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Abstract

Mass spectrometry imaging (MSI) allows us to visualize the spatial distribution of molecular
components in a sample. A large amount of mass spectrometry data comprehensively pro-
vides molecular distributions. In this study, we focus on the information in the obtained data
and use the Shannon entropy as a quantity to analyze MSI data. By calculating the Shannon
entropy at each pixel on a sample, the spatial distribution of the Shannon entropy is obtained
from MSI data. We found that low-entropy pixels in entropy heat maps for kidneys of mice
had different structures between two ages (3 months and 31 months). Such changes cannot
be visualized by conventional imaging techniques. We further propose a method to find
informative molecules. As a demonstration of the proposed scheme, we identified two mole-
cules by setting a region of interest which contained low-entropy pixels and by exploring
changes of peaks in the region.

Introduction

Mass spectrometry imaging (MSI) enables us to acquire mass spectra and to visualize the spa-
tial distribution of analytes simultaneously by ionizing them from the surface of a sample and
identifying molecules [1-3]. The large amount of data gathered from MSI prompts us to
explore physiological functions and pathological correlations.

Current progress in biological analyses enables instant access to massive amounts of data
describing the detailed conditions of biological samples, initiating bioinformatics studies, and
bringing great revolutions to biology and medicine [4]. The concept of the Shannon entropy
has been applied to analyze these big data obtained from the biological samples. The Shannon
entropy is commonly utilized in biology to measure diversity and defines how cells, genes, or
molecules distribute and interact [5]. Initially, the Shannon entropy was utilized to represent
the randomness of the DNA sequence composed of four nucleotides: adenine (A), cytosine
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(C), guanine (G) and thymine (T) [6, 7]. Since then, various kinds of entropy have been used
on the genome: the metric entropy [8], the Renyi entropy [9], the diffusion entropy [10], and
the topological entropy [11]. In systems biology, the amount of information is described by the
Shannon entropy [12] and has been applied to examining the robustness of the signaling trans-
mission through the different omics layers such as transcriptomics, proteomics, and metabolo-
mics [13]. The Shannon entropy calculated from MSI data from peanuts was used to identify
advanced glycation end products [14]. The use of the Shannon entropy for RNA-seq datasets
was also proven to be useful for a quick and in-depth analysis of changes in the gene expres-
sions [15]. Antibodies in human blood were detected by a peptide microarray, and the Shan-
non entropy calculated from the profile is proposed as an indicator of the health status of
individuals and populations [16].

Initially, entropy was introduced in mass spectrometry as a tool to detect the pattern of a
complex spectrum in extracting molecular information [17, 18]. Later, entropy was used to
align high-resolution images [19] and to determine the spatial correspondences between the
MSI data and the histological image for overlays [20]. See a book by Kaltashov and Eyles [21]
and a review article by Aoyagi [22] about how entropy has been used in MSI. Moreover, the
spectral binning was investigated with the Shannon entropy [23]. In [24], the Shannon entropy
was used to match mass spectra to peptides and proteins. In [25], a data-targeted extraction
method for metabolite annotation was proposed for liquid chromatography-high-resolution
mass spectrometry.

Recently, entropy has started to be recognized as a physical quantity to be imaged not only
a mathematical tool for MSI data processing. Aoyagi and her collaborators proposed a method
based on the information entropy (Shannon entropy) for time-of-flight secondary ion mass
spectrometry (TOF-SIMS) and showed that without peak identification the spatial distribution
(heat maps) of the Shannon entropy of spectra indicates differences in materials and changes
in the conditions of a material in a sample [26].

In this paper, we consider the information in the whole mass spectrum by observing the
Shannon entropy and obtain the spatial distribution of the information by entropy heat maps
for the matrix-assisted laser desorption/ionization (MALDI) MSI. In [27], mass spectral pat-
terns were used for segmentation by deep learning but it was difficult to grasp the physical
meaning of mass spectral patterns. In this study, we found that the spatial distribution of the
Shannon entropy provides new images which contain information that cannot be obtained
from images by optical microscopy nor conventional MSI. With entropy heat maps, we pro-
pose a method to select candidate peaks.

