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Abstract

Background

Variation in genes involved in ethanol metabolism has been shown to influence risk for alco-

hol dependence (AD) including protective loss of function alleles in ethanol metabolizing

genes. We therefore hypothesized that people with severe AD would exhibit different pat-

terns of rare functional variation in genes with strong prior evidence for influencing ethanol

metabolism and response when compared to genes not meeting these criteria.

Objective

Leverage a novel case only design and Whole Exome Sequencing (WES) of severe AD

cases from the island of Ireland to quantify differences in functional variation between genes

associated with ethanol metabolism and/or response and their matched control genes.

Methods

First, three sets of ethanol related genes were identified including those a) involved in alco-

hol metabolism in humans b) showing altered expression in mouse brain after alcohol expo-

sure, and altering ethanol behavioral responses in invertebrate models. These genes of

interest (GOI) sets were matched to control gene sets using multivariate hierarchical cluster-

ing of gene-level summary features from gnomAD. Using WES data from 190 individuals

with severe AD, GOI were compared to matched control genes using logistic regression to
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detect aggregate differences in abundance of loss of function, missense, and synonymous

variants, respectively.

Results

Three non-independent sets of 10, 117, and 359 genes were queried against control gene

sets of 139, 1522, and 3360 matched genes, respectively. Significant differences were not

detected in the number of functional variants in the primary set of ethanol-metabolizing

genes. In both the mouse expression and invertebrate sets, we observed an increased num-

ber of synonymous variants in GOI over matched control genes. Post-hoc simulations

showed the estimated effects sizes observed are unlikely to be under-estimated.

Conclusion

The proposed method demonstrates a computationally viable and statistically appropriate

approach for genetic analysis of case-only data for hypothesized gene sets supported by

empirical evidence.

Introduction

Alcohol use disorder (AUD) is a common, moderately heritable disorder with significant

social and economic impact. Twin [1–11], family [12], and adoption studies [13–16] consis-

tently show that genetic influences have a large impact on the risk for AUD and alcohol-

related phenotypes, with twin-based heritability estimates of ~0.50 [17] and SNP-based her-

itability estimates of ~0.056 [18]. In recent years, genome-wide association studies (GWAS)

have successfully identified common single nucleotide variants (cSNV) robustly associated

with alcohol consumption [19], the Alcohol Use Disorders Identification Test (AUDIT)

[20], and problematic alcohol use [18, 21]. Many of these identified cSNVs impact genes

encoding the alcohol metabolizing enzymes such as the cluster of alcohol dehydrogenase

(ADH) genes on chromosome 4. Additionally, there is accumulated evidence that variation

in CYP, CAT, and ALDH genes are also involved in alcohol metabolism and AUD risk.

CYP2E1 expression is induced by chronic alcohol consumption and is thought to contribute

to ethanol metabolism in the brain where ADH activity is limited [22]. CAT is also widely

expressed in the brain and a number of studies suggest that polymorphisms in the CAT
gene are involved in the level of response to ethanol and alcohol dependence (AD) and

abuse [23, 24]. CYP2E1 and CAT are considered part of the canonical set of genes contribut-

ing to oxidative metabolism of ethanol [25].

While the effect of variants on ADH, CYP2E1, and CAT genes are more subtle, the well doc-

umented ALDH2*2 (rs671) loss of function (LOF) allele shows only 20–40% of wild type enzy-

matic activity in heterozygote carriers due to the homo-tetrameric structure of mature

ALDH2. This variant is common in individuals of East Asian ancestry, but largely absent in

other populations [26] and is associated with lower rates of alcohol abuse/dependence [27]

because the reduced enzymatic activity leads to accumulation of acetaldehyde and unpleasant

symptoms such as excessive flushing in carriers.

Although significant progress has been made in cSNV identification in AUD and alcohol-

related phenotypes, rare or intermediate frequency single nucleotide variant (rSNV) investiga-

tions are largely limited by sample power. Findings from the 1000 Genomes Project suggest

PLOS ONE Case-only exome variation analysis of severe alcohol dependence

PLOS ONE | https://doi.org/10.1371/journal.pone.0283985 April 25, 2023 2 / 20

resource sharing plan included in this grant does

not require that data be made publicly available,

however the consent obtained from the study

participants does make such data sharing possible.

The project PI, Dr. Brien Riley, is working to obtain

final approval from the VCU IRB so that the data

deposition may proceed. Owing to the particularly

sensitive and potentially identifying nature of DNA

sequencing data, we are required to gain such

approval from the VCU IRB before making the data

available. We would like to highlight the PI’s

excellent track record of making study data publicly

available, as evidenced by data depositions for his

projects, “Whole Genome Sequencing in Irish

Multiplex Schizophrenia Families” in the NIMH Data

Archive (NDA) collection C3223, as well as “A

Genomewide Association Study of Schizophrenia

in Ireland” in NIMH Data Repository and Genomics

Resource Schizophrenia Study 90.

