E+00 (1.23E-01) 1.24E+00 (9.79E-02) 2.30E+00 (2.39E-01) 1.73E+00 (1.91E-02) 6.06E-01 (3.00E-06)

10 1.94E+00 (4.24E-04) 1.94E+00 (6.36E-03) 1.98E+00 (6.10E-02) 3.52E+00 (1.36E+00) 3.35E+00 (9.16E-01) 1.11E+00 (2.43E-05)

15 8.64E+00 (1.64E-02) 8.37E+00 (5.82E-02) 8.23E+00 (2.64E-01) 4.23E+00 (1.49E+00) 7.68E+00 (1.65E+00) 2.43E+00 (8.12E-05)

+/ = /- 10/3/22 11/3/21 17/3/15 6/3/26 9/2/24

https://doi.org/10.1371/journal.pone.0284110.t004
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and R2 is used. For the second part, R3 and R4 are parallel, so the function will be R3+R4−R3R4.

The combination of R3 and R4 are in series with R5. Therefore, the product of (R3+R4−R3R4) and

R5 is used in the final function as shown in Eq (26). Volume and weight increase with extra com-

ponents under permissible limits and restrictions. In Eq (27), wi represents the weight and vi rep-

resents the volume of component iwith n number of redundant components. As shown in Eq

(28), system cost Cs also contains two additional factors ai �
1000

logðriÞ

� �bi
and exp (0.25ni), where the

first one represents the cost of a single component ith in the subsystem, and the second one is due

to the cost of interconnecting hardware. In Eq (29), for system weightWs, there is an extra factor

Table 5. Performance comparison between MaAVOA and other algorithms in terms of GD value on DTLZs.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. GD GD GD GD GD GD

DTLZ1 3 1.48E-04 (5.87E-07) 1.60E-04 (8.03E-06) 1.56E-04 (4.57E-06) 1.89E-04 (3.82E-05) 1.51E-04 (3.51E-06) 2.63E-02 (5.43E-05)

5 1.06E-03 (9.26E-06) 1.11E-03 (8.09E-05) 1.05E-03 (3.18E-06) 1.06E-03 (1.07E-05) 9.71E-04 (2.58E-05) 7.27E+01 (5.94E-05)

8 3.05E-03 (2.76E-05) 2.98E-03 (2.57E-05) 3.26E-03 (2.47E-04) 2.84E-03 (5.30E-05) 3.31E-03 (2.27E-04) 1.17E+02 (5.07E-05)

10 4.23E-04 (2.90E-04) 1.43E-03 (1.06E-03) 3.51E-04 (7.11E-05) 9.50E-04 (1.22E-04) 2.26E-03 (5.93E-05) 1.42E+02 (2.81E-05)

15 1.59E-01 (1.94E-01) 1.27E-03 (2.11E-04) 1.31E-03 (2.41E-04) 5.08E-03 (6.41E-04) 5.17E-02 (6.26E-02) 1.63E+02 (8.71E-05)

DTLZ2 3 3.97E-04 (1.34E-07) 3.98E-04 (4.49E-06) 3.95E-04 (2.40E-06) 3.94E-04 (2.31E-06) 3.94E-04 (7.25E-06) 4.07E-02 (6.16E-05)

5 3.41E-03 (6.36E-07) 3.40E-03 (8.49E-07) 3.40E-03 (2.83E-06) 3.41E-03 (2.62E-06) 3.25E-03 (3.18E-06) 2.01E-01 (3.15E-06)

8 9.64E-03 (2.83E-06) 9.63E-03 (5.23E-06) 9.62E-03 (4.52E-05) 9.14E-03 (7.78E-07) 7.62E-03 (5.29E-04) 1.04E+00 (7.08E-05)

10 5.26E-04 (1.02E-04) 1.09E-03 (2.31E-05) 1.06E-03 (2.35E-05) 5.58E-05 (1.58E-06) 5.52E-03 (3.15E-04) 1.22E+00 (7.78E-05)

15 1.08E-03 (6.25E-05) 1.86E-03 (1.41E-04) 2.08E-03 (2.23E-04) 7.56E-04 (6.30E-04) 9.81E-03 (6.26E-05) 1.39E+00 (3.30E-05)

DTLZ3 3 4.32E-04 (3.40E-05) 1.20E-03 (1.57E-05) 2.31E-03 (1.56E-03) 1.58E-03 (4.77E-04) 2.17E-03 (4.40E-04) 1.02E+00 (5.00E-05)

5 3.47E-03 (1.22E-04) 3.53E-03 (1.53E-04) 8.89E-03 (5.44E-03) 4.12E-03 (7.42E-04) 2.89E-01 (3.24E-02) 1.34E+02 (3.30E-05)

8 2.65E-02 (1.75E-02) 3.73E-02 (1.19E-02) 5.91E-02 (5.97E-02) 6.47E-03 (4.38E-03) 4.76E-01 (2.10E-01) 2.90E+02 (5.78E-05)

10 4.66E-03 (1.13E-03) 5.88E-03 (2.86E-04) 3.92E-03 (1.23E-03) 3.19E-03 (1.36E-05) 2.40E-01 (7.22E-02) 3.94E+02 (3.26E-05)

15 9.93E-01 (5.21E-01) 1.54E-02 (1.42E-02) 2.60E-01 (8.41E-02) 5.61E-04 (2.13E-04) 6.92E-01 (9.10E-01) 3.49E+02 (2.51E-05)

DTLZ4 3 3.95E-04 (2.83E-07) 3.98E-04 (8.13E-07) 3.95E-04 (2.26E-07) 2.87E-04 (2.59E-05) 3.95E-04 (3.73E-06) 3.97E-02 (1.47E-05)

5 3.41E-03 (2.76E-06) 3.40E-03 (6.22E-06) 3.39E-03 (5.30E-06) 2.69E-03 (9.75E-04) 3.26E-03 (2.33E-05) 3.63E-01 (2.12E-05)

8 9.65E-03 (1.19E-05) 9.60E-03 (6.22E-06) 9.58E-03 (3.25E-06) 8.22E-03 (1.30E-03) 9.05E-03 (1.02E-04) 1.14E+00 (5.94E-05)

10 4.34E-03 (3.62E-03) 2.82E-04 (9.56E-05) 3.74E-04 (1.60E-05) 1.82E-03 (6.69E-04) 6.50E-04 (3.58E-05) 1.50E+00 (5.47E-05)

15 8.78E-03 (6.95E-03) 2.84E-04 (1.29E-04) 2.38E-04 (5.08E-05) 3.74E-03 (2.22E-03) 1.01E-03 (4.58E-04) 1.88E+00 (3.10E-06)

DTLZ5 3 1.41E-04 (9.89E-05) 5.57E-04 (3.98E-04) 3.55E-04 (9.25E-05) 5.56E-06 (4.14E-08) 1.24E-03 (1.60E-03) 2.15E-03 (6.43E-05)

5 2.15E-01 (1.43E-02) 1.97E-01 (9.21E-03) 2.05E-01 (5.47E-03) 2.50E-02 (1.97E-03) 1.03E-01 (3.89E-04) 2.05E+00 (7.52E-05)

8 1.93E-01 (2.11E-02) 1.44E-01 (1.47E-03) 1.56E-01 (4.34E-03) 3.84E-03 (1.13E-05) 1.22E-01 (2.43E-03) 5.36E+00 (1.74E-05)

10 1.89E-01 (3.49E-02) 1.75E-01 (2.75E-02) 1.66E-01 (4.54E-02) 2.06E-03 (3.56E-04) 1.02E-01 (1.65E-03) 9.10E+00 (4.80E-06)

15 1.67E-01 (8.93E-02) 1.73E-01 (3.55E-02) 1.97E-01 (3.26E-02) 9.36E-07 (7.53E-08) 1.30E-01 (7.00E-04) 1.83E+01 (1.30E-05)

DTLZ6 3 9.91E-06 (1.72E-06) 9.83E-06 (2.72E-08) 3.07E-03 (4.33E-03) 4.98E-06 (4.30E-07) 2.03E-01 (2.72E-02) 5.46E-03 (6.15E-05)

5 2.44E-01 (5.19E-02) 2.69E-01 (3.52E-02) 2.21E-01 (1.95E-02) 2.84E-02 (6.20E-03) 3.66E-01 (1.08E-02) 1.92E+01 (1.03E-05)

8 2.73E-01 (6.31E-02) 3.42E-01 (9.54E-03) 3.46E-01 (1.82E-03) 2.63E-06 (1.23E-07) 2.98E-01 (9.92E-03) 4.81E+01 (5.11E-05)

10 2.15E-01 (3.05E-03) 2.65E-01 (3.34E-03) 2.79E-01 (1.34E-03) -5.00E-01 (7.07E-01) 2.05E-01 (2.12E-02) 8.11E+01 (4.96E-05)

15 5.20E-01 (8.22E-02) 3.60E-01 (7.31E-02) 3.40E-01 (4.99E-03) 1.04E-06 (1.95E-07) 2.71E-01 (1.42E-02) 2.66E+02 (3.34E-05)

DTLZ7 3 5.49E-02 (7.42E-02) 2.43E-03 (3.79E-04) 2.09E-03 (2.10E-04) 5.13E-03 (8.21E-04) 2.34E-03 (1.34E-04) 2.01E-02 (5.70E-05)

5 1.07E-01 (3.70E-02) 1.42E-02 (1.81E-03) 1.39E-02 (3.14E-04) 3.53E-03 (1.49E-05) 6.59E-03 (1.29E-03) 1.40E-01 (2.25E-05)

8 7.00E-02 (7.73E-02) 2.15E-01 (1.01E-01) 1.60E-01 (1.47E-01) 1.44E-02 (4.89E-04) 2.07E-02 (1.10E-04) 3.40E-01 (6.73E-05)

10 3.08E-02 (2.05E-02) 2.00E-01 (1.04E-01) 2.33E-01 (6.17E-02) 1.59E-02 (3.75E-05) 5.07E-02 (1.07E-02) 8.69E-01 (1.78E-05)

15 6.87E-02 (3.74E-02) 2.10E-01 (7.14E-02) 1.77E-01 (5.87E-02) 8.06E-02 (1.67E-02) 3.18E-01 (1.75E-01) 3.25E+00 (8.36E-05)

+/ = /- 8/3/24 8/3/24 19/3/15 4/3/28 10/3/22

https://doi.org/10.1371/journal.pone.0284110.t005
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exp (0.25ni) for the interconnecting hardware. The mathematical formulation of the problem is a

nonlinear mixed-integer programming problem given as follows:

maxfðr; nÞ ¼ 1 � ð1 � R1R2Þð1 � ðR3 þ R4 � R3R4Þ ð26Þ

min VsðnÞ ¼
Pm

i¼mwiv
2

i n
2

i ð27Þ

min Cs r;nð Þ ¼
Pm

i¼mai �
1000

logðriÞ

� �bi

ni þ exp 0:25nið Þ½ � ð28Þ

Table 6. Performance comparison between MaAVOA and other algorithms in terms of HV value on DTLZs.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. HV HV HV HV HV HV