Materials and methods
Animals

For the mouse kidneys, C57BL/6]JJmsSlc male mice of 3- and 31-month-old were used in the
experiment. All mice were born in our animal facility and their parents were purchased from
SLC (Hamamatsu, Japan). These mice were housed in a controlled environment with a
12:12-h light-dark cycle under standard laboratory chow and water. All experiments in this
study were performed in accordance with the guidelines issued by the Institutional Animal
Care and Use Commiittees of Hamamatsu University, School of Medicine, Japan (approval
code: 2015028) and carried out in accordance with the approved guidelines.

Sample preparation

Two mice were sacrificed by cervical dislocation, and immediately thereafter their kidneys
were dissected and subsequently frozen in powdered dry ice. Stored organs at —80°C were
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sliced with a thickness of 10 um using a cryostat microtome at —20°C (Leica CM 1950, Leica
Microsystems). The slices were mounted onto the indium tin oxide-coated glass slides (ITO
glass, Matsunami Glass Ind., Ltd., Osaka, Japan) and stored again at —80°C in 50 mL Falcon
tubes containing silica gel. Samples were coated with 9-aminoacridine (9AA; Merck Millipore,
Darmstadt, Germany) solution at 10 mg/mL dissolved in 70% ethanol, as a matrix by an auto-
matic sprayer (TM-Sprayer, HTX Technologies, North Carolina (NC), USA), soon before the
MALDI MSI observation.

MALDI-MSI

The MALDI-MSI observations of the kidney samples from the three mice were performed by
iMScope (Shimadzu, Kyoto, Japan), as our previous study [28]. The best condition of the
matrix and the mass range was determined, in which the signal from the samples is efficiently
detected as a wide range of m/z as possible, and separated from the noise from the background
and matrix. We set the condition as follows: with 9-AA matrix, mass spectra of the m/z range
of 550-1050 were acquired under negative ion mode, with the scan pitch of 50 um and a laser
diameter of 25 pum. The laser strength was set to be 60%, and the number of irradiations was
500.

The negative ion mode was used with adduct type of [M-H]- and Molecular Mass Toler-
ance of 0.2 Da. Lock mass correction was performed using m/z 885.5493 (for m/z >500) to
achieve better mass accuracy [29] and candidate selection with higher precision [30]. m/z
885.5493 was annotated as phosphatidylinositol (PI)(38:4) [29].

Shannon entropy calculation from MALDI-MSI data

Mass spectrum data was acquired by MALDI-MSI analysis. We used IMDX converter (Shi-
madzu Corporation, Kyoto, Japan) and IMAGEREVEAL™ MS software (Shimadzu Corpora-
tion, Kyoto, Japan) to get numerical data from the mass spectra. All peaks from the mass
spectra were included for calculation. Let P,(x, y) denote the ith peak intensity in the mass
spectrum at point (x, y) on the sample. We introduced the relative intensity as

o P(x,y)
P = S b Gy ®

where 7 is the number of peaks in the mass spectrum. Then we defined the Shannon entropy
H(x, y) for the spot at (x, y) on the sample as

HGxy) = = py) og, plx.). @)

The entropy heat map can be drawn with H(x, y). We note that the Shannon entropy
depends on the number 7 of peaks (0 < H(x, y) < log, n). The entropy H(x, y) reaches the
maximum when all p;(x, y) are equiprobable. The Shannon entropy is high when the system
contains much information and little certainty. The Shannon entropy is low when the number
of possible values is small and the system is not random.