Funding: This work was supported by NIMH grant

T32MH020030 (AEG), NIAAA grant P50AA022537

(all authors), and by intramural funds of the VCU

Alcohol Research Center (https://arc.vcu.edu, also

NIAAA grant P50AA022537, all authors). The

funders had no role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0283985
https://arc.vcu.edu


that rare functional variation is frequent in the genome with approximately 400 premature

stop, splice-site disrupting and frame-shift alleles affecting 250–300 genes per individual

genome [28] and display strong population specificity [29]. Sequencing studies in psychiatric

disorders suggest that rare functional variation is an important element of risk for intellectual

disability [30], autism spectrum disorders [31], and schizophrenia [32]. While rare functional

variants have not yet been widely studied through exome sequencing in AUD, early evidence

points to their significant contribution to the genetic architecture of alcohol use phenotypes

[18, 20, 33, 34]. Furthermore, studies across psychiatric phenotypes such as autism spectrum

disorders [31], and schizophrenia [32] show an excess rate of rSNV in genes identified from

common variant GWAS signals in cases compared to controls, suggesting that there is a con-

vergence between cSNV and rSNV signals and disease risk is likely influenced by multiple

alleles of varying frequencies in the same loci [35].

As a complement to genetic studies in humans, mice and invertebrate model organisms can

also facilitate the identification of genetic mechanisms or orthologous genes that influence

AUD in humans. Studies in mice identified genes showing altered expression in prefrontal

cortex (PFC) after intraperitoneal injection of 1.8 g/kg of ethanol versus saline control, and

identified a subset of these as hub genes defined by both high connectivity and high centrality

in co-expression networks [36]. Introduction of mutations or knockdown strategies in inverte-

brate models such as D.melanogaster or C. elegans can also identify genes involved in behav-

ioral response to ethanol [37–39].

In this study, we sought to investigate exome variation in a sample of 190 severely affected

alcohol dependence (AD) cases from the island of Ireland using a novel case-only analysis

framework. Because of previous evidence of the protective effects of LOF alleles in ethanol

metabolizing genes, we hypothesized that individuals with severe AD would show less func-

tional coding variation in these genes compared to control genes with similar attributes. Fur-

thermore, we extended this work to test sets of genes identified in model organisms and also

hypothesized that genes robustly shown to impact alcohol-related outcomes in mice and inver-

tebrates would show divergent patterns of exome variation in comparison to control genes

with similar attributes. For each hypothesis, we sought to compare the numbers of LOF, mis-

sense (MIS), and synonymous (SYN) variants between genes of interest and a matched set of

control genes. Given the absence of implemented methods to test our hypotheses in a case-

only framework with related subjects, we sought to develop a novel framework to address

these challenges. As an alternative to comparing aggregate exome variation between cases and

controls, we matched genes of interest to control genes with similar attributes using gnomAD

[40] as an external source of independent information, and unbiased comparisons across sets

were made in a case-only analysis framework. Since comparison sets would be derived from

within an individual’s genome, they would not be subject to any potential inflation from strati-

fication due to population structure or other sources of bias. We present this framework as a

complementary method to case-control association designs that can be performed in samples

without matched controls and provides a rigorous framework for hypothesis testing where

robust prior sources of evidence are available.

Materials and methods

Sample description

The Irish Affected Sib-Pair Study of Alcohol Dependence (IASPSAD) sample [8] was collected

from 1998–2002 in treatment facilities and hospitals in the Republic of Ireland and Northern

Ireland. Written informed consent was obtained from all participants and data were collected

under Virginia Commonwealth University Institutional Review Board (IRB) approval (IRB
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approval number HM11139.) Adult probands with all four grandparents born in Ireland or

Britain were ascertained for a diagnosis of DSM-IV AD [41] with one or more affected sib-

lings. Lifetime history of AD was assessed using a modification of the Semi-Structured Assess-

ment for the Genetics of Alcoholism (SSAGA) version 11 [42] which permits evaluation of

International Classification of Disease (ICD)-10, Feighner [43], RDC [44], DSM-III-R [45]

and DSM-IV diagnostic criteria. The sample is severely affected, with ~87% of probands and

~78% of siblings endorsing�6 of the 7 DSM-IV AD criteria and 92% reported withdrawal

symptoms. Parents were evaluated for lifetime history of alcohol abuse and AD based on the

Structured Clinical Interview for DSM (SCID) [46], the CAGE Assessment (Cutting Down,

Annoyance by Criticism, Guilty Feeling, and Eye Openers) [47], and Fast Alcohol Screening

Test (FAST) items developed to screen for drinking problems [48]. Details regarding the ascer-

tainment of the IASPSAD cohort, including additional details pertaining to inclusion criteria

and consent have been previously published [49].