DTLZ1 3 8.50E-01 (0.00E+00) 8.49E-01 (4.10E-04) 8.50E-01 (2.97E-04) 8.48E-01 (1.34E-03) 8.50E-01 (2.69E-04) 8.42E-01 (1.45E-05)

5 9.79E-01 (2.12E-05) 9.79E-01 (6.58E-04) 9.79E-01 (5.59E-04) 9.79E-01 (5.09E-04) 9.79E-01 (2.47E-04) 0.00E+00 (2.29E-05)

8 9.97E-01 (2.76E-04) 9.97E-01 (8.49E-05) 9.97E-01 (1.41E-05) 9.97E-01 (8.49E-05) 9.96E-01 (3.82E-04) 0.00E+00 (2.59E-05)

10 1.00E+00 (2.12E-05) 1.00E+00 (1.41E-05) 1.00E+00 (4.95E-05) 9.99E-01 (3.54E-05) 1.00E+00 (7.07E-06) 0.00E+00 (3.18E-05)

15 3.84E-01 (5.43E-01) 9.99E-01 (2.05E-04) 9.99E-01 (1.70E-04) 8.95E-01 (1.52E-02) 9.99E-01 (1.70E-04) 5.56E-01 (3.76E-05)

DTLZ2 3 5.71E-01 (5.66E-05) 5.71E-01 (7.07E-06) 5.71E-01 (2.12E-05) 5.71E-01 (1.41E-05) 5.71E-01 (0.00E+00) 5.55E-01 (1.14E-05)

5 8.12E-01 (4.10E-04) 8.11E-01 (1.26E-03) 8.12E-01 (3.96E-04) 8.12E-01 (9.19E-05) 8.12E-01 (1.13E-04) 7.10E-01 (5.01E-05)

8 9.35E-01 (1.98E-04) 9.33E-01 (9.97E-04) 9.32E-01 (8.77E-04) 9.36E-01 (3.75E-04) 9.35E-01 (1.41E-04) 7.22E-01 (3.72E-05)

10 9.74E-01 (3.32E-04) 9.72E-01 (2.26E-04) 9.72E-01 (1.91E-04) 9.76E-01 (2.33E-04) 9.74E-01 (9.90E-05) 4.19E-01 (6.12E-05)

15 9.89E-01 (2.97E-04) 9.88E-01 (4.10E-04) 9.87E-01 (3.32E-04) 9.90E-01 (2.05E-04) 9.63E-01 (2.24E-03) 6.03E-01 (8.50E-05)

DTLZ3 3 5.68E-01 (1.98E-03) 5.53E-01 (6.36E-05) 5.57E-01 (6.14E-03) 5.47E-01 (9.22E-03) 5.37E-01 (7.75E-03) 0.00E+00 (2.13E-06)

5 8.03E-01 (1.09E-02) 8.00E-01 (2.66E-03) 7.70E-01 (3.32E-02) 7.80E-01 (2.14E-02) 0.00E+00 (0.00E+00) 0.00E+00 (6.07E-05)

8 8.55E-01 (3.55E-02) 7.79E-01 (5.99E-02) 4.00E-01 (5.65E-01) 5.10E-01 (5.76E-01) 0.00E+00 (0.00E+00) 0.00E+00 (2.57E-05)

10 9.63E-01 (1.16E-03) 9.53E-01 (4.39E-03) 9.60E-01 (5.69E-03) 1.09E-01 (1.18E-03) 1.51E-03 (2.13E-03) 0.00E+00 (7.48E-05)

15 0.00E+00 (0.00E+00) 9.48E-01 (4.23E-02) 0.00E+00 (0.00E+00) 8.75E-02 (3.67E-04) 4.44E-01 (6.28E-01) 0.00E+00 (8.76E-05)

DTLZ4 3 5.71E-01 (7.07E-06) 5.71E-01 (1.41E-04) 5.71E-01 (0.00E+00) 3.45E-01 (4.95E-05) 5.71E-01 (2.12E-05) 5.55E-01 (2.65E-05)

5 8.12E-01 (6.36E-04) 8.12E-01 (1.20E-04) 8.12E-01 (5.73E-04) 5.69E-01 (3.45E-01) 8.12E-01 (1.27E-04) 7.02E-01 (8.29E-05)

8 9.36E-01 (1.91E-04) 9.35E-01 (2.83E-05) 9.35E-01 (4.81E-04) 9.17E-01 (2.64E-02) 9.36E-01 (1.98E-04) 7.12E-01 (4.98E-05)

10 9.75E-01 (5.66E-05) 9.75E-01 (4.24E-05) 9.75E-01 (1.27E-04) 8.71E-01 (3.99E-02) 9.75E-01 (4.03E-04) 7.25E-01 (5.04E-05)

15 9.90E-01 (7.78E-05) 9.90E-01 (1.13E-04) 9.90E-01 (1.34E-04) 9.48E-01 (1.30E-02) 9.90E-01 (9.19E-05) 8.18E-01 (1.62E-05)

DTLZ5 3 1.84E-01 (1.59E-03) 1.86E-01 (2.33E-04) 1.86E-01 (3.46E-04) 1.87E-01 (1.41E-05) 1.99E-01 (2.12E-05) 1.98E-01 (6.66E-06)

5 6.10E-02 (6.16E-03) 5.13E-02 (1.09E-03) 5.28E-02 (3.40E-02) 1.27E-01 (4.31E-04) 1.13E-01 (7.87E-03) 1.11E-01 (1.23E-05)

8 2.61E-02 (2.92E-02) 1.47E-05 (2.08E-05) 4.62E-04 (6.53E-04) 1.04E-01 (1.13E-04) 9.08E-03 (1.28E-02) 9.67E-02 (1.12E-05)

10 1.61E-02 (2.19E-02) 1.54E-05 (1.93E-05) 2.04E-05 (2.89E-05) 9.96E-02 (6.08E-05) 1.19E-04 (1.68E-04) 9.19E-02 (7.83E-05)

15 9.10E-02 (8.10E-04) 2.40E-02 (3.40E-02) 0.00E+00 (0.00E+00) 9.43E-02 (2.72E-04) 5.61E-02 (2.95E-03) 9.12E-02 (8.88E-05)

DTLZ6 3 1.86E-01 (1.13E-04) 1.85E-01 (1.59E-03) 1.84E-01 (1.35E-03) 1.87E-01 (7.07E-06) 1.30E-01 (5.86E-02) 2.00E-01 (4.32E-05)

5 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 1.27E-01 (4.45E-04) 0.00E+00 (0.00E+00) 0.00E+00 (3.08E-05)

8 4.99E-04 (7.06E-04) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 1.04E-01 (2.33E-04) 0.00E+00 (0.00E+00) 0.00E+00 (3.69E-05)

10 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 4.50E-01 (7.78E-01) 0.00E+00 (0.00E+00) 0.00E+00 (5.81E-06)

15 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00) 9.44E-02 (2.33E-04) 0.00E+00 (0.00E+00) 0.00E+00 (5.23E-05)

DTLZ7 3 2.76E-01 (6.36E-05) 2.76E-01 (1.34E-04) 2.76E-01 (3.89E-04) 2.63E-01 (2.83E-04) 2.78E-01 (3.61E-04) 2.76E-01 (7.61E-05)

5 2.50E-01 (3.87E-03) 2.45E-01 (3.82E-03) 2.46E-01 (4.84E-03) 1.42E-01 (1.17E-03) 2.15E-01 (3.44E-03) 1.97E-01 (7.07E-05)

8 1.83E-01 (6.51E-04) 1.22E-01 (3.69E-02) 1.54E-01 (2.19E-03) 5.78E-04 (2.77E-04) 7.74E-02 (1.16E-02) 3.17E-02 (5.06E-05)

10 1.75E-01 (4.45E-04) 1.52E-01 (5.59E-04) 1.26E-01 (1.07E-02) 1.12E-04 (1.47E-04) 3.38E-02 (4.79E-02) 3.73E-03 (7.89E-05)

15 1.49E-01 (3.32E-03) 9.76E-02 (1.23E-02) 1.04E-01 (2.17E-02) 2.98E-06 (4.21E-06) 1.75E-10 (2.21E-10) 4.55E-12 (8.73E-06)

+/ = /- 8/4/24 9/5/22 17/0/18 11/5/19 23/5/7

https://doi.org/10.1371/journal.pone.0284110.t006
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min WsðnÞ ¼ winiexp ð0:25niÞ ð29Þ

s:t:Vs � V � 0;Cs � C � 0;Ws � W � 0 with 0� ri � 1; ni 2 Z
þ; 1 � i � m

where RiðniÞ ¼ 1 � ð1 � riÞ
ni for the ith subsystem, αi and βi are constraints representing the phys-

ical characteristic of each component at stage i.

Table 7. The performance metrics comparison between MaAVOA and other algorithms in terms of IGD value on DTLZs in the case of the 100000 function

evaluations.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ IGD IGD IGD IGD IGD IGD

DTLZ1 3 1.54E-02 (4.24E-06) 1.54E-02 (3.54E-06) 1.54E-02 (1.70E-05) 1.54E-02 (1.27E-05) 1.54E-02 (3.54E-06) 3.67E-02 (6.90E-05)

5 5.32E-02 (3.74E-04) 5.27E-02 (2.26E-05) 5.29E-02 (3.17E-04) 5.30E-02 (1.20E-04) 5.32E-02 (1.20E-04) 2.67E-01 (3.24E-05)

8 1.22E-01 (4.74E-04) 1.21E-01 (4.24E-05) 1.23E-01 (1.91E-04) 1.21E-01 (7.07E-06) 1.21E-01 (3.61E-04) 4.96E-01 (7.53E-05)

10 2.21E-01 (2.69E-03) 1.42E-01 (5.37E-04) 1.43E-01 (4.10E-04) 1.29E-01 (7.85E-04) 1.43E-01 (1.46E-03) 6.84E-01 (2.56E-05)

15 7.38E-01 (4.16E-01) 2.24E-01 (3.59E-03) 2.16E-01 (9.57E-03) 1.56E-01 (6.74E-03) 1.99E-01 (3.30E-02) 4.80E-01 (4.75E-05)

DTLZ2 3 4.09E-02 (0.00E+0) 4.09E-02 (2.26E-05) 4.09E-02 (4.95E-06) 4.09E-02 (7.07E-07) 4.09E-02 (3.54E-06) 5.37E-02 (5.82E-05)