Shannon entropy heat maps

In the case of rat brain data, Wister male rats aged 8 weeks were used in the experiment. The
MSI data of the rat brain data was previously obtained in our group by MALDI equipped with
the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR) MSI (Solarix XR,
Bruker Daltonics) with DHB matrix using iMLayer (Shimadzu Corporation, Kyoto, Japan)

PLOS ONE | https://doi.org/10.1371/journal.pone.0283966  April 6, 2023 3/12


https://doi.org/10.1371/journal.pone.0283966

PLOS ONE

Spatial distribution of the Shannon entropy for mass spectrometry imaging

A Bright-field Image of Rat Brain B H=6.1

S
&

" ~Cerebral cortex'

= 0.04
] Mid 3
iy il 0 J 0.02
gy e 0.00—"55 800 600 1000 1700 1200
O vins oo o
C H=6.38 D H=75
0.08 0.06
2004 5004
0.02 0.02
0.00="756 "800 900 1000 1100 1200 0-00=755 800" 900" 10001100 1200
m/z m/z

E  Heat Map of Shannon Entropy

r

oA N WA OO N®

Fig 1. Shannon entropy calculated from the mass spectrum. (A) The bright-field image of the sagittal rat brain using
MALDI-FT-ICR-MSI with 2,5-dihydroxybenzoic acid (DHB) matrix [20]. (B-D) Mass spectra at three different spots
on the rat brain (p;: relative mass spectral intensity). At these spots, Shannon entropy values were 6.1 (B), 6.8 (C), and
7.5 (D), respectively. (E) The heat map of the Shannon entropy from the rat brain. The scale bar denotes 1 mm.

https://doi.org/10.1371/journal.pone.0283966.9001

[31]. The bright-field image of the brain is shown in Fig 1A. Mass spectra at three different
spots on the sample of the rat brain had different behavior (Fig 1B-1D). Upon the MSI mea-
surement, the mass spectrum was acquired from each spot on the samples. We note that the
Shannon entropy becomes high when the mass spectrum is uniformly distributed. Indeed, the
Shannon entropy H for Fig 1B-1D was H = 6.1, 6.8, and 7.5, respectively.

Fig 1E shows the heat map of the Shannon entropy which is calculated from the mass spec-
trum at each spot. By comparing Fig 1A and 1E, we found that the entropy heat map reflected
the anatomical structure. For instance, entropy values were relatively low (color close to yel-
low) in many parts of gray matter, including the cerebral cortex, hippocampal region, striatum,
and cerebellar cortex. In contrast, entropy values are relatively high (color close to red) in
many parts of the fiber tracts.

Method to identify related peaks

With the help of entropy heat maps, we can find peaks related to a control parameter such as
age. Our proposed method consists of the following four steps.

Step 1. Obtain entropy heat maps for different values of the control parameter and find a
region in the heat maps which show a clear dependence on the control parameter. That is, a
region of interest (ROI) is determined. Once an ROI is chosen for a heat map, ROIs must
be set in the same area for other heat maps with different values of the control parameter.

Step 2. In the ROI, we calculate the sum of intensities for each peak in the spectrum. Sums are
calculated for each value of the control parameter. Summed intensities are further normal-
ized by using the sum from one value of the control parameter.

Step 3. The dependence of the normalized sums of intensities on the control parameter is
investigated. Informative peaks are selected in the mass spectrum as peaks which signifi-
cantly depend on the control parameter.
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Step 4. Candidate molecules are identified from the selected peaks.

The workflow for our method to identify candidate molecules is illustrated in S1 Fig.
Assignments of all candidate molecules were conducted with a good mass accuracy using the
Human Metabolome Database (metabolite identification confidence level 3). The choice of the
ROl in Step 1 is not unique. Depending on ROIs, different candidate peaks might be identi-
fied. Then it should be determined by the targeted MSI if the identified peaks are most impor-
tant for the control parameter. The proposed scheme helps identify a few candidate peaks
from hundreds of intensities on the m/z spectrum.

Results
Shannon entropy for the young and old kidneys

Shannon entropy heat maps for MSI were produced using young and old kidneys. The Shan-
non entropy was calculated from the MSI data acquired by MALDI equipped with the time-of-
flight mass spectrometer (TOF-MS) for the kidneys of 3- and 31-month mice. Fig 2A and 2C
shows Shannon entropy heat maps of these kidneys. For both kidneys, high entropy regions
(marked in black arrows) were seen in the pelvis and the renal capsule. The number of low-
entropy pixels increased for the 31-month kidney. For example, a low-entropy region (i.e., a
group of low-entropy pixels) in the renal cortex (marked by a black dashed line) appeared. The
histograms in Fig 2E and 2F show frequency distributions of the Shannon entropy for both
kidneys. The histograms were normalized by the number of pixels. The average entropy of the
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Fig 2. Shannon entropy for the two kidneys. Entropy heat maps (A and C) and bright-field images (B and D) are
shown for the 3- and 31-month mouse kidneys, respectively. Black arrows show examples of high entropy regions. A
low-entropy region which appeared only for the 31-month kidney was marked by a black dashed oval. (E and F)
Histograms of the Shannon entropy of two samples. (G) The two histograms were superimposed. (H) Box plots for the
3- and 31-month kidneys. Scale bars denote 1 mm.

https://doi.org/10.1371/journal.pone.0283966.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0283966  April 6, 2023 5/12


https://doi.org/10.1371/journal.pone.0283966.g002
https://doi.org/10.1371/journal.pone.0283966

PLOS ONE

Spatial distribution of the Shannon entropy for mass spectrometry imaging

3-month kidney was smaller than that of the 31-month kidney (Fig 2G). The box plots of the

entropy showed the existence of the low-value outliers in the 31-month kidney (Fig 2H).

Low entropy spots for the young and old kidneys

The distribution of all entropy values of the samples was close to Gaussian (Fig 3A). To further
investigate low-entropy pixels, we introduced a threshold H;. Among all pixels of the two sam-

ples, the smallest 1% of the pixels were defined as low entropy pixels (S1 Table) and corre-

spondingly we set H; = 6.03. When comparing the 3- and 31-month kidneys, we found more
low-entropy spots in the 31-month kidney (Fig 3B and 3C). Indeed, 0.66% and 1.34% of pixels
were classified as low-entropy pixels, respectively (Fig 3D and 3E). A magnified image of the
31-month kidney showed that even though the individual low-entropy spots were separated,
as a group they exhibited a structure-like distribution in the cortex, renal pelvis, and renal cap-
sule (Fig 3F-3H), while no low-entropy spots were found in the cyst with hollow structures

(Fig 31).

Identification of candidate peaks using entropy heat maps

We first determined ROIs which contained low entropy regions. The ROIs are marked by
black ovals in Fig 4A and 4D. For both samples, we calculated for each m/z the sum of the
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Fig 3. Detection of low-entropy spots in the mouse kidneys. (A) The distribution of the Shannon entropy from two
kidney samples. (B-C) Low-entropy spots were plotted on the kidney images. Outlines of the kidneys are shown by
black solid lines. (D-E) Histograms of the Shannon entropy for the 3- and 31-month mouse kidneys. Enlarged kidney
images for the 31-month mouse of the cortex (F), pelvis (G), and the renal capsule (H) in addition to the renal cysts (I).

Scale bars denote 1 mm.

https://doi.org/10.1371/journal.pone.0283966.9003
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Fig 4. ROIs for two kidneys and MALDI-MSI ion images. (A) The entropy heat map for the 3-month kidney with
the ROI marked by a black oval. (B) Ion image of m/z 778.5 for the 3-month mouse. (C) Ion image of m/z 766.5 for the
3-month mouse. (D) The entropy heat map for the 31-month kidney with the ROI marked by a black oval. (E) Ion
image of m/z 778.5 for the 31-month mouse. (F) Ion image of m/z 766.5 for the 31-month mouse. Scale bars show 1

mm.

https://doi.org/10.1371/journal.pone.0283966.9004

intensities for the pixels in ROIs. Then for each m/z, the ratio of the summed intensity for the
31-month kidney to the summed intensity for the 3-month kidney was calculated. From the
list of change ratios, two m/z’s which corresponded to the largest and smallest ratios were
picked (52 Table).