Exome capture and sequencing

Exome capture was performed using the Agilent SureSelect V5 71Mb exome + untranslated

regions target kit, followed by library preparation and sequencing on the Illumina HiSeq X

Ten system at BGI. The 190 samples were sequenced in 3 batches, with the first (n = 57) and

second (n = 76) batches via 2x90 and the third batch (n = 57) via 2x100 paired end sequencing.

Variant calling

Sequence data was processed and called according to GATK3 [50, 51] best practices and sum-

marized for quality control using FastQC (v 0.11.4). Sequence read alignment was performed

using BWA-MEM (v 0.7.12) to hs37d5 reference genome, followed by reordering, duplicate

marking and insertion deletion realignment with Picard (v 2.0.1). Variant calling was done

using HaplotypeCaller, and variant quality score recalibration was carried out using Variant

Quality Score Recalibration (VQSR) in GATK (v 3.5).

Annotation

SnpEff (v 4.3, database GRCh37.75) was used to obtain gene annotations and included only

the transcripts found in the gnomAD release 2.1.1 gene constraints.

Description of candidate genes of interest

Selection of genes of interest (GOI) was carried out in collaboration with investigators from

the Virginia Commonwealth University Alcohol Research Center (VCU-ARC), focused on

cross-species discovery and functional interpretation of genes involved in AUD and related

phenotypes. Three sets of alcohol related GOI were constructed for this analysis which crossed

three taxonomic categories including human, mouse, and invertebrates. The first GOI set con-

tains 11 ethanol metabolizing genes whose products are known to be involved with ethanol

metabolism in humans. These included the ADH genes (n = 7), ALDH1A1, ALDH2, CAT, and

CYP2E1 (Table 1). The second GOI set contains 109 hub genes with both high connectivity

and high centrality in co-expression networks that show altered expression in mouse PFC 4

hours after intraperitoneal injection of 1.8 g/kg of ethanol versus saline control [36] (S1 Table).

The third GOI set contains 358 genes for which manipulation in invertebrate model organisms

results in altered ethanol response phenotypes [52] (S2 Table). The current study involved

only secondary data analysis of previously published gene lists resulting from model organism

research. No direct animal research was conducted in our work; information regarding the
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ethics board approval of the published animal research cited here may be found in their

respective publications [36, 52].

Annotations for gene clustering

In order to create matched sets of genes for our case-only analytic approach, we utilized gene-

level annotation information from the gnomAD database (v 2.11) [40]. The seven gnomAD

annotations used to cluster all genes included: (1–3) the ratios of observed to expected (O/E)

counts for each variant class (LOF, MIS, and SYN), (4–6) a z-score for each O/E ratio, and (7)

the probability of loss of function intolerance (pLI) score. In addition to these metrics from

gnomAD, genes were annotated for clustering with metrics for (8) genomic length, (9) tran-

script length, and (10) number of exons. In total, ten annotations were utilized for clustering.

While correlations between some variables were high (see Table 2), none were considered

close enough to warrant dropping from clustering.

Table 1. Ethanol-metabolizing genes of interest (n = 11), with annotation indicating whether they were present in the gnomAD gene constraints file (10), in the

mouse brain expression set (1), and in the invertebrate set (5).

Gene Transcript Present in gnomAD Present in the invertebrate GOI set Present in the mouse brain expression GOI set

ADH1A ENST00000209668 TRUE TRUE FALSE

ADH1B ENST00000305046 TRUE TRUE FALSE

ADH1C FALSE TRUE FALSE

ADH4 ENST00000265512 TRUE FALSE FALSE

ADH5 ENST00000296412 TRUE FALSE FALSE

ADH6 ENST00000394899 TRUE FALSE FALSE

ADH7 ENST00000476959 TRUE FALSE FALSE

ALDH1A1 ENST00000297785 TRUE TRUE FALSE

ALDH2 ENST00000261733 TRUE TRUE TRUE

CAT ENST00000241052 TRUE FALSE FALSE

CYP2E1 ENST00000463117 TRUE FALSE FALSE

https://doi.org/10.1371/journal.pone.0283985.t001

Table 2. Correlations between the gene metrics from the gnomAD database.