5 1.65E-01 (2.12E-05) 1.65E-01 (7.07E-06) 1.65E-01 (2.12E-05) 1.65E-01 (7.07E-06) 1.65E-01 (4.24E-05) 2.49E-01 (1.57E-05)

8 3.59E-01 (7.78E-05) 3.59E-01 (8.49E-05) 3.59E-01 (3.54E-05) 3.59E-01 (0.00E+0) 3.58E-01 (1.56E-04) 3.97E-01 (3.86E-06)

10 4.61E-01 (2.40E-04) 4.61E-01 (5.37E-04) 4.61E-01 (4.95E-05) 4.58E-01 (8.49E-05) 4.50E-01 (1.57E-03) 5.29E-01 (3.89E-05)

15 6.34E-01 (2.05E-04) 6.34E-01 (7.07E-06) 6.34E-01 (1.27E-04) 6.32E-01 (2.83E-05) 6.30E-01 (1.43E-03) 5.64E-01 (3.93E-05)

DTLZ3 3 4.10E-02 (4.24E-06) 4.14E-02 (2.80E-04) 4.12E-02 (5.30E-05) 4.13E-02 (3.54E-04) 4.24E-02 (6.94E-04) 4.99E-02 (5.39E-05)

5 1.67E-01 (3.63E-03) 1.93E-01 (3.82E-02) 1.67E-01 (8.63E-04) 1.69E-01 (3.27E-03) 2.96E+0 (2.76E-01) 5.22E+00 (2.26E-05)

8 1.99E+0 (1.76E+0) 4.25E-01 (7.32E-02) 9.62E-01 (2.87E-01) 3.61E-01 (1.13E-04) 2.51E+0 (1.85E+0) 1.19E+01 (8.72E-05)

10 3.88E+0 (2.83E+0) 5.44E-01 (8.77E-02) 5.06E-01 (3.45E-02) 1.16E+0 (4.24E-04) 3.24E+0 (9.70E-01) 1.80E+01 (5.49E-05)

15 6.26E+0 (4.99E+0) 6.51E-01 (4.12E-03) 1.03E+0 (5.35E-01) 1.27E+0 (2.43E-02) 6.40E-01 (4.70E-03) 5.58E+00 (4.74E-05)

DTLZ4 3 4.09E-02 (0.00E+0) 4.09E-02 (3.54E-06) 4.09E-02 (3.54E-06) 2.91E-01 (3.54E-01) 4.10E-02 (8.49E-06) 5.40E-02 (2.31E-05)

5 1.65E-01 (2.12E-05) 1.65E-01 (7.07E-06) 1.65E-01 (2.12E-05) 6.37E-01 (3.25E-01) 1.65E-01 (1.70E-04) 2.62E-01 (4.26E-05)

8 3.59E-01 (6.08E-04) 3.59E-01 (7.78E-05) 3.59E-01 (6.36E-05) 5.16E-01 (2.22E-01) 3.59E-01 (9.19E-05) 4.37E-01 (4.19E-05)

10 4.58E-01 (0.00E+0) 4.57E-01 (3.11E-04) 4.57E-01 (3.54E-05) 7.14E-01 (2.05E-04) 4.56E-01 (9.19E-05) 5.31E-01 (7.95E-05)

15 6.33E-01 (9.19E-05) 6.32E-01 (7.07E-06) 6.32E-01 (7.07E-06) 7.80E-01 (1.28E-01) 6.32E-01 (1.34E-04) 5.68E-01 (7.30E-05)

DTLZ5 3 2.97E-02 (2.11E-03) 2.94E-02 (1.92E-04) 2.90E-02 (4.62E-04) 2.54E-02 (7.07E-07) 5.33E-03 (9.98E-05) 6.79E-03 (2.11E-05)

5 1.18E-01 (7.38E-03) 1.41E-01 (2.22E-02) 1.90E-01 (6.70E-02) 2.25E-02 (1.16E-04) 7.23E-02 (1.33E-02) 1.34E-01 (6.16E-05)

8 1.24E-01 (1.56E-04) 3.51E-01 (5.66E-02) 2.91E-01 (3.10E-02) 6.87E-02 (8.49E-06) 4.31E-01 (1.27E-01) 2.58E-01 (3.40E-05)

10 1.46E-01 (2.64E-02) 3.98E-01 (2.21E-02) 3.84E-01 (8.56E-02) 6.62E-02 (3.46E-05) 3.96E-01 (4.37E-02) 2.86E-01 (3.32E-05)

15 3.55E-01 (2.18E-01) 3.70E-01 (1.03E-01) 4.35E-01 (2.64E-02) 1.41E-01 (2.83E-05) 4.09E-01 (2.47E-03) 3.87E-01 (7.44E-05)

DTLZ6 3 2.58E-02 (1.04E-03) 2.80E-02 (8.90E-04) 3.21E-02 (4.80E-03) 2.55E-02 (2.12E-06) 2.60E-02 (2.10E-04) 6.33E-03 (7.90E-05)

5 1.51E+0 (1.51E-02) 2.09E+0 (8.95E-02) 2.01E+0 (3.20E-02) 2.25E-02 (2.83E-06) 3.96E+0 (1.34E-01) 4.45E+00 (6.65E-06)

8 1.83E+0 (1.00E-01) 2.63E+0 (2.80E-01) 2.74E+0 (2.15E-02) 6.86E-02 (2.40E-05) 1.75E+0 (1.94E-01) 6.71E+00 (8.17E-05)

10 3.37E+0 (6.65E-01) 4.86E+0 (4.93E-02) 4.98E+0 (1.68E-02) 6.62E-02 (9.90E-06) 3.80E+0 (2.79E-01) 6.91E+00 (8.40E-05)

15 7.36E-01 (1.52E-02) 1.54E+0 (1.41E-01) 1.59E+0 (2.20E-01) 1.40E-01 (1.20E-04) 1.07E+0 (9.08E-02) 6.41E+00 (6.74E-05)

DTLZ7 3 7.32E-02 (6.20E-04) 7.21E-02 (6.83E-04) 7.23E-02 (6.60E-04) 1.02E-01 (2.76E-04) 6.30E-02 (2.41E-03) 4.34E-02 (1.57E-05)

5 3.71E-01 (1.83E-02) 3.61E-01 (2.55E-04) 3.56E-01 (1.46E-03) 4.94E-01 (8.06E-04) 2.80E-01 (9.72E-03) 2.27E-01 (8.42E-05)

8 1.17E+0 (6.36E-04) 1.28E+0 (3.88E-02) 1.27E+0 (1.33E-01) 2.84E+0 (9.98E-01) 1.58E+0 (2.92E-01) 5.53E-01 (6.65E-05)

10 2.00E+0 (9.33E-03) 4.78E-01 (2.09E+0) 1.93E+0 (5.66E-03) 2.99E+0 (6.27E-01) 3.73E+0 (1.49E+0) 9.57E-01 (3.62E-05)

15 8.62E+0 (3.91E-02) 8.37E+0 (2.64E-02) 8.47E+0 (3.36E-02) 3.44E+0 (4.02E-01) 8.83E+0 (1.07E-01) 2.12E+00 (8.98E-05)

+/ = /- 18/3/14 18/3/14 12/3/20 23/3/9 11/0/24

https://doi.org/10.1371/journal.pone.0284110.t007

PLOS ONE Many-objective african vulture optimization algorithm: A novel approach for many-objective problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0284110 May 17, 2023 24 / 36

https://doi.org/10.1371/journal.pone.0284110.t007
https://doi.org/10.1371/journal.pone.0284110


Table 14 provides the input data for a series-parallel system where ri, αi and βi are uniformly

generated from the ranges [0.95,1.0], [6,10], [1,5], and [11,20] respectively.

The algorithms are terminated after 250, 500, 1000, 2000, 4000, and 5000 generations. The

engineering problem has 4 objective functions. Accordingly, the population size is chosen to

be 969 (Nr1 = 16, Nr2 = 0, and nRef = 969).

In Table 15, the values of the performance measures for a series-parallel system with five

subsystems are presented. NSGA-III and U-NSGA-III have performed better in terms of GD

and IGD. In terms of HV, MaAVOA is better. CTAEA and AGEMOEA have the worst perfor-

mance in all metrics. Fig 7 shows the final solution set obtained for all algorithms.

Table 8. The performance metrics comparison between MaAVOA and other algorithms in terms of GD value on DTLZs in the case of the 100000 function

evaluations.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. GD GD GD GD GD GD

DTLZ1 3 1.48E-04 (4.60E-07) 1.50E-04 (6.01E-07) 8.49E-03 (1.18E-02) 1.49E-04 (2.02E-06) 1.48E-04 (1.90E-06) 2.52E-02 (6.62E-06)

5 1.04E-03 (9.62E-06) 1.11E-03 (6.95E-05) 1.05E-03 (2.70E-05) 1.06E-03 (7.42E-06) 9.42E-04 (6.21E-06) 3.49E+01 (4.20E-05)

8 2.99E-03 (2.12E-07) 2.97E-03 (3.39E-06) 3.62E-03 (8.65E-04) 2.87E-03 (4.12E-05) 2.48E-03 (5.69E-05) 9.04E+01 (8.53E-05)

10 1.93E-02 (2.01E-02) 4.40E-04 (3.09E-05) 1.23E-03 (5.56E-04) 1.52E-03 (1.09E-04) 2.70E-03 (2.60E-04) 1.35E+02 (1.70E-05)

15 1.87E-01 (1.24E-01) 6.88E-04 (4.26E-04) 1.07E-03 (7.70E-04) 4.27E-03 (5.64E-04) 4.00E-02 (4.13E-03) 1.36E+02 (7.86E-05)

DTLZ2 3 3.96E-04 (3.53E-06) 4.11E-04 (2.05E-05) 3.98E-04 (4.52E-06) 3.95E-04 (6.01E-07) 3.97E-04 (3.73E-06) 4.04E-02 (1.16E-05)

5 3.40E-03 (4.67E-06) 3.40E-03 (4.95E-07) 3.40E-03 (4.74E-06) 3.41E-03 (2.55E-06) 3.25E-03 (4.17E-05) 2.88E-01 (4.83E-05)

8 9.64E-03 (8.13E-06) 9.63E-03 (1.87E-05) 9.62E-03 (6.58E-06) 9.15E-03 (3.54E-06) 8.82E-03 (2.79E-05) 9.02E-01 (6.16E-05)

10 1.46E-03 (1.40E-04) 1.78E-03 (1.31E-04) 1.64E-03 (1.19E-04) 1.39E-04 (5.73E-07) 6.77E-03 (2.65E-04) 1.25E+00 (5.42E-05)

15 1.12E-03 (2.46E-04) 1.01E-03 (3.13E-05) 1.30E-03 (3.02E-04) 9.63E-05 (1.30E-06) 1.01E-02 (3.46E-04) 1.39E+00 (4.15E-05)

