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Abstract

Several optimization problems can be abstracted into many-objective optimization prob-
lems (MaOPs). The key to solving MaOPs is designing an effective algorithm to balance
the exploration and exploitation issues. This paper proposes a novel many-objective Afri-
can vulture optimization algorithm (MaAVOA) that simulating the African vultures’ foraging
and navigation behaviours to solve the MaOPs. MaAVOA is an updated version of the Afri-
can Vulture Optimization Algorithm (AVOA), which was recently proposed to solve the
MaOPs. A new social leader vulture for the selection process is introduced and integrated
into the proposed model. In addition, an environmental selection mechanism based on the
alternative pool is adapted to improve the selection process to maintain diversity for
approximating different parts of the whole Pareto Front (PF). The best-nondominated solu-
tions are saved in an external Archive based on the Fitness Assignment Method (FAM)
during the population evolution. FAM is based on a convergence measure that promotes
convergence and a density measure that promotes variety. Also, a Reproduction of
Archive Solutions (RAS) procedure is developed to improve the quality of archiving solu-
tions. RAS has been designed to help reach out to the missing areas of the PF that the vul-
tures easily miss. Two experiments are conducted to verify and validate the suggested
MaAVOA’s performance efficacy. First, MaAVOA was applied to the DTLZ functions, and
its performance was compared to that of several popular many-objective algorithms and
according to the results, MaAVOA outperforms the competitor algorithms in terms of
inverted generational distance and hypervolume performance measures and has a benefi-
cial adaptation ability in terms of both convergence and diversity performance measures.
Also, statistical tests are implemented to demonstrate the suggested algorithm’s statistical
relevance. Second, MaAVOA has been applied to solve two real-life constrained engineer-
ing MaOPs applications, namely, the series-parallel system and overspeed protection for
gas turbine problems. The experiments show that the suggested algorithm can tackle
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many-objective real-world applications and provide promising choices for decision-
makers.

1. Introduction

MaOPs are optimization problems with more than three objectives that must be solved simul-
taneously [1]. Most real-world applications may have more than four conflicting objective
functions and are mathematically being modelled as MaOPs. Some of these applications
include automotive engineering, aerospace engineering, many-objective simplified nurse
scheduling problem, the five-objective water resource management problem, the ten-objective
general aviation aircraft design problem, the many-objective space trajectory design problem,
many-objective software refactoring, the hybrid car controller optimization problem with six
objectives, optimization of three centrifugal design problems having six to nine objectives, the
many-objective 0/1 knapsack problem, Heuristic Learning, Travelling Salesman Problem
(TSP), Job shop scheduling, flight control system, supersonic wing design, six-objective design
of a factory-shed truss [2], Big data applications which need sophisticated architectures with
inherent capabilities to be scaled and optimized [3], NP-hard workflow allocation problems in
cloud systems [4], Multicore computers are transforming the embedded computing market
[5], and recently Internet of Everything (IoE) [6]. The difficulty of the MaOPs returns to the
increase in the problem scale; as the number of objectives grows, the number of nondominated
solutions grows exponentially [1]. Solving MaOPs is more difficult for several reasons: the
high computational cost of PF approximation due to increased evaluation of several points, the
inability of existing evolutionary multi-objective algorithms to solve MaOPs, and the difficulty
of visualizing the PF with more than four objectives [2].

The difficulties that Multi-objective Evolutionary Algorithms (MOEAs) experience in solv-
ing MaOPs have raised the demand for the development and the deployment of evolutionary
algorithms for MaOPs. MOEAs are not scalable enough and have problems addressing the
MaOPs. These problems are summarized by [11] as follows: (1) As the number of objective
functions grows, the obtained results become non-dominated; (2) As the size of the objective
space grows, the conflict between diversity and convergence grows; (3) For computational effi-
ciency, the population size can be small; (4) Computational complexity grows exponentially as
the number of objectives grows (for example, hypervolume calculation); (5) Balancing diver-
sity and convergence becomes more complicated; and (6) Due to the vast dimensions, visualiz-
ing the Pareto-optimal front is difficult. Due to these challenging issues, MaOPs are more
complex and need to be handled using more effective and scalable evolutionary algorithms.

Various ways to solve MaOPs have been proposed as the MOEAs community pays more
attention. These approaches can be roughly divided into four categories [2].

1.1. Decomposition-based approaches

These non-Pareto-based methods combine the objectives into a scalar function. The weight
vector is a weighted coefficient that represents the relevance of each objective. A MaOP is split
into numerous single-objective sub-problems that can be optimized simultaneously using a set
of weighting vectors.

Scalarization techniques also balance the diversity and convergence of solutions in the
objective space. For dealing with MaOPs, [1] presented a new reference direction-based den-
sity estimator, a new FAM, and new environmental selection algorithms. To increase the
diversity of decomposition-based Evolutionary Algorithm (EA) [7], adopted a dynamical
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decomposition technique. Reference vectors were employed by [8] to break down the original
MaOP into several single objective subproblems and clarify user preferences to target a pre-
ferred subset of the entire PF. The reference points are automatically selected from the solu-
tions and matched to the PF pattern. As a result, these reference points might provide a
diversified range of possibilities for guiding the population to explore new areas.

Recently [9], suggested an adaptive decomposition EA (MaOEA/ADEI) based on environ-
mental information. The ecological information determines the penalty factor of Penalty
boundary intersection decomposition and includes population and weight vector distribution
information. In addition, the weight vectors adaptation approach is employed when dealing
with problems involving scaled targets.

1.2. The indicator-based approach

The value of the performance indicator is used to direct the search process in this approach.
The algorithm in this category used the performance indicator instead of fitness to select indi-
viduals. For example [10], introduced a hypervolume estimation algorithm. The exact Hyper-
volume Values (HV) were approximated using Monte Carlo simulation, and the solutions
were rated using the HV indication. An indicator based MOEA with reference point adaption
(ARMOEA) was presented by [11]. For MaOPs [12], presented a two-stage R2 indicator-based
EA (TS-R2EA). The primary selection is based on an R2 indicator-based achievement scalariz-
ing function. After that, the reference vector guided objective space partition approach is
applied as the second selection strategy. A two-stage selection technique yield a good mix of
convergence and diversity. In addition, several efficient and effective indicators based MOEAs
[13-15] have been presented in the context of these performance metrics.

1.3. Pareto-dominance approach

Is the most popular class of MaOPs. Some improved Pareto rank solutions are chosen using
dominance-based selection criteria in these approaches. In addition, a diversity-related
method will be used to ensure that the Pareto optimal solutions are distributed evenly. Grid
domination and grid difference were utilized to strengthen the selection pressure in the
authors’ [16] Grid-based many-objective evolutionary algorithm (GREA). In addition, to
introduce a fuzzy mechanism to Pareto dominance, the authors in [17] employed a continuous
function to quantify the degree of non-dominance between two solutions. As a result, solu-
tions with a higher non-dominance degree can be selected. In addition, a novel dominance
relation [18] and a reinforced dominance relation [19] were presented to classify just more
precisely the best convergent solutions as non-dominated, hence speeding up population con-
vergence. In addition, various efficient and effective Pareto-dominance strategies [20-22] for
solving MaOPs have recently been published.

1.4. Preference-based approach

This category has three types: a priori, interactive, and posterior. The preference information
is supplied before the search in an a priori class. The decision-maker is expected to offer pref-
erence information interactively in an interactive class. Similarly, the preference information
is introduced after the search in the a posteriori class. Several efficient and effective prefer-
ence-based EA approaches [23-25] have been proposed to solve MaOPs.

The authors in [26] presented a new nature-inspired metaheuristic algorithm called AVOA
in 2021, and it has since been used in several real-world engineering applications. AVOA was
created to simulate and model African vultures’ foraging behaviour and living habits. Com-
pared to state-of-the-art optimization techniques, the AVOA was determined to be very
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promising and powerful. In addition, this technique is substantially faster than any comparable
algorithms in terms of computational complexity and running time, and it works well in large-
scale applications. The population of African vultures is divided into three groups based on
their habits. The first group is to find the best feasible solution among all vultures. The second
group is to find the second-best feasible solution among all vultures. The final group is made
up of the surviving vultures. The rationale for the division is that each group of vultures has a
different ability to locate and consume food. It is assumed that the worst vultures are the weak-
est and hungriest vultures, and the best vultures are the strongest and most abundant vultures
at present. The strongest and best vultures are two of the best solutions in AVOA, while the
other vultures are trying to approach the best.

This paper presents a modified version of AVOA to handle MaOPs. This version is called
MaAVOA. The AVOA required two best vultures to guide the other vultures to reach the best
solution. A new selection process for the MaOPs is introduced and integrated into the pro-
posed model. In addition, an environmental selection mechanism based on the alternative
pool is adapted to improve the selection pressure to maintain diversity for approximating dif-
ferent parts of the whole PF. Also, an external Archive based on the FAM is set up to keep
track of the best non-dominant solutions as the population evolves. The FAM is based on a
convergence measure that promotes convergence and a density measure that promotes variety.
Furthermore, a RAS procedure is developed to improve the quality of archiving solutions. The
RAS procedure helps to reach out to the missing areas of the PF that the vultures easily miss.

The main contributions of this paper are summarized as follow:

« The proposed MaAVOA is a novel algorithm to solve many objectives problems which
achieves promising solutions that promotes diversity and fast convergence.

o The proposed MaAVOA is compared to certain current five best-practice algorithms and
achieves results superiority over them, including a unified evolutionary optimization algo-
rithm (U-NSGAIII) [27], a reference-point-based many-objective evolutionary algorithm
based on NSGA-II (NSGA-III) [28], A multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [29], constrained two-archive evolutionary algorithm (CTAEA)
[30], and AGEMOEA adaptive geometry estimation based MOEA (AGE-MOEA) [31].

o The performance of the proposed MaAVOA was evaluated using benchmark functions for
DTLZ test suites with some objectives ranging from three to fifteen objectives.

« In addition, it was applied on two real life engineering applications to validate its perfor-
mance to tackle many-objective real-world applications.

The rest of the paper is organized as follows. The MaOPs and AVOA are presented in Sec-
tion 2. The proposed algorithm’s framework is illustrated in Section 3. The proposed frame-
work’s implementation methodology is presented, and the results are discussed in Section 4.
In section 5, two engineering applications are introduced. The paper’s conclusions and future
research initiatives are presented in Section 6.

2. Preliminaries

2.1. Many-objective optimization problem

Many-objective optimization problems (MaOPs) can be stated as follows:

Minimize F(x) = (f,(x),£,(x), ..., f,(x)" (1)
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Subjected to

E(x)=0, [=1,2,...,L

Where F: Q—R™ is a set of m conflicting objective functions in the form of a vector, (m>4),
Q =[].,[b,,ub] C R"is n-dimensional decision space, x = (x, X,,. . .,x,,)€Q is a vector of n
decision variables (candidate solutions) and R™ is called the objective space [27].

Definition 1. (Pareto-dominance) A solution x is considered to dominate another solution
x? (o« = x9) if and only if

(Vke{1,2,3,...,m}: fi() < f(x))a(Bke{1,2,3,...,m}: f,(x*) < f.(x9)) (2)

Definition 2. (Pareto-optimal)

A solution ” is assigned to be Pareto optimal iff: Ix"€Q: x7> x7

Definition 3. ((Pareto-optimal set (POS)): the set of non-dominant solutions POS includes
all solutions that balance the objectives in a unique and optimum manner.

POS = {x’|-3xT € Q: x* > x7} (3)

Definition 4. ((Pareto-optimal front (POF)): The values of all the objective functions corre-
sponding to the Pareto-optimal solutions in POS are included in the set POF.

POF = {(f,(x),£,(x), ... .f,(x))"|x e POS} (4)

The dimension of the POF is expected to be m—1, and the POF is becoming more complex
with increasing the number of objective functions, which is the challenge of many-objective
optimization problems [7].

2.2. Standard African vulture’s optimization algorithm

Authors in [26] introduced a novel nature-inspired metaheuristic algorithm, AVOA, used to
solve several engineering applications [32]. AVOA was developed by simulating and modelling
African vultures’ foraging behaviour and living habits.

To simulate the AVOA biological life, four assumptions are considered:

o In the African vulture population, there are Npopy vultures. Each vulture’s position is n-
dimensional, with a maximum number of iterations (MaxlIter). X} = [x},x}, ..., x'] can be
used to indicate the position of each vulture i (1<i<Npopp) at different iterations t
(1<t<Maxlter).

o The population of African vultures is classified into three groups based on their life habits.
The first group is to find the best feasible solution among all vultures. The second group is to
find the second-best feasible solution among all vultures. The final group is made up of the
surviving vultures.

o The division is that each group of vultures has a unique incapacity to discover and eat food.

o The worst vultures are thought to be the weakest and most hungry, while the best vultures
are the strongest and most numerous. The strongest and best vultures in AVOA are two of
the best solutions, and the other vultures aim to approach the best.
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Table 1. Parameters of the proposed algorithm.

Parameter Description
popsize The population size
MaxIter The maximum number of iterations.
ub, Ib The upper and lower bounds of the solutions.
dim The dimension of the solutions.

X! = [x|,x},...,x,] | The position of each vulture v (1<v<Npopg), (1<n<dim).

<X,

nRef Total number of reference points.
RP the set of reference points.
Nr; and Nr, The parameters controlling nRef along the boundary and inside of the Pareto optimal front.
FSLV The set of the first social leader vultures.
SSLV The set of the second-social leader vultures.
k This parameter denotes the likelihood of the vulture carrying out the exploitation stage.

https://doi.org/10.1371/journal.pone.0284110.t001

3. The proposed many-objective African vulture optimization
algorithm (MaAVOA)

This paper presents a modified version of AVOA to handle MaOPs. This version is called
MaAVOA. Initially, Npopr Vultures are randomly generated in the decision space using a uni-
form distribution. After that, vultures are evaluated according to the fitness functions, and the
nondominated solutions are identified according to Pareto dominance of NSGA-III [31] then
stored in the external archive (ARC). The ARC is based on the FAM, created to keep track of
the best solutions as the population evolved. The AVOA required two best vultures to guide
the other vultures to reach the best solution. The proposed algorithm uses a set of social leader
vultures to guide solutions in the search space. Some of these social leader vultures are chosen
from the ARC to lead the other vultures in the population. The proposed algorithm uses FAM
in [33], focusing on convergence and diversity to select the first-social leader vultures from
ARC. FAM was employed with two objectives to enforce these potential leaders’ preferences
and learn more about them. MaAVOA iteratively performs a series of steps, the most impor-
tant of which are (1) obtaining the social leaders for the vultures and moving the solutions in
the decision space by using AVOA; (2) Applying polynomial mutation to 10% of the vulture
position (candidate solution) to enhance the diversity while avoiding the premature conver-
gence; (3) perform the environmental selection by using the alternative pool to select the best
Npopr vultures for the next generation and (4) Update the external archive to contain only the
non-dominated solutions; i,e based on the dominance relation on all objectives. The nondomi-
nated solutions in the alternative pool and the old archive are stored in the archive. These steps
are repeated up to MaxIter is reached. The parameter of the proposed algorithm is shown in
Table 1. The MaAVOA framework is shown in Fig 1 and Algorithm (1) and they are being

explained in greater depth in the following subsections.
Algorithm 1: MaAVOA
Input: population size Npopyr, MaxIter, and the related parameters.
Output: The position of best vultures and their fitness value
Processing:
Initialize a random population of vultures X,(v = 1,2,..., Npopr)
Use Pareto dominance of NSG-III to identify non-dominated solutions.
Save all non-dominated individuals in the archive (ARC)
While (stopping criteria are not met) do
e For v = 1: Npopr
e Select social leader Vultures (Algorithm 4)

PLOS ONE | https://doi.org/10.1371/journal.pone.0284110 May 17,2023 6/36


https://doi.org/10.1371/journal.pone.0284110.t001
https://doi.org/10.1371/journal.pone.0284110

PLOS ONE

Many-objective african vulture optimization algorithm: A novel approach for many-objective problems

Reproduction of
archive solutions

A4

Initialize
population
of Vultures

(Npopg)
and keep a

copy in
pool 1

Identify non-
dominated
solutions
: Update the Choose the
L 1esa(:;:sl ’ postticnictal 0051%?31: old best Npopg
Sorting the _|—V e »| vultures using S based on
population selection AVO.A populations S0
according to equations dominance
Pareto dominance
)

Environmental selection <

Fig 1. MaAVOA framework.

https://doi.org/10.1371/journal.pone.0284110.9001

e pop = the new position of vultures after updating their position by
AVOA

e pop = polynomial mutation to 10% of pop

e Evaluate the objective values for each individual in pop

e Combine the old and new offspring populations, denoted as px =
popUX,,

e pop = sorting px by a non-dominated sorting technique of NSGA-III
and choosing Npopr solutions from px

e pop = Environment Selection from the alternative pool (Algorithm
5)

¢ Update the ARC by the nondominated solution in the alternative
pool.

end while

return the position of best vultures and their fitness value from
ARC

3.1. Fitness Assignment Method (FAM)

The MaAVOA’s FAM is presented in Algorithm (2) and is based on a convergence measure
that promotes convergence and a density measure that promotes variety. This method used a
set of reference points to calculate both metrics. These points are utilized to cluster the solu-
tions and, as a result, estimate their density in the objective space. These points are also used to
push solutions that are near to the PF.