O/E LOF O/E MIS O/E SYN LOF z-score MIS z-score SYN z-score pLI Gen. Length Tran. Length No. of Exons

O/E LOF 1 0.551 0.207 -0.728 -0.548 -0.137 -0.619 -0.141 -0.156 -0.161

O/E MIS 0.551 1 0.416 -0.472 -0.874 -0.395 -0.495 -0.062 0.002 -0.071

O/E SYN 0.207 0.416 1 -0.113 -0.326 -0.848 -0.031 -0.007 0.008 -0.028

LOF z-score -0.728 -0.472 -0.113 1 0.648 0.069 0.654 0.335 0.572 0.59

MIS z-score -0.548 -0.874 -0.326 0.648 1 0.403 0.564 0.135 0.149 0.245

SYN z-score -0.137 -0.395 -0.848 0.069 0.403 1 0.016 -0.032 -0.101 -0.03

pLI -0.619 -0.495 -0.031 0.654 0.564 0.016 1 0.148 0.158 0.141

Gen. Length -0.141 -0.062 -0.007 0.335 0.135 -0.032 0.148 1 0.315 0.378

Tran. Length -0.156 0.002 0.008 0.572 0.149 -0.101 0.158 0.315 1 0.802

No. of Exons -0.161 -0.071 -0.028 0.59 0.245 -0.03 0.141 0.378 0.802 1

O/E: Observed/Expected

Gen. Length: Genomic Length

Tran. Length: Transcript Length

No. of Exons: Number of Exons

https://doi.org/10.1371/journal.pone.0283985.t002
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Gene sets for analysis

Given that gnomAD metrics were needed to annotate the GOI, we had to drop 1 gene from

the human ethanol metabolizing set because it did not appear in gnomAD (Table 1), 1 gene

from the mouse hub gene set (S1 Table), and 5 genes from the ethanol behavioral response in

invertebrates set (S2 Table). The final GOI sets contained 10, 108, and 353 genes in the human,

mouse, and invertebrate sets, respectively, for inclusion in clustering and subsequent analyses.

For hypothesis testing, we considered 3 testing sets: Set 1 contained only the 10 GOI for

human ethanol metabolization, Set 2 contained Set 1, plus the addition of the 108 mouse hub

genes. One gene appeared in both the human and mouse sets, therefore Set 2 contained a total

of 117 genes. Set 3 contained Set 2, plus the addition of the ethanol behavior response in inver-

tebrates set. One hundred and eleven of the invertebrate set genes appeared in Set 2, therefore

Set 3 contained a total of 359 genes. Fig 1 shows the flow chart of filtering and sample sizes

(panel a), as well as the Venn diagram (panel b) illustrating overlap between the three GOI

sets, after removing genes absent from gnomAD.

Clustering

Multivariable single linkage agglomerative clustering of all canonical gnomAD genes was car-

ried out using the hclust package (method = “single”) in R (v 3.6.0). The clustering algorithm

was used to identify genes similar to each GOI based on the gene-level variables described

above to create a control set of genes against which the GOI could be compared in a regression

framework. This procedure utilizes information from gnomAD only, separate from the IASP-

SAD sample exomes. Clustering was performed on 10 gene metrics using a dissimilarity metric

of 1−|cor(X)|, where X is the q × pmatrix of the q = 10 normalized metrics of each gene

(p = 19,108). Fig 2 provides an example of gene clusters plotted according to three of these

gnomAD gene metrics (SYN z-score, transcript length, and pLI). The data shown in this figure

represent 4 gene clusters (shown in different colors) and a set of genes chosen at random (in

gray), with ellipses highlighting the shape of the cluster. Matrix cor(X) represents the full set of

pairwise correlations for all 19,108 genes in the set.

The hierarchical clustering was carried out in a stepwise fashion, beginning with all obser-

vations (genes) in a separate cluster of their own. At each successive step, the two least dissimi-

lar clusters were joined together. We then pruned the final trees for all three GOI sets,

choosing a height with enough genes clustered with each GOI for useful comparison while not

exceeding 20% of the exome included in the final branches. Branches in the tree which contain

at least one GOI were termed Clusters of Interest (COI). After a cut height is chosen, all other

clusters not containing a GOI were pruned from the tree.