DTLZ3 3 4.09E-04 (5.69E-06) 5.03E-04 (1.04E-04) 4.83E-04 (1.67E-05) 5.25E-04 (1.30E-04) 5.67E-04 (1.11E-04) 3.78E-02 (5.89E-05)

5 3.67E-03 (3.90E-04) 1.05E-02 (9.73E-03) 3.44E-03 (1.74E-04) 3.96E-03 (4.89E-04) 3.24E-01 (2.47E-02) 6.21E+01 (5.93E-05)

8 2.24E-01 (1.43E-01) 4.17E-02 (4.28E-02) 8.81E-02 (9.64E-04) 9.24E-03 (2.06E-05) 3.29E-01 (2.16E-01) 2.56E+02 (5.27E-05)

10 4.52E-01 (2.17E-01) 3.56E-02 (3.80E-02) 1.75E-02 (7.18E-03) 2.69E-03 (7.07E-07) 6.60E-01 (5.83E-02) 4.41E+02 (1.53E-05)

15 1.14E+0 (1.02E+0) 1.90E-02 (1.71E-02) 6.64E-02 (5.20E-02) 1.17E-03 (1.09E-03) 5.73E-02 (1.25E-02) 3.40E+02 (1.97E-05)

DTLZ4 3 3.97E-04 (1.62E-06) 3.97E-04 (2.92E-06) 3.96E-04 (2.58E-06) 3.45E-04 (7.11E-05) 3.92E-04 (1.70E-06) 3.98E-02 (4.55E-05)

5 3.39E-03 (1.31E-05) 3.40E-03 (1.41E-07) 3.39E-03 (5.66E-06) 2.40E-03 (7.42E-04) 3.23E-03 (1.11E-05) 3.43E-01 (6.73E-05)

8 1.05E-02 (1.23E-03) 9.63E-03 (9.69E-06) 9.62E-03 (7.00E-06) 7.24E-03 (2.69E-03) 9.15E-03 (5.52E-05) 1.10E+00 (1.81E-05)

10 7.15E-03 (1.29E-03) 4.50E-04 (1.73E-05) 4.88E-04 (2.31E-05) 2.36E-03 (9.53E-04) 1.17E-03 (4.67E-05) 1.37E+00 (6.61E-05)

15 5.02E-03 (2.49E-03) 3.00E-04 (1.08E-04) 1.58E-04 (1.65E-05) 3.10E-03 (1.27E-03) 3.15E-04 (1.63E-04) 1.80E+00 (2.11E-06)

DTLZ5 3 6.83E-04 (8.02E-04) 1.26E-03 (1.42E-04) 4.66E-04 (6.52E-05) 5.56E-06 (6.26E-08) 2.36E-04 (1.98E-05) 2.61E-03 (2.46E-05)

5 2.03E-01 (8.06E-04) 2.21E-01 (2.17E-02) 2.09E-01 (4.29E-03) 2.18E-02 (2.70E-03) 1.04E-01 (1.29E-03) 2.00E+00 (8.54E-05)

8 1.96E-01 (2.96E-02) 1.55E-01 (7.88E-03) 1.52E-01 (9.40E-03) 3.73E-03 (4.13E-04) 1.24E-01 (2.04E-03) 5.00E+00 (5.03E-05)

10 1.75E-01 (3.62E-03) 1.59E-01 (1.07E-02) 1.80E-01 (3.22E-02) 1.22E-03 (2.75E-04) 9.81E-02 (1.05E-03) 8.82E+00 (8.37E-05)

15 1.62E-01 (8.98E-02) 1.90E-01 (5.05E-02) 1.93E-01 (2.46E-03) 9.04E-07 (7.78E-08) 1.33E-01 (4.18E-03) 2.71E+01 (3.01E-05)

DTLZ6 3 1.04E-05 (1.36E-06) 1.03E-05 (1.05E-06) 9.97E-06 (8.00E-07) 5.39E-06 (1.45E-07) 1.96E-01 (8.44E-02) 2.15E-02 (7.69E-05)

5 1.94E-01 (5.72E-03) 2.50E-01 (3.32E-04) 2.43E-01 (2.14E-02) 3.29E-02 (3.77E-04) 3.72E-01 (9.11E-03) 1.30E+01 (8.74E-05)

8 2.89E-01 (5.09E-02) 2.76E-01 (1.23E-02) 2.79E-01 (1.09E-02) 2.49E-06 (5.44E-07) 2.31E-01 (2.07E-02) 4.52E+01 (4.85E-05)

10 2.67E-01 (1.74E-02) 3.53E-01 (6.70E-03) 3.60E-01 (2.26E-04) 1.91E-06 (4.63E-08) 3.00E-01 (1.40E-02) 7.28E+01 (8.10E-05)

15 6.01E-01 (2.62E-02) 2.23E-01 (1.76E-02) 2.76E-01 (8.84E-02) 7.23E-07 (1.40E-07) 2.12E-01 (7.59E-03) 2.31E+02 (7.15E-05)

DTLZ7 3 3.89E-03 (2.54E-03) 2.08E-03 (5.29E-05) 2.28E-03 (3.59E-04) 4.45E-03 (1.72E-03) 2.37E-03 (4.63E-05) 2.03E-02 (1.47E-05)

5 6.78E-02 (4.57E-02) 1.31E-02 (4.63E-04) 1.40E-02 (1.01E-03) 3.54E-03 (1.23E-05) 6.57E-03 (1.81E-03) 1.25E-01 (5.72E-05)

8 5.03E-02 (3.03E-02) 1.71E-01 (1.18E-01) 1.95E-01 (1.28E-02) 1.46E-02 (3.90E-04) 2.25E-02 (3.10E-03) 2.36E-01 (3.71E-05)

10 1.53E-02 (2.35E-04) -3.99E-01 (8.50E-01) 1.77E-01 (1.17E-02) 1.59E-02 (1.56E-04) 6.53E-02 (1.19E-02) 5.56E-01 (7.95E-05)

15 1.22E-01 (4.68E-02) 2.08E-01 (1.76E-02) 3.00E-01 (4.20E-02) 9.43E-02 (2.17E-03) 3.28E-01 (3.04E-04) 1.84E+00 (3.64E-06)

+/ = /- 19/3/13 19/3/13 9/3/22 25/3/7 0/0/35

https://doi.org/10.1371/journal.pone.0284110.t008
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In Fig 7, the approximated PF obtained by the competing algorithms for the series-parallel

system is presented to further explain the results.

5.2 Overspeed protection for gas turbine problem

This system comprises of a fuel-supplied gas turbine through various valves. Fig 8 depicts a

four-valved overspeed prevention system for gas turbines. The valves regulate the fuel flow

when overspeed is detected. The problem can be expressed mathematically in the following

Table 9. The performance metrics comparison between MaAVOA and other algorithms in terms of HV value on DTLZs in the case of the 100000 function

evaluations.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. HV HV HV HV HV HV

DTLZ1 3 8.50E-01 (8.49E-05) 8.50E-01 (6.36E-05) 8.50E-01 (1.70E-04) 8.50E-01 (2.19E-04) 8.50E-01 (3.54E-05) 8.42E-01 (4.91E-05)

5 9.79E-01 (4.67E-04) 9.79E-01 (2.05E-04) 9.79E-01 (3.46E-04) 9.79E-01 (1.34E-04) 9.79E-01 (0.00E+0) 8.28E-01 (4.32E-05)

8 9.97E-01 (1.41E-05) 9.97E-01 (7.07E-06) 9.97E-01 (2.76E-04) 9.97E-01 (8.49E-05) 9.97E-01 (0.00E+0) 6.88E-01 (8.07E-05)

10 9.20E-01 (5.58E-02) 9.99E-01 (7.07E-06) 9.99E-01 (2.12E-05) 9.98E-01 (2.19E-04) 9.99E-01 (5.66E-05) 2.70E-01 (6.31E-05)

15 1.47E-01 (2.08E-01) 1.00E+0 (2.12E-05) 1.00E+0 (1.27E-04) 9.81E-01 (6.33E-03) 9.99E-01 (5.23E-04) 9.14E-01 (1.54E-05)

DTLZ2 3 5.71E-01 (1.41E-05) 5.71E-01 (9.90E-05) 5.71E-01 (2.12E-05) 5.71E-01 (0.00E+0) 5.71E-01 (0.00E+0) 5.55E-01 (6.94E-05)

5 8.12E-01 (7.71E-04) 8.11E-01 (3.89E-04) 8.11E-01 (4.95E-05) 8.12E-01 (7.78E-05) 8.12E-01 (9.90E-04) 7.07E-01 (3.35E-05)

8 9.34E-01 (2.33E-04) 9.34E-01 (7.78E-05) 9.34E-01 (3.04E-04) 9.36E-01 (1.41E-04) 9.36E-01 (7.00E-04) 7.91E-01 (2.11E-05)

10 9.71E-01 (4.67E-04) 9.70E-01 (9.90E-05) 9.70E-01 (2.62E-04) 9.75E-01 (2.83E-04) 9.69E-01 (1.92E-03) 8.02E-01 (7.97E-05)

15 9.89E-01 (3.25E-04) 9.89E-01 (2.33E-04) 9.89E-01 (4.17E-04) 9.90E-01 (1.41E-04) 9.71E-01 (3.01E-03) 8.39E-01 (8.74E-05)

DTLZ3 3 5.69E-01 (6.36E-05) 5.66E-01 (2.69E-03) 5.67E-01 (3.54E-04) 5.66E-01 (3.06E-03) 5.64E-01 (2.80E-03) 5.57E-01 (1.33E-05)

5 7.96E-01 (1.76E-02) 7.62E-01 (5.08E-02) 7.95E-01 (4.84E-03) 7.85E-01 (1.49E-02) 0.00E+0 (0.00E+0) 0.00E+00 (1.19E-05)

8 1.66E-01 (2.34E-01) 8.07E-01 (1.20E-01) 1.64E-01 (2.31E-01) 9.28E-01 (3.82E-04) 2.01E-02 (2.85E-02) 0.00E+00 (8.83E-05)

10 0.00E+0 (0.00E+0) 7.82E-01 (1.99E-01) 8.43E-01 (7.70E-02) 1.03E-01 (1.74E-03) 0.00E+0 (0.00E+0) 0.00E+00 (2.14E-05)

15 0.00E+0 (0.00E+0) 9.56E-01 (2.08E-02) 4.71E-01 (6.66E-01) 9.31E-02 (3.20E-03) 9.51E-01 (8.49E-03) 0.00E+00 (6.07E-05)

DTLZ4 3 5.71E-01 (3.54E-05) 5.71E-01 (5.66E-05) 5.71E-01 (4.95E-05) 4.58E-01 (1.60E-01) 5.71E-01 (2.83E-05) 5.55E-01 (3.02E-05)