In this way, two candidates were selected which had the largest and smallest change ratios.
The peak of the largest change ratio (the ratio was 4.55) was m/z 778.5 and the peak of the
smallest change ratio (the ratio was 0.380) was m/z 766.5. We note that by focusing on a partic-
ular intensity, more precise m/z values can be obtained: the former was m/z 778.5387 and the
latter was m/z 766.4701.

The intensity with the largest change ratio (m/z 778.5387) was annotated as N-mono-
methylphosphatidylethanolamine (PE-NMe) (38:5). The intensity with the smallest change
ratio (m/z 766.4701) was annotated as phosphatidylserine (PS)(35:5). Both candidate mole-
cules were assigned according to the Human Metabolome Database (metabolite identification
confidence level 3) (see Table 1). Furthermore, we produced MALDI-MSI ion images of the
molecules in the ROIs for the 3-month kidney (Fig 4B and 4C) and 31-month kidney (Fig 4E
and 4F). For m/z 778.5387, the average intensity for Fig 4B was smaller than that for Fig 4E.
For m/z 766. 4701, the average intensity for Fig 4C was larger than that for Fig 4F.

Robustness of low-entropy spots

To further investigate low-entropy spots, we changed mass and spatial resolutions for the
31-month mouse kidney. The mass resolution is commonly defined as the ability to separate
two narrow mass spectral peaks. As the mass resolution gets lower, adjacent peaks become
indistinguishable. At each spot, there were 2500 intensities in the m/z-axis as the interval from

Table 1. Tentative assignments of candidate molecules.

kidney

Tentative ion attribution

PS(35:5)
PE-NMe(38:5)

https://doi.org/10.1371/journal.pone.0283966.t001

Observed m/z Database m/z Mass error (ppm) Adduct Formula
766.4701 766.4665 4.70 [M-HJ C41H,oNO, P
778.5387 778.5392 0.64 [M-H] C44H,sNOGP
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m/z 550 to m/z 1050 was split into 2500 subintervals. We took the average over every two, five,
and ten neighboring intensities. Thus, we produced new heat maps with reduced numbers of
peaks. As seen in Fig 5A-5C, newly obtained heat maps were more or less similar and the
structure of low-entropy spots was preserved. High peaks appeared between m/z 550 and 800
for all mass spectra, which had 2500, 1250, 500, and 250 intensities (Fig 5D-5G). We found
that key features such as low-entropy regions remain if the mass resolution changes.

To check the influence of the spatial resolution on the distribution of Shannon entropy, we
reduced the spatial resolution by binning the MSI data, i.e., we took the average of mass spectra
over adjacent spatial spots on the image. Unlike the case of the m/z resolution, which made no
huge change in the distribution of the Shannon entropy, the reduction of the spatial resolution
severely influenced the distribution (Fig 5H-5]). The entropy distribution became almost uni-
form after mass spectra in 25 (5 x 5) adjacent pixels in the image were averaged. Thus, high
spatial resolution is necessary to detect entropy changes in the heat map.

To check the influence of peak selections on the distribution of the Shannon entropy, we
summed all peaks from pixels in the sample and selected the top 500 and 100 m/z peaks
among the summed peaks. With the top 500 and 100 m/z peaks, entropy heat maps were gen-
erated for the two kidney samples (Fig 5K-5N). The heat maps were more or less similar. This
implies that the contribution of small peaks was negligible.

PLOS ONE | https://doi.org/10.1371/journal.pone.0283966  April 6, 2023 8/12


https://doi.org/10.1371/journal.pone.0283966.g005
https://doi.org/10.1371/journal.pone.0283966

PLOS ONE

Spatial distribution of the Shannon entropy for mass spectrometry imaging

Discussion

Entropy heat maps reflect the anatomical structure of the sample as shown in Fig 1. This is
because entropy values vary depending on the anatomical structure. Moreover, entropy heat
maps reveal features in the sample which cannot be detected by other modalities. An example
of such features is the appearance of low-entropy regions in the kidney. Thus the Shannon-
entropy heat map provides new insights for MSI. Although age was used as a control parame-
ter in this study, different control parameters can be used for the proposed method.