Association testing

We used logistic regression to compare observed counts of LOF, MIS, and SYN variants

aggregated from the IASPSAD sample exome data between GOI and the matched control

genes. In this framework, instead of human subjects, the dependent variable is the gene

which is either a GOI for a given hypothesis or not and coded 1 or 0, respectively. Therefore,

the logistic regression quantifies the probability that a given gene is a GOI as a function of

the observed counts of LOF, MIS, and SYN variants aggregated across the subjects in the

IASPSAD sample. In other words, this framework tests whether or not the number of LOF,

MIS, and/or SYN variants contributes to the probability that a given gene contributes to a

hypothesized gene set such as alcohol metabolism. For each of the three GOI sets, the model
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Fig 1. (a) Flow diagram with gene counts for the human GOI set, the mouse expression set, and the invertebrate set, through filtering and combination for

hypothesis testing sets, and (b) Venn diagram illustrating the overlap of genes in the sets of interest, after filtering for presence in gnomAD. (Figure created with

BioRender.com).

https://doi.org/10.1371/journal.pone.0283985.g001

Fig 2. Example gene clusters plotted to show three of the 10 clustering gene metrics, SYN z-score, transcript

length, and pLI. The 4 clusters in orange, green, blue, and pink represent actual gene clusters from the data, while the

genes in gray represent a random selection of genes.

https://doi.org/10.1371/journal.pone.0283985.g002
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is constructed as follows:

GOI � LOFAlc þMISAlc þ SYNAlc;

where GOI represents case/control status of the genes as described above for each set, and

LOFAlc,MISAlc and SYNAlc represent the observed counts of LOF, MIS, and SYN variants in

that GOI, respectively. This model tests a null hypothesis of no association between the LOF,

MIS, and SYN variant counts and probability of being a GOI versus a non-GOI. Evidence

against the null hypothesis indicates that the alcohol-related genes of interest contain differing

amounts of variation, as measured by counts of LOF, MIS, and SYN variants, from their

matched control genes within the alcohol sample. Given that we constructed three non-inde-

pendent models, we chose to use an adjusted an alpha cutoff value of 0.05� 3� 0.017 to deter-

mine statistical significance.

Simulations

To empirically demonstrate the utility of this approach, we applied the method to a series of

simulated datasets and assessed their performance. These simulations were conducted post-

hoc and designed to follow distributional patterns and estimated effects observed in the real

data model for the overarching purpose of increasing confidence in the real data results. Full

details of the simulation parameters are given in the S1 File and S3 Table, but in brief, the sim-

ulations replace the observed LOF, MIS, and SYN variant counts for all 19,108 genes from the

sample data with randomly generated data according to the following steps:

1. Set the distributions of the simulated data mimicking the observed distributions of LOF,

MIS, and SYN variant counts in the alcohol sample data according to negative binomial

distributions

2. Simulate the random LOF, MIS, and SYN data using the SimCorrMix package, according to

the correlation structure in the observed alcohol sample data, such that:

1 0:166 0:257

0:166 1 0:688

0:257 0:688 1

2

6
4

3

7
5

3. Generate the GOI probabilities using a logit model with beta effects for the intercept, LOF,

MIS, and SYN values set at (-3, 0.75, 0.05, 0.1), (-5, 1.25, 0.1, 0.2), or (-7, 1.75, 0.2, 0.3).

These values were chosen to broadly reflect the estimated effects observed in the data.

4. Generate random error according to a normal distribution with mean = 0 and standard

deviation ranging from 0.55–1.45

5. Utilizing the clusters generated from gnomAD metrics, assign COIs

6. Apply the logistic regression models to each scenario, using the genes assigned to COIs as

control genes

Each simulation scenario was iterated across 1000 random datasets. The performance of the

approach was assessed by summarizing the mean LOF, MIS, and SYN and the standard error

of those estimates in each simulation scenario.

Additionally, we conducted simulations with zero true effects (a so-called “null model”) to

serve as a baseline. For these simulations we modified the steps outlines above as follows:
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• Generate the simulated GOI probabilities according to Steps 1–4

• Return to Step 2 and re-generate the distributions of LOF, MIS, and SYN variants utilizing

different random starting values

• Proceed to Steps 5–6

In this way, the distributions of the GOI probabilities (ie, the “response”) and the variant

counts (ie, the “predictors”) are similar to those in the first simulation scenario with the impor-

tant exception that the response and predictors were generated without any association and

therefore represent a null model.

Results

WES variant call and filtering

WES data for all 190 IASPSAD subjects passed quality control measurements, with mean

sequencing depth across all samples at 60.6x (standard deviation 12.02), with 96.7% of the tar-

get covered at�10x. A total of 782,711 variants were detected with 677,758 SNPs and an addi-

tional 109,526 insertion/deletions (indels). For quality control, SNPs and indels were excluded

if they fell into GATK VQSR tranches 99.0 or greater, indicating that 99% of the true variants

present in the sample will be retained in the filtered set (38,503 variants removed), to avoid the

rising rates of false positive variant calls at this and more inclusive thresholds. Variants with

MAF� 0.05 in gnomAD European (non-Finnish), non-cancer samples were excluded which

resulted in a final set of 652,428 variants (91,780 removed) with 2,328 LOF, 31,015 MIS, and

46,046 SYN variants left for exome analysis.

Description of GOIs

Fig 3 shows the overview of the analysis framework. The correlation between the LOF, MIS,

and SYN counts for all genes from gnomAD and the observed counts from the IASPSAD sub-

jects were 0.26, 0.80, and 0.76, respectively. This indicates that at least for MIS and SYN vari-

ants, there is sufficiently strong evidence that the gnomAD database information can be

utilized to group genes for a case-only within-sample analysis. Table 2 shows the correlation

between the 10 gene metrics used for identifying control genes from the gnomAD database,

indicating that these annotations are measuring disparate genomic features, which supports

the inclusion of all ten metrics in the multivariate clustering. Table 3 describes the resulting

trees cut at various heights in the hierarchical clustering analysis. We chose to cut all three

GOI set trees at height = 0.09 (representing 9% of the tree), a value which achieves a median

cluster size of 8 genes, while still only utilizing just under 20% of all genes in the largest COIs.

Fig 4 provides a visual representation of one of the branches, representing one cluster of the

pruned tree with the GOI (ADH4) labeled in red. From a methodological standpoint, the size

of GOI sets will depend on the hypothesis and application. Therefore, the decision on cut

height will need to be made on an experiment-wise basis in order to balance the need for large

clusters (for maximum statistical power for comparisons) and smaller overall proportion of all

genes included in the COIs (for tight clusters with high similarity across metrics). Fig 5 illus-

trates the relationship between GOI set size, median cluster size, and proportion of the exome

included in the COI.

Simulation results

Full simulation results appear in S4 Table for the true effect case and S5 Table for the null

model. In summary, the true effect simulations demonstrated the validity of the logistic
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Fig 3. Flow chart demonstrating the analysis framework. (Figure created with BioRender.com).

https://doi.org/10.1371/journal.pone.0283985.g003

Table 3. For each of the three GOI test sets, median cluster size (Med. Size), number of total genes, combined across all clusters of interest (No.Genes), and propor-

tion of the exome retained in the clusters of interest (Prop. Gen) for hierarchical clustering trees cut at various heights.

Primary human ethanol metabolizing GOI set Including mouse brain expression set GOI set Including invertebrate GOI set

Height Med. Size No. Genes Prop. Med. Size No. Genes Prop. Med. Size No. Genes Prop.

0 1 10 0.001 1 117 0.006 1 359 0.019

0.01 2.5 22 0.001 2 214 0.011 1 589 0.031

0.02 3.5 35 0.002 3 376 0.02 2 993 0.052

0.03 4 42 0.002 4 538 0.028 3 1388 0.073

0.04 6.5 75 0.004 5 731 0.038 4 1822 0.095

0.05 7.5 83 0.004 5 891 0.047 4 2230 0.117

0.06 8 97 0.005 8 1072 0.056 5 2561 0.134

0.07 8 108 0.006 8 1252 0.066 6 3007 0.157

0.08 11.5 130 0.007 10 1403 0.073 8 3351 0.175

.09 12.5 149 0.008 11 1639 0.086 8 3719 0.195

0.15 26 290 0.015 22 2818 0.147 14.5 6220 0.326

0.2 36 470 0.025 26 3662 0.192 20.5 7798 0.408

0.25 59.5 608 0.032 34 4285 0.224 25 9238 0.483

0.5 247 2353 0.123 94 8549 0.447 60 14849 0.777

0.75 426 4272 0.224 152 12227 0.64 118 17349 0.908

1.00 19,108 19,108 1.00 19,108 19,108 1.00 19,108 19,108 1.00

Med. Size: Median cluster size

No. Genes: Number of genes across all clusters of interest

Prop. Gen.: Proportion of the exome included

https://doi.org/10.1371/journal.pone.0283985.t003
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regression framework to answer the directed hypotheses regarding counts of LOF, MIS, and

SYN variants in GOIs, as compared to matched control genes. The approach was able to accu-

rately identify significant LOF, MIS, and SYN effects where they were simulated to exist in the

data. Point estimates were somewhat overestimated in most cases, but for MIS and SYN vari-

ants, the true effect fell within 2 standard deviations of the estimated values. Fig 6 shows the

Fig 4. Example of one branch (cluster of interest) from the final, pruned hierarchical clustering tree.

https://doi.org/10.1371/journal.pone.0283985.g004

Fig 5. Relationship between median number of genes per cluster of interest and proportion of the exome included

in the cluster of interest.

https://doi.org/10.1371/journal.pone.0283985.g005
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estimates, plus 2 standard deviations, as well as the true simulated effect for the LOF (panel a),

MIS (panel b), and SYN (panel c) variants across 9 simulation scenarios. The null model simu-

lations demonstrate that in the absence of any true effect, these models correctly fail to identify

any significant signal from LOF, MIS, or SYN variant counts. S1 Fig shows the estimates, plus

2 standard deviations for the estimate effects of LOF (panel a), MIS (panel b), and SYN (panel

c) variants.