5 8.12E-01 (2.90E-04) 8.12E-01 (4.10E-04) 8.12E-01 (3.54E-04) 5.18E-01 (2.77E-01) 8.12E-01 (4.74E-04) 7.07E-01 (5.42E-05)

8 9.36E-01 (2.69E-04) 9.35E-01 (2.33E-04) 9.36E-01 (3.68E-04) 8.47E-01 (1.25E-01) 9.36E-01 (4.88E-04) 7.41E-01 (6.44E-05)

10 9.75E-01 (7.78E-05) 9.75E-01 (4.10E-04) 9.75E-01 (1.84E-04) 8.43E-01 (3.75E-04) 9.75E-01 (2.69E-04) 7.88E-01 (5.58E-05)

15 9.90E-01 (6.36E-05) 9.90E-01 (1.41E-05) 9.91E-01 (5.66E-05) 8.98E-01 (1.03E-01) 9.90E-01 (1.48E-04) 8.63E-01 (2.48E-05)

DTLZ5 3 1.83E-01 (1.41E-03) 1.84E-01 (1.41E-05) 1.85E-01 (2.26E-04) 1.87E-01 (0.00E+0) 1.99E-01 (7.07E-05) 1.98E-01 (4.42E-05)

5 6.65E-02 (4.82E-03) 5.05E-02 (3.16E-03) 2.67E-02 (5.49E-03) 1.27E-01 (7.78E-05) 1.09E-01 (4.31E-03) 1.17E-01 (4.01E-05)

8 4.37E-02 (2.17E-02) 1.22E-04 (1.59E-04) 1.55E-03 (2.14E-03) 1.04E-01 (1.13E-04) 3.64E-02 (2.62E-02) 9.59E-02 (3.72E-06)

10 8.55E-02 (1.08E-02) 1.22E-05 (1.73E-05) 1.04E-04 (1.27E-04) 9.98E-02 (2.66E-04) 6.92E-06 (9.79E-06) 9.39E-02 (6.03E-05)

15 4.53E-02 (3.58E-02) 7.77E-10 (6.77E-10) 4.11E-08 (5.81E-08) 9.43E-02 (4.16E-04) 4.23E-02 (2.43E-02) 9.21E-02 (8.31E-05)

DTLZ6 3 1.86E-01 (4.95E-05) 1.86E-01 (2.33E-04) 1.86E-01 (2.51E-03) 1.87E-01 (0.00E+0) 1.77E-01 (1.15E-03) 2.00E-01 (6.27E-05)

5 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 1.27E-01 (3.25E-04) 0.00E+0 (0.00E+0) 0.00E+00 (8.00E-06)

8 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 1.04E-01 (9.19E-05) 0.00E+0 (0.00E+0) 0.00E+00 (1.00E-05)

10 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 9.98E-02 (2.02E-04) 0.00E+0 (0.00E+0) 0.00E+00 (3.54E-05)

15 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 9.43E-02 (7.78E-06) 0.00E+0 (0.00E+0) 0.00E+00 (0.00E+00)

DTLZ7 3 2.76E-01 (2.12E-05) 2.76E-01 (7.78E-05) 2.77E-01 (6.51E-04) 2.63E-01 (8.98E-04) 2.77E-01 (1.46E-03) 2.76E-01 (5.67E-05)

5 2.47E-01 (1.56E-03) 2.48E-01 (7.57E-04) 2.45E-01 (1.34E-04) 1.41E-01 (5.09E-04) 2.20E-01 (9.77E-03) 2.14E-01 (5.08E-05)

8 1.83E-01 (1.56E-04) 1.41E-01 (7.97E-03) 1.42E-01 (5.87E-03) 4.18E-04 (4.94E-04) 3.32E-02 (3.46E-02) 3.45E-02 (4.22E-05)

10 1.75E-01 (2.88E-03) -4.24E-01 (8.14E-01) 1.29E-01 (8.29E-03) 1.29E-04 (1.28E-04) 3.14E-05 (4.33E-05) 4.04E-02 (5.90E-05)

15 1.46E-01 (1.62E-03) 8.99E-02 (2.15E-03) 1.21E-01 (1.77E-02) 3.24E-06 (4.29E-06) 2.07E-11 (1.75E-12) 2.47E-08 (8.25E-05)

+/ = /- 18/4/13 18/5/12 13/0/22 16/6/13 21/7/7

https://doi.org/10.1371/journal.pone.0284110.t009
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way:

max f ðr; nÞ ¼
Qm

i¼1
½1 � ð1 � riÞ

ni � ð30Þ

min VsðnÞ ¼
Pm

i¼mwiv
2

i n
2

i ð31Þ

min Csðr; nÞ ¼
Pm

i¼1
CðriÞ½ni þ expð0:25niÞ� ð32Þ

Table 10. The performance metrics comparison between MaAVOA and other algorithms in terms of IGD value on DTLZs in case of the computational time is 30

seconds.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. IGD IGD IGD IGD IGD IGD

DTLZ1 3 1.54E-2 (6.36E-6) 1.54E-2 (7.07E-7) 1.54E-2 (7.07E-7) 1.83E-2 (2.69E-4) 1.60E-2 (4.02E-4) 3.95E-02 (6.51E-5)

5 5.35E-2 (3.49E-4) 5.27E-2 (1.34E-5) 5.30E-2 (3.80E-4) 5.43E-2 (3.07E-3) 1.34E+0 (2.68E-1) 5.16E-01 (7.15E-5)

8 1.22E-1 (3.82E-4) 1.22E-1 (2.55E-4) 1.22E-1 (5.16E-4) 1.91E-1 (1.37E-1) 4.78E-1 (1.05E-1) 2.38E-01 (4.09E-04)

10 2.04E-1 (3.40E-3) 1.44E-1 (3.08E-3) 1.43E-1 (1.13E-3) 1.13E-1 (1.86E-3) 1.70E+0 (1.10E+0) 9.56E-01 (4.74E-5)

15 4.84E-1 (2.64E-1) 2.21E-1 (4.03E-4) 2.23E-1 (7.14E-4) 1.57E-1 (7.67E-3) 3.98E-1 (3.20E-1) 1.46E+00 (1.57E-5)

DTLZ2 3 4.09E-2 (6.36E-6) 4.09E-2 (4.24E-6) 4.09E-2 (4.24E-6) 4.10E-2 (5.37E-5) 4.17E-2 (9.97E-5) 5.34E-02 (3.97E-5)

5 1.65E-1 (5.66E-5) 1.65E-1 (9.90E-5) 1.65E-1 (7.07E-6) 1.65E-1 (1.27E-4) 1.97E-1 (4.04E-3) 2.44E-01 (5.17E-5)

8 3.60E-1 (8.49E-5) 3.59E-1 (1.98E-4) 3.59E-1 (1.77E-4) 3.57E-1 (6.58E-4) 3.90E-1 (1.30E-2) 4.70E-01 (4.47E-5)

10 4.61E-1 (3.54E-3) 4.61E-1 (4.95E-5) 4.62E-1 (1.39E-3) 4.32E-1 (8.49E-3) 5.12E-1 (4.13E-3) 5.95E-01 (9.68E-5)

15 6.36E-1 (2.47E-4) 6.34E-1 (4.74E-4) 6.34E-1 (9.69E-4) 8.47E-1 (2.24E-1) 5.69E-1 (3.91E-3) 6.93E-01 (9.36E-5)

DTLZ3 3 4.10E-2 (6.08E-5) 4.10E-2 (6.36E-5) 4.10E-2 (5.66E-5) 3.80E-1 (2.14E-2) 7.21E-1 (6.48E-1) 4.99E-02 (5.74E-5)

5 1.65E-1 (1.39E-3) 1.76E-1 (1.50E-2) 1.66E-1 (3.89E-4) 1.14E+1 (1.45E+1) 6.12E+1 (5.43E+1) 2.06E+01 (6.06E-5)

8 4.41E-1 (3.61E-2) 3.65E-1 (3.25E-3) 3.64E-1 (7.78E-5) 2.57E+0 (4.54E-1) 3.09E+1 (2.39E+1) 9.95E+00 (3.87E-5)

10 2.78E+0 (2.60E+0) 4.86E-1 (2.58E-2) 4.79E-1 (9.98E-3) 1.97E+0 (1.00E-1) 9.67E+1 (2.79E+1) 4.15E+01 (2.48E-5)

15 7.94E+0 (8.74E+0) 6.58E-1 (1.00E-2) 6.74E-1 (5.24E-2) 2.19E+0 (1.23E+0) 1.48E+1 (8.04E-1) 1.65E+01 (5.02E-5)

DTLZ4 3 4.09E-2 (4.03E-5) 4.09E-2 (1.41E-6) 4.09E-2 (0.00E+0) 2.91E-1 (3.54E-1) 4.19E-2 (2.09E-4) 5.34E-02 (6.82E-5)

5 1.65E-1 (1.48E-4) 1.65E-1 (3.54E-5) 1.65E-1 (0.00E+0) 8.67E-1 (6.36E-5) 1.88E-1 (1.39E-3) 2.50E-01 (5.87E-5)

8 3.59E-1 (3.11E-4) 3.59E-1 (3.54E-5) 3.59E-1 (3.54E-5) 6.24E-1 (2.27E-1) 3.81E-1 (1.66E-3) 4.39E-01 (4.49E-5)

10 4.63E-1 (3.44E-3) 4.58E-1 (5.94E-4) 4.58E-1 (6.65E-4) 8.43E-1 (6.51E-2) 6.27E-1 (1.66E-2) 5.35E-01 (5.98E-5)

15 6.33E-1 (7.07E-6) 6.32E-1 (4.95E-5) 6.32E-1 (7.07E-6) 9.29E-1 (1.50E-1) 7.00E-1 (2.55E-3) 5.86E-01 (6.09E-5)

DTLZ5 3 2.71E-2 (2.09E-3) 2.80E-2 (1.56E-3) 2.88E-2 (1.46E-4) 2.49E-2 (3.74E-4) 5.21E-3 (5.18E-4) 6.90E-03 (8.23E-5)

5 1.19E-1 (6.60E-3) 1.35E-1 (8.60E-3) 1.37E-1 (3.85E-2) 2.24E-2 (7.86E-4) 1.08E-1 (1.05E-2) 1.22E-01 (2.55E-5)

8 1.38E-1 (2.51E-2) 3.01E-1 (1.42E-3) 3.61E-1 (9.77E-2) 6.89E-2 (1.80E-4) 4.63E-1 (2.01E-2) 2.19E-01 (3.21E-5)

10 1.76E-1 (6.23E-2) 4.09E-1 (2.42E-2) 3.49E-1 (6.26E-3) 6.64E-2 (3.30E-4) 5.25E-1 (5.97E-2) 3.96E-01 (6.60E-5)

15 1.50E-1 (3.66E-2) 3.92E-1 (1.44E-1) 3.89E-1 (5.53E-2) 1.70E-1 (8.61E-3) 3.09E-1 (6.68E-2) 3.30E-01 (5.32E-5)

DTLZ6 3 2.78E-2 (2.48E-3) 2.72E-2 (1.22E-3) 2.93E-2 (1.64E-3) 5.18E-1 (4.76E-1) 1.23E+0 (1.25E-1) 5.99E-03 (8.94E-5)

5 2.28E+0 (7.66E-1) 1.24E+0 (4.64E-1) 1.21E+0 (4.45E-1) 3.76E+0 (5.99E-1) 7.80E+0 (3.52E-1) 7.84E+00 (1.67E-5)

8 3.44E+0 (6.68E-1) 2.00E+0 (4.21E-1) 2.06E+0 (6.39E-1) 3.48E+0 (5.86E-1) 7.45E+0 (1.55E-1) 9.56E+00 (5.66E-5)

10 6.21E+0 (6.67E-2) 5.38E+0 (2.92E-1) 5.67E+0 (4.54E-1) 1.24E+0 (1.65E+0) 8.19E+0 (2.14E-1) 9.92E+00 (7.49E-5)

15 2.31E+0 (3.26E-1) 1.54E+0 (1.71E-1) 1.42E+0 (6.44E-2) 3.55E-1 (1.89E-1) 7.31E+0 (2.13E-1) 9.87E+00 (9.85E-5)

DTLZ7 3 7.29E-2 (1.40E-4) 7.27E-2 (7.16E-4) 7.39E-2 (6.53E-4) 1.05E-1 (2.97E-3) 6.10E-2 (4.84E-4) 4.26E-02 (9.19E-5)

5 3.75E-1 (1.03E-3) 3.64E-1 (8.51E-3) 3.53E-1 (6.35E-3) 6.38E-1 (1.44E-1) 2.79E-1 (7.78E-5) 2.61E-01 (7.21E-5)

8 1.18E+0 (2.69E-3) 1.22E+0 (6.86E-2) 1.30E+0 (2.69E-2) 4.02E+0 (2.64E+0) 1.97E+0 (4.22E-1) 8.01E-01 (6.46E-5)

10 2.16E+0 (1.75E-1) 1.96E+0 (3.35E-2) 1.96E+0 (6.73E-2) 3.45E+0 (1.35E+0) 1.75E+1 (1.74E+0) 1.17E+00 (6.15E-5)

15 8.70E+0 (5.44E-2) 8.36E+0 (1.96E-2) 8.38E+0 (1.04E-1) 3.22E+0 (6.00E-2) 1.88E+1 (8.37E+0) 2.27E+00 (1.80E-5)

+/ = /- 6/5/24 6/5/24 22/5/8 27/5/3 8/0/27

https://doi.org/10.1371/journal.pone.0284110.t010
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min WsðnÞ ¼ winiexp ð0:25niÞ ð33Þ

s:t:Vs � V � 0;Cs � C � 0;Ws � W � 0 with 0:5� ri � 10� 6; ri 2 R
þ
; ni 2 Z

þ
; 1 � ni

� 10

where C rið Þ ¼ ai �
T

log ðriÞ

� �bi

Table 11. The performance metrics comparison between MaAVOA and other algorithms in terms of GD value on DTLZs in case of the computational time is 30

seconds.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. GD GD GD GD GD GD

DTLZ1 3 1.48E-4 (7.92E-7) 1.48E-4 (1.98E-7) 1.48E-4 (2.40E-7) 7.35E-4 (6.27E-5) 2.66E-4 (1.21E-4) 4.06E-02 (5.81E-05)

5 1.02E-3 (6.36E-6) 1.07E-3 (4.24E-7) 1.08E-3 (9.40E-6) 1.35E-3 (1.07E-4) 8.82E-1 (1.66E-1) 9.55E+01 (6.43E-05)

8 3.28E-3 (3.58E-4) 2.98E-3 (1.91E-6) 2.99E-3 (2.05E-6) 1.26E-2 (1.11E-2) 9.90E-2 (4.53E-3) 2.89E+00 (2.82E-05)

10 9.38E-3 (1.04E-3) 1.10E-3 (9.02E-4) 6.41E-4 (7.58E-5) 2.73E-3 (3.96E-5) 1.51E+0 (1.34E-2) 1.46E+02 (3.91E-05)

15 9.62E-2 (1.15E-1) 9.42E-4 (8.11E-4) 3.95E-4 (3.11E-5) 7.08E-3 (5.24E-4) 7.54E-1 (6.25E-1) 1.10E+02 (8.72E-05)

DTLZ2 3 3.96E-4 (2.13E-6) 3.97E-4 (2.38E-6) 3.97E-4 (2.67E-6) 4.33E-4 (1.59E-5) 4.05E-4 (7.69E-6) 4.10E-02 (1.83E-05)

5 3.39E-3 (8.34E-6) 3.41E-3 (1.11E-5) 3.41E-3 (6.86E-6) 3.43E-3 (5.18E-5) 6.89E-3 (4.89E-4) 2.43E-01 (2.57E-05)

8 9.64E-3 (2.69E-5) 9.63E-3 (2.83E-7) 9.64E-3 (6.36E-6) 8.94E-3 (1.16E-4) 1.04E-2 (1.83E-3) 8.71E-01 (4.97E-05)

10 3.53E-3 (9.14E-5) 1.81E-3 (1.13E-4) 2.12E-3 (5.16E-4) 8.49E-3 (3.96E-4) 2.40E-2 (8.03E-4) 1.04E+00 (8.10E-05)

15 2.31E-3 (1.47E-4) 8.80E-4 (4.30E-4) 1.40E-3 (2.76E-4) 1.65E-2 (6.72E-3) 1.90E-2 (1.27E-3) 1.55E+00 (4.91E-05)

DTLZ3 3 4.03E-4 (1.26E-5) 4.07E-4 (1.51E-5) 4.08E-4 (1.16E-5) 6.61E-2 (1.76E-2) 1.63E-1 (4.21E-2) 3.87E-02 (6.17E-05)

5 3.46E-3 (6.47E-5) 6.59E-3 (4.47E-3) 3.41E-3 (1.28E-5) 1.13E+0 (1.48E+0) 1.52E+1 (1.01E+1) 1.25E+02 (4.94E-05)

8 4.51E-2 (4.06E-2) 9.87E-3 (5.54E-5) 1.38E-2 (1.24E-3) 1.70E-1 (1.02E-2) 8.76E+0 (4.01E+0) 1.87E+02 (3.56E-05)

10 4.08E-1 (3.41E-1) 1.51E-2 (8.44E-3) 1.15E-2 (3.11E-3) 8.30E-2 (5.75E-3) 1.90E+1 (5.30E-1) 4.14E+02 (6.14E-05)

15 1.63E+0 (1.93E+0) 9.67E-3 (2.86E-3) 4.14E-2 (4.23E-2) 1.11E-1 (1.52E-1) 5.81E+0 (1.36E+0) 2.95E+02 (8.39E-05)

DTLZ4 3 4.64E-4 (9.52E-5) 3.96E-4 (1.91E-7) 3.97E-4 (4.24E-7) 3.48E-4 (1.31E-4) 3.94E-4 (2.21E-6) 3.99E-02 (9.96E-05)

5 3.43E-3 (5.78E-5) 3.41E-3 (4.10E-6) 3.40E-3 (7.35E-6) 1.80E-3 (1.00E-4) 5.12E-3 (1.73E-4) 3.41E-01 (5.98E-05)

8 1.17E-2 (2.88E-3) 9.64E-3 (1.36E-5) 9.64E-3 (1.20E-5) 5.50E-3 (2.33E-3) 9.53E-3 (2.24E-4) 1.10E+00 (8.82E-05)

10 6.07E-3 (4.36E-3) 1.33E-3 (1.57E-4) 1.21E-3 (8.97E-5) 2.22E-3 (1.16E-3) 3.25E-2 (3.48E-4) 1.30E+00 (3.12E-05)

15 1.23E-2 (2.31E-3) 7.92E-5 (2.41E-5) 1.61E-4 (3.22E-5) 6.37E-3 (5.75E-3) 2.60E-2 (2.07E-3) 1.86E+00 (9.90E-05)

DTLZ5 3 5.00E-5 (5.27E-5) 1.16E-3 (7.55E-5) 6.31E-4 (1.63E-4) 3.26E-3 (4.61E-3) 3.16E-4 (2.33E-4) 2.85E-03 (4.44E-05)

5 2.02E-1 (1.96E-2) 2.11E-1 (3.50E-3) 1.99E-1 (8.66E-3) 8.57E-3 (1.52E-3) 9.78E-2 (1.58E-3) 2.01E+00 (2.06E-05)

8 2.12E-1 (1.18E-3) 1.63E-1 (2.58E-2) 1.45E-1 (1.10E-2) 6.10E-4 (3.53E-4) 1.15E-1 (3.63E-3) 4.80E+00 (9.06E-05)

10 1.81E-1 (1.27E-2) 1.58E-1 (6.72E-4) 2.09E-1 (4.20E-2) 1.47E-6 (1.11E-7) 9.52E-2 (2.65E-3) 6.34E+00 (9.93E-05)

15 1.09E-1 (1.25E-1) 1.47E-1 (1.21E-2) 1.70E-1 (3.18E-2) 1.47E-6 (4.72E-7) 1.26E-1 (1.98E-4) 1.53E+01 (8.78E-05)

DTLZ6 3 9.68E-6 (2.44E-6) 1.09E-5 (3.36E-7) 1.09E-5 (5.95E-7) 7.24E-2 (4.98E-2) 1.61E-1 (1.58E-2) 4.93E-05 (6.30E-05)

5 2.57E-1 (6.17E-2) 2.63E-1 (3.24E-2) 2.42E-1 (5.86E-2) 3.19E-1 (2.34E-2) 6.07E-1 (1.45E-2) 2.04E+01 (9.53E-05)

8 3.49E-1 (4.23E-2) 2.78E-1 (3.00E-2) 3.07E-1 (4.17E-2) 3.27E-1 (4.46E-2) 6.82E-1 (5.80E-4) 4.78E+01 (3.09E-05)

10 4.55E-1 (3.55E-3) 3.98E-1 (3.71E-2) 4.07E-1 (4.88E-2) 1.01E-1 (1.42E-1) 5.53E-1 (2.28E-3) 7.92E+01 (7.31E-05)

15 3.64E-1 (5.10E-2) 2.34E-1 (2.07E-2) 2.28E-1 (1.50E-2) 1.14E-6 (2.99E-7) 7.00E-1 (9.43E-3) 2.71E+02 (1.10E-05)

DTLZ7 3 9.49E-3 (1.01E-2) 2.14E-3 (4.25E-4) 2.27E-3 (6.24E-5) 2.94E-3 (1.84E-4) 2.48E-3 (6.09E-5) 1.67E-02 (8.64E-05)

5 9.89E-3 (1.01E-3) 1.39E-2 (1.05E-4) 1.29E-2 (6.10E-4) 4.33E-3 (6.55E-5) 1.69E-2 (3.99E-3) 1.74E-01 (5.04E-05)

8 8.12E-2 (2.98E-2) 1.86E-1 (2.28E-1) 8.22E-2 (7.58E-2) 2.11E-2 (8.94E-3) 2.35E-1 (4.82E-3) 6.01E-01 (8.83E-05)

10 2.00E-2 (1.78E-3) 1.93E-1 (9.13E-2) 1.45E-1 (1.39E-3) 1.59E-2 (4.45E-4) 2.12E+0 (5.46E-2) 1.08E+00 (1.45E-05)

15 7.76E-2 (1.81E-3) 2.40E-1 (5.19E-2) 2.43E-1 (3.51E-2) 9.81E-2 (7.21E-3) 4.16E+0 (1.49E-1) 2.49E+00 (7.52E-05)

+/ = /- 8/5/21 9/5/21 20/5/10 30/5/0 0/0/35

https://doi.org/10.1371/journal.pone.0284110.t011
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αi and βi are constants representing the actual features of each item at stage i and T is the

operating time during which the item should not fail. Table 16 provides the input data for an

overspeed protection for gas turbine system.