MaAVOA uses a collection of reference points to find well-distributed solutions and near
the PF. A method for obtaining this set of points was proposed by [34]. This process produces
a set of evenly spaced reference points on a hyperplane in the objective space. This hyperplane
is in the first quadrant and intersects each axis equally. At position one on each axis, the inter-
ception is considered, followed by Nr divisions. As a result, (nRef = CZ™N!) gives the total
number of reference points nRef.
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Algorithm 2: FAM
Input: a population of vultures X,(v =1,2,..., Npopr)
Output: the convergence and density measures
Processing:
* Calculate the fitness vector of each vulture.
* Determine the set of reference points RP = {rp1, IPs,..-; LPnrer}
« Compute the approximated ideal point P*9e!
* Compute the new extreme points Z** from Z***U ARC
e Compute the hyperplane from extreme points.
Compute the density measure and the convergence measure of each
solution
The basic steps for calculating the density measure and the convergence of the solutions in
ARC are illustrated in the following steps.

+ Stepl: Generate a set of reference points RP = {rp;, rps,. . ,7puref by using a method pro-
posed by [33], where nRef is the total number of reference points. For example, if m = 4
objective functions, the reference points are created on a rectangle with apex at (1, 0, 0,0), (0,
1,0, 0), (0,0, 1,0) and (0, 0, 0,1) with considering four divisions (Nr = 4), and 35 reference
points will be generated.

Step 2: identify ideal point P = (fmin, fmin . fmin) then each objective function for each
solution in ARC is transformed to F~ by subtracting the value in objective F(X) by P*““, i.e.
the translated objective i is obtained from £~ = f, — f™".

o Step 3: Compute the set of the extreme solutions Z{*"*" from all solutions in ARC up to the
current iteration (t) of the algorithm. The solution i ¢ (ARC U Z#*™) is an extreme solution

for objective  if this solution i minimize the scalarizing achievement function (AS) as
follows.

Vie(ARCU Z™) (5)

where rp,, = {rp,,1, TPu2>- - -TPnm} 18 @ unitary vector that corresponds to the direction in the axis
n, that is, rp,,; = 0 if n#j and rp, = 1 otherwise in which n € {1, 2, .. ., m}. Using this method,
all the solutions found in the ARC thus far are used to update the set Z;*"*" extreme solutions.
Then, the m objective vectors of the in Z{*"" are used to build a hyperplane in the objective
space and extended to reach these m objective vectors. The intercept d; of the i-th objective
axis and the linear hyperplane can then be obtained by calculating the distance from the inter-
ception point and the origin and using this value to normalize the objective functions.

norF,(x) = % (6)

« Step 4: Associate the solutions in ARC to the reference point. For this purpose, each refer-
ence point is joined with the origin to construct a reference line corresponding to each refer-
ence point on the hyperplane. The distance perpendicular to each solution in ARC to the
reference lines is computed. Each solution is associated with the closest reference point,
whose reference line is closest to it in the normalized objective space. As a result, each refer-
ence point will have a set of solutions. Now the density around each reference point can be
estimated by, counting the number of ARC solutions linked to it. Therefore, the density
measure (Dmy;) of each solution in ARC is equal to the size of the group in which it is
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associated with it. For example, if the solutions w; = {x, w, y, z} form the cluster w; of a refer-
ence point rp;, then the Dm; of these solutions is equal to 4.

» Step 5: Compute the convergence measure (conv;) to promote convergence. For each solu-
tion in ARC, the AS function and associated reference point are calculated, which is the con-
vergence measure for this solution and donated by (conv;). For each reference point rp, the
AS is calculated of the solutions from the external archive associated with this reference
point concerning it (using Eq (5)). Mathematically, the convergence measure of a solution j
(conv)) is calculated as follows.

conv, = AS(x;,rp;) i€ w, (7)

Based on the above four assumptions of AVOA in section 2.2, To simulate the diverse vul-
ture behaviours in the foraging stages, MaAVOA can be divided into five phases. The first
phase is the social vulture’s selection, the rate of hunger of vultures is the second phase, the
exploration and exploitation phases are the third and fourth phases, respectively, and finally,
the environmental selection phase is to select the best Npopy vultures for the next generation.
The flowchart for simulating various vulture behaviours in the foraging stages is shown in Fig
2 and presented in more detail in next subsections.

3.2. The social leader vultures selection

MaAVOA needs two social leader vultures to guide the other vultures in the population.
According to MaOPs, there is no one best solution over the population for the investigated
problem. Instead, there are a set of non-dominated solutions, so we will select two sets of social
leader vultures. In the proposed MaAVOA, the social leader vultures will be divided into two
sets: the first social leader vultures (FSLV) and the second-social leader vultures (SSLV). The
FSLV set contains all non-dominated solutions in the ARC. For each vulture in the population,
the first social leader is chosen from the FSLV by using the measurements of diversity and con-
vergence in FAM to separate the ARC’s solutions such that the best solutions are chosen based
on these criteria The tournament selection procedure is used to assign the first social leader
vulture (fsI") from the FSLV to this solution v. A solution i € ARC is better than a solution j €
ARC in the tournament selection procedure if it has a density value lower than the second one.
If the two solutions have the same density, the convergence measure determines which is pref-
erable. In the event of a tie, we choose solution i as a leader if Dm;<Dm,;. Otherwise, solution j
is selected. Aside from that, solution j is chosen.

For the second-social leader vultures (SSLV) set, the guiding vultures, in this case, will be a
set of best solutions corresponding to each objective function from all vultures in the popula-
tion. This selection procedure aims to find the best solutions that are closer to the PF. As a
result, each iteration’s hyperplane is pushed closer to the PF, improving the convergence. The
set of second-social leader vulture position SSLV = {sl}, sl,,. . .,s,,,} consists of m best solutions,
one for each objective. Thus, each vulture in SSLV is dedicated to bringing the new vultures
closer to the PF’s ideal point. For selecting the second social leader ssI” for a vulture v, the ran-
dom selection process assigns this leader from SSLV to this solution.

The selection process of the set of SSLV is given in Algorithm (3), and the social leader vul-
ture selection process (fsI” and ssI”) for each vulture in the population is given in Algorithm
(4).

Algorithm 3: Second-Social vulture set selection for each vulture
Input: population of vultures

Output: SSLV
Processing:
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Fig 2. The flowchart of simulating of various vulture behaviours in the foraging stages.

https://doi.org/10.1371/journal.pone.0284110.9002

e Compute the objective functions for each vulture.

e Assign the minimum objective function for each objective
Pideal — (flmin’ 2miv17 . 7]L‘V:‘m'n)

e Define each vulture corresponding to each objective (i.e v; corre-
sponding to fi"", v, corresponding to fJ", v, corresponding to f’")

¢ Output SSLV = {sl;, sly,...,slp}
Algorithm 4: Social leaders vultures’ selection
for v = 1: Npopy)

[ARC (i), ARC(j)] = tournament selection (ARC)

Compute the density measure (DM) and the convergence measure (conv)
of each ARC(i) and ARC(j) (Algorithm 2)
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If Dm;<Dmj;
fsl1V = ARC (1)
elseif Dm;<Dm;
fs1” = ARC (7)
elseif Dmj; = Dm;
if con;<conj;
fsl1V = ARC (1)
else
fs1V = ARC (1)
end
end
s = random[1l, m]
sslV = SSLV(s)
end

3.3. Vultures’ hungry rate

The vulture has the strength to fly to obtain food if it is not hungry. If the vulture is very hun-
gry, it lacks the strength to fly large distances. As a result, hungry vultures will stick near the
vultures with food rather than searching for food on their own. The exploration and exploita-
tion stages of vultures can thus be formed based on the above behaviour. The degree of hunger
indicates when vultures are transitioning from the exploration to the exploitation stage. The i
vulture’s hunger degree F! at the t™ iteration can be calculated by

Fi = (2 x rand)) +1 x z' x <1—%> +g (8)

g =hx (sink <g X %) + cos (g X %) - 1) 9)

where rand!, is a random number between 0 and 1, z' is a random number between -1 and 1,
h'is a random number between -2 and 2, and k is a parameter that has been set in advance,
this denotes the likelihood of the vulture carrying out the exploitation stage.

When |F}| is greater than 1, vultures enter the exploration stage, searching for new food in
various locations. When |F!| is less than 1, vultures enter the exploitation stage, looking for bet-
ter food in the immediate vicinity.

3.4. Exploration stage

Vultures in AVOA can investigate different random locations using two alternative tactics,
which are selected using a parameter called p;. This parameter p; is given with the algorithm’s
initialization, and the range is [0,1]. The exploration stage of the vulture can be expressed as

leader; — D! x F, p, > rand’,
X = o ’ (10)
' R; — F; + rand;, x ((ub — Ib) x rand}; +1b),  p, < rand,,
Sl if pr=sl
leader; = f ‘ I (11)
ssl if pr =52

rand,,, rand;, and pr

17 27

where X{*" is the the i"™ vulture’s position at the t+1" iteration, rand;
are random numbers that are uniformly distributed in the range [0,1]. leader is the social

leader vulture as fsl€ FSLV and ssI€SSLV, which are chosen for vulture i in Algorithm (4). s1
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and s2 are parameters that were measured in advance, with values ranging from 0 to 1, and the
sum of both being one. F; is calculated according to Eq (8), ub, Ib represent the upper and
lower bounds of the solutions, and D} represents the distance between the vulture and the cur-
rent optimal vulture and calculated by:

D' =|Cx R x X/| (12)

where C is the vultures move randomly to protect food from other vultures.

3.5. Exploitation stage at medium level

If the value of |F!| is less than 1, then AVOA enters the exploitation phase, divided into two
phases, each with two alternative methods (medium and later).

3.5.1. Competition for food. The weaker vultures try to exhaust the healthier vultures
and get food from them by congregating around them and provoking minor confrontations.
Based on this behaviour, the vultures’ position is updated and the updated formula can be
expressed as:

X2 D (F 4 rand’) — d (13)

d; = leader! — X; (14)

3.5.2. Rotating flight of vultures. When a vulture is full and active, it will not only com-
pete for food but also hover at high altitudes, according to AVOA’s spiral model. The updated
formula can be expressed as:

X1 = leader! — (S, + S, (15)
d; x X!
Si, = leader! x M 2 %) cosX! (16)
1 1 27.C 1
diy x X!
S, = leader! x <%) X cosX! (17)
n

3.6. Exploitation stage at later level

When the value |F;| is less than 0.5, almost all vultures in the population were full, but after a
long period of time, the best two species of vultures were hungry and feeble. Vultures will
attack food at this time, and several different vultures will congregate around the same food
source.

3.6.1. Aggregation behaviour. Vultures have digested a large portion of the food during
the late stages of AVOA. Where there is food, many vultures will congregate, and competition
will ensue. At this point, the vulture position update formula is as follows:

! 2
I'x X!
A= pp = P (19)
il i f:glf _ (X:)Z i
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I'x X!
A=l - S50 (20)
i2 i SSlf _ (X:)Q i

3.6.2.Attack behaviour. When AVOA is in its last stages, the vulture will flock to the best
vulture to scavenge the remaining food. The vultures’ position update formula can be
expressed at this point as in Eq (21).

X" = leader! — |d}| x F! x Levy(dim) (21)

where dim represents the solution’s dimension, Levy(dim) represents the Levy flight [26], and
its calculation formula is given by the following Equation.

Levy(dim) = 0.01 x ¢ (22)

ol

where r; and r; are uniformly distributed random numbers in the range [0,1], 3 is a constant,
which is usually set to 1.5, and the calculation formula of ¢ is given by nest equation.

_ ( I'(1+6) x sin(%)
r

(23)

d—1

(143) x & x 2<T)>

where I'(x) = (x—1)!

3.7. Environmental selection operator

The ARC stores non-dominated solutions found by the algorithm during the search process
until the algorithm is completed. The archive stores the nondominated solutions from all vul-
tures for information sharing. A vulture may have very poor values on some objectives when
the number of objectives increases. These poorly performing objectives need the solutions of
ARC for information sharing. Thereby the vulture is pushed to converge to the PF. Although
the MaAVOA'’s environmental selection operator has achieved a reasonably balanced perfor-
mance in terms of convergence and diversity, the MaAVOA’s new progeny may have a diver-
sity problem with other solutions. The idea of integrating into the alternate pool is being tested
as a solution to this challenge. By integrating the reproduction generated by the genetic opera-
tors to the solutions in the ARC to construct the alternative pool containing the new offspring
generated by the MaAVOA operator and archive offspring generated by reproduction of
archive solutions to select the best Npopy vultures according to the dominance relation on all
objectives. Under the pressure of the alternative pool, the algorithm assures that the operators
work together to find more extended alternative solutions in the population’s evolutionary
process. As a result of the effect of the alternate pool, the algorithm’s overall evolutionary effi-
ciency improves. Population convergence and distribution are ensured because of the environ-
mental operator’s influence. We used some ideas and schemes from [35] to develop this
environmental selection.

Archive solutions (RAS) were reproduced on 50% of the ARC solutions. In RAS, crossover
and mutation processes inherit different dimensions from different solutions. Some parents
from the archive are selected randomly and then perform simulated binary crossover (SBX)
and polynomial mutation (PM), and these new solutions are then added into the alternative
pool then choose the best Npopr individuals according to the dominance relation on all
objectives.
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Algorithm 5: Environment Selection (RAS, pop) Operator.
Input: pop (offspring generated by the MaAVOA), ARC (solutions in
archive)
Output: pop (new generation of vultures).
Processing:
PAS = choose random 50%0f vultures from ARC
RAS = Genetic operators to (PAS)
for i = 1 to |RAS]|
for j =1 to |popl
Judge the dominance relation between RAS (i) and pop(J):
if the nondominated solution is located in pop
Retain the corresponding nondominated pop solutions;
end if
if the nondominated solution lies in RAS
add the corresponding nondominated RAS (i) 1lto pop;
end if
end for
end for
if |popl| > Npop
Compute the fitness values using the FAM method; (Algorithm 2)
Remove some solutions with the worst fitness values;
end if
Output the pop with size Npopr for the next generation.
end

3.8. Updating the external archive

Because the social leader vultures are chosen from the ARC, good administration of this archive is
crucial and significantly impacts the algorithm’s performance. The external archive is updated at
each iteration. We attempt to place each non-dominated solution from the vultures obtained after
environmental selection in the external archive. If any archive solution dominates this added solu-
tion, it is neglected. Otherwise, this solution is saved to the external archive, and the solutions
dominated by this new non-dominated solution are deleted from the archive.

4. MaAVOA implementation

Five state-of-the-art algorithms are compared to our proposed algorithm, namely a unified evolution-
ary optimization algorithm (U-NSGAIII) [27], a reference-point-based many-objective evolutionary
algorithm following NSGA-II [28], A multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) [29], constrained two-archive evolutionary algorithm (CTAEA) [30], and AGE-
MOEA adaptive geometry estimation based MOEA (AGE-MOEA) [31]. These algorithms have
been developed to solve MaOPs. The proposed and the state-of-the-art algorithms have been imple-
mented and added to the modern Multi-Objective Optimization package (Pymoo). To evaluate the
performance of the proposed algorithm, it is applied to both benchmark problems (DTLZ1-DTLZ7)
and two engineering application: Series-parallel system problem and Overspeed protection for gas
turbine [36] as case studies. Wilcoxon Test Statistic has applied on all the experiments.

All experiments are tested on a machine with the following specifications: CPU: Core i5
Processor 2.5 GHz /16GB RAM /500GB SSD, GPU: NVIDIA GeForce GTX1050 4GB, com-
pute capability 6.1.

4.1. Benchmark problems

In the proposed work, we used the DTLZ1-DTLZ7 benchmark problems, and they are com-
monly used due to their scalability for any number of objective functions. It is a widespread
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Table 2. PF of DTLZ benchmark problems.

Benchmark Description
problem
DTLZ1 The optimal Pareto front lies on a linear hyperplane 22, £ = 0.5
DTLZ2 The search space is continuous, unimodal and the problem is not deceptive
DTLZ3 The search space is continuous, unimodal and the problem is not deceptive. It is supposed to
be harder to converge towards the optimal Pareto front than DTLZ2.
DTLZ4 The search space contains a dense area of solutions next to the f,,/f; plane.
DTLZ5 This problem will test an MOEA’s ability to converge to a curve and will also allow an easier

way to visually demonstrate the performance of an MOEA. Since there is a natural bias for
solutions close to this Pareto-optimal curve, this problem may be easy for an algorithm to
solve.

DTLZ6 A more difficult version of the DTLZ5 problem where the non-linear distance function g
makes it harder to convergence against the Pareto optimal curve.

https://doi.org/10.1371/journal.pone.0284110.t002

test suite conceived for MaOPs with scalable fitness dimensions [37]. All the problems in this
test set are scalable in the fitness dimension and are continuous n-dimensional many-objective
issues. The decision space has a dimension of k + m + 1, where m is the number of objectives,
with k =5 for DTLZ1, k = 10 for DTLZ 2-6, and k = 20 for DTLZ7, as proposed in [37].

Table 2 lists the properties of the decision space and the PF for each problem.