We note that the information entropy carries the information from all peaks in the range of
interest on the m/z axis. In this sense, the Shannon-entropy heat map is different from an
image for a specific peak. Furthermore, the Shannon-entropy heat map differs from the total
ion current or total ion image (sum of all ion intensities); the former is a weighted sum which
measures the degree of randomness. See [26] for the comparison between Shannon entropy
and total ion heat maps.

Since all peaks in the range which is considered are taken into account when the informa-
tion entropy is calculated, matrix effects are unavoidable. We emphasize that as shown in this
paper informative entropy heat maps can be obtained even in the presence of matrix.

We found that in the comparison between the two kidneys, entropy changes occurred in a
small part of the cortex. This means that the spatial resolution must be below 100 pm. As writ-
ten above, the laser diameter for the MSI measurements was set to 25 pm in this study.

In this paper, we identified two molecules, PS(35:5) (m/z 766.47) and PE-NMe(38:5) (m/z
778.54), to illustrate the proposed method of identifying relevant molecules via entropy heat
maps. The results are consistent with the findings in our previous report [32]. In the present
study, the 31-month kidney had more PE-NMe(38:5) than the 3-month kidney. PE treatment
was reported to increase the averaged and maximum life span [33].

In Fig 5A-5C, the influence of the spectral binning on entropy heat maps was studied. The
average entropy decreases as the bin size increases. In Fig 5A, the average entropy was 5.99 for
the bin size 0.4 (1250 peaks). In Fig 5B, the average entropy was 5.76 for the bin size 1.0 (500
peaks). In Fig 5C, the average entropy was 5.41 for the bin size 2.0 (250 peaks). This tendency
is implied in Fig 5D-5G. The result is consistent with [23], which investigated the spectral bin-
ning for TOF-SIMS data.

A natural next step is to perform more comprehensive experiments with the proposed anal-
ysis to identify molecules which are related to aging. MSI has been successfully applied in a
wide range of kidney studies [34]. Among one of those studies, we previously developed the
method to detect small metabolites in the kidney by MSI [35] and identified 6 specific lipids in
immunoglobulin A (IgA) induced nephropathy in the mice model [36]. For the lipidomics
analysis, Moreno-Gordaliza et al. determined the best condition for the broadest detection and
identification of renal lipids by MALDI-MSI [37, 38]. They used 9-aminoacridine (9-AA) as a
matrix for the negative ion-mode lipid imaging of the kidney, which is consistent with our
condition for the kidney imaging. In the future research, it must be confirmed that PE-NMe
(38:5) increases and PS(35:5) decreases as age grows.

Although in this paper we focused on the mass range between m/z 550 and m/z 1050, it is
possible to consider the entire spectrum. Metabolic changes may be studied by entropy heat
maps which are obtained from a wide range of the mass spectrum that contains small mass
biomolecules such as lipids and peptides.

Conclusions

In this paper, we have introduced entropy heat maps for MSI. We showed that entropy heat
maps provide new information such as low-entropy regions, which cannot be imaged by other
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modalities. Furthermore, we proposed a method of detecting informative peaks in the mass
spectrum from changes of entropy heat maps against a control parameter. Choosing age as a
control parameter, we demonstrated how candidate molecules can be identified.

Supporting information

S1 Fig. Workflow of candidate molecules identification. After extraction of data from ROIs
on each sample, summation and normalization are performed for intensities of each m/z.
Then the fold-change is calculated to obtain m/z with higher degree of variations. Finally, ten-
tative assignments of all candidate molecules are performed.

(TIF)

S2 Fig. Pixels selected in the low entropy areas of different aged mice kidneys. Pixels
selected in the low entropy of 3-month mouse kidney (A) and 31-month mouse kidney (B).
(TIF)

S1 Table. Low-entropy spots by the cutoff at 6.03 for the 3-month kidney.
(XLSX)

S2 Table. Candidate peaks with change ratios (ascending order).
(XLSX)
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