The algorithms are terminated after 250, 500, 1000, 2000, 4000, 5000, and 10000 genera-

tions. The engineering problem has 4 objective functions. Accordingly, the population size is

chosen to be 969 (Nr1 = 16, Nr2 = 0, and nRef = 969).

The results for the overspeed protection for gas turbine problem are given in the Table 17

and Fig 9.

Table 12. The performance metrics comparison between MaAVOA and other algorithms in terms of HV value on DTLZs in case of the computational time is 30

seconds.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. HV HV HV HV HV HV

DTLZ1 3 8.50E-1 (1.13E-4) 8.50E-1 (2.83E-5) 8.50E-1 (1.41E-5) 8.36E-1 (1.23E-3) 8.48E-1 (1.08E-3) 8.40E-01 (7.04E-5)

5 9.78E-1 (8.49E-5) 9.80E-1 (2.05E-4) 9.79E-1 (4.31E-4) 9.57E-1 (5.13E-3) 0.00E+0 (0.00E+0) 7.01E-01 (6.56E-5)

8 9.97E-1 (1.34E-4) 9.97E-1 (9.90E-5) 9.97E-1 (4.95E-5) 8.15E-1 (1.95E-1) 1.24E-1 (1.30E-1) 8.92E-01 (5.75E-5)

10 9.63E-1 (2.75E-3) 9.99E-1 (5.16E-4) 9.99E-1 (6.36E-5) 8.12E-1 (1.35E-2) 0.00E+0 (0.00E+0) 1.11E-01 (1.90E-5)

15 3.99E-1 (5.61E-1) 1.00E+0 (3.54E-5) 1.00E+0 (2.83E-5) 5.54E-1 (3.01E-2) 4.21E-1 (5.76E-1) 8.28E-03 (3.90E-5)

DTLZ2 3 5.71E-1 (1.06E-4) 5.71E-1 (8.49E-5) 5.71E-1 (2.12E-5) 5.68E-1 (6.01E-4) 5.69E-1 (2.83E-4) 5.55E-01 (5.89E-5)

5 8.10E-1 (8.84E-4) 8.12E-1 (5.09E-4) 8.12E-1 (7.07E-6) 7.98E-1 (4.88E-4) 7.34E-1 (9.47E-3) 6.84E-01 (5.11E-5)

8 9.32E-1 (6.08E-4) 9.35E-1 (3.46E-4) 9.35E-1 (4.60E-4) 9.29E-1 (1.44E-3) 8.56E-1 (2.49E-2) 6.07E-01 (2.51E-5)

10 9.62E-1 (2.28E-3) 9.69E-1 (9.05E-4) 9.68E-1 (2.17E-3) 9.43E-1 (8.56E-3) 6.46E-1 (8.62E-2) 5.81E-01 (9.11E-5)

15 9.87E-1 (3.39E-4) 9.89E-1 (6.65E-4) 9.89E-1 (6.22E-4) 5.39E-1 (2.39E-1) 8.05E-1 (4.02E-3) 2.64E-01 (8.08E-5)

DTLZ3 3 5.70E-1 (1.22E-3) 5.70E-1 (1.23E-3) 5.69E-1 (9.62E-4) 1.03E-1 (2.75E-2) 9.33E-2 (1.32E-1) 5.56E-01 (6.32E-5)

5 8.02E-1 (9.81E-3) 7.97E-1 (1.38E-2) 8.05E-1 (5.47E-3) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0)

8 7.83E-1 (3.75E-2) 9.18E-1 (9.88E-3) 9.24E-1 (1.41E-5) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0)

10 4.22E-2 (5.97E-2) 8.93E-1 (5.75E-2) 9.16E-1 (1.31E-2) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0)

15 0.00E+0 (0.00E+0) 9.63E-1 (1.72E-2) 8.88E-1 (1.27E-1) 2.45E-2 (3.47E-2) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0)

DTLZ4 3 5.71E-1 (1.27E-4) 5.71E-1 (3.54E-5) 5.71E-1 (0.00E+0) 4.57E-1 (1.58E-1) 5.69E-1 (8.49E-5) 5.52E-01 (7.95E-5)

5 8.11E-1 (1.27E-3) 8.12E-1 (1.20E-4) 8.12E-1 (9.90E-5) 3.24E-1 (1.94E-3) 7.60E-1 (5.53E-3) 7.00E-01 (2.38E-5)

8 9.35E-1 (9.90E-5) 9.35E-1 (7.78E-5) 9.36E-1 (1.91E-4) 7.71E-1 (1.81E-1) 8.92E-1 (1.77E-3) 7.29E-01 (5.75E-5)

10 9.65E-1 (3.75E-3) 9.72E-1 (2.47E-4) 9.73E-1 (3.18E-4) 6.97E-1 (7.99E-2) 5.95E-1 (5.02E-2) 7.55E-01 (9.14E-5)

15 9.90E-1 (4.95E-5) 9.90E-1 (2.12E-5) 9.90E-1 (1.06E-4) 7.28E-1 (2.10E-1) 8.33E-1 (1.18E-3) 7.64E-01 (2.75E-5)

DTLZ5 3 1.86E-1 (1.56E-4) 1.85E-1 (1.63E-4) 1.85E-1 (2.83E-4) 1.87E-1 (7.78E-5) 1.99E-1 (1.48E-4) 1.98E-01 (6.29E-5)

5 7.27E-2 (1.69E-2) 3.51E-2 (6.48E-3) 5.79E-2 (4.07E-2) 1.15E-1 (6.94E-3) 7.72E-2 (4.65E-3) 1.17E-01 (2.34E-5)

8 2.24E-2 (1.08E-2) 6.06E-5 (2.31E-5) 5.54E-4 (7.83E-4) 1.04E-1 (1.41E-4) 6.70E-5 (9.47E-5) 9.71E-02 (3.02E-5)

10 4.21E-2 (5.75E-2) 0.00E+0 (0.00E+0) 4.27E-5 (3.67E-5) 1.00E-1 (2.68E-4) 1.13E-8 (1.59E-8) 9.40E-02 (7.53E-5)

15 9.08E-2 (1.18E-3) 0.00E+0 (0.00E+0) 1.15E-7 (1.59E-7) 9.39E-2 (1.82E-4) 1.95E-6 (2.76E-6) 9.17E-02 (4.60E-5)

DTLZ6 3 1.86E-1 (6.58E-4) 1.86E-1 (2.19E-4) 1.86E-1 (3.11E-4) 2.13E-2 (3.01E-2) 0.00E+0 (0.00E+0) 2.00E-01 (3.99E-5)

5 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+00 (1.17E-5)

8 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+00 (3.81E-5)

10 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 5.00E-2 (7.07E-2) 0.00E+0 (0.00E+0) 0.00E+00 (8.85E-5)

15 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 0.00E+0 (0.00E+0) 9.43E-2 (2.08E-4) 0.00E+0 (0.00E+0) 0.00E+00 (9.45E-5)

DTLZ7 3 2.76E-1 (4.31E-4) 2.76E-1 (1.70E-4) 2.76E-1 (1.48E-4) 2.60E-1 (7.99E-4) 2.76E-1 (3.11E-4) 2.76E-01 (2.08E-5)

5 2.48E-1 (1.17E-3) 2.46E-1 (1.70E-4) 2.46E-1 (7.71E-4) 6.53E-2 (1.70E-2) 1.89E-1 (4.50E-3) 1.96E-01 (8.55E-5)

8 1.82E-1 (1.91E-3) 1.61E-1 (7.44E-3) 1.47E-1 (2.35E-2) 3.59E-4 (5.03E-4) 2.54E-5 (1.07E-5) 4.87E-02 (7.88E-5)

10 1.73E-1 (6.51E-3) 1.47E-1 (2.67E-3) 1.27E-1 (2.10E-2) 1.17E-4 (1.52E-4) 0.00E+0 (0.00E+0) 3.31E-03 (9.27E-5)

15 1.33E-1 (7.28E-3) 7.15E-2 (2.09E-2) 1.08E-1 (3.59E-2) 3.91E-6 (3.57E-6) 1.86E-13 (2.62E-13) 2.75E-11 (6.31E-5)

+/ = /- 11/5/19 11/5/19 24/4/8 27/6/3 23/6/6

https://doi.org/10.1371/journal.pone.0284110.t012
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As observed in Table 17, MOAVA based solution approach performed better in terms of IGD,

GD, and HV. The performance measures have been drawn as histograms in the Fig 9 which

shows the final solution set obtained for all algorithms with termination condition of 500 iteration.

It is concluded that the proposed MOAVA provides very competitive results as compared to five

well-known optimization algorithms in solving the investigated engineering real life applications.