Fig 6. Simulation estimates of parameter values with standard deviations and true simulated values. One standard deviation from the point estimate is shown in the

same color as the plotted point with one additional standard deviation shown in gray. The starred point shows the true, simulated point value. Estimates shown for (a)

LOF, (b) MIS, and (c) SYN variants.

https://doi.org/10.1371/journal.pone.0283985.g006
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Association analysis

For each of the three GOI sets tested, logistic regression was performed where all GOIs served

as “cases” and all other genes in the associated COIs served as “controls”. The total set size for

the three GOI sets were 149 for the primary human alcohol metabolizing GOI, 1,639 for the

mouse PFC brain expression hub GOI, and 3,719 for altered ethanol response invertebrate

GOI, respectively. S6–S8 Tables list the control genes for each model. Estimates for the logistic

regression models are shown in Table 4. Using an alpha cutoff of 0.017, the human ethanol

metabolizing GOI did not show a statistically significant difference between the number of

LOF, MIS, or SYN variants in GOI compared to control genes. For the mouse PFC brain

expression GOI, a significant difference in counts of SYN variants with odds ratio (OR) of 1.21

(p-value = 0.0006) was observed, indicating that the addition of a single synonymous variant

conferred odds of a gene being a GOI 1.21 times higher than the odds of being a control gene.

Finally, for the altered ethanol response invertebrate GOI, a significant difference in the num-

ber of SYN variants with an OR of 1.06 was observed (p-value 0.0169).

Discussion

In this study, we sought to perform a hypothesis driven case-only exome analysis in severe AD

cases using three GOI sets with prior evidence for ethanol metabolism in humans, or impli-

cated in alcohol phenotypes in model organism studies in mouse and invertebrates. While we

observed differences in the number of SYN variants for mouse and invertebrate GOIs, the

results do not support the hypothesis that ethanol metabolizing genes, in particular those

directly involved in humans, are largely depleted for LOF variants in severe AD cases. While

MIS or LOF variants have more direct effect on gene products, SYN mutations can impact the

speed of messenger RNA (mRNA) translation processes by changing the codon to one with

different transfer RNA (tRNA) abundance or by altering folding and stability of mRNA, pro-

ducing secondary structures that are less efficiently recognized for mRNA processing [53]. In

particular, recent oncological findings suggest that SYN mutations might play a role in the

development of cancer by altering codon optimization and translational velocity. A recent

review summarized findings implicating SYN mutations in disease and highlighting their con-

tributions to transcription and splicing, as well as other changes important to gene function

[54]. However, SYN mutations are still largely considered to be functionally silent.

Genetic studies of cardiac disease [55–57], obesity [58], Alzheimer disease [59], and non-

alcoholic fatty liver disease [60] consistently show that MIS and LOF alleles are common in the

human genome, alter disease risk, and in some cases are protective [61, 62]. Such protective

effects of functional variants are well documented for alcohol-related phenotypes. Most

recently, rs75967634 in ADH1B was also found to be associated with problematic alcohol use

in individuals of European ancestry [21]. Although of low frequency outside of east Asia,

ADH1B*2 (rs1229984) is associated with both AUD diagnosis [34, 63] and the problem drink-

ing component of the AUDIT [20] in European populations. Together, these results suggest

that although effects of variants in ethanol metabolizing enzymes are well documented across

different populations, our findings based on our modestly sized sample of severe AD cases

does not provide evidence in support of a significant depletion of LOF or MIS variation in

these genes.

In this study, we presented a framework for analyzing case-only exome variation data in the

absence of appropriate control subjects. It is not uncommon in genetic studies to obtain

molecular data on a set of subjects who are all positive for a dichotomous phenotype. There-

fore, methods have been developed for intentional case-only study designs, in particular for

gene-by-environment interaction studies [64] or polygenic risk scores [65]. However, current
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case-only analysis frameworks generally consider an environmental exposure as the dichoto-

mous outcome being tested for association with genetic variation within a sample of all cases,

and offer no information regarding phenotypic variation due to the primary disease state. Fur-

thermore, when controls have not been genotyped or sequenced alongside cases in the same

study, publicly available datasets may also provide appropriate population controls with careful

ancestral matching. Additionally, methods such as the Robust Variance Score Statistic (RVS)

method [66], or the burden test implemented in the TASER software [67] which is an exten-

sion of RVS method that offers improved adjustment for sample differences in case/control

analyses that can be used in such cases. Other methods such as iECAT [68] does not require