4.2. Parameter settings

Concerning the recommended parameter settings for the compared algorithms, crossover and
mutation probabilities are set to 1 and 1/D, respectively. The mutation and crossover distribu-
tion parameters have been set to 20. The population size of all algorithms is set to be the same
to make a fair comparison with other algorithms. Table 3 shows the number of reference
points (nRef) for problems with different objectives. We set population size (popsize) equal to
nRef for both the state of the art and MaAVOA algorithms. We used the same settings in [38].
One layer of reference points for three- and five-objective problems and two layers of reference
points for eight-ten-fifteen-objective problems are used according to [39]. The reference points
(or popsize) are set according to parameters Nr; and Nr, for the different number of objectives.
Nr; and Nr, are parameters controlling nRef along the boundary and inside of the Pareto opti-
mal front (used in the previously mentioned calculation of the number of reference points
(nRef = Cy ™).

For a fair comparison, each state-of-the-art algorithm is applied to solve the DTLZ bench-
mark functions using three different cases or scenarios to analyse the proposed algorithm’s
performance and discuss its weak points. The first case is terminating the algorithms after 500
generations for each test problem. The second case is terminating the algorithms after 100000
function evaluations for each run. The third case is setting the computational time of each run

Table 3. Settings of the reference points and population size.

objectives Nr; Nr, nRef popsize
3 16 0 153 153
5 6 0 210 210
8 3 2 156 156
10 3 2 275 275
15 2 1 135 135

https://doi.org/10.1371/journal.pone.0284110.t003
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to 3 seconds for all the algorithms. In each of the three scenarios, each algorithm is run 20
times separately on each test problem.

4.3. Performance indicators

Three widely used performance metrics are utilized to evaluate the performance of algorithms
in this paper. Generational Distance (GD), Inverted Generational Distance (IGD), and hyper-
volume (HV). All of them can be an indicator for the convergence and distribution of a solu-
tion set as comprehensive performance measures [40].

« Inverted Generational Distance (IGD) and Generational Distance (GD) are two measure-
ment indicators used to validate the results. The GD performance indicator measures the
solution’s distance to the PF. Let us assume the points found by our algorithm are the objec-
tive vector set A = {a,, a,,. . .,4)4|} and the set of evenly sampled solutions from the genuine
Pareto optimum front is Z = {z, 2,,. . .24/} then,

GD(A) = 1 (S )" (24)

where d; represents the Euclidean distance (p = 2) from g, to its nearest reference point in Z.
Basically, this result is the average distance from any point A to the closest point in the PF.

o The IGD performance indicator inverts the generational distance and measures the distance
from any point in Z to the closest point in A.

IGD(A) = (S d)” (25)

4]

where cii represents the Euclidean distance (p = 2) from z; to its nearest reference point in A.

« Hypervolume (HV): The volume covered by the obtained PF in the object region, defined as
the HV between the front surface and the reference vector, is used to represent the volume
covered by the obtained PF in the object region. As a result, the HV reflects the PF’s solution
distribution. To calculate HV, we set the reference point of HV to p = (1,1,.. DT [41]. To
guarantee that the individuals in the population can contribute to HV as much as possible,
the objective values are normalized by 1.1 times the nadir point of the PF. The HV metric is
calculated accurately when the number of objectives is less than 5. When the number of
objectives is greater than 5, the Monte Carlo method is adopted to calculate HV. We used
106 sample points for a more accurate result.

4.4. Results and discussion

This section analyses all the outcomes acquired from various experiments conducted through-
out the implementation phase in this paper.

4.4.1 Convergence analysis. The ability of the global search method to converge is a criti-
cal performance criterion for MaOPs. This part looked at the MaAVOA’s convergence as a
function of the number of iterations using the IGD measure. The convergence trajectories
have been chosen randomly from 30 algorithm runs of the MaAVOA and the other five algo-
rithms on DTLZ1-4 with three and ten objectives in Fig 3.

In case of DTLZ1 and DTLZ4 with 3 and 10 objectives, all algorithms exhibit a similar and
strong ability to converge to PF, except CTAEA and AGE-MOEA have the worst convergence
in all test problems. In addition, it is noted that the convergence of the proposed MaAVOA
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Fig 3. Convergence trajectories of seven algorithms on DTLZ1-4 with 3 and 10 objectives.

https://doi.org/10.1371/journal.pone.0284110.9003

towards PF is better than the convergence of NSGAIII in most problems. This returns to MaA-
VOA uses an external archive where the non-dominated solutions found by the algorithm dur-
ing the search process are stored through the algorithm. In contrast, NSGA-III worked only
on the updated population. The solutions in the external archive are used to lead the other

solutions in the population, and the MaAVOA uses FAM with two objectives having the

simultaneous goal of imposing preferences among these potential social leaders. The proposed
approach uses Pareto dominance and information about density and proximity to push the
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vultures towards the PF, which comprises a significant difference between the proposed MaA-
VOA and NSGA-IIL

Although MaAVOA and U-NSGAIII have approximately the same convergence, MaAVOA
is still better in convergence in all the problems except DTLZ with 3 objectives. In addition,
MOED/D shows a decrease in convergence in the case of DTLZ1 and DTLZ 4 with 3 objectives
and DTLZ 3 and DTLZ 4 with 10 objectives. Furthermore, MaAVOA shows great perfor-
mance on DTLZ1 with 3 or 10 objectives, DTLZ3 with 3 or 10 objectives, and DTLZ2 and
DTLZ 4 with 10 objectives. This demonstrates its great ability to solve MaOPs problems with
concave PF. We can observe that the proposed algorithms show terrible performance on
DTLZ2 and DTLZ 4 with 3-objectives compared to those with 10 objectives. This returns to
MaAVOA new strategy to choose social leader vultures that guide the other vultures to PF. On
several tests, it demonstrates good scalability in terms of the number of decision variables and
it is concluded that the suggested algorithm has a promising convergence ability to PF.

The other obtained PFs for all DTLZs can be found on https://github.com/tfarrag2000/
MaAVOA.We can clearly observe the convergence and diversity of MaAVOA solutions for
the high dimensional MaOPs.

In Figs 4 and 5, the approximate PF obtained by the six competing algorithms on DTLZ3
and DTLZ7 with 3,4, and 10 objectives problems is presented to further explain the results.

As shown in Fig 4, NSGA-III, CTAEA, MOEA/D, and MaAVOA have a good distribution,
indicating that they performed well on DTLZ3 with three objectives. But U-NSGA-III is
unable to maintain convergence and distribution of the solutions. In addition, AGEMOEA
failed to converge to the true PF. When the algorithms being tested on DTLZ7 with 3 objec-
tives, MaAVOA and UNSGA-III show superior performance than the other algorithms. It is
well observed that the proposed MaAVOA has great diversity and convergence but NSGA-III,
CTAEA, AGEMOEA and MOEA/D cannot converge to the true PF on DTLZ7 with 3
objectives.

As shown in Fig 5, NSGA-III, U-NSGA-III, and MaAVOA demonstrate a good dispersion,
displaying their excellent performance on DTLZ3 and DTLZ7 with 10 objectives, while
CTAEA, AGEMOEA and MOEA/D have a bad ability of convergence and diversity. Figs 4
and 5 show that MaAVOA has shown a good dispersion, demonstrating their superior
performance.

4.4.2 Results for GD, IGD, and hypervolume. Case 1: the termination condition is set to
be 500 generation.

The IGD results of the six algorithms on the seven DTLZ tasks with 3,5,8, and 10 objectives
are presented in Table 4 while Table 5 shows the values of the GD results of several algorithms
and Table 6 shows the values of the HV results as well.

The results of Tables 3 and 4, show that the proposed MaAVOA has achieved competitive
performance for most test cases, indicating that MaAVOA can better balance convergence and
diversity than the five comparative algorithms.

Case 2: the termination condition is set to be 100000 function evaluations.

Tables 7-9 give the values of the three metrics IGD, GD, and HV of the six algorithms on
the seven DTLZ problems with 3,5,8 and10 objectives when the termination condition of all
algorithms is set to be 100000 function evaluations.

As seen from Tables 7-9, MaAVOA has achieved competitive performance for most test
problems.

Case 3: The termination condition is set to be computational time equal 30 seconds

Tables 10-12 gives the values of the three metrics IGD, GD, and HV of different algorithms
on the seven DTLZ problems with 3,5,8 and10 objectives when the termination condition of
all algorithms is set to be 30 seconds. In addition, Table 13 compares the proposed MaAVOA
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Fig 4. The parallel coordinates of the non-dominated front obtained by each algorithm (used in the comparison) on DTLZ3 and
DTLZ7 with 3 objectives.
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with the other algorithms in terms of the number of generations and number of function eval-
uations on DTLZs in the case of the computational time being 30 seconds.

As shown in Table 13, when all algorithms end after 30 seconds, the MaAVOA has achieved
competitive performance for most test problems, the same as in the other two previous cases. On
the other hand, Table 13 shows that the proposed algorithm has implemented for several genera-
tions that is smaller than the NSGAIII, U-NSGAIII, and AGEMOEA and also several function
evaluations of MaAVOA is smaller than NSGAIII and U-NSGAIII as well for 30 seconds.
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Fig 5. The parallel coordinates of non-dominated front obtained by each algorithm (used in the comparison) on DTLZ3 and DTLZ 7 or

any function with 10 objectives.

https://doi.org/10.1371/journal.pone.0284110.g005

5. MaAVOA for engineering applications

In this section, the performance of the proposed MaAVOA has been tested on two real-life
engineering applications, namely, the Series-parallel system and Overspeed protection for gas
turbine. These applications are used to show the efficiency and effectiveness of the proposed
MaAVOA in real-life problems. Since the optimal Pareto front is not known for real-life
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Table 4. Performance comparison between the proposed MaAVOA and other algorithms in terms of IGD.

PROB.

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

+/=1-

OB]J.

3
5
8
10
15

10
15

10
15

10
15

10
15

10
15

10
15

MAAVOA
IGD
1.54E-02(7.07E-07)
5.28E-02 (8.27E-05)
1.23E-01 (1.64E-03)
1.41E-01 (8.70E-04)
3.31E-01 (4.24E-02)
4.09E-02 (2.83E-06)
1.65E-01 (1.34E-05)
3.59E-01 (1.41E-05)
4.59E-01 (2.62E-04)
6.34E-01 (8.49E-05)
4.10B-02 (1.40E-04)
1.66E-01 (1.20E-03)
4.02B-01 (1.64E-02)
4.60E-01 (1.04E-02)
4.53E+00 (2.26E+00)
4.09E-02 (1.41E-06)
1.65E-01 (1.41E-05)
3.59E-01 (1.48E-04)
4.58E-01 (4.24E-05)
6.33E-01 (4.95E-05)
3.03E-02 (3.09E-03)
1.35E-01 (2.50E-03)
1.36E-01 (2.11E-03)
1.77E-01 (5.42E-02)
2.60E-01 (7.41E-02)
2.84E-02 (1.27E-03)
7.54E-01 (1.25E-01)
1.08E+00 (1.01E+00)
1.15E+00 (2.20E-01)
1.01E+00 (6.79E-03)
7.33E-02 (3.17E-04)
3.73E-01 (1.17E-02)
1.17E+00 (1.98E-03)
1.94E+00 (4.24E-04)

(
(
(
8.64E+00 (1.64E-02)

NSGA3
IGD
1.55E-02 (3.18E-05)
5.28E-02 (9.55E-05)
1.22E-01 (2.69E-04)
1.43E-01 (2.97E-04)
2.18E-01 (3.54E-03)
4.09E-02 (7.07E-06)
1.65E-01 (1.41E-05)
3.60E-01 (4.67E-04)
4.60E-01(1.98E-04)
6.35E-01 (1.41E-05)
4.45E-02 (8.85E-04)
1.66E-01(4.81E-04)
4.34E-01 (2.84E-02)
4.62E-01 (4.04E-03)
6.51E-01 (1.70E-02)
4.09E-02 (5.66E-06)
1.65E-01 (2.12E-05)
3.59E-01 (3.54E-05)
4.58E-01 (5.66E-05)
6.32E-01 (7.07E-05)
2.83E-02 (7.62E-04)
1.27E-01 (3.71E-02)
3.87E-01 (3.41E-02)
3.22E-01 (8.58E-02)
3.45E-01 (1.66E-02)
2.93E-02 (6.02E-03)
2.17E+00 (3.13E-01)
3.28E+00 (6.02E-02)
3.52E+00 (8.77E-02)
3.51E+00 (6.75E-01)
7.28E-02 (4.70E-04)
3.60E-01 (5.54E-03)
1.27E+00 (1.23E-01)
1.94E+00 (6.36E-03)
8.37E+00 (5.82E-02)
10/3/22

https://doi.org/10.1371/journal.pone.0284110.t004

UNSGA3
IGD
1.55E-02 (2.19E-05)
5.28E-02 (2.30E-04)
1.24E-01 (7.50E-04)
1.43E-01 (1.09E-03)
2.06E-01 (2.03E-02)
4.09E-02 (4.24E-06)
1.65E-01 (4.24E-05)
3.60E-01 (2.55E-04)
4.60E-01 (7.07E-05)
6.35E-01 (1.20E-04)
4.31E-02 (1.47E-03)
1.84E-01 (2.44E-02)
8.40E-01 (5.97E-01)
4.64E-01 (4.04E-03)
2.40E+00 (7.41E-01)
4.09E-02 (9.90E-06)
1.65E-01 (1.41E-05)
3.59E-01 (1.41E-05)
4.58E-01 (7.07E-06)
6.32E-01 (7.78E-05)
2.86E-02 (4.93E-04)
1.50E-01 (3.56E-02)
3.56E-01 (5.66E-03)
3.76E-01 (8.99E-02)
5.67E-01 (2.35E-02)
3.70E-02 (2.74E-03)
1.92E+00 (1.76E-02)
3.47E+00 (1.02E-01)
3.57E+00 (2.98E-01)
3.22E+00 (1.12E-02)
7.24E-02 (1.60E-04
3.59E-01 (1.98E-04
1.24E+00 (9.79E-02)
1.98E+00 (6.10E-02)
8.23E+00 (2.64E-01)
11/3/21

)
)

MOEAD
IGD
1.56E-02 (1.52E-04)
5.29E-02 (2.63E-04)
1.21E-01 (4.74E-04)
1.37E-01 (7.85E-04)
1.35E-01 (2.40E-03)
4.09E-02 (7.07E-07)
1.65E-01 (0.00E+00)
3.59E-01 (1.41E-05)
4.58E-01 (2.12E-05)
6.31E-01 (9.26E-04)
4.65E-02 (2.69E-03)
1.71E-01 (4.92E-03)
7.46E-01 (5.39E-01)
1.14E+00 (5.80E-03)
1.29E+00 (6.36E-04)
5.41E-01 (0.00E-+00)
5.16E-01 (4.96E-01)
4.11E-01 (7.41E-02)
6.77E-01 (5.25E-02)
7.31E-01 (1.93E-02)
2.54E-02 (4.95E-06)
2.24E-02 (2.89E-04)
6.87E-02 (2.12E-06)
6.62E-02 (1.13E-05)
1.41E-01 (1.56E-04)
2.54E-02 (1.27E-05)
2.25E-02 (2.12E-06)
6.87E-02 (2.26E-05)
4.67E-01 (7.54E-01)
1.40E-01 (3.54E-05)
1.02E-01 (7.50E-04)
5.18E-01 (3.23E-02)
2.30E-+00 (2.39E-01)
3.52E+00 (1.36E-+00)
4.23E+00 (1.49E+00)
17/3/15

CTAEA
IGD
1.54E-02 (1.77E-05)
5.31E-02 (7.78E-06)
1.26E-01 (2.04E-03)
1.42E-01 (1.13E-03)
2.05E-01 (2.44E-02)
4.10E-02 (4.95E-06)
1.65E-01 (6.36E-05)
3.59E-01 (1.27E-04)
4.49E-01 (1.41E-05)
6.32E-01 (9.33E-04)
5.21E-02 (3.65E-03)
2.81E+00 (4.74E-01)
3.04E+00 (1.16E+00)
1.50E+00 (3.65E-01)
1.53E+00 (1.24E+00)
4.10E-02 (6.15E-05)
1.65E-01 (9.19E-05)
3.59E-01 (5.66E-05)
4.57E-01 (0.00E-+00)
6.32E-01 (1.98E-04)
5.22E-03 (2.62E-04)
6.67E-02 (4.29E-03)
4.43E-01 (9.79E-03)
4.06E-01 (5.14E-02)
3.73E-01 (1.01E-01)
8.16E-02 (7.54E-02)
3.82E+00 (2.40E-01)
2.42E+00 (1.59E-01)
2.25E+00 (1.30E-01)
2.33E+00 (3.37E-02)
6.05E-02 (2.72E-04)
2.86E-01 (4.07E-03)
1.73E+00 (1.91E-02)
3.35E+00 (9.16E-01)
7.68E+00 (1.65E+00)
6/3/26

AGEMOEA
IGD
3.68E-02 (6.76E-05)
1.89E+00 (2.74E-05)
2.53E+00 (5.22E-05)
2.07E+00 (1.27E-05)
6.95E-01 (1.03E-05
5.31E-02 (4.17E-05
2.32E-01 (3.02E-05
4.25E-01 (7.25E-06
6.13E-01 (8.46E-05
6.39E-01 (4.68E-05
1.02E+00 (2.10E-05)
1.33E+01 (3.22E-06)
1.37E+01 (8.85E-05)
2.96E+01 (7.79E-05)
2.07E+01 (1.77E-05)
5.16E-02 (7.16E-05)
2.54E-01 (8.84E-06)
4.52E-01 (3.35E-05)
5.63E-01 (6.92E-05)
)
)
)
)

)
)
)
)
)
)

5.79E-01 (8.86E-05

6.71E-03 (3.80E-05

1.24E-01 (2.92E-05

1.85E-01 (1.50E-05

3.32E-01 (4.52E-05)
5.24E-01 (2.14E-05
5.70E-03 (3.10E-06
7.24E+00 (4.22E-05)
7.50E+00 (2.72E-05)
8.25E+00 (1.23E-05)
7.01E+00 (4.99E-05)
4.29E-02 (5.31E-05)
2.43E-01 (8.59E-05)
6.06E-01 (3.00E-06)
1.11E+00 (2.43E-05
2.43E+00 (8.12E-05

9/2/24

)
)

)
)

applications, a reference set for the real-life problem was used for computing the IGD and HV,

which was formed with the non-dominated solutions resulting from the union of all the

approximation sets to the PF obtained by each algorithm at the end of every run.

5.1 Series-parallel system problem

The series-parallel system has subsystems in series and parallel combinations. Fig 6 shows an

example of a series-parallel system with five subsystems where the final reliability function is
divided into two parts. The first part contains subsystems 1 and 2, and the second part has sub-
systems 3, 4, and 5. For the first part, as subsystems are in series, therefore the product of R,
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Table 5. Performance comparison between MaAVOA and other algorithms in terms of GD value on DTLZs.

PROB.
DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

+/=1-

https://doi.org/10.1371/journal.pone.0284110.t005

OB]J.

3
5
8
10
15

10
15

10
15

10
15

10
15

10
15

10
15

MAAVOA
GD
1.48E-04 (5.87E-07)
1.06E-03 (9.26E-06)
3.05E-03 (2.76E-05)
4.23E-04 (2.90E-04)
1.59E-01 (1.94E-01)
3.97E-04 (1.34E-07)
3.41E-03 (6.36E-07)
9.64E-03 (2.83E-06)
5.26E-04 (1.02E-04)
1.08E-03 (6.25E-05)
4.32E-04 (3.40E-05)
3.47E-03 (1.22E-04)
2.65E-02 (1.75E-02)
4.66E-03 (1.13E-03)
9.93E-01 (5.21E-01)
3.95E-04 (2.83E-07)
3.41E-03 (2.76E-06)
9.65E-03 (1.19E-05)
4.34E-03 (3.62E-03)
8.78E-03 (6.95E-03)
1.41E-04 (9.89E-05)
2.15E-01 (1.43E-02)
1.93E-01 (2.11E-02)
1.89E-01 (3.49E-02)
1.67E-01 (8.93E-02)
9.91E-06 (1.72E-06)
2.44E-01 (5.19E-02)
2.73E-01 (6.31E-02)
2.15E-01 (3.05E-03)
5.20E-01 (8.22E-02)
5.49E-02 (7.42E-02)
1.07E-01 (3.70E-02)
7.00E-02 (7.73E-02)
3.08E-02 (2.05E-02)
6.87E-02 (3.74E-02)

NSGA3
GD

1.60E-04 (8.03E-06)
1.11E-03 (8.09E-05)
2.98E-03 (2.57E-05)
1.43E-03 (1.06E-03)
1.27E-03 (2.11E-04)
3.98E-04 (4.49E-06)
3.40E-03 (8.49E-07)
9.63E-03 (5.23E-06)
1.09E-03 (2.31E-05)
1.86E-03 (1.41E-04)
1.20E-03 (1.57E-05)
3.53E-03 (1.53E-04)
3.73E-02 (1.19E-02)
5.88E-03 (2.86E-04)
1.54E-02 (1.42E-02)
3.98E-04 (8.13E-07)
3.40E-03 (6.22E-06)
9.60E-03 (6.22E-06)
2.82E-04 (9.56E-05)
2.84E-04 (1.29E-04)
5.57E-04 (3.98E-04)
1.97E-01 )
1.44E-01 )
1.75E-01 )
1.73E-01 )
9.83E-06 )
2.69E-01 )
3.42E-01 )

)

)

)

)

)

)

)

9.21E-03
1.47E-03
2.75E-02
3.55E-02
2.72E-08
3.52E-02
9.54E-03
2.65E-01 (3.34E-03
3.60E-01 (7.31E-02
2.43E-03 (3.79E-04
1.42E-02
2.15E-01 (1.01E-01
2.00E-01 (1.04E-01
2.10E-01 (7.14E-02
8/3/24

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(1.81E-03
(
(

UNSGA3
GD
1.56E-04 (4.57E-06)
1.05E-03 (3.18E-06)
3.26E-03 (2.47E-04)
3.51E-04 (7.11E-05)
1.31E-03 (2.41E-04)
3.95E-04 (2.40E-06)
3.40E-03 (2.83E-06)
9.62E-03 (4.52E-05)
1.06E-03 (2.35E-05)
2.08E-03 (2.23E-04)
2.31E-03 (1.56E-03)
8.89E-03 (5.44E-03)
5.91E-02 (5.97E-02)
3.92E-03 (1.23E-03)
2.60E-01 (8.41E-02)
3.95E-04 (2.26E-07)
3.39E-03 (5.30E-06)
9.58E-03 (3.25E-06)
3.74E-04 (1.60E-05)
2.38E-04 (5.08E-05)
3.55E-04 (9.25E-05)
2.05E-01 (5.47E-03)
1.56E-01 (4.34E-03)
1.66E-01 (4.54E-02)
1.97E-01 (3.26E-02)
3.07E-03 (4.33E-03)
2.21E-01 (1.95E-02)
3.46E-01 (1.82E-03)
2.79E-01 (1.34E-03)
3.40E-01 (4.99E-03)
2.09E-03 (2.10E-04)
1.39E-02 (3.14E-04)
1.60E-01 (1.47E-01)
2.33E-01 (6.17E-02)
1.77E-01 (5.87E-02)
8/3/24

(
(
(
(
(
(

~|~|~ |~ |~ |~

MOEAD
GD
1.89E-04 (3.82E-05)
1.06E-03 (1.07E-05)
2.84E-03 (5.30E-05)
9.50E-04 (1.22E-04)
5.08E-03 (6.41E-04)
3.94E-04 (2.31E-06)
3.41E-03 (2.62E-06)
9.14E-03 (7.78E-07)
5.58E-05 (1.58E-06)
7.56E-04 (6.30E-04)
1.58E-03 (4.77E-04)
4.12E-03 (7.42E-04)
6.47E-03 (4.38E-03)
3.19E-03 (1.36E-05)
5.61E-04 (2.13E-04)
2.87E-04 (2.59E-05)
2.69E-03 (9.75E-04)
8.22E-03 (1.30E-03)
1.82E-03 (6.69E-04)
3.74E-03 (2.22E-03)
5.56E-06 (4.14E-08)
2.50E-02 (1.97E-03)
3.84E-03 (1.13E-05)
2.06E-03 (3.56E-04)
9.36E-07 (7.53E-08)
4.98E-06 (4.30E-07)
2.84E-02 (6.20E-03)
2.63E-06 (1.23E-07)
-5.00E-01 (7.07E-01)
1.04E-06 (1.95E-07
5.13E-03 (8.21E-04
3.53E-03 (1.49E-05
1.44E-02 (4.89E-04
1.59E-02 (3.75E-05
8.06E-02 (1.67E-02
19/3/15

— = | D=

CTAEA
GD
1.51E-04 (3.51E-06)
9.71E-04 (2.58E-05)
3.31E-03 (2.27E-04)
2.26E-03 (5.93E-05)
5.17E-02 (6.26E-02)
3.94E-04 (7.25E-06)
3.25E-03 (3.18E-06)
7.62E-03 (5.29E-04)
5.52E-03 (3.15E-04)
9.81E-03 (6.26E-05)
2.17E-03 (4.40E-04)
2.89E-01 (3.24E-02)
4.76E-01 (2.10E-01)
2.40E-01 (7.22E-02)
6.92E-01 (9.10E-01)
3.95E-04 (3.73E-06)
3.26E-03 (2.33E-05)
9.05E-03 (1.02E-04)
6.50E-04 (3.58E-05)
1.01E-03 (4.58E-04)
1.24E-03 (1.60E-03)
1.03E-01 (3.89E-04)
1.22E-01 (2.43E-03)
1.02E-01 (1.65E-03)
1.30E-01 (7.00E-04)
2.03E-01 (2.72E-02)
3.66E-01 (1.08E-02)
2.98E-01 (9.92E-03)
2.05E-01 (2.12E-02)
2.71E-01 (1.42E-02)
2.34E-03 (1.34E-04)
6.59E-03 (1.29E-03)
2.07E-02 (1.10E-04)
5.07E-02 (1.07E-02)
3.18E-01 (1.75E-01)
4/3/28

(
(
(
(
(
(

~ |~~~ |~ |~

AGEMOEA
GD
2.63E-02 (5.43E-05)
7.27E+01 (5.94E-05)
1.17E+02 (5.07E-05)
1.42E+02 (2.81E-05)
1.63E+02 (8.71E-05)
4.07E-02 (6.16E-05
2.01E-01 (3.15E-06
1.04E+00 (7.08E-05)
1.22E+00 (7.78E-05)
1.39E+00 (3.30E-05)
(

(

)
)

1.02E+00 (5.00E-05)
1.34E+02 (3.30E-05)
2.90E+02 (5.78E-05)
3.94E+02 (3.26E-05)
3.49E+02 (2.51E-05)
3.97E-02 (1.47E-05
3.63E-01 (2.12E-05
1.14E+00 (5.94E-05)
1.50E+00 (5.47E-05)
1.88E-+00 (3.10E-06)
2.15E-03 (6.43E-05)
2.05E+00 (7.52E-05
5.36E+00 (1.74E-05
9.10E-+00 (4.80E-06
1.83E+01 (1.30E-05
5.46E-03 (6.15E-05)
1.92E+01 (1.03E-05)
4.81E+01 (5.11E-05)
8.11E+01 (4.96E-05)
2.66E+02 (3.34E-05)
2.01E-02 (5.70E-05
1.40E-01 (2.25E-05
3.40E-01 (6.73E-05
8.69E-01 (1.78E-05
3.25E+00 (8.36E-05)
10/3/22

)
)

N~~~

—~ |~ |~

)
)
)
)

( )
( )
( )
( )

and R, is used. For the second part, R; and R, are parallel, so the function will be R3+R;—R3R,.
The combination of R; and R are in series with Rs. Therefore, the product of (R3+R4—R3R4) and

Rs is used in the final function as shown in Eq (26). Volume and weight increase with extra com-

ponents under permissible limits and restrictions. In Eq (27), w; represents the weight and v; rep-

resents the volume of component i with # number of redundant components. As shown in Eq

Bi
(28), system cost C; also contains two additional factors o, (f 1000 ) and exp (0.25n;), where the

log(r;)

first one represents the cost of a single component i in the subsystem, and the second one is due

to the cost of interconnecting hardware. In Eq (29), for system weight W, there is an extra factor
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Table 6. Performance comparison between MaAVOA and other algorithms in terms of HV value on DTLZs.

MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA
PROB. | OBJ. HV HV HV HV HV HV
DTLZ1 3 8.50E-01 (0.00E+00) | 8.49E-01 (4.10E-04) | 8.50E-01 (2.97E-04) | 8.48E-01 (1.34E-03) | 8.50E-01 (2.69E-04) | 8.42E-01 (1.45E-05)
5 9.79E-01 (2.12E-05) | 9.79E-01 (6.58E-04) | 9.79E-01 (5.59E-04) | 9.79E-01 (5.09E-04) | 9.79E-01 (2.47E-04) | 0.00E-+00 (2.29E-05)
8 9.97E-01 (2.76E-04) | 9.97E-01 (8.49E-05) | 9.97E-01 (1.41E-05) | 9.97E-01 (8.49E-05) | 9.96E-01 (3.82E-04) | 0.00E+00 (2.59E-05)
10 1.00E+00 (2.12E-05) | 1.00E+00 (1.41E-05) | 1.00E+00 (4.95E-05) | 9.99E-01 (3.54E-05) | 1.00E+00 (7.07E-06) | 0.00E+00 (3.18E-05)
15 3.84E-01 (5.43E-01) | 9.99E-01 (2.05E-04) | 9.99E-01 (1.70E-04) | 8.95E-01 (1.52E-02) | 9.99E-01 (1.70E-04) | 5.56E-01 (3.76E-05)
DTLZ2 3 5.71E-01 (5.66E-05) | 5.71E-01(7.07E-06) | 5.71E-01(2.12E-05) | 5.71E-01 (1.41E-05) | 5.71E-01 (0.00E+00) | 5.55E-01 (1.14E-05)
5 8.12E-01 (4.10E-04) | 8.11E-01 (1.26E-03) | 8.12E-01 (3.96E-04) | 8.12E-01(9.19E-05) | 8.12E-01 (1.13E-04) | 7.10E-01 (5.01E-05)
8 9.35E-01 (1.98E-04) | 9.33E-01 (9.97E-04) | 9.32E-01 (8.77E-04) | 9.36E-01 (3.75E-04) | 9.35E-01 (1.41E-04) | 7.22E-01 (3.72E-05)
10 9.74E-01 (3.32E-04) | 9.72E-01 (2.26E-04) | 9.72E-01 (1.91E-04) | 9.76E-01 (2.33E-04) | 9.74E-01 (9.90E-05) | 4.19E-01 (6.12E-05)
15 9.89E-01 (2.97E-04) | 9.88E-01 (4.10E-04) | 9.87E-01 (3.32E-04) | 9.90E-01 (2.05E-04) | 9.63E-01 (2.24E-03) | 6.03E-01 (8.50E-05)
DTLZ3 3 5.68E-01 (1.98E-03) | 5.53E-01 (6.36E-05) | 5.57E-01 (6.14E-03) | 5.47E-01(9.22E-03) | 5.37E-01 (7.75E-03) | 0.00E+00 (2.13E-06)
5 8.03E-01 (1.09E-02) | 8.00E-01 (2.66E-03) | 7.70E-01 (3.32E-02) | 7.80E-01 (2.14E-02) | 0.00E+00 (0.00E+00) | 0.00E+00 (6.07E-05)
8 8.55E-01 (3.55E-02) | 7.79E-01 (5.99E-02) | 4.00E-01 (5.65E-01) | 5.10E-01 (5.76E-01) | 0.00E+00 (0.00E+00) | 0.00E+00 (2.57E-05)
10 9.63E-01 (1.16E-03) | 9.53E-01 (4.39E-03) | 9.60E-01 (5.69E-03) | 1.09E-01 (1.18E-03) | 1.51E-03(2.13E-03) | 0.00E+00 (7.48E-05)
15 | 0.00E+00 (0.00E+00) | 9.48E-01 (4.23E-02) | 0.00E+00 (0.00E+00) | 8.75E-02 (3.67E-04) | 4.44E-01 (6.28E-01) | 0.00E+00 (8.76E-05)
DTLZ4 3 5.71E-01 (7.07E-06) | 5.71E-01 (1.41E-04) | 5.71E-01 (0.00E+00) | 3.45E-01 (4.95E-05) | 5.71E-01 (2.12E-05) | 5.55E-01 (2.65E-05)
5 8.12E-01 (6.36E-04) | 8.12E-01 (1.20E-04) | 8.12E-01(5.73E-04) | 5.69E-01 (3.45E-01) | 8.12E-01 (1.27E-04) | 7.02E-01 (8.29E-05)
8 9.36E-01 (1.91E-04) | 9.35E-01 (2.83E-05) | 9.35E-01 (4.81E-04) | 9.17E-01 (2.64E-02) | 9.36E-01 (1.98E-04) | 7.12E-01 (4.98E-05)
10 9.75E-01 (5.66E-05) | 9.75E-01 (4.24E-05) | 9.75E-01 (1.27E-04) | 8.71E-01 (3.99E-02) | 9.75E-01 (4.03E-04) | 7.25E-01 (5.04E-05)
15 9.90E-01 (7.78E-05) | 9.90E-01 (1.13E-04) | 9.90E-01 (1.34E-04) | 9.48E-01(1.30E-02) | 9.90E-01 (9.19E-05) | 8.18E-01 (1.62E-05)
DTLZ5 3 1.84E-01 (1.59E-03) | 1.86E-01 (2.33E-04) | 1.86E-01 (3.46E-04) | 1.87E-01(1.41E-05) | 1.99E-01 (2.12E-05) | 1.98E-01 (6.66E-06)
5 6.10E-02 (6.16E-03) | 5.13E-02 (1.09E-03) | 5.28E-02(3.40E-02) | 1.27E-01 (4.31E-04) | 1.13E-01(7.87E-03) | 1.11E-01 (1.23E-05)
8 2.61E-02 (2.92E-02) | 1.47E-05(2.08E-05) | 4.62E-04 (6.53E-04) | 1.04E-01(1.13E-04) | 9.08E-03 (1.28E-02) | 9.67E-02 (1.12E-05)
10 1.61E-02 (2.19E-02) | 1.54E-05(1.93E-05) | 2.04E-05(2.89E-05) | 9.96E-02 (6.08E-05) | 1.19E-04 (1.68E-04) | 9.19E-02 (7.83E-05)
15 9.10E-02 (8.10E-04) | 2.40E-02 (3.40E-02) | 0.00E+00 (0.00E+00) | 9.43E-02 (2.72E-04) | 5.61E-02 (2.95E-03) | 9.12E-02 (8.88E-05)
DTLZ6 3 1.86E-01 (1.13E-04) | 1.85E-01 (1.59E-03) | 1.84E-01 (1.35E-03) | 1.87E-01 (7.07E-06) | 1.30E-01 (5.86E-02) | 2.00E-01 (4.32E-05)
5 0.00E-+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 1.27E-01 (4.45E-04) | 0.00E+00 (0.00E+00) | 0.00E-+00 (3.08E-05)
8 4.99E-04 (7.06E-04) | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 1.04E-01(2.33E-04) | 0.00E+00 (0.00E+00) | 0.00E-+00 (3.69E-05)
10 | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 4.50E-01 (7.78E-01) | 0.00E+00 (0.00E+00) | 0.00E+00 (5.81E-06)
15 | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 0.00E-+00 (0.00E+00) | 9.44E-02 (2.33E-04) | 0.00E+00 (0.00E+00) | 0.00E+00 (5.23E-05)
DTLZ7 3 2.76E-01 (6.36E-05) | 2.76E-01 (1.34E-04) | 2.76E-01 (3.89E-04) | 2.63E-01(2.83E-04) | 2.78E-01 (3.61E-04) | 2.76E-01 (7.61E-05)
5 2.50E-01 (3.87E-03) | 2.45E-01 (3.82E-03) | 2.46E-01 (4.84E-03) | 1.42E-01(1.17E-03) | 2.15E-01 (3.44E-03) | 1.97E-01 (7.07E-05)
8 1.83E-01 (6.51E-04) | 1.22E-01 (3.69E-02) | 1.54E-01 (2.19E-03) | 5.78E-04 (2.77E-04) | 7.74E-02 (1.16E-02) | 3.17E-02 (5.06E-05)
10 1.75E-01 (4.45E-04) | 1.52E-01 (5.59E-04) | 126E-01(1.07E-02) | 1.12B-04 (1.47BE-04) | 3.38E-02 (4.79E-02) | 3.73E-03 (7.89E-05)
15 1.49E-01 (3.32E-03) | 9.76E-02 (1.23E-02) | 1.04E-01 (2.17E-02) | 2.98B-06 (4.21E-06) | 1.75E-10(2.21E-10) | 4.55E-12 (8.73E-06)
+ = /- 8/4/24 9/5/22 17/0/18 11/5/19 23/5/7

https://doi.org/10.1371/journal.pone.0284110.t006

exp (0.25n;) for the interconnecting hardware. The mathematical formulation of the problem is a

nonlinear mixed-integer programming problem given as follows:

maxf(r,n) =1— (1 —RR,)(1 - (R, + R, — RyR,) (26)
min Vs(n) = ?;min?n? (27)
i Gt = S (200 o, 4 exp (0.95m,) (28)
min r,n)=>. o|l———] [n +ex .25n,
S ’ i=m ™1 lOg(ri) i p i
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Table 7. The performance metrics comparison between MaAVOA and other algorithms in terms of IGD value on DTLZs in the case of the 100000 function

evaluations.

PROB.

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

+ =1/-

https://doi.org/10.1371/journal.pone.0284110.t007

OBJ

10
15

10
15

10
15

10
15

10
15

10
15

10
15

MAAVOA
IGD

1.54E-02 (4.24E-06)
5.32E-02 (3.74E-04)
1.22E-01 (4.74E-04)
2.21E-01 (2.69E-03)
7.38E-01 (4.16E-01
4.09E-02 (0.00E+0
1.65E-01 (2.12E-05
3.59E-01 (7.78E-05
4.61E-01 (2.40E-04
6.34E-01 (2.05E-04
4.10E-02 (4.24E-06)
1.67E-01 (3.63E-03)
1.99E+0 (1.76E+0)
3.88E-+0 (2.83E+0)
6.26E-+0 (4.99E+0)
4,09E-02 (0.00E+0)
1.65E-01 (2.12E-05)
3.59E-01 (6.08E-04)
4.58E-01 (0.00E+0)
6.33E-01 (9.19E-05
2.97B-02 (2.11E-03
1.18E-01 (7.38E-03
1.24E-01 (1.56E-04

(

(

(

)
)

( )
( )
( )
( )

)
)
)
)

1.46E-01 (2.64E-02)
3.55E-01 (2.18E-01)
2.58E-02 (1.04E-03)
1.51E+0 (1.51E-02)
1.83E+0 (1.00E-01)
3.37E+0 (6.65E-01)
7.36E-01 (1.52E-02)
7.32E-02 (6.20E-04)
3.71E-01 (1.83E-02)
1.17E+0 (6.36E-04)
2.00E+0 (9.33E-03)
8.62E+0 (3.91E-02)

NSGA3
IGD

1.54E-02 (3.54E-06)
5.27E-02 (2.26E-05)
1.21E-01 (4.24E-05)
1.42E-01 (5.37E-04)
2.24E-01 (3.59E-03)
4.09E-02 (2.26E-05)
1.65E-01 (7.07E-06)
3.59E-01 (8.49E-05)
4.61E-01 (5.37E-04)
6.34E-01 (7.07E-06)
4.14E-02 (2.80E-04)
1.93E-01 (3.82E-02)
4.25E-01 (7.32E-02)
5.44E-01 (8.77E-02)
6.51E-01 (4.12E-03)
4.09E-02 (3.54E-06)
1.65E-01 (7.07E-06)
3.59E-01 (7.78E-05)
4.57E-01 (3.11E-04)
6.32E-01 (7.07E-06)
2.94E-02 (1.92E-04)
1.41E-01 (2.22E-02)
3.51E-01 (5.66E-02)
3.98E-01 (2.21E-02)
3.70E-01 (1.03E-01)
2.80E-02 (8.90E-04)
2.09E+0 (8.95E-02)
2.63E+0 (2.80E-01)
4.86E-+0 (4.93E-02)
1.54E+0 (1.41E-01)
7.21E-02 (6.83E-04)
3.61E-01 (2.55E-04)
1.28E+0 (3.88E-02)
4.78E-01 (2.09E+0)
8.37E+0 (2.64E-02)
18/3/14

stV,—V<0,C,—C<O0,W,—W<0with0<r, > 1,

UNSGA3
1IGD

1.54E-02 (1.70E-05
5.29E-02 (3.17E-04
1.23E-01 (1.91E-04
1.43E-01 (4.10E-04
2.16E-01 (9.57E-03
4.09E-02 (4.95E-06
1.65E-01 (2.12E-05
3.59E-01 (3.54E-05
4.61E-01 (4.95E-05
6.34E-01 (1.27E-04
4.12E-02 (5.30E-05)
1.67E-01 (8.63E-04)
9.62E-01 (2.87E-01)
5.06E-01 (3.45E-02)
1.03E+0 (5.35E-01)
4.09E-02 (3.54E-06
1.65E-01 (2.12E-05
3.59E-01 (6.36E-05
4.57E-01 (3.54E-05
6.32E-01 (7.07E-06
2.90E-02 (4.62E-04
1.90E-01 (6.70E-02
2.91E-01 (3.10E-02
3.84E-01 (8.56E-02)
4.35E-01 (2.64E-02)
3.21E-02 (4.80E-03
2.01E+0 (3.20E-02
2.74E+0 (2.15E-02
4.98E+0 (1.68E-02
1.59E+0 (2.20E-01
7.23E-02 (6.60E-04
3.56E-01 (1.46E-03
1.27E+0 (1.33E-01
1.93E+0 (5.66E-03
8.47E+0 (3.36E-02
18/3/14

Rt Nl N2 NS N N N2 N Rt N2l a4

)
)
)
)
)
)
)
)

— = = =

= |

— = =

MOEAD
IGD

1.54E-02 (1.27E-05)
5.30E-02 (1.20E-04)
1.21E-01 (7.07E-06)
1.29E-01 (7.85E-04)
1.56E-01 (6.74E-03)
4.09E-02 (7.07E-07)
1.65E-01 (7.07E-06)
3.59E-01 (0.00E+0)
4.58E-01 (8.49E-05)
6.32E-01 (2.83E-05)
4.13E-02 (3.54E-04)
1.69E-01 (3.27E-03)
3.61E-01 (1.13E-04)
1.16E+0 (4.24E-04)
1.27E+0 (2.43E-02)
2.91E-01 (3.54E-01)
6.37E-01 (3.25E-01)
5.16E-01 (2.22E-01)
7.14E-01 (2.05E-04)
7.80E-01 (1.28E-01)
2.54E-02 (7.07E-07)
2.25E-02 (1.16E-04)
6.87E-02 (8.49E-06)
6.62E-02 (3.46E-05)

(

(

(

(

(

(

(

(
(

1.41E-01 (2.83E-05)
2.55E-02 (2.12E-06)
2.25E-02 (2.83E-06)
6.86E-02 (2.40E-05)
6.62E-02 (9.90E-06)
1.40E-01 (1.20E-04)
1.02E-01 (2.76E-04)
4.94E-01 (8.06E-04)
2.84E+0 (9.98E-01)
2.99E+0 (6.27E-01)
3.44E+0 (4.02E-01)
12/3/20

CTAEA
IGD

1.54E-02 (3.54E-06)
5.32E-02 (1.20E-04)
1.21E-01 (3.61E-04)
1.43E-01 (1.46E-03)
1.99E-01 (3.30E-02)
4.09E-02 (3.54E-06)
1.65E-01 (4.24E-05)
3.58E-01 (1.56E-04)
4.50E-01 (1.57E-03)
6.30E-01 (1.43E-03)
4.24E-02 (6.94E-04)
2.96E+0 (2.76E-01)
2.51E+0 (1.85E+0)
3.24E+0 (9.70E-01)
6.40E-01 (4.70E-03)
4.10E-02 (8.49E-06)
1.65E-01 (1.70E-04)
3.59E-01 (9.19E-05)
4.56E-01 (9.19E-05)
6.32E-01 (1.34E-04)
5.33E-03 (9.98E-05)
7.23E-02 (1.33E-02)
4.31E-01 (1.27E-01)
3.96E-01 (4.37E-02)
4.09E-01 (2.47E-03)
2.60E-02 (2.10E-04)
3.96E+0 (1.34E-01)
1.75E+0 (1.94E-01)
3.80E+0 (2.79E-01)
1.07E+0 (9.08E-02)
6.30E-02 (2.41E-03)
2.80E-01 (9.72E-03)
1.58E+0 (2.92E-01)
3.73E+0 (1.49E+0)
8.83E+0 (1.07E-01)
23/3/9

min W (n) = w;n,exp (0.25n,)

AGEMOEA
1IGD

3.67E-02 (6.90E-05)
2.67E-01 (3.24E-05)
4.96E-01 (7.53E-05)
6.84E-01 (2.56E-05)
4.80E-01 (4.75E-05)
5.37E-02 (5.82E-05)
2.49E-01 (1.57E-05)
3.97E-01 (3.86E-06)
5.29E-01 (3.89E-05)
5.64E-01 (3.93E-05)
4.99E-02 (5.39E-05)
5.22E+00 (2.26E-05)
1.19E+01 (8.72E-05)
1.80E+01 (5.49E-05)
5.58E-+00 (4.74E-05)
5.40E-02 (2.31E-05)
2.62E-01 (4.26E-05)
4.37E-01 (4.19E-05)
5.31E-01 (7.95E-05)
5.68E-01 (7.30E-05)
6.79E-03 (2.11E-05)
1.34E-01 (6.16E-05)
2.58E-01 (3.40E-05)
2.86E-01 (3.32E-05)
3.87E-01 (7.44E-05)
6.33E-03 (7.90E-05)
4.45E+00 (6.65E-06)
6.71E+00 (8.17E-05)
6.91E-+00 (8.40E-05)
6.41E+00 (6.74E-05)
4.34E-02 (1.57E-05)
2.27E-01 (8.42E-05)
5.53E-01 (6.65E-05)
9.57E-01 (3.62E-05)
2.12E+00 (8.98E-05)
11/0/24

(
(
(
(
(
(
(
(
(
(

(
(
(
(
(
(

ni€Z+,1§izm

where R,(n,) = 1 — (1 —r,)" for the i subsystem, c; and f; are constraints representing the phys-
ical characteristic of each component at stage i.
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Table 8. The performance metrics comparison between MaAVOA and other algorithms in terms of GD value on DTLZs in the case of the 100000 function

evaluations.

PROB.
DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

+/ = /-

https://doi.org/10.1371/journal.pone.0284110.t008

OB]J.

10
15

10
15

10
15

10
15

10
15

10
15

10
15

MAAVOA
GD
1.48E-04 (4.60E-07)
1.04E-03 (9.62E-06)
2.99E-03 (2.12E-07)
1.93E-02 (2.01E-02)
1.87E-01 (1.24E-01)
3.96E-04 (3.53E-06)
3.40E-03 (4.67E-06)
9.64E-03 (8.13E-06)
1.46E-03 (1.40E-04)
1.12E-03 (2.46E-04)
4.09E-04 (5.69E-06)
3.67E-03 (3.90E-04)
2.24E-01 (1.43E-01)
4.52E-01 (2.17E-01)
1.14E+0 (1.02E+0)
3.97E-04 (1.62E-06)
3.39E-03 (1.31E-05)
1.05E-02 (1.23E-03)
7.15E-03 (1.29E-03)
5.02E-03 (2.49E-03)
6.83E-04 (8.02E-04)
2.03E-01 (8.06E-04)
1.96E-01 (2.96E-02)
1.75E-01 (3.62E-03)
1.62E-01 (8.98E-02)
1.04E-05 (1.36E-06)
1.94E-01 (5.72E-03)
2.89E-01 (5.09E-02)
2.67E-01 (1.74E-02)
6.01E-01 (2.62E-02)
3.89E-03 (2.54E-03)
6.78E-02 (4.57E-02)
5.03E-02 (3.03E-02)
1.53E-02 (2.35E-04)
1.22E-01 (4.68E-02)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

~ A~~~ lAlAl~A A~~~ |~

NSGA3
GD

1.50E-04 (6.01E-07)
1.11E-03 (6.95E-05
2.97E-03 (3.39E-06
4.40E-04 (3.09E-05
6.88E-04 (4.26E-04
4.11E-04 (2.05E-05
3.40E-03 (4.95E-07
9.63E-03 (1.87E-05
1.78E-03 (1.31E-04
1.01E-03 (3.13E-05
5.03E-04 (1.04E-04
1.05E-02 (9.73E-03)
4.17E-02 (4.28E-02)
3.56E-02 (3.80E-02
1.90E-02 (1.71E-02
3.97E-04 (2.92E-06
3.40E-03 (1.41E-07
9.63E-03 (9.69E-06
4.50E-04 (1.73E-05
3.00E-04 (1.08E-04
1.26E-03 (1.42E-04
2.21E-01 (2.17E-02)
1.55E-01 (7.88E-03)
1.59E-01 (1.07E-02)
1.90E-01 (5.05E-02)
1.03E-05 (1.05E-06)
2.50E-01 (3.32E-04)
2.76E-01 (1.23E-02)

)

)

)

)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

3.53E-01 (6.70E-03
2.23E-01 (1.76E-02
2.08E-03 (5.29E-05
1.31E-02 (4.63E-04
1.71E-01 (1.18E-01
-3.99E-01 (8.50E-01)
2.08E-01 (1.76E-02)
19/3/13

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

UNSGA3

GD
8.49E-03 (1.18E-02)
1.05E-03 (2.70E-05)
3.62E-03 (8.65E-04)
1.23E-03 (5.56E-04)
1.07E-03 (7.70E-04)
3.98E-04 (4.52E-06)
3.40E-03 (4.74E-06)
9.62E-03 (6.58E-06)
1.64E-03 (1.19E-04)
1.30E-03 (3.02E-04)
4.83E-04 (1.67E-05)
3.44E-03 (1.74E-04)
8.81E-02 (9.64E-04)
1.75E-02 (7.18E-03)
6.64E-02 (5.20E-02)
3.96E-04 (2.58E-06)
3.39E-03 (5.66E-06)
9.62E-03 (7.00E-06)
4.88E-04 (2.31E-05)
1.58E-04 (1.65E-05)
4.66E-04 (6.52E-05)
2.09E-01 (4.29E-03)
1.52E-01 (9.40E-03)
1.80E-01 (3.22E-02)
1.93E-01 (2.46E-03)
9.97E-06 (8.00E-07)
2.43E-01 (2.14E-02)
2.79E-01 (1.09E-02)
3.60E-01 (2.26E-04)

(

(

(

(

(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

2.76E-01 (8.84E-02)
2.28E-03 (3.59E-04)
1.40E-02 (1.01E-03)
1.95E-01 (1.28E-02)
1.77E-01 (1.17E-02)
3.00E-01 (4.20E-02)
19/3/13

MOEAD

GD
1.49E-04 (2.02E-06)
1.06E-03 (7.42E-06
2.87E-03 (4.12E-05
1.52E-03 (1.09E-04
4.27E-03 (5.64E-04
3.95E-04 (6.01E-07
3.41E-03 (2.55E-06
9.15E-03 (3.54E-06
1.39E-04 (5.73E-07
9.63E-05 (1.30E-06
5.25E-04 (1.30E-04
3.96E-03 (4.89E-04
9.24E-03 (2.06E-05
2.69E-03 (7.07E-07
1.17E-03 (1.09E-03
3.45E-04 (7.11E-05
2.40E-03 (7.42E-04
7.24E-03 (2.69E-03
2.36E-03 (9.53E-04
3.10B-03 (1.27E-03
5.56E-06 (6.26E-08
2.18E-02 (2.70E-03
3.73E-03 (4.13E-04
1.22E-03 (2.75E-04
9.04E-07 (7.78E-08
5.39E-06 (1.45E-07
3.29E-02 (3.77E-04
2.49E-06 (5.44E-07
1.91E-06 (4.63E-08

(

(

(

(

(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

7.23E-07 (1.40E-07
4.45E-03 (1.72E-03
3.54E-03 (1.23E-05
1.46E-02 (3.90E-04
1.59E-02 (1.56E-04
9.43E-02 (2.17E-03
9/3/22

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

CTAEA
GD

1.48E-04 (1.90E-06)
9.42E-04 (6.21E-06)
2.48E-03 (5.69E-05)
2.70E-03 (2.60E-04)
4.00E-02 (4.13E-03)
3.97E-04 (3.73E-06)
3.25E-03 (4.17E-05)
8.82E-03 (2.79E-05)
6.77B-03 (2.65E-04)
1.01E-02 (3.46E-04)
5.67E-04 (1.11E-04)
3.24E-01 (2.47E-02)
3.29E-01 (2.16E-01)
6.60E-01 (5.83E-02)
5.73E-02 (1.25E-02)
3.92E-04 (1.70E-06)
3.23E-03 (1.11E-05)
9.15E-03 (5.52E-05)
1.17E-03 (4.67E-05)
3.15E-04 (1.63E-04)
2.36E-04 (1.98E-05)
1.04E-01 (1.29E-03)
1.24E-01 (2.04E-03)
9.81E-02 (1.05E-03)
1.33E-01 (4.18E-03)
1.96E-01 (8.44E-02)
3.72E-01 (9.11E-03)
2.31E-01 (2.07E-02)
3.00E-01 (1.40E-02)
2.12E-01 (7.59E-03)

(

(

(

(
(
(
(
(
(

~ |~~~ |~ |~

2.37E-03 (4.63E-05)
6.57E-03 (1.81E-03)
2.25E-02 (3.10E-03)
6.53E-02 (1.19E-02)
3.28E-01 (3.04E-04)
25/3/7

AGEMOEA
GD
2.52E-02 (6.62E-06)
3.49E+01 (4.20E-05)
9.04E+01 (8.53E-05)
1.35E+02 (1.70E-05)
1.36E+02 (7.86E-05)
4.04E-02 (1.16E-05)
2.88E-01 (4.83E-05)
9.02E-01 (6.16E-05)
1.25E+00 (5.42E-05)
1.39E+00 (4.15E-05)
3.78E-02 (5.89E-05)
6.21E+01 (5.93E-05)
2.56E+02 (5.27E-05)
4.41E+02 (1.53E-05)
3.40E+02 (1.97E-05)
3.98E-02 (4.55E-05
3.43E-01 (6.73E-05
1.10E+00 (1.81E-05)
1.37E+00 (6.61E-05)
1.80E+00 (2.11E-06)
2.61E-03 (2.46E-05)
2.00E-+00 (8.54E-05)
5.00E+00 (5.03E-05)
8.82E+00 (8.37E-05)
2.71E+01 (3.01E-05)
2.15E-02 (7.69E-05)
1.30E+01 (8.74E-05)
4.52E+01 (4.85E-05)
7.28E+01 (8.10E-05)
2.31E+02 (7.15E-05)
2.03E-02 (1.47E-05
1.25E-01 (5.72E-05
2.36E-01 (3.71E-05
5.56E-01 (7.95E-05
1.84E+00 (3.64E-06)
0/0/35

(
(

—~ |~ |~

—~

)
)

—~

—~ |~ |~

( )
( )
( )
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Table 14 provides the input data for a series-parallel system where r;, @; and f3; are uniformly

generated from the ranges [0.95,1.0], [6,10], [1,5], and [11,20] respectively.

The algorithms are terminated after 250, 500, 1000, 2000, 4000, and 5000 generations. The
engineering problem has 4 objective functions. Accordingly, the population size is chosen to
be 969 (Nr, = 16, Nr, = 0, and nRef = 969).

In Table 15, the values of the performance measures for a series-parallel system with five
subsystems are presented. NSGA-III and U-NSGA-III have performed better in terms of GD
and IGD. In terms of HV, MaAVOA is better. CTAEA and AGEMOEA have the worst perfor-
mance in all metrics. Fig 7 shows the final solution set obtained for all algorithms.
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Table 9. The performance metrics comparison between MaAVOA and other algorithms in terms of HV value on DTLZs in the case of the 100000 function

evaluations.

PROB.
DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

+ =1/-

https://doi.org/10.1371/journal.pone.0284110.t009

OB]J.

10
15

10
15

10
15

10
15

10
15

10
15

10
15

MAAVOA
HV
8.50E-01 (8.49E-05)
9.79E-01 (4.67E-04)
9.97E-01 (1.41E-05)
9.20E-01 (5.58E-02)
1.47E-01 (2.08E-01)
5.71E-01 (1.41E-05)
8.12E-01 (7.71E-04)
9.34E-01 (2.33E-04)
9.71E-01 (4.67E-04)
9.89E-01 (3.25E-04)
5.69E-01 (6.36E-05)
7.96E-01 (1.76E-02)
1.66E-01 (2.34E-01)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
5.71E-01 (3.54E-05)
8.12E-01 (2.90E-04)
9.36E-01 (2.69E-04)
9.75E-01 (7.78E-05)
9.90E-01 (6.36E-05)
1.83E-01 (1.41E-03)
6.65E-02 (4.82E-03)
4.37E-02 (2.17E-02)
8.55E-02 (1.08E-02)
4.53E-02 (3.58E-02)
1.86E-01 (4.95E-05)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.76E-01 (2.12E-05)
2.47E-01 (1.56E-03)
1.83E-01 (1.56E-04)
1.75E-01 (2.88E-03)
1.46E-01 (1.62E-03)

NSGA3
HV

8.50E-01 (6.36E-05)
9.79E-01 (2.05E-04)
9.97E-01 (7.07E-06)
9.99E-01 (7.07E-06)
1.00E+0 (2.12E-05)
5.71E-01 (9.90E-05)
8.11E-01 (3.89E-04)
9.34E-01 (7.78E-05)
9.70E-01 (9.90E-05)
9.89E-01 (2.33E-04)
5.66E-01 (2.69E-03)
7.62E-01 (5.08E-02)
8.07E-01 (1.20E-01)
7.82E-01 (1.99E-01)
9.56E-01 (2.08E-02)
5.71E-01 (5.66E-05)
8.12E-01 (4.10E-04)
9.35E-01 (2.33E-04)
9.75E-01 (4.10E-04)
9.90E-01 (1.41E-05)
1.84E-01 (1.41E-05)
5.05E-02 (3.16E-03)
1.22E-04 (1.59E-04)
1.22E-05 (1.73E-05)
7.77E-10 (6.77E-10)
1.86E-01 (2.33E-04)
0.00E-+0 (0.00E+0)

0.00E-+0 (0.00E+0)

0.00E-+0 (0.00E+0)

0.00E-+0 (0.00E+0)

2.76E-01 (7.78E-05)
2.48E-01 (7.57E-04)
1.41E-01 (7.97E-03)
-4.24E-01 (8.14E-01)
8.99E-02 (2.15E-03)

18/4/13

UNSGA3
HV
8.50E-01 (1.70E-04)
9.79E-01 (3.46E-04)
9.97E-01 (2.76E-04)
9.99E-01 (2.12E-05)
1.00E+0 (1.27E-04)
5.71E-01 (2.12E-05)
8.11E-01 (4.95E-05)
9.34E-01 (3.04E-04)
9.70E-01 (2.62E-04)
9.89E-01 (4.17E-04)
5.67E-01 (3.54E-04)
7.95E-01 (4.84E-03)
1.64E-01 (2.31E-01)
8.43E-01 (7.70E-02)
4.71E-01 (6.66E-01)
5.71E-01 (4.95E-05)
8.12E-01 (3.54E-04)
9.36E-01 (3.68E-04)
9.75E-01 (1.84E-04)
9.91E-01 (5.66E-05)
1.85E-01 (2.26E-04)
2.67E-02 (5.49E-03)
1.55E-03 (2.14E-03)
1.04E-04 (1.27E-04)
4.11E-08 (5.81E-08)
1.86E-01 (2.51E-03)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.77E-01 (6.51E-04)
2.45E-01 (1.34E-04)
1.42E-01 (5.87E-03)
1.29E-01 (8.29E-03)
1.21E-01 (1.77E-02)
18/5/12

MOEAD
HV
8.50E-01 (2.19E-04)
9.79E-01 (1.34E-04)
9.97E-01 (8.49E-05)
9.98E-01 (2.19E-04)
9.81E-01 (6.33E-03)
5.71E-01 (0.00E+0)
8.12E-01 (7.78E-05)
9.36E-01 (1.41E-04)
9.75E-01 (2.83E-04)
9.90E-01 (1.41E-04)
5.66E-01 (3.06E-03)
7.85E-01 (1.49E-02)
9.28E-01 (3.82E-04)
1.03E-01 (1.74E-03)
9.31E-02 (3.20E-03)
4.58E-01 (1.60E-01)
5.18E-01 (2.77E-01)
8.47E-01 (1.25E-01)
8.43E-01 (3.75E-04)
8.98E-01 (1.03E-01)
1.87E-01 (0.00E+0)
1.27E-01 (7.78E-05)
1.04E-01 (1.13E-04)
9.98E-02 (2.66E-04)
9.43E-02 (4.16E-04)
1.87E-01 (0.00E+0)
1.27E-01 (3.25E-04
1.04E-01 (9.19E-05
9.98E-02 (2.02E-04)
9.43E-02 (7.78E-06)
2.63E-01 (8.98E-04)
1.41E-01 (5.09E-04)
4.18E-04 (4.94E-04)
1.29E-04 (1.28E-04)
3.24E-06 (4.29E-06)
13/0/22

)
)

CTAEA
HV

8.50E-01 (3.54E-05)
9.79E-01 (0.00E+0
9.97E-01 (0.00E-+0
9.99E-01 (5.66E-05
9.99E-01 (5.23E-04
5.71E-01 (0.00E+0)
8.12E-01 (9.90E-04)
9.36E-01 (7.00E-04)
9.69E-01 (1.92E-03)

)

)

( )
( )

)
)

(

9.71E-01 (3.01E-03
5.64E-01 (2.80E-03
0.00E-+0 (0.00E+0)
2.01E-02 (2.85E-02)
0.00E-+0 (0.00E+0)
9.51E-01 (8.49E-03)
5.71E-01 (2.83E-05)
8.12E-01 (4.74E-04)
9.36E-01 (4.88E-04)
9.75E-01 (2.69E-04)
9.90E-01 (1.48E-04)
1.99E-01 (7.07E-05)
1.09E-01 (4.31E-03)
3.64E-02 (2.62E-02)
6.92E-06 (9.79E-06)
4.23E-02 (2.43E-02)
1.77E-01 (1.15E-03)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.77E-01 (1.46E-03)
2.20E-01 (9.77E-03)
3.32E-02 (3.46E-02)
3.14E-05 (4.33E-05)
2.07E-11 (1.75E-12)

16/6/13

AGEMOEA
HV
8.42E-01 (4.91E-05)
8.28E-01 (4.32E-05)
6.88E-01 (8.07E-05)
2.70E-01 (6.31E-05)
9.14E-01 (1.54E-05)
5.55E-01 (6.94E-05)
7.07E-01 (3.35E-05)
7.91E-01 (2.11E-05)
8.02E-01 (7.97E-05)
8.39E-01 (8.74E-05)
5.57E-01 (1.33E-05)
0.00E-+00 (1.19E-05)
0.00E-+00 (8.83E-05)
0.00E-+00 (2.14E-05)
0.00E-+00 (6.07E-05)
5.55E-01 (3.02E-05)
7.07E-01 (5.42E-05)
7.41E-01 (6.44E-05)
7.88E-01 (5.58E-05)
8.63E-01 (2.48E-05)
1.98E-01 (4.42E-05)
1.17E-01 (4.01E-05)
9.59E-02 (3.72E-06)
(
(

(
(
(
(
(
(
(
(
(
(

9.39E-02 (6.03E-05)
9.21E-02 (8.31E-05)
2.00E-01 (6.27E-05)
0.00E-+00 (8.00E-06)
0.00E-+00 (1.00E-05)
0.00E-+00 (3.54E-05)
0.00E-+00 (0.00E-+00)
2.76E-01 (5.67E-05)
2.14E-01 (5.08E-05)
3.45E-02 (4.22E-05)
4.04E-02 (5.90E-05)
2.47E-08 (8.25E-05)
21/7/7

In Fig 7, the approximated PF obtained by the competing algorithms for the series-parallel
system is presented to further explain the results.

5.2 Overspeed protection for gas turbine problem

This system comprises of a fuel-supplied gas turbine through various valves. Fig 8 depicts a
four-valved overspeed prevention system for gas turbines. The valves regulate the fuel flow
when overspeed is detected. The problem can be expressed mathematically in the following
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Table 10. The performance metrics comparison between MaAVOA and other algorithms in terms of IGD value on DTLZs in case of the computational time is 30

seconds.
MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA
PROB. OB]J. IGD IGD IGD IGD IGD IGD
DTLZ1 3 1.54E-2 (6.36E-6) 1.54E-2 (7.07E-7) 1.54E-2 (7.07E-7) 1.83E-2 (2.69E-4) 1.60E-2 (4.02E-4) 3.95E-02 (6.51E-5)
5.35E-2 (3.49E-4) 5.27E-2 (1.34E-5) 5.30E-2 (3.80E-4) 5.43E-2 (3.07E-3) 1.34E+0 (2.68E-1) 5.16E-01 (7.15E-5)
1.22E-1 (3.82E-4) 1.22E-1 (2.55E-4) 1.22E-1 (5.16E-4) 1.91E-1 (1.37E-1) 4.78E-1 (1.05E-1) 2.38E-01 (4.09E-04)
10 2.04E-1 (3.40E-3) 1.44E-1 (3.08E-3) 1.43E-1 (1.13E-3) 1.13E-1 (1.86E-3) 1.70E+0 (1.10E+0) 9.56E-01 (4.74E-5)
15 4.84E-1 (2.64E-1) 2.21E-1 (4.03E-4) 2.23E-1 (7.14E-4) 1.57E-1 (7.67E-3) 3.98E-1 (3.20E-1) 1.46E+00 (1.57E-5)
DTLZ2 4.09E-2 (6.36E-6) 4.09E-2 (4.24E-6) 4.09E-2 (4.24E-6) 4.10E-2 (5.37E-5) 4.17E-2 (9.97E-5) 5.34E-02 (3.97E-5)
5 1.65E-1 (5.66E-5) 1.65E-1 (9.90E-5) 1.65E-1 (7.07E-6) 1.65E-1 (1.27E-4) 1.97E-1 (4.04E-3) 2.44E-01 (5.17E-5)
3.60E-1 (8.49E-5) 3.59E-1 (1.98E-4) 3.59E-1 (1.77E-4) 3.57E-1 (6.58E-4) 3.90E-1 (1.30E-2) 4.70E-01 (4.47E-5)
10 4.61E-1 (3.54E-3) 4.61E-1 (4.95E-5) 4.62E-1 (1.39E-3) 4.32E-1 (8.49E-3) 5.12E-1 (4.13E-3) 5.95E-01 (9.68E-5)
15 6.36E-1 (2.47E-4) 6.34E-1 (4.74E-4) 6.34E-1 (9.69E-4) 8.47E-1 (2.24E-1) 5.69E-1 (3.91E-3) 6.93E-01 (9.36E-5)
DTLZ3 4.10E-2 (6.08E-5) 4.10E-2 (6.36E-5) 4.10E-2 (5.66E-5) 3.80E-1 (2.14E-2) 7.21E-1 (6.48E-1) 4.99E-02 (5.74E-5)
1.65E-1 (1.39E-3) 1.76E-1 (1.50E-2) 1.66E-1 (3.89E-4) 1.14E+1 (1.45E+1) 6.12E+1 (5.43E+1) 2.06E+01 (6.06E-5)
441E-1 (3.61E-2) 3.65E-1 (3.25E-3) 3.64E-1 (7.78E-5) 2.57E+0 (4.54E-1) 3.09E+1 (2.39E+1) 9.95E+00 (3.87E-5)
10 2.78E+0 (2.60E+0) 4.86E-1 (2.58E-2) 4.79E-1 (9.98E-3) 1.97E+0 (1.00E-1) 9.67E+1 (2.79E+1) 4.15E+01 (2.48E-5)
15 7.94E+0 (8.74E+0) 6.58E-1 (1.00E-2) 6.74E-1 (5.24E-2) 2.19E+0 (1.23E+0) 1.48E+1 (8.04E-1) 1.65E+01 (5.02E-5)
DTLZ4 3 4.09E-2 (4.03E-5) 4.09E-2 (1.41E-6) 4.09E-2 (0.00E+0) 2.91E-1 (3.54E-1) 4.19E-2 (2.09E-4) 5.34E-02 (6.82E-5)
1.65E-1 (1.48E-4) 1.65E-1 (3.54E-5) 1.65E-1 (0.00E+0) 8.67E-1 (6.36E-5) 1.88E-1 (1.39E-3) 2.50E-01 (5.87E-5)
8 3.59E-1 (3.11E-4) 3.59E-1 (3.54E-5) 3.59E-1 (3.54E-5) 6.24E-1 (2.27E-1) 3.81E-1 (1.66E-3) 4.39E-01 (4.49E-5)
10 4.63E-1 (3.44E-3) 4.58E-1 (5.94E-4) 4.58E-1 (6.65E-4) 8.43E-1 (6.51E-2) 6.27E-1 (1.66E-2) 5.35E-01 (5.98E-5)
15 6.33E-1 (7.07E-6) 6.32E-1 (4.95E-5) 6.32E-1 (7.07E-6) 9.29E-1 (1.50E-1) 7.00E-1 (2.55E-3) 5.86E-01 (6.09E-5)
DTLZ5 3 2.71E-2 (2.09E-3) 2.80E-2 (1.56E-3) 2.88E-2 (1.46E-4) 2.49E-2 (3.74E-4) 5.21E-3 (5.18E-4) 6.90E-03 (8.23E-5)
1.19E-1 (6.60E-3) 1.35E-1 (8.60E-3) 1.37E-1 (3.85E-2) 2.24E-2 (7.86E-4) 1.08E-1 (1.05E-2) 1.22E-01 (2.55E-5)
8 1.38E-1 (2.51E-2) 3.01E-1 (1.42E-3) 3.61E-1 (9.77E-2) 6.89E-2 (1.80E-4) 4.63E-1 (2.01E-2) 2.19E-01 (3.21E-5)
10 1.76E-1 (6.23E-2) 4.09E-1 (2.42E-2) 3.49E-1 (6.26E-3) 6.64E-2 (3.30E-4) 5.25E-1 (5.97E-2) 3.96E-01 (6.60E-5)
15 1.50E-1 (3.66E-2) 3.92E-1 (1.44E-1) 3.89E-1 (5.53E-2) 1.70E-1 (8.61E-3) 3.09E-1 (6.68E-2) 3.30E-01 (5.32E-5)
DTLZ6 3 2.78E-2 (2.48E-3) 2.72E-2 (1.22E-3) 2.93E-2 (1.64E-3) 5.18E-1 (4.76E-1) 1.23E+0 (1.25E-1) 5.99E-03 (8.94E-5)
2.28E+0 (7.66E-1) 1.24E+0 (4.64E-1) 1.21E+0 (4.45E-1) 3.76E+0 (5.99E-1) 7.80E+0 (3.52E-1) 7.84E+00 (1.67E-5)
8 3.44E+0 (6.68E-1) 2.00E+0 (4.21E-1) 2.06E+0 (6.39E-1) 3.48E+0 (5.86E-1) 7.45E+0 (1.55E-1) 9.56E+00 (5.66E-5)
10 6.21E+0 (6.67E-2) 5.38E+0 (2.92E-1) 5.67E+0 (4.54E-1) 1.24E+0 (1.65E+0) 8.19E+0 (2.14E-1) 9.92E+00 (7.49E-5)
15 2.31E+0 (3.26E-1) 1.54E+0 (1.71E-1) 1.42E+0 (6.44E-2) 3.55E-1 (1.89E-1) 7.31E+0 (2.13E-1) 9.87E+00 (9.85E-5)
DTLZ7 7.29E-2 (1.40E-4) 7.27E-2 (7.16E-4) 7.39E-2 (6.53E-4) 1.05E-1 (2.97E-3) 6.10E-2 (4.84E-4) 4.26E-02 (9.19E-5)
3.75E-1 (1.03E-3) 3.64E-1 (8.51E-3) 3.53E-1 (6.35E-3) 6.38E-1 (1.44E-1) 2.79E-1 (7.78E-5) 2.61E-01 (7.21E-5)
1.18E+0 (2.69E-3) 1.22E+0 (6.86E-2) 1.30E+0 (2.69E-2) 4.02E+0 (2.64E+0) 1.97E+0 (4.22E-1) 8.01E-01 (6.46E-5)
10 2.16E+0 (1.75E-1) 1.96E+0 (3.35E-2) 1.96E+0 (6.73E-2) 3.45E+0 (1.35E+0) 1.75E+1 (1.74E+0) 1.17E+00 (6.15E-5)
15 8.70E+0 (5.44E-2) 8.36E+0 (1.96E-2) 8.38E+0 (1.04E-1) 3.22E+0 (6.00E-2) 1.88E+1 (8.37E+0) 2.27E+00 (1.80E-5)
+/=/- 6/5/24 6/5/24 22/5/8 27/5/3 8/0/27
https://doi.org/10.1371/journal.pone.0284110.t010
way:
max f(r,n) =] [1— (1 —r)"] (30)
min V,(n) = Y." wv'n’ (31)
min C(r,n) = >_1 C(r,)[n, + exp(0.25n,)] (32)
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Table 11. The performance metrics comparison between MaAVOA and other algorithms in terms of GD value on DTLZs in case of the computational time is 30

seconds.
MAAVOA NSGA3 UNSGA3 MOEAD CTAEA AGEMOEA
PROB. OB]J. GD GD GD GD GD GD
DTLZ1 3 1.48E-4 (7.92E-7) 1.48E-4 (1.98E-7) 1.48E-4 (2.40E-7) 7.35E-4 (6.27E-5) 2.66E-4 (1.21E-4) 4.06E-02 (5.81E-05)
5 1.02E-3 (6.36E-6) 1.07E-3 (4.24E-7) 1.08E-3 (9.40E-6) 1.35E-3 (1.07E-4) 8.82E-1 (1.66E-1) 9.55E+01 (6.43E-05)
8 3.28E-3 (3.58E-4) 2.98E-3 (1.91E-6) 2.99E-3 (2.05E-6) 1.26E-2 (1.11E-2) 9.90E-2 (4.53E-3) 2.89E+00 (2.82E-05)
10 9.38E-3 (1.04E-3) 1.10E-3 (9.02E-4) 6.41E-4 (7.58E-5) 2.73E-3 (3.96E-5) 1.51E+0 (1.34E-2) 1.46E+02 (3.91E-05)
15 9.62E-2 (1.15E-1) 9.42FE-4 (8.11E-4) 3.95E-4 (3.11E-5) 7.08E-3 (5.24E-4) 7.54E-1 (6.25E-1) 1.10E+02 (8.72E-05)
DTLZ2 3 3.96E-4 (2.13E-6) 3.97E-4 (2.38E-6) 3.97E-4 (2.67E-6) 4.33E-4 (1.59E-5) 4.05E-4 (7.69E-6) 4.10E-02 (1.83E-05)
5 3.39E-3 (8.34E-6) 3.41E-3 (1.11E-5) 3.41E-3 (6.86E-6) 3.43E-3 (5.18E-5) 6.89E-3 (4.89E-4) 2.43E-01 (2.57E-05)
8 9.64E-3 (2.69E-5) 9.63E-3 (2.83E-7) 9.64E-3 (6.36E-6) 8.94E-3 (1.16E-4) 1.04E-2 (1.83E-3) 8.71E-01 (4.97E-05)
10 3.53E-3 (9.14E-5) 1.81E-3 (1.13E-4) 2.12E-3 (5.16E-4) 8.49E-3 (3.96E-4) 2.40E-2 (8.03E-4) 1.04E+00 (8.10E-05)
15 2.31E-3 (1.47E-4) 8.80E-4 (4.30E-4) 1.40E-3 (2.76E-4) 1.65E-2 (6.72E-3) 1.90E-2 (1.27E-3) 1.55E+00 (4.91E-05)
DTLZ3 3 4.03E-4 (1.26E-5) 4.07E-4 (1.51E-5) 4.08E-4 (1.16E-5) 6.61E-2 (1.76E-2) 1.63E-1 (4.21E-2) 3.87E-02 (6.17E-05)
5 3.46E-3 (6.47E-5) 6.59E-3 (4.47E-3) 3.41E-3 (1.28E-5) 1.13E+0 (1.48E+0) 1.52E+1 (1.01E+1) 1.25E+02 (4.94E-05)
8 4.51E-2 (4.06E-2) 9.87E-3 (5.54E-5) 1.38E-2 (1.24E-3) 1.70E-1 (1.02E-2) 8.76E+0 (4.01E+0) 1.87E+02 (3.56E-05)
10 4.08E-1 (3.41E-1) 1.51E-2 (8.44E-3) 1.15E-2 (3.11E-3) 8.30E-2 (5.75E-3) 1.90E+1 (5.30E-1) 4.14E+02 (6.14E-05)
15 1.63E+0 (1.93E+0) 9.67E-3 (2.86E-3) 4.14E-2 (4.23E-2) 1.11E-1 (1.52E-1) 5.81E+0 (1.36E+0) 2.95E+02 (8.39E-05)
DTLZ4 3 4.64E-4 (9.52E-5) 3.96E-4 (1.91E-7) 3.97E-4 (4.24E-7) 3.48E-4 (1.31E-4) 3.94E-4 (2.21E-6) 3.99E-02 (9.96E-05)
5 3.43E-3 (5.78E-5) 3.41E-3 (4.10E-6) 3.40E-3 (7.35E-6) 1.80E-3 (1.00E-4) 5.12E-3 (1.73E-4) 3.41E-01 (5.98E-05)
8 1.17E-2 (2.88E-3) 9.64E-3 (1.36E-5) 9.64E-3 (1.20E-5) 5.50E-3 (2.33E-3) 9.53E-3 (2.24E-4) 1.10E+00 (8.82E-05)
10 6.07E-3 (4.36E-3) 1.33E-3 (1.57E-4) 1.21E-3 (8.97E-5) 2.22E-3 (1.16E-3) 3.25E-2 (3.48E-4) 1.30E+00 (3.12E-05)
15 1.23E-2 (2.31E-3) 7.92E-5 (2.41E-5) 1.61E-4 (3.22E-5) 6.37E-3 (5.75E-3) 2.60E-2 (2.07E-3) 1.86E+00 (9.90E-05)
DTLZ5 3 5.00E-5 (5.27E-5) 1.16E-3 (7.55E-5) 6.31E-4 (1.63E-4) 3.26E-3 (4.61E-3) 3.16E-4 (2.33E-4) 2.85E-03 (4.44E-05)
5 2.02E-1 (1.96E-2) 2.11E-1 (3.50E-3) 1.99E-1 (8.66E-3) 8.57E-3 (1.52E-3) 9.78E-2 (1.58E-3) 2.01E+00 (2.06E-05)
8 2.12E-1 (1.18E-3) 1.63E-1 (2.58E-2) 1.45E-1 (1.10E-2) 6.10E-4 (3.53E-4) 1.15E-1 (3.63E-3) 4.80E+00 (9.06E-05)
10 1.81E-1 (1.27E-2) 1.58E-1 (6.72E-4) 2.09E-1 (4.20E-2) 1.47E-6 (1.11E-7) 9.52E-2 (2.65E-3) 6.34E+00 (9.93E-05)
15 1.09E-1 (1.25E-1) 1.47E-1 (1.21E-2) 1.70E-1 (3.18E-2) 1.47E-6 (4.72E-7) 1.26E-1 (1.98E-4) 1.53E+01 (8.78E-05)
DTLZ6 3 9.68E-6 (2.44E-6) 1.09E-5 (3.36E-7) 1.09E-5 (5.95E-7) 7.24E-2 (4.98E-2) 1.61E-1 (1.58E-2) 4.93E-05 (6.30E-05)
5 2.57E-1 (6.17E-2) 2.63E-1 (3.24E-2) 2.42E-1 (5.86E-2) 3.19E-1 (2.34E-2) 6.07E-1 (1.45E-2) 2.04E+01 (9.53E-05)
8 3.49E-1 (4.23E-2) 2.78E-1 (3.00E-2) 3.07E-1 (4.17E-2) 3.27E-1 (4.46E-2) 6.82E-1 (5.80E-4) 4.78E+01 (3.09E-05)
10 4.55E-1 (3.55E-3) 3.98E-1 (3.71E-2) 4.07E-1 (4.88E-2) 1.01E-1 (1.42E-1) 5.53E-1 (2.28E-3) 7.92E+01 (7.31E-05)
15 3.64E-1 (5.10E-2) 2.34E-1 (2.07E-2) 2.28E-1 (1.50E-2) 1.14E-6 (2.99E-7) 7.00E-1 (9.43E-3) 2.71E+02 (1.10E-05)
DTLZ7 3 9.49E-3 (1.01E-2) 2.14E-3 (4.25E-4) 2.27E-3 (6.24E-5) 2.94E-3 (1.84E-4) 2.48E-3 (6.09E-5) 1.67E-02 (8.64E-05)
5 9.89E-3 (1.01E-3) 1.39E-2 (1.05E-4) 1.29E-2 (6.10E-4) 4.33E-3 (6.55E-5) 1.69E-2 (3.99E-3) 1.74E-01 (5.04E-05)
8 8.12E-2 (2.98E-2) 1.86E-1 (2.28E-1) 8.22E-2 (7.58E-2) 2.11E-2 (8.94E-3) 2.35E-1 (4.82E-3) 6.01E-01 (8.83E-05)
10 2.00E-2 (1.78E-3) 1.93E-1 (9.13E-2) 1.45E-1 (1.39E-3) 1.59E-2 (4.45E-4) 2.12E+0 (5.46E-2) 1.08E+00 (1.45E-05)
15 7.76E-2 (1.81E-3) 2.40E-1 (5.19E-2) 2.43E-1 (3.51E-2) 9.81E-2 (7.21E-3) 4.16E+0 (1.49E-1) 2.49E+00 (7.52E-05)
+/=/- 8/5/21 9/5/21 20/5/10 30/5/0 0/0/35
https://doi.org/10.1371/journal.pone.0284110.t011
min W (n) = wn,exp (0.25n,) (33)

stV.—V<0,C,—C<0,W,— W <0with0.5< r, > 107,

> 10
T Bi
log (r;)

rneR" n €eZ"1<n,

where C(r,) = oc,.<—
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Table 12. The performance metrics comparison between MaAVOA and other algorithms in terms of HV value on DTLZs in case of the computational time is 30

seconds.

PROB. OB]J.

DTLZ1 3

10
15
DTLZ2 3

10
15
DTLZ3 3

10
15
DTLZ4 3

10
15
DTLZ5 3

10
15
DTLZ6 3

10
15
DTLZ7 3

10
15
+ =1-

https://doi.org/10.1371/journal.pone.0284110.t012

MAAVOA
HV
8.50E-1 (1.13E-4)
9.78E-1 (8.49E-5)
9.97E-1 (1.34E-4)
9.63E-1 (2.75E-3)
3.99E-1 (5.61E-1)
5.71E-1 (1.06E-4)
8.10E-1 (8.84E-4)
9.32E-1 (6.08E-4)
9.62E-1 (2.28E-3)
9.87E-1 (3.39E-4)
5.70E-1 (1.22E-3)
8.02E-1 (9.81E-3)
7.83E-1 (3.75E-2)
4.22E-2 (5.97E-2)
0.00E-+0 (0.00E+0)
5.71E-1 (1.27B-4)
8.11E-1 (1.27E-3)
9.35E-1 (9.90E-5)
9.65E-1 (3.75E-3)
9.90E-1 (4.95E-5)
1.86E-1 (1.56E-4)
7.27E-2 (1.69E-2)
2.24E-2 (1.08E-2)
4.21E-2 (5.75E-2)
9.08E-2 (1.18E-3)
1.86E-1 (6.58E-4)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.76E-1 (4.31E-4)
2.48E-1 (1.17E-3
1.82E-1 (1.91E-3
1.73E-1 (6.51E-3

)
)
)
1.33E-1 (7.28E-3)

NSGA3
HV
8.50E-1 (2.83E-5)
9.80E-1 (2.05E-4)
9.97E-1 (9.90E-5)
9.99E-1 (5.16E-4)
1.00E+0 (3.54E-5)
5.71E-1 (8.49E-5)
8.12E-1 (5.09E-4)
9.35E-1 (3.46E-4)
9.69E-1 (9.05E-4)
9.89E-1 (6.65E-4)
5.70E-1 (1.23E-3)
7.97E-1 (1.38E-2)
9.18E-1 (9.88E-3)
8.93E-1 (5.75E-2)
9.63E-1 (1.72E-2)
5.71E-1 (3.54E-5)
8.12E-1 (1.20E-4)
9.35E-1 (7.78E-5)
9.72E-1 (2.47E-4)
9.90E-1 (2.12E-5)
1.85E-1 (1.63E-4)
3.51E-2 (6.48E-3)
6.06E-5 (2.31E-5)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
1.86E-1 (2.19E-4)
0.00E-+0 (0.00E-+0
0.00E-+0 (0.00E-+0
0.00E-+0 (0.00E-+0
0.00E-+0 (0.00E-+0
2.76E-1 (1.70E-4)
2.46E-1 (1.70E-4)
1.61E-1 (7.44E-3)
1.47E-1 (2.67E-3)
7.15E-2 (2.09E-2)
11/5/19

===

UNSGA3
HV
8.50E-1 (1.41E-5)
9.79E-1 (4.31E-4)
9.97E-1 (4.95E-5)
9.99E-1 (6.36E-5)
1.00E+0 (2.83E-5)
5.71E-1 (2.12E-5)
8.12E-1 (7.07E-6)
9.35E-1 (4.60E-4)
9.68E-1 (2.17E-3)
9.89E-1 (6.22E-4)
5.69E-1 (9.62E-4)
8.05E-1 (5.47E-3)
9.24E-1 (1.41E-5)
9.16E-1 (1.31E-2)
8.88E-1 (1.27E-1)
5.71E-1 (0.00E+0)
8.12E-1 (9.90E-5)
9.36E-1 (1.91E-4)
9.73E-1 (3.18E-4)
9.90E-1 (1.06E-4)
1.85E-1 (2.83E-4)
5.79E-2 (4.07E-2)
5.54E-4 (7.83E-4)
4.27E-5 (3.67E-5)
1.15E-7 (1.59E-7)
1.86E-1 (3.11E-4)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.76E-1 (1.48E-4)
2.46E-1 (7.71E-4)
1.47E-1 (2.35E-2)
1.27E-1 (2.10E-2)
1.08E-1 (3.59E-2)
11/5/19

MOEAD
HV
8.36E-1 (1.23E-3)
9.57E-1 (5.13E-3)
8.15E-1 (1.95E-1)
8.12E-1 (1.35E-2)
5.54E-1 (3.01E-2)
5.68E-1 (6.01E-4)
7.98E-1 (4.88E-4)
9.29E-1 (1.44E-3)
9.43E-1 (8.56E-3)
5.39E-1 (2.39E-1)
1.03E-1 (2.75E-2)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.45E-2 (3.47E-2)
4.57E-1 (1.58E-1)
3.24E-1 (1.94E-3)
7.71E-1 (1.81E-1)
6.97E-1 (7.99E-2)
7.28E-1 (2.10E-1)
1.87E-1 (7.78E-5)
1.15E-1 (6.94E-3)
1.04E-1 (1.41E-4)
1.00E-1 (2.68E-4)
9.39E-2 (1.82E-4)
2.13E-2 (3.01E-2)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E+0)
5.00E-2 (7.07E-2)
9.43E-2 (2.08E-4)
2.60E-1 (7.99E-4)
6.53E-2 (1.70E-2)
3.59E-4 (5.03E-4)
1.17E-4 (1.52E-4)
3.91E-6 (3.57E-6)
24/4/8

CTAEA
HV
8.48E-1 (1.08E-3)
0.00E-+0 (0.00E+0)
1.24E-1 (1.30E-1)
0.00E-+0 (0.00E+0)
4.21E-1 (5.76E-1)
5.69E-1 (2.83E-4)
7.34E-1 (9.47E-3)
8.56E-1 (2.49E-2)
6.46E-1 (8.62E-2)
8.05E-1 (4.02E-3)
9.33E-2 (1.32E-1)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
5.69E-1 (8.49E-5)
7.60E-1 (5.53E-3)
8.92E-1 (1.77E-3)
5.95E-1 (5.02E-2)
8.33E-1 (1.18E-3)
1.99E-1 (1.48E-4)
7.72E-2 (4.65E-3)
6.70E-5 (9.47E-5)
1.13E-8 (1.59E-8)
1.95E-6 (2.76E-6)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
0.00E-+0 (0.00E+0)
2.76E-1 (3.11E-4)
1.89E-1 (4.50E-3)
2.54E-5 (1.07E-5)
0.00E-+0 (0.00E+0)
1.86E-13 (2.62E-13)
27/6/3

AGEMOEA
HV
8.40E-01 (7.04E-5)
7.01E-01 (6.56E-5)
8.92E-01 (5.75E-5)
1.11E-01 (1.90E-5)
8.28E-03 (3.90E-5)
5.55E-01 (5.89E-5)
6.84E-01 (5.11E-5)
6.07E-01 (2.51E-5)
5.81E-01 (9.11E-5)
2.64E-01 (8.08E-5)
5.56E-01 (6.32E-5)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E-+0)
0.00E-+0 (0.00E-+0)
5.52E-01 (7.95E-5)
7.00E-01 (2.38E-5)
7.29E-01 (5.75E-5)
7.55E-01 (9.14E-5)
7.64E-01 (2.75E-5)
1.98E-01 (6.29E-5)
1.17E-01 (2.34E-5)
9.71E-02 (3.02E-5)
9.40E-02 (7.53E-5)
9.17E-02 (4.60E-5)
2.00E-01 (3.99E-5)
0.00E-+00 (1.17E-5)
0.00E-+00 (3.81E-5)
0.00E-+00 (8.85E-5)
0.00E-+00 (9.45E-5)
2.76E-01 (2.08E-5)
1.96E-01 (8.55E-5)
4.87E-02 (7.88E-5)
3.31E-03 (9.27E-5)
2.75E-11 (6.31E-5)
23/6/6

o; and f; are constants representing the actual features of each item at stage i and T 'is the
operating time during which the item should not fail. Table 16 provides the input data for an
overspeed protection for gas turbine system.

The algorithms are terminated after 250, 500, 1000, 2000, 4000, 5000, and 10000 genera-
tions. The engineering problem has 4 objective functions. Accordingly, the population size is

chosen to be 969 (Nr; = 16, Nr, = 0, and nRef = 969).

The results for the overspeed protection for gas turbine problem are given in the Table 17

and Fig 9.
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Table 13. Comparison between MaAVOA and other algorithms in terms of the number of generation and number of function evaluations on DTLZs in case of the
computational time is 30 seconds.

PROB.
DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

OB]J.

3
5
8
10
15

10
15

10
15

10
15

10
15

10
15
3
5
8
10
15

MAAVOA
N_GEN | N_EVAL
460 87955
275 75345
393 82653
223 83613
609 113498
321 66209
214 61471
272 58549
100 38009
260 48692
530 109354
305 87598
404 87050
228 86780
601 112568
428 88364
212 60858
262 56422
82 31173
220 41218
912 188430
495 142285
669 144065
291 110875
658 123247
849 165533
229 65832
266 57304
91 34565
250 46835
600 127780
280 82057
327 71135
145 55524
301 56527

NSGA3 UNSGA3
N_GEN | N_EVAL | N_GEN | N_EVAL
1050 160650 1037 158661
678 142380 667 140070
815 127140 810 126360
304 83600 300 82500
724 97740 722 97470
936 143208 837 128061
598 125580 585 122850
706 110136 748 116688
277 76175 279 76725
676 91260 672 90720
1091 166923 1055 161415
687 144270 673 141330
869 135564 844 131664
301 82775 333 91575
743 100305 731 98685
1097 167841 1064 162792
594 124740 576 120960
740 115440 709 110604
250 68750 256 70400
657 88695 650 87750
1270 194310 1206 184518
657 137970 642 134820
834 130104 788 122928
292 80300 318 87450
728 98280 717 96795
1082 165546 1030 157590
630 132300 603 126630
762 118872 744 116064
286 78650 275 75625
688 92880 698 94230
1134 173502 1124 171972
618 129780 618 129780
555 86580 636 99216
273 75075 279 76725
721 97335 667 90045

https://doi.org/10.1371/journal.pone.0284110.t1013

MOEAD
N_GEN | N_EVAL
148 22644
106 22260
139 21684
58 15950
128 17280
141 21573
97 20370
129 20124
63 17325
129 17415
157 24021
95 19950
130 20280
63 17325
129 17415
158 24174
101 21210
130 20280
50 13750
125 16875
150 22950
96 20160
127 19812
62 17050
129 17415
152 23256
96 20160
128 19968
63 17325
132 17820
135 20655
92 19320
129 20124
65 17875
145 19575

N_GEN | N_EVAL

210

358
154
159

165
263

70
25

242
132

15
67

CTAEA

32130
19110
21996
11825
16740
20961
13860
12168
7425
11205
42381
15120
21528
11550
15660
21267
13440
12168
6875
10665
54774
32340
24804
18975
22275
40239
10500
10920
6875
11475
37026
27720
13884
4125
9045

AGEMOEA
N_GEN | N_EVAL
718 71800
491 49100
618 61800
401 40100
325 32500
556 55600
412 41200
325 32500
302 30200
264 26400
817 81700
560 56000
476 47600
312 31200
308 30800
571 57100
422 42200
327 32700
255 25500
233 23300
631 63100
450 45000
257 25700
314 31400
284 28400
594 59400
387 38700
253 25300
266 26600
224 22400
544 54400
398 39800
318 31800
297 29700
220 22000

As observed in Table 17, MOAVA based solution approach performed better in terms of IGD,
GD, and HV. The performance measures have been drawn as histograms in the Fig 9 which
shows the final solution set obtained for all algorithms with termination condition of 500 iteration.
It is concluded that the proposed MOAVA provides very competitive results as compared to five
well-known optimization algorithms in solving the investigated engineering real life applications.

6. Conclusion and future research directions

A novel many-objective African vulture optimization algorithm, named MaAVOA, is pro-
posed in this paper. MaAVOA is an updated version of AVOA to handle the MaOPs. It
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Fig 6. Series-parallel system.
https://doi.org/10.1371/journal.pone.0284110.9006

Table 14. Data used in series-parallel systems.

i 10°e; Bi w,v? w; |4 C w

1 2.5 1.5 2 35 180 175 100
2 1.45 1.5 4 180 175 100
3 0.541 1.5 5 180 175 100
4 0.541 1.5 8 3 180 175 100
5 2.1 1.5 4 4.5 180 175 100

https://doi.org/10.1371/journal.pone.0284110.1014

Table 15. The performance measures values of series-parallel system.

MAAVOA NSGAIII U-NSGAIII CTAEA AGEMOEA

N_GEN | IGD GD HV IGD GD HV IGD GD HV IGD GD HV IGD GD HV

250 8.90E- | 2.10E- | 9.01E- | 3.54E- | 6.94E- | 589E- | 3.71E- | 7.12E- | 590E- | 9.27E- 1.27E- | 5.89E- 1.04E- 1.22E- | 5.82E-
02 01 01 02 02 01 02 02 01 02 01 01 01 01 01

500 7.20E- | 2.05E- | 9.03E- | 4.35E- | 6.96E- | 590E- | 3.31E- | 6.69E- | 5.89E- | 9.78E- 1.27E- | 5.89E- | 9.82E- 1.19E- | 5.83E-
02 01 01 02 02 01 02 02 01 02 01 01 02 01 01

1000 7.24E- | 2.08E- | 9.04E- | 3.49E- | 6.55E- | 5.90E- | 2.40E- | 6.05E- | 5.90E- 1.09E- 1.27E- | 5.89E- | 9.59E- 1.12E- | 5.82E-
02 01 01 02 02 01 02 02 01 01 01 01 02 01 01

2000 8.05E- | 2.13E- | 9.04E- | 3.46E- | 6.27E- | 590E- | 3.18E- | 6.44E- | 5.90E- 1.01E- 1.31E- | 5.89E- 1.05E- 1.14E- | 5.84E-
02 01 01 02 02 01 02 02 01 01 01 01 01 01 01

4000 8.11E- | 2.12E- | 9.03E- | 2.84E- | 6.52E- | 590E- | 3.74E- | 7.00E- | 5.90E- | 9.99E- 1.27E- | 5.89E- 1.03E- 1.20E- | 5.84E-
02 01 01 02 02 01 02 02 01 02 01 01 01 01 01

5000 7.78E- | 2.14E- | 9.03E- | 3.05E- | 6.44E- | 5.90E- | 3.32E- | 6.80E- | 5.89E- 1.06E- 1.32E- | 5.89E- | 9.63E- 1.14E- | 5.83E-
02 01 01 02 02 01 02 02 01 01 01 01 02 01 01

10000 | 7.36E- | 2.18E- | 9.02E- | 2.84E- | 6.54E- | 590E- | 4.14E- | 7.20E- | 5.90E- | 9.25E- 1.27E- | 5.89E- 1.05E- 1.19E- | 5.83E-
02 01 01 02 02 01 02 02 01 02 01 01 01 01 01

https://doi.org/10.1371/journal.pone.0284110.t015
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Fig 7. Final solution set for a series-parallel system with five subsystems (termination condition is 500 iteration).

https:/doi.org/10.1371/journal.pone.0284110.g007

Fig 8. Overspeed protection for gas turbine.
https://doi.org/10.1371/journal.pone.0284110.9008

Table 16. Data used in Overspeed protection for gas turbine system.

i 10°a; Bi v; w; v C w T

1 1 1.5 1 6 250 400 500 1000h
2 2.3 15 2 6 250 400 500 1000h
3 0.3 1.5 3 8 250 400 500 1000h
4 2.3 1.5 4 7 250 400 500 1000h

https:/doi.org/10.1371/journal.pone.0284110.t016
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Table 17. The performance measures values of Overspeed protection for gas turbine.

MAAVOA NSGAIII U-NSGAIII CTAEA AGEMOEA
N_GEN IGD GD HV IGD GD HV IGD GD HV IGD GD HV IGD GD HV
250 42E-02 | 6.1E-02 | 9.7E-02 | 5.2E-02 | 5.1E-02 | 1.5E-01 | 4.8E-02 | 6.0E-02 | 9.7E-02 | 1.5E-02 | 5.5E-02 | 1.4E-01 | 6.1E-02 | 6.9E-02 | 9.6E-02
500 43E-02 | 6.0E-02 | 9.7E-02 | 7.4E-03 | 3.1E-02 | 1.4E-01 | 4.5E-02 | 5.9E-02 | 9.7E-02 | 4.0E-02 | 5.4E-02 | 9.8E-02 | 6.5E-02 | 7.1E-02 | 9.6E-02
1000 4.3E-02 | 6.1E-02 | 9.7E-02 | 6.4E-03 | 3.0E-02 | 1.4E-01 | 5.5E-03 | 2.9E-02 | 1.4E-01 | 1.3E-02 | 5.3E-02 | 1.4E-01 | 6.5E-02 | 7.0E-02 | 9.6E-02
2000 4.5E-02 | 6.2E-02 | 9.7E-02 | 5.1E-02 | 5.1E-02 | 1.6E-01 | 1.4E-02 | 2.8E-02 | 1.4E-01 | 1.9E-02 | 7.0E-02 | 1.6E-01 | 6.2E-02 | 6.7E-02 | 9.5E-02
4000 4.6E-02 | 6.2E-02 | 9.7E-02 | 2.6E-03 | 2.7E-02 | 1.4E-01 | 6.1E-03 | 2.7E-02 | 1.4E-01 | 1.5E-02 | 5.8E-02 | 1.4E-01 | 6.7E-02 | 7.0E-02 | 9.6E-02
5000 4.5E-02 | 6.2E-02 | 9.7E-02 | 4.3E-02 | 4.8E-02 | 1.6E-01 | 1.4E-02 | 3.4E-02 | 1.4E-01 | 1.6E-02 | 6.9E-02 | 1.6E-01 | 6.2E-02 | 6.7E-02 | 9.6E-02
10000 | 5.0E-02 | 5.1E-02 | 1.6E-01 | 1.4E-02 | 3.2E-02 | 1.4E-01 | 4.4E-02 | 5.0E-02 | 1.6E-01 | 2.5E-02 | 7.5E-02 | 1.8E-01 | 5.7E-02 | 6.6E-02 | 9.6E-02

https://doi.org/10.1371/journal.pone.0284110.t017

integrates a new social leader vultures selection process. In addition, an environmental selec-
tion mechanism based on the alternative pool was adapted to improve the selection pressure to
maintain diversity for approximating different parts of the whole PF. An external Archive
based on the FAM is established to save the best-nondominated solutions during the popula-
tion evolution. Also, a RAS procedure is developed to improve the quality of archiving solu-
tions and help reach out to the PF’s missing areas that the vultures easily miss. The proposed
MaAVOA was evaluated using well-known benchmark functions. Comparing the proposed
MaAVOA results to five states of the art algorithms showed that MaAVOA outperformed the
five algorithms in terms of IGD, GD, and HV in most of the benchmark test functions when
all algorithms terminated according to several function evaluations or in case of terminating
according to a maximum number of generations. To verify the performance of the proposed

MaAVO,

) 0 0 0 5 € € O 0 B 5 O D 8 B B S P B B B B B B

Fig 9. Final solution set for overspeed protection for gas turbine problem (termination condition is 500 iteration).

https://doi.org/10.1371/journal.pone.0284110.g009
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MaAVOA for real life many objectives’” applications, it was applied and tested on two real-life
engineering constrained problems. The findings show that among all the successful algo-
rithms, MaAVOA has promising and competing performance.

There are many directions of research that can be recommended for future works to handle
the limitations of the proposed work. The variation in operators of the proposed MaAVOA
algorithm can motivate the future work to minimize the execution time of MaAVOA. Also,
extending this algorithm to solve more constrained engineering many objective optimization
problems can be seen as a future point for research. In addition, the computational time of the
proposed algorithm is considered greater than both NSGAIII and UNSGAIII algorithms
which can be considered as a future point for research. Furthermore, breaking out from the
local optimum still difficult, so we suggest using a clustering strategy in the future to help.
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