6. Conclusion and future research directions

A novel many-objective African vulture optimization algorithm, named MaAVOA, is pro-

posed in this paper. MaAVOA is an updated version of AVOA to handle the MaOPs. It

Table 13. Comparison between MaAVOA and other algorithms in terms of the number of generation and number of function evaluations on DTLZs in case of the

computational time is 30 seconds.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA

PROB. OBJ. N_GEN N_EVAL N_GEN N_EVAL N_GEN N_EVAL N_GEN N_EVAL N_GEN N_EVAL N_GEN N_EVAL

DTLZ1 3 460 87955 1050 160650 1037 158661 148 22644 210 32130 718 71800

5 275 75345 678 142380 667 140070 106 22260 91 19110 491 49100

8 393 82653 815 127140 810 126360 139 21684 141 21996 618 61800

10 223 83613 304 83600 300 82500 58 15950 43 11825 401 40100

15 609 113498 724 97740 722 97470 128 17280 124 16740 325 32500

DTLZ2 3 321 66209 936 143208 837 128061 141 21573 137 20961 556 55600

5 214 61471 598 125580 585 122850 97 20370 66 13860 412 41200

8 272 58549 706 110136 748 116688 129 20124 78 12168 325 32500

10 100 38009 277 76175 279 76725 63 17325 27 7425 302 30200

15 260 48692 676 91260 672 90720 129 17415 83 11205 264 26400

DTLZ3 3 530 109354 1091 166923 1055 161415 157 24021 277 42381 817 81700

5 305 87598 687 144270 673 141330 95 19950 72 15120 560 56000

8 404 87050 869 135564 844 131664 130 20280 138 21528 476 47600

10 228 86780 301 82775 333 91575 63 17325 42 11550 312 31200

15 601 112568 743 100305 731 98685 129 17415 116 15660 308 30800

DTLZ4 3 428 88364 1097 167841 1064 162792 158 24174 139 21267 571 57100

5 212 60858 594 124740 576 120960 101 21210 64 13440 422 42200

8 262 56422 740 115440 709 110604 130 20280 78 12168 327 32700

10 82 31173 250 68750 256 70400 50 13750 25 6875 255 25500

15 220 41218 657 88695 650 87750 125 16875 79 10665 233 23300

DTLZ5 3 912 188430 1270 194310 1206 184518 150 22950 358 54774 631 63100

5 495 142285 657 137970 642 134820 96 20160 154 32340 450 45000

8 669 144065 834 130104 788 122928 127 19812 159 24804 257 25700

10 291 110875 292 80300 318 87450 62 17050 69 18975 314 31400

15 658 123247 728 98280 717 96795 129 17415 165 22275 284 28400

DTLZ6 3 849 165533 1082 165546 1030 157590 152 23256 263 40239 594 59400

5 229 65832 630 132300 603 126630 96 20160 50 10500 387 38700

8 266 57304 762 118872 744 116064 128 19968 70 10920 253 25300

10 91 34565 286 78650 275 75625 63 17325 25 6875 266 26600

15 250 46835 688 92880 698 94230 132 17820 85 11475 224 22400

DTLZ7 3 600 127780 1134 173502 1124 171972 135 20655 242 37026 544 54400

5 280 82057 618 129780 618 129780 92 19320 132 27720 398 39800

8 327 71135 555 86580 636 99216 129 20124 89 13884 318 31800

10 145 55524 273 75075 279 76725 65 17875 15 4125 297 29700

15 301 56527 721 97335 667 90045 145 19575 67 9045 220 22000

https://doi.org/10.1371/journal.pone.0284110.t013
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Fig 6. Series-parallel system.

https://doi.org/10.1371/journal.pone.0284110.g006

Table 14. Data used in series-parallel systems.

i 105αi βi wiv2i wi V C W
1 2.5 1.5 2 3.5 180 175 100

2 1.45 1.5 4 4 180 175 100

3 0.541 1.5 5 4 180 175 100

4 0.541 1.5 8 3 180 175 100

5 2.1 1.5 4 4.5 180 175 100

https://doi.org/10.1371/journal.pone.0284110.t014

Table 15. The performance measures values of series-parallel system.

MAAVOA NSGAIII U-NSGAIII CTAEA AGEMOEA

N_GEN IGD GD HV IGD GD HV IGD GD HV IGD GD HV IGD GD HV

250 8.90E-

02

2.10E-

01

9.01E-

01

3.54E-

02

6.94E-

02

5.89E-

01

3.71E-

02

7.12E-

02

5.90E-

01

9.27E-

02

1.27E-

01

5.89E-

01

1.04E-

01

1.22E-

01

5.82E-

01

500 7.20E-

02

2.05E-

01

9.03E-

01

4.35E-

02

6.96E-

02

5.90E-

01

3.31E-

02

6.69E-

02

5.89E-

01

9.78E-

02

1.27E-

01

5.89E-

01

9.82E-

02

1.19E-

01

5.83E-

01

1000 7.24E-

02

2.08E-

01

9.04E-

01

3.49E-

02

6.55E-

02

5.90E-

01

2.40E-

02

6.05E-

02

5.90E-

01

1.09E-

01

1.27E-

01

5.89E-

01

9.59E-

02

1.12E-

01

5.82E-

01

2000 8.05E-

02

2.13E-

01

9.04E-

01

3.46E-

02

6.27E-

02

5.90E-

01

3.18E-

02

6.44E-

02

5.90E-

01

1.01E-

01

1.31E-

01

5.89E-

01

1.05E-

01

1.14E-

01

5.84E-

01

4000 8.11E-

02

2.12E-

01

9.03E-

01

2.84E-

02

6.52E-

02

5.90E-

01

3.74E-

02

7.00E-

02

5.90E-

01

9.99E-

02

1.27E-

01

5.89E-

01

1.03E-

01

1.20E-

01

5.84E-

01

5000 7.78E-

02

2.14E-

01

9.03E-

01

3.05E-

02

6.44E-

02

5.90E-

01

3.32E-

02

6.80E-

02

5.89E-

01

1.06E-

01

1.32E-

01

5.89E-

01

9.63E-

02

1.14E-

01

5.83E-

01

10000 7.36E-

02

2.18E-

01

9.02E-

01

2.84E-

02

6.54E-

02

5.90E-

01

4.14E-

02

7.20E-

02

5.90E-

01

9.25E-

02

1.27E-

01

5.89E-

01

1.05E-

01

1.19E-

01

5.83E-

01

https://doi.org/10.1371/journal.pone.0284110.t015
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Fig 7. Final solution set for a series-parallel system with five subsystems (termination condition is 500 iteration).

https://doi.org/10.1371/journal.pone.0284110.g007

Fig 8. Overspeed protection for gas turbine.

https://doi.org/10.1371/journal.pone.0284110.g008

Table 16. Data used in Overspeed protection for gas turbine system.

i 105αi βi vi wi V C W T
1 1 1.5 1 6 250 400 500 1000h

2 2.3 1.5 2 6 250 400 500 1000h

3 0.3 1.5 3 8 250 400 500 1000h

4 2.3 1.5 4 7 250 400 500 1000h

https://doi.org/10.1371/journal.pone.0284110.t016

PLOS ONE Many-objective african vulture optimization algorithm: A novel approach for many-objective problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0284110 May 17, 2023 32 / 36

https://doi.org/10.1371/journal.pone.0284110.g007
https://doi.org/10.1371/journal.pone.0284110.g008
https://doi.org/10.1371/journal.pone.0284110.t016
https://doi.org/10.1371/journal.pone.0284110


integrates a new social leader vultures selection process. In addition, an environmental selec-

tion mechanism based on the alternative pool was adapted to improve the selection pressure to

maintain diversity for approximating different parts of the whole PF. An external Archive

based on the FAM is established to save the best-nondominated solutions during the popula-

tion evolution. Also, a RAS procedure is developed to improve the quality of archiving solu-

tions and help reach out to the PF’s missing areas that the vultures easily miss. The proposed

MaAVOA was evaluated using well-known benchmark functions. Comparing the proposed

MaAVOA results to five states of the art algorithms showed that MaAVOA outperformed the

five algorithms in terms of IGD, GD, and HV in most of the benchmark test functions when

all algorithms terminated according to several function evaluations or in case of terminating

according to a maximum number of generations. To verify the performance of the proposed

Table 17. The performance measures values of Overspeed protection for gas turbine.

MAAVOA NSGAIII U-NSGAIII CTAEA AGEMOEA

N_GEN IGD GD HV IGD GD HV IGD GD HV IGD GD HV IGD GD HV

250 4.2E-02 6.1E-02 9.7E-02 5.2E-02 5.1E-02 1.5E-01 4.8E-02 6.0E-02 9.7E-02 1.5E-02 5.5E-02 1.4E-01 6.1E-02 6.9E-02 9.6E-02

500 4.3E-02 6.0E-02 9.7E-02 7.4E-03 3.1E-02 1.4E-01 4.5E-02 5.9E-02 9.7E-02 4.0E-02 5.4E-02 9.8E-02 6.5E-02 7.1E-02 9.6E-02

1000 4.3E-02 6.1E-02 9.7E-02 6.4E-03 3.0E-02 1.4E-01 5.5E-03 2.9E-02 1.4E-01 1.3E-02 5.3E-02 1.4E-01 6.5E-02 7.0E-02 9.6E-02

2000 4.5E-02 6.2E-02 9.7E-02 5.1E-02 5.1E-02 1.6E-01 1.4E-02 2.8E-02 1.4E-01 1.9E-02 7.0E-02 1.6E-01 6.2E-02 6.7E-02 9.5E-02

4000 4.6E-02 6.2E-02 9.7E-02 2.6E-03 2.7E-02 1.4E-01 6.1E-03 2.7E-02 1.4E-01 1.5E-02 5.8E-02 1.4E-01 6.7E-02 7.0E-02 9.6E-02

5000 4.5E-02 6.2E-02 9.7E-02 4.3E-02 4.8E-02 1.6E-01 1.4E-02 3.4E-02 1.4E-01 1.6E-02 6.9E-02 1.6E-01 6.2E-02 6.7E-02 9.6E-02

10000 5.0E-02 5.1E-02 1.6E-01 1.4E-02 3.2E-02 1.4E-01 4.4E-02 5.0E-02 1.6E-01 2.5E-02 7.5E-02 1.8E-01 5.7E-02 6.6E-02 9.6E-02

https://doi.org/10.1371/journal.pone.0284110.t017

Fig 9. Final solution set for overspeed protection for gas turbine problem (termination condition is 500 iteration).

https://doi.org/10.1371/journal.pone.0284110.g009
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MaAVOA for real life many objectives’ applications, it was applied and tested on two real-life

engineering constrained problems. The findings show that among all the successful algo-

rithms, MaAVOA has promising and competing performance.

There are many directions of research that can be recommended for future works to handle

the limitations of the proposed work. The variation in operators of the proposed MaAVOA

algorithm can motivate the future work to minimize the execution time of MaAVOA. Also,

extending this algorithm to solve more constrained engineering many objective optimization

problems can be seen as a future point for research. In addition, the computational time of the

proposed algorithm is considered greater than both NSGAIII and UNSGAIII algorithms

which can be considered as a future point for research. Furthermore, breaking out from the

local optimum still difficult, so we suggest using a clustering strategy in the future to help.
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