individual-level genotype data from population controls, but rather conducts an adjusted asso-

ciation testing using only allele counts. However, due to differences in sampling techniques or

technology, filtering criteria, and variant calling, using these methods may not always be feasi-

ble. Importantly, none of these methods offers correction or adjustment for related samples

such as the IASPSAD sample analyzed in this study. We therefore sought to model case/con-

trol status of individual genes within a case only sample of severely affected subjects with AD

cases using a novel design. In contrast to studies that use external control subjects, our pro-

posed framework used individual cases’ own exome data to assign case status to GOI and con-

trol status to matched genes as described in the methods section. This in fact is a strength, as

well as a motivating force, of the approach since unlike other genetic analytical approaches,

there is no need to control for sample relatedness or cryptic population stratification for vari-

ants, a task which is non-trivial in traditional rare variant case-control studies. This strategy

removes the need for careful correction or adjustment for subtle population structure in

exome studies, and further leverages external information from large sequencing studies such

as gnomAD to ensure gene matching is robust by using a multivariate agnostic hierarchical

clustering approach. Therefore, this methodological framework represents an interpretable,

straight-forward, and computationally affordable approach that is easily implemented using

existing software and tools. We additionally note that this framework can also be extended to

Table 4. Logistic regression results.

Primary Human Ethanol Metabolizing GOI set N = 149 (10 GOI, 139 control genes)

Parameter Estimate Standard Error Marginal P-value

Intercept -2.36 0.531 <0.0001

LOF Alc -0.17 0.900 0.849

MIS Alc -0.064 0.206 0.757

SYN Alc -0.11 0.276 0.678

Mouse Brain Expression GOI Set N = 1,639 (117 GOI, 1,522 control genes)

Parameter Estimate Standard Error Marginal P-value
Intercept -2.74 0.126 <0.001

LOF Alc -0.80 0.552 0.1462

MIS Alc -0.05 0.044 0.2296

SYN Alc 0.18 0.053 0.0006

Invertebrate GOI Set N = 3,719 (359 GOI, 3,361 control genes)

Parameter Estimate Standard Error Marginal P-value
Intercept -2.34 0.071 <0.001

LOF Alc -0.10 0.166 0.5330

MIS Alc 0.004 0.022 0.8367

SYN Alc 0.06 0.026 0.0169

https://doi.org/10.1371/journal.pone.0283985.t004
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model quantitative measures within cases, such as maximum number of drinks per day with

minimal adjustment.

Finally, our simulation studies demonstrated that while the approach has sufficient power

to detect real effects, the estimates of these effects may show some inflation under certain

distributional conditions. It is recommended that future applications of this approach utilize

some simulations to determine empirically expectations of power and identify potential

sources of bias a priori. Conservatively, the simulation results indicate that the significant esti-

mate of the effect of synonymous variants in the mouse expression set is unlikely attributable

to positive bias alone. Additionally, where no true effect existed, as in our null model simula-

tions, the model does not identify any signal. Furthermore, while such exploration was beyond

the scope of the current study, different experimental designs may warrant further simulations

to empirically guide the choice of tree cutpoints to balance cluster size and proportion of the

exome included in the COIs.

The findings presented in this study should be interpreted in the context of four important

limitations. First, our initial hypothesized GOI list included ADH1C, but we were unable to

include it in our testing because at the time of analysis, the available gnomAD constraints file

(version 2.1.1) did not contain the gene. Second, our modest sample size of 190 affected sub-

jects with exome data is limited, and the tests conducted on each GOI set may not be suffi-

ciently powered to detect significant differences. Third, while we empirically modeled the

median number of matched genes in each cluster against the proportion of the genome in the

final clustered set to choose an appropriate pruning parameter, simulations to evaluate the

impact of various parameter choices such as tree pruning height, or proportion of the genome

included in gene clusters could provide better benchmarking for selecting these parameters in

future studies. Our choice of tree cutting height in this focused, hypothesis-testing approach

was motivated by a desire to have large enough clusters to make appropriate comparisons,

while not including too much of the exome as to negate the purpose of matching in the first

place or to dilute the signal beyond detection. We recognize the inherently empirical nature of

those choice and that some degree of researcher judgement has been rendered. We therefore

recommend that further applications of this approach considered additional simulations spe-

cifically designed to test ideal tree cutting heights. Such simulations, which require generating

variant count distributions (as we demonstrated here) in addition to a correlated gene metric

database, are beyond the scope of this work. Fourth, as more exome data from ancestrally

diverse populations become available, future analyses could attempt to replicate these findings

in larger, more diverse samples to improve the generalizability of these findings and the utility

of our case-only exome analysis framework in other populations and phenotypes.
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