
RESEARCH ARTICLE

Deciphering the relational dynamics of AF-2

domain of PAN PPAR through drug

repurposing and comparative simulations

Fouzia Gul, Nousheen Parvaiz, Syed Sikander AzamID*

Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad,

Pakistan

* syedazam2008@gmail.com, ssazam@qau.edu.pk

Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, and their acti-

vation has been proven to treat mild liver fibrosis, reduce steatosis, inflammation, and the

extrahepatic effects of chronic liver disease. Considering the significance of the PPARs, it is

targeted for the treatment of Non-Alcoholic Steatohepatitis (NASH), for which currently

there is no FDA-approved drug. Lanifibranor is a next-generation highly potential indole sul-

fonamide derivative that is presently in clinical trial phase III as an anti-NASH drug which

fully activates PPARα and PPARδ and partially activates PPARγ. In the current study, a

comprehensive computational investigation including 3D-QSAR pharmacophore modeling,

MD simulations and binding free energy calculations is performed to get insights into the

activation mechanism of the Lanifibranor. Furthermore, FDA-approved drugs were explored

for repurposing through virtual screening against each PPAR pharmacophore to identify

potential drug candidates. Forasartan, Raltitrexed, and Lifitegrast stood out as potential

agonists for PPARα (full agonist), PPARγ (partial agonist), and PPARδ (full agonist),

respectively. The findings of the study highlighted a lack of hydrogen bond acceptor feature

in Raltitrexed and Lanifibranor which is responsible for partial activation of PPARγ that plays

a critical role in preventing lipid accumulation. In addition to this, the significant role of AF2

domain in full and partial activation of PPARs through electrostatic interactions was also

revealed, that facilitates the anchoring of ligand within the binding cavity. Moreover, com-

mon chemical scaffolds (methyl sulfonyl benzene, butyric acid, and chlorobenzene) identi-

fied using Fingerprinting technique were presented in this study which hold the potential to

aid in the design and development of target specific novel Pan PPAR medications in future.

1. Introduction

Non-Alcoholic Steatohepatitis (NASH) is a potentially fatal chronic liver disease. NASH is an

emerging public health issue, characterized by inflammation, hepatocellular lipid buildup,

liver cell injury in the form of hepatocyte ballooning, and steatosis both with or without fibro-

sis in lack of excessive alcohol intake [1–3]. It is a widespread multifactorial and multi-stage
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liver disease that can proceed to hepatocellular carcinoma or cirrhosis and end-stage liver dis-

ease i.e. liver failure resulting in high morbidity and mortality rates [4–8]. It has also been iden-

tified as a major cause in patients evaluated for liver transplantation, with higher

cardiovascular risk and malignancy being observed in these patients [9–11]. The precise source

of its pathogenicity is unclear due to the factors linked with the fast progression that could not

be distinguished [12, 13]. The major hypothesis is centered around the role of certain condi-

tions such as genetic predisposition, thyroid-stimulating hormone levels abnormal lipid

metabolism, oxidative stress, lipo-toxicity, mitochondrial dysfunction, altered production of

cytokines and adipokines, gut dysbiosis, endoplasmic reticulum stress, and glucotoxicity that

are predictors of histologic findings diagnostic of NASH [14–20].

Despite continuous progress in understanding the pathogenesis of NASH, finding potential

therapeutic targets, and progressing drug development, there are substantial unresolved chal-

lenges, and there is presently no FDA-approved drug for NASH [21, 22], therefore the urgent

need for an effective therapy that addresses the complicated pathophysiologic mechanisms of

NASH can no longer be ignored [23]. Numerous research initiatives that were specifically

designed to treat NASH have shown promising results initially but were halted in the late

phase of trials owing to ineffectiveness, safety issues, or drug-drug interactions [24]. Given the

numerous targets that may be associated in NASH, many compounds now under research are

considerable. A potential drug for NASH would be the one that targets fat deposition, empha-

sizes anti-metabolic activities, has anti-fibrotic and anti-inflammatory characteristics, and

minimizes cardiovascular risk, which is the primary cause of death in NASH [25, 26].

Peroxisome Proliferator activated receptor (PPARs), a therapeutic target that functions as a

master regulator in the liver and adipose tissue has gained prominence over recent years. The

deregulation of PPAR accelerates the progression of NASH by influencing inflammation, lipid

metabolism, insulin resistance, and fibrogenesis. PPARs are activated by ligands and bind to

fatty acids. It belongs to the Nuclear Hormone receptors superfamily which play an essential

role in whole-body energy metabolism [27, 28]. The ligand activated PPAR forms a heterodi-

mer by binding to the retinoid X receptor (RXR). This heterodimer further binds to PPREs

(PPAR response elements) of targeted genes in the promoter region resulting in the transacti-

vation of mitochondrial and peroxisomes target genes [29, 30]. PPAR has three different iso-

forms, namely: PPAR-Alpha (NR1C1), PPAR-Gama (NR1C3), and PPAR-Delta (NR1C2).

PPARs are different from each other in the spectrum of their distribution, functionality, and

ligand specificity, however, they target the same segment of DNA. The sequence comparison

of all isotypes shows high similarity in the DNA binding domains (DBD) which means that

DNA binding domains are extremely conserved whereas the Ligand-binding domains (LBD)

are less conserved [31]. Some conserved LBD residues have been linked to essential receptor

activity engaged in signal transduction. The substantial variation in the LBD residues shows

that each receptor isotype is pharmacologically different.

PPARα expresses in the adipose tissue, liver, kidney, heart, and skeletal muscle [32]. It also

has an anti-inflammation effect. The activation of PPARα increases the activity of the lipopro-

tein lipase (LPL) by upregulation of gene transcription and by reducing the level of apolipo-

protein (apo) C-III, which is a natural inhibitor of LPL. Through these combined actions the

triglyceride-rich lipoproteins TRL levels decreases [33]. PPARα activation also reduces weight

gain by improving lipid and glucose metabolism. PPARγ is primarily expressed in adipose tis-

sue where it regulates energy balance, adipogenesis, and lipid biosynthesis [34]. It is also

expressed in the colon, the immune system, and the retina to some extent. This receptor par-

ticipates in the accumulation of lipids in adipose tissue and insulin sensitivity [34, 35]. The

PPARδ express in adipose tissue, skeletal muscle, skin, and muscles where it regulates the fatty

acid beta-oxidation and mitochondrial metabolism [36, 37]. PPARδ activation improves
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glucose tolerance by increasing fatty acid oxidation and energy expenditure, indicating a role

in inflammation and fibrosis [36].

Previous studies have demonstrated that activating one or more PPAR isoforms has thera-

peutic benefits in preclinical models of liver damage. PPAR activation has been shown to cure

moderate liver fibrosis, decrease steatosis, inflammation and alleviate the extrahepatic conse-

quences of chronic liver disease [38, 39]. However, in the clinical relevance to NASH, none of

these studies have looked at the effects of activating all three PPAR isoforms simultaneously

[40, 41]. The current study, in this regard, has therefore focused on the efficacy of Lanifibra-

nor, a drug designed by Inventiva and synthesized by Boutia et al. (Fig 1). It is a next-genera-

tion highly potential indole sulfonamide derivative, an anti-NASH drug, currently in the

clinical trial phase III [42] designed to target and well-balanced activation of all three subtypes

of PPAR shown to act on PPARα, PPARγ, and PPARδ with an EC50 value of 1.5, 0.21, and

0.87μM respectively [43]. Given the critical role of the PPARs, it is not unexpected that this

nuclear receptor family has been the subject of therapeutic research for the treatment of meta-

bolic diseases such as NASH. In this study, we have generated 3D-QSAR pharmacophore, per-

formed virtual screening, molecular docking studies and molecular dynamic simulations of

top docked compounds from the FDA-approved library against each PPAR and Lanifibranor,

to find out detailed structural dynamic information and activating mechanism. The binding of

Lanifibranor to each PPAR was identified and described, supporting Lanifibranor’s action as a

Fig 1. Three-dimensional structure of Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g001
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well-balanced Pan PPAR agonist. Furthermore, structural dynamics of protein-ligand com-

plexes have been explored to elucidate the underlying mechanism for completely activating

PPARα and PPARδ as well as partially activating PPARγ.

2. Materials and methods

The overall computational approaches employed in this comprehensive research study are

illustrated below in Fig 2.

2.1. Dataset preparation

Datasets were collected for each PPAR from the identified and reported agonists. A dataset of

43 compounds for PPARα, 39 compounds for PPARγ, and 45 compounds for PPARδ were

prepared. The compound’s agonist activity was expressed as EC50 (i-e. 50% of the maximum

effect of a compound is exhibited at this concentration). The datasets were categorized into

two sets (active and inactive) based on EC50 values. The compounds having EC50 values rang-

ing from 0.0001 μM to 0.35 μM were kept in the active category and all the remaining were in

the inactive category. The top 15 active compounds of PPARα (S1 Table), top 10 compounds

of PPARγ (S2 Table), and top 20 active compounds of PPARδ (S3 Table) from the collected

dataset were taken as a training set to build a model and all the remaining compounds were

taken as a test set for pharmacophore mapping and hypothesis validation. The training set

includes the most active compounds, and the test set includes both active and inactive

compounds.

2.2. Pharmacophore modelling

The pharmacophore model was generated using the three-dimensional quantitative structure-

activity relationship (3D-QSAR) based pharmacophore approach. The HypoGen module of

Discovery Studio1 (DS) [44], was used to generate a hypothesis that utilizes the chemical fea-

tures found in active compounds but not in inactive compounds. The feature mapping

Fig 2. The overall methodology followed in current research work.

https://doi.org/10.1371/journal.pone.0283743.g002
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protocol provided in DS was used to identify the common features of training sets. As deter-

mined by feature mapping protocol, ring aromatic (RA), hydrogen bond acceptor (HBA),

hydrophobe (HY), and negative ionizable (NI) features were mapped on the training set of all

three subtypes of PPAR.

Above mentioned features were used to generate 10 hypotheses with the minimum of zero

to the maximum of 5 features for each PPAR utilizing the 3D-QSAR protocol of DS. For

hypothesis generation, the energy threshold for conformational generation for each compound

was maintained at 10 kcal mol-1. The Minimum Interfeature Distance and maximum excluded

volume were set to 1.5 and zero, respectively. As defined by DS, the uncertainty value that is

the ratio of minimum and maximum value of the reported value was set at 1.5.

2.3. Validation of pharmacophore model

The pharmacophore model was validated using the test sets to investigate the capacity of the

generated models. For validating pharmacophore models. The test consisted of both active

and inactive compounds for PPARα (28 compounds), PPARγ (29 compounds), and PPARδ
(25 compounds). The best pharmacophore model was selected from the 10 generated hypothe-

ses based on high fit value, cost analysis, high correlation, and lowest root mean square devia-

tion (RMSD) using the Catalyst/HypoGen module of DS. The fit value shows the quality of the

mapping of compounds to the hypothesis. The cost difference is the difference between the

total cost and the null cost. The overall cost of a good hypothesis is near to fixed cost and far

from the null cost. The similarity and closeness in the data set with each other are measured by

the correlation coefficient. The highest the correlation coefficient, the highest the similarity,

and more closeness in the data set. The lower the RMSD value, the better superimposition of

structures over pharmacophore models. By applying the above-mentioned statistical parame-

ters, the best model of pharmacophore was selected. To evaluate the pharmacophore model’s

prediction power, all compounds in the test set were mapped to the hypothesis model using

the Ligand Pharmacophore Mapping protocol in DS.

2.4. Virtual screening

For virtual screening library of FDA-approved drugs containing 5540 compounds was used.

Using the screen library protocol of DS, this library of compounds was screened against the

best-validated pharmacophore model of each PPAR. The optimizing features parameters were

set as 3 for minimum and 4 for maximum. The three feature best hits and all four features’ hits

resulted from the virtual screening against their respective pharmacophore was docked to

their relative subtype receptor.

2.5. Molecular docking

For docking, the crystal structures of subtypes of Peroxisome Proliferator-Activated Receptor:

PPARα (PDB ID: 3VI8), PPARγ (PDB ID: 6ENQ) and PPARδ (PDB ID: 3SP9) were acquired

from Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) in

pdb format. The proteins were prepared for docking and dynamic studies. The PPARα and

PPARγ were modeled due to the missing residues using PDB ID: 3VI8 and 6ENQ as a tem-

plate, respectively. The residues at O-loop 196–202(3VI8) and 260–275 (6ENQ) were missing.

The O-loop is a highly flexible and disordered region of LBD of PPARs, due to which it

remained unmodelled. The O-loop works as a gate to the ligand binding pocket and moves

substantially during the conformational rearrangement that accompanies ligand binding to

the LBD [45]. The modeled structures were energy minimized using University of California

San Francisco (UCSF) Chimera [46] for 1500 total steps which were divided into the first 750
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steps of steepest descent and last 750 steps of the conjugate gradient. The step length in all

steps was kept at 0.02 (default). During minimization, for standard residues, the Amber (Assis-

ted model building with energy refinement) parameters were used, and the Antechamber

module was used to assign parameters for non-standard residues.

The LibDock protocol under the protein-ligand interaction section in DS was used for

molecular docking. The LibDock is a high-throughput algorithm [47]. The Lanifibranor, the

FDA-approved compounds (4 feature all hits and 3 feature best hits) obtained from virtual

screening, and all three-crystal ligands were docked into its respective receptor (3VI8

(PPARα), 6ENQ (PPARγ), and 3SP6 (PPARδ)). The 3 feature best hits and 4-feature all hits

were docked PPARα (2510 drugs), PPARγ (444 drugs), and PPARδ (765 drugs), obtained

from virtual screening. The docking protocol was set to default. All docked poses were rated

and categorized based on the LibDock score, and all compounds were ranked based on the

LibDock score.

2.6. Similarity search

In the field of cheminformatics to screening similar molecules is a smart practice, as the

assumption underlies a fundamental principle that chemical compounds with similar struc-

tures should elicit similar biological activities [48]. The ‘Find Similar Molecules by Finger-

prints’ protocol in DS provides a Tanimoto coefficient (Tc), which was adopted as the

evaluation criterion to find similarity of ligands in an input library with the reference ligand

that is Lanifibranor as it is a single drug that targets PPAR altogether. The cut-off value of 50%

was taken for similarity search.

Tanimoto : SA=ðSAþ SBþ SCÞ ð1Þ

In the above Tanimoto equation, the SA represents the number of bits that are present in

both the target and the reference, the SB is the number of bits that are present in the target but

not in the reference, and the SC denotes the number of bits in the reference but not the target.

2.7. Molecular dynamics simulations

Molecular dynamic simulation is performed to explore the conformational space of proteins,

particularly intermediate states or transitory states that play significant roles in the ligand-pro-

tein binding and unbinding. Molecular docking can also be used to determine the binding

mechanism of a protein and its ligand. However, the MD simulations not only improve the

local steric clashes between protein and ligand, yet also correct and optimize the ligand’s initial

mode during molecular docking. Sixteen hundred nanoseconds (ns) simulation was done to

study the dynamic behavior of the complex utilizing the AMBER force field [49].

Systems were prepared using an antechamber program of AMBER. The systems were sol-

vated by placing the complexes in a cubic box of 12 Å with a three-point convertible intermo-

lecular potential (TIP3P) water box. The minimization was performed by imposing a 200 kal/

mol constraint on the hydrogen atoms for 500 steps, followed by 1000 steps of minimization

for the water box. Using Langevin dynamics, the entire system was heated to 300 K at 1 atm

for 20 picoseconds and maintained at that temperature [50]. The SHAKE algorithm was

applied to constraints the bonds involved between hydrogen atoms and heavy atoms, and the

NVT ensemble was used for heating [51]. The system pressure was maintained with a time

scale of 50-ps by the NPT ensemble. When calculating non-bonded interactions using the

Berendsen method with NVT ensemble for a production run of 200 ns per system, a cut-off

radius of 8.0 was applied. The AMBER trajectory analysis tool CPPTRAJ was used to evaluate

system simulation trajectories [52].
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2.8. Hydrogen bond analysis

The hydrogen bond plot in Amber was produced depending on time using the cpptraj module.

As a default value, a fraction of donor and acceptor atoms of� 0.05 Å was set. The colored

lines in the plot show the residues engaged in strong hydrogen bonding throughout the simu-

lation time of 200 ns.

2.9. Radial distribution function

A ligand’s or molecule’s structural assessment and distribution with a reference protein atom

or residue was determined by the Radial Distribution Function (RDF) [53]. RDF is the proba-

bility of finding a group of N atoms of ligand in a given spherical volume of radius r at a spe-

cific distance from another specific atom of the protein [54]. The PTRAJ module of AMBER

was used to display and study the conformational changes caused by molecular interactions

between the active site residues and ligands. The radial distribution function is represented as:

g rð Þ ¼
rijðrÞ
< rj >

¼
nijðrÞ

< rj > 4prdr
ð2Þ

In this equation, g(r) is defined as a ratio of the observed number density ρij to average

number density ρj at the distance r. While nij donates the number of atoms in specified volume

and factor 4πrδr measures the shell volume of a spherical with thickness δr.

2.10. Binding free energy calculation

MMPBSA and MMGBSA methods were employed for binding free energy calculation (BFEC)

[55]. Both these methods are very closely related. These methods sum up solvation free energy

Gsolv, gas phase energy Ggas, electrostatic interactions, and van der Waal energies [56]. The

prediction of binding free energy of ligand to the receptor is of great importance in computa-

tional biology as it can be used to identify the novel molecule that can bind to a target and act

as a therapeutic drug [56]. The binding energy of all complexes was calculated through

MMGBSA/MMPBSA method using the module, MMPBSA.py in AMBER. Topology files

(prmtop) of ligand, receptor, and complex were created using the Ante-MMPBSA.py module.

Binding free energy decomposition per residue was computed using Van-der Waals energy,

electrostatics interactions, polar solvation energy, and non-polar solvation energy for residues

with the binding energies equivalent to and greater than 1 kcal mol-1 [57]. The difference

between the complex free energies of the receptor and the ligand is calculated using the total

binding energy equation.

DGbind ¼ Gcomplex � ½Greceptor þ Gligand� ð3Þ

2.11. Principal component and free energy landscape analysis

Principal component analysis (PCA) was used to achieve understanding of the internal motion

of the system to comprehend the motion of MD trajectories [58, 59] using CPPTRJ module of

Amber. Employing orthogonal coordinate transformation, a diagonal matrix of eigenvalues

was produced to obtain the spatial covariance matrix for the eigenvectors and their atomic

coordinates. The principal components were generated using the eigenvectors and eigenval-

ues. The dominating movements throughout the simulation were plotted utilizing these PCs

[60, 61]. The following equation was used to determine the free energy landscape (FEL) using
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the first two principal components (PC1 and PC2).

DGðXÞ ¼ � KBTlnPðXÞ ð4Þ

where X indicates the response of the two principal components, KB is the Boltzmann con-

stant, and P(X) is the dispersion of the framework’s likelihood on the first two principal

components.

2.12. Dynamic cross-correlation matrix

A 3D matrix depiction of amino acid residue motion over time. This method analyses Cα
atoms across the correlation matrix for all complexes to determine continuous correlations.

The Dynamic Cross-Correlation Matrix (DCCM) was investigated via ProDy [62] and To

illustrate the results, Matplotlib was utilized [63]. DCCM values range between -1 and +1 in

which a value greater than zero signifies the positive correlation motion among two atoms and

a value that is less than zero signifies the negative correlation motion. The DCCM plot illus-

trates both positive (same direction) and negative correlation (opposite direction). When the

receptor and ligand interact, a positive correlation depicts that their motions are parallel, and

the system shows stability. Contrarily, a negative correlation suggests the instability in the

complex or that the ligand is moving out of the binding pocket, causing an anti-parallel corre-

lation. In addition to this, the strength of the positive and negative correlations is proportional

to the intensity of the colors in the DCCM map. The positive correlation is indicated by red,

whereas negative correlation is depicted by blue; a darker color implies a more meaningful

association, and vice versa.

3. Results and discussions

3.1. Pharmacophore modeling

The pharmacophore model for PPARα, PPARγ, and PPARδ was generated using the diverse

range of training sets.

3.1.1. Pharmacophore for PPARα. The training set comprised of 15 compounds gener-

ated 10 hypotheses for PPARα. The details of the generated hypotheses for PPARα are listed in

Table 1. The hypo1 was chosen as the best hypothesis based on the statistical criteria. The

hypo1 has the highest cost difference of 56.678, the highest maximum fit of 7.07, the lowest

root means square deviation (RMSD) of 1.1 and the highest correlation coefficient of 0.945.

The fixed cost, null cost, and total cost for the hypo1 were 55.4959, 121.658, and 64.9796

respectively. The hypo1 of PPARα contains 4 features: 1 HBA and 3 HY. These features were

mapped on all PPARα training set compounds using the ligand pharmacophore mapping pro-

tocol of DS. The most active and the least active of the training set of PPARα mapped on the

selected pharmacophore with all features has exhibited the fit score of 7 and 6.3, respectively

(Fig 3).

3.1.2. Pharmacophore for PPARγ. From the 10 hypotheses generated for PPARγ using

the training set consisting of 10 compounds, the hypo1 was the best based on statistical param-

eters. The detail of the generated hypotheses is summarized in Table 2. The hypo1 has the

highest cost difference of 53.028, the total cost of 48.277, the highest maximum fit of 8.55, the

lowest root mean square deviation (RMSD) of 0.7, and the highest correlation coefficient of

0.98 with the Fixed cost and Null cost of 45.70 and 48.27 respectively. The hypo1 of PPARγ
contains four features: 2 HBA, 1 HY-AR, and 1 RA. These features were mapped on all training

set compounds of PPARγ. The training sets’ most active compound of PPARγ was mapped on
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the selected pharmacophore with all features showed the fit score of 8.2 whereas the least

mapped with three features (HBA, HY-RA, and RA) and had the fit score of 6.2 (Fig 4).

3.1.3. Pharmacophore for PPARδ. The detail of the hypotheses that were generated from

the training set of 20 compounds for PPARδ is tabulated in Table 3. The hypo3 is selected as

the best hypothesis based on its highest maximum fit score i.e. 5.04 and the maximum number

of features. The hypo3 has four features: 1 HBA, 2 HY, and 1 NI. The cost difference, total

cost, root mean square deviation (RMSD), and correlation coefficient were 22.351, 88.49, 1.30,

and 0.856 respectively. The Fixed cost was 64.47 and the Null cost was 110.84. The features of

hypo3 were mapped on all training set compounds of PPARδ.

Feature mapping was applied on the most active and least active compound of the training

set for PPARδ selected pharmacophore which mapped with all features showed the fit score of

4.9 and 4.5 respectively (Fig 5).

3.2. Mapping of Lanifibranor on pharmacophores

Lanifibranor was also mapped on all the three pharmacophores which showed the fit value of

5.0, 6.2, and 4.7 for PPARα, PPARγ, and PPARδ respectively (Fig 6). Lanifibranor mapped on

PPARγ pharmacophore with three features (HBA, RA, and HY) leaving one HBA feature

unmapped. The generated pharmacophore models highlighted important pharmacophoric

characteristics influencing the PPAR activation which were found to be consistent with the

Table 1. Statistical parameters of top 10 pharmacophore hypotheses generated with HypoGen algorithm for PPARα.

Hypothesis Features Maximum fit Total cost Cost difference RMSD Correlation

Hypo1 HBA, 3HY 7.07 64.97 56.678 1.10 0.945

Hypo2 HBA, 3HY 7.45 66.44 55.210 1.20 0.934

Hypo3 HBA, HY, 2RA 7.21 68.75 55.901 1.31 0.921

Hypo4 2HBA, 2HY 8.34 69.14 52.513 1.34 0.917

Hypo5 2HBA, HY, RA 7.59 69.55 52.101 1.36 0.915

Hypo6 2HBA, HY, RA 6.82 69.72 51.933 1.35 0.916

Hypo7 2HBA, HY, RA 6.30 70.71 50.943 1.37 0.913

Hypo8 2HBA, HY, RA 7.07 70.79 50.862 1.41 0.908

Hypo9 2HBA, HY, RA 5.84 70.94 50.708 1.35 0.916

Hypo10 2HBA. RA 4.98 71.18 50.471 1.41 0.908

https://doi.org/10.1371/journal.pone.0283743.t001

Fig 3. (A) Best pharmacophore for PPARα (hypo1) with distance labeled chemical features. (B) The most active

compound of the training set mapped on the pharmacophore model. (C) The least active compound of the training set

mapped on the pharmacophore model.

https://doi.org/10.1371/journal.pone.0283743.g003
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reported pattern of biological activity. The features hydrogen bond acceptor (HBA) and

hydrophobe (HY) were the common features found amongst all three pharmacophore models

for all three subtypes of PPAR respectively. The PPAR has a ligand-binding cavity composed

of substantially both polar and hydrophobic regions as reported in the literature, hence making

it essential for the ligands to have hydrophobic and hydrogen bond acceptor features [64].

3.3. Virtual screening

Virtual screening is considered as an efficient approach in which large libraries of small mole-

cules are screened, that can be used to find potential and novel hits for the development in

drug discovery [65]. The compounds having these pharmacophore features were retrieved

through virtual screening. The library of FDA-approved drugs containing 5540 compounds

was screened against designed pharmacophores. A set of compounds that contained the 3 fea-

tures best hit and 4- features all hits for PPARα (2503 compounds), PPARγ (438 compounds),

and PPARδ (760 compounds) were obtained. The selected hit compounds were then employed

for molecular docking analysis against their respective receptor.

3.4. Molecular docking analysis

Protein-ligand interactions are crucial in understanding the biological regulatory process and

provide a theoretical foundation for the development and identification of novel therapeutic

targets. The PPARs have large Y-shaped binding pocket composed of three sub-arms (Arm-I,

Arm-II and Arm-III). Arm-I and Arm-II of PPAR show significant homology whereas the

Table 2. Statistical parameters of top 10 pharmacophore hypotheses generated for PPARγ using HypoGen algorithm.

Hypothesis Features Maximum fit Total cost Cost difference RMSD Correlation

Hypo1 2HBA, HY-AR, AR 8.55 48.27 53.028 0.70 0.984

Hypo2 2HBA, HY, RA 7.37 48.39 53.914 0.71 0.983

Hypo3 3HBA, HY 7.54 48.91 52.391 0.79 0.979

Hypo4 HBA, 2HY-RA, RA 7.54 49.51 51.792 0.86 0.975

Hypo5 2HBA, HY, RA 8.11 49.84 51.464 0.90 0.973

Hypo6 2HBA, HY, RA 7.13 49.88 51.422 0.88 0.974

Hypo7 2HBA, HY-RA, HY 8.25 50.14 51.159 0.94 0.971

Hypo8 HBA, RA, RA 6.31 50.55 50.750 0.97 0.968

Hypo9 2HBA, HY-RA, HY 7.64 50.80 50.505 1.00 0.966

Hypo10 2HBA, HY-RA, RA 6.76 50.83 50.474 0.95 0.970

https://doi.org/10.1371/journal.pone.0283743.t002

Fig 4. (A) Best pharmacophore for PPARγ (hypo1) with distance labeled chemical features. (B) The most active

compound of the training set of PPARγ mapped on the pharmacophore model. (C) The least active compound of the

training set of PPPARγ mapped on pharmacophore.

https://doi.org/10.1371/journal.pone.0283743.g004
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Arm-III is less conserved. The difference between the residues of the binding pocket of each

PPAR is represented in the Fig 7 along with the alignment of these residues [66]. The crystal

ligands (APHM13, Lanifibranor, and Iloprost) and FDA-approved drugs obtained as a result

of virtual screening were docked to their respective receptors (PPARα, PPARγ, and PPARδ)

and clinical trial drug Lanifibranor was docked to all PPAR subtypes. The FDA-approved

drugs that showed the highest LibDock score were selected for molecular dynamics simulation

studies.

3.4.1. Crystal ligands docking. The performance of the docking algorithm is evaluated by

redocking the ligands using the conformations discovered in the X-ray structures. The crystal

ligands APHM13, Lanifibranor, and Iloprost successfully docked back to PPARα, PPARγ, and

PPARδ in their binding pockets showing the LibDockScore of 155.849, 104.357, and 128.873,

respectively. The RMSD between docked pose and crystallographic pose of APHM13:PPARα
and Lanifibranor: PPARγ were 0.477 Å and 0.392 Å, respectively, due to a subtle difference in

the binding residues but for Iloprost: PPARδ RMSD of 0.00 Å was observed. Upon 2D interac-

tion analysis using DS, it was revealed that residues Ile76, Cys79, Cys80, Leu125, Val136, and

Ala137 of PPARα were the common residues forming interaction with APHM13 in both

docked complex and crystallographic complex. In addition to this, APHM13 also contacted

with PPARα other residues: Val59, Ser84, Ile143, Tyr118, His244, and Tyr268 in crystallo-

graphic complex whereas in docked complex the additional residues that showed interaction

were: Asn23, Met24, Glu90, Met124, and Val128of PPARα. The 3D interaction diagram of

APHM13 in crystal pose and docked pose is illustrated in Fig 8(A).

Table 3. Statistical parameters of top 10 pharmacophore hypotheses generated for PPARδ using HypoGen algorithm.

Hypothesis Features Maximum fit Total cost Cost difference RMSD Correlation

Hypo1 2HBA, NI 3.49 82.42 28.42 1.00 0.917

Hypo2 HBA, HY, NI 3.77 84.00 26.84 1.11 0.897

Hypo3 HBA, 2HY, NI 5.04 88.49 22.35 1.30 0.856

Hypo4 HBA, HY, NI 3.37 90.75 20.09 1.34 0.847

Hypo5 2HBA, NI 3.32 91.27 19.56 1.35 0.843

Hypo6 HBA, 2HY, NI 4.94 91.77 19.07 1.41 0.828

Hypo7 HBA, HY, NI 3.51 92.43 18.10 1.42 0.827

Hypo8 HBA, HY, NI 3.63 93.23 17.60 1.46 0.816

Hypo9 HBA, NI, RA 3.46 93.62 17.22 1.45 0.817

Hypo10 HBA, NI, RA 4.15 93.75 17.08 1.52 0.797

https://doi.org/10.1371/journal.pone.0283743.t003

Fig 5. (A) Best pharmacophore for PPARδ (hypo3) with distance labeled chemical features. (B) The most active

compound of the training set of PPARδ mapped on the pharmacophore model. (C) The least active compound of the

training set of PPARδ mapped on the pharmacophore model.

https://doi.org/10.1371/journal.pone.0283743.g005
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The Lanifibranor showed interaction with residues of PPARγ: Cys79, Arg82, Tyr121,

Leu124, Phe157, Met158, and Ser183 in both complexes. Moreover, some residues Phe76,

Ile120, Phe154, and Lys161 of PPARγ were also involved in interaction in docked complex

instead of residues Gly78 and Ile135 which were engaged in interaction with Lanifibranor in

the crystallographic complex (Fig 8(B)).

In docked complex, the interaction between Iloprost and PPARδ included the involvement

of residues Cys77, Thr80, Thr81, His115, Ile118, Phe119, leu122, Ile156, Lys159, His241, and

Fig 6. Lanifibranor mapped on pharmacophore for (A) PPARα (B) PPARγ and (C) PPARδ.

https://doi.org/10.1371/journal.pone.0283743.g006

Fig 7. The three-dimensional view of the residues of the binding pocket of (A) PPARα, (B) PPARγ, (C) PPARδ shows

the difference between them. (D) The alignment of the binding site residues of the human PPAR subtypes. The black,

bold and gray color represents identical residues, residues with same chemical character and residues with different

chemical character, respectively [66].

https://doi.org/10.1371/journal.pone.0283743.g007
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Tyr265 which were all also making interactions in crystal complex although some additional

residues Leu47, Val73, Cys76, Val133, and Val140 were also observed interacting with Iloprost

in crystal complex (Fig 8(C)).

3.4.2. FDA-approved drugs library docking. The highest LibDock score for PPARα was

119.43 shown by Forasartan. The key residues for binding interaction between Forasartan and

PPARα were Met24, Cys80, Thr87, Ile121, Leu125, and Val128. Thr87 formed a carbon-

hydrogen bond whereas Ile12, Met24, Cys80, Leu125, and Val128 were forming hydrophobic

interactions with Forasartan. It is used as an antihypertensive agent to treat hypertension and

also is a selective angiotensin II antagonist, type 1; because angiotensin induces vasoconstric-

tion, inhibiting this receptor reduces vasoconstriction, which consequently also decreases vas-

cular resistance [67]. Forasartan has a high affinity for the AT1 receptor (IC50 = 2.9 +/-

0.1nM) [68].

The highest docked FDA-approved drug for PPAR was Raltitrexed, which had a LibDock

score of 151.057. The binding interaction of Raltitrexed with residues: Leu49, Gly52, Phe58,

His60, Arg82, Ile135, and Glu137 of PPARγ were noted. The residues of PPARγ: Gly52, Arg74,

and Glu137 were developing carbon-hydrogen bonds and conventional hydrogen bonds

whereas the other residues Gly52, Phe58, His60, Arg82, and Glu137 were forming hydropho-

bic interactions with Raltitrexed. Leu49 and Ile75 were involved in both types of interaction. It

is a thymidylate synthase (TS) inhibitor that inhibits L1210 cell growth that belongs to the anti-

metabolite class of cytotoxic medicines (IC50 = nM) [69]. It is also effective as a single agent in

colorectal cancer (CRC) and is often given with other cancer drugs [70]. The binding mode of

Forasartan, Raltitrexed, and Lifitegrast is shown in Fig 9(B), 9(D) and 9(G).

The top docked FDA-approved drug for PPARδ was Lifitegrast. It showed the LibDock

score of 162.505. Two hydrogen bonds were established during docking of Lifitegrast with

PPARδ. The PPARδ residues Trp228, Cys249, Thr252, Glu255, Ala306, and Tyr437 formed

Fig 8. The superimposed crystallographic pose (receptor in light sea green and ligand in dark green) and docked pose

(receptor in hot pink and ligand in orange) of (A) PPARα, (B) PPARγ and (C) PPARδ. Helix-12 is represented in

yellow.

https://doi.org/10.1371/journal.pone.0283743.g008
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hydrogen bonds. All other residues such as Trp228, Arg248, Leu249, Cys251, His287, Leu303,

Val305, Val312, Ile327, Ile328, and His413 were involved in hydrophobic contacts. Lifitegrast

is an antagonist that inhibits the T cell-mediated inflammatory cycle by acting as a direct com-

petitive antagonist of ICAM-1 to LFA-1 binding [71]. In vitro, Lifitegrast inhibited Jurkat T

cell adherence to ICAM-1 in a concentration-dependent manner (IC50 = 2.98 nmol/L) [72,

73]. It is used to treat keratoconjunctivitis sicca also known as dry eye syndrome (DED). It also

functions as an anti-inflammatory agent as well as a lymphocyte function-associated antigen-1

antagonist [74, 75]. The three top scored hits Forasartan for PPARα, Raltitrexed for PPARγ,

and Lifitegrast for PPARδ were further selected for simulation studies according to their

respective subtype, as they were filtered out during pharmacophore screening for the other

two subtypes.

3.4.3. Lanifibranor docking. The LibDock score of Lanifibranor with PPARα and PPARδ
were 92.648 and 112.648, respectively. The 2D interaction analysis of the Lanifibranor-PPARα
complex revealed that the residues leu62, Asn69, His78, and Ala258 made carbon-hydrogen

Fig 9. The 2D interaction diagrams of (A) APHM13 with PPARα, (B) Forasartan with PPARα, (C) Lanifibranor with

PPARα, (D) Raltitrexed with PPARγ, (E) Lanifibranor with PPARγ, (F) Iloprost with PPARδ, (G) Lifitegrast with

PPARδ and (H) Lanifibranor with PPARδ sketched through Discovery Studio.

https://doi.org/10.1371/journal.pone.0283743.g009
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bonds whereas Gln81 formed a conventional hydrogen bond with Lanifibranor. Lys70,

Asp257, and Ala259 were observed in hydrophobic contacts. The 2D interaction diagrams of

Lanifibranor with all PPARs are shown in Fig 9(C), 9(E) and 9(G). Upon docking, the Lanifi-

branor formed extensive hydrophobic interactions with PPARδ involving residues Thr252,

Leu294, Ile297, Ile328, Lys331, and His413. Thr253 was the only residue that contributed to

conventional hydrogen bond formation. Lanifibranor engaged Cys249 and Ile328 in both car-

bon-hydrogen bond and hydrophobic interactions.

3.5. Fingerprinting

Tanimoto coefficient (Tc) was used to evaluate the structural similarity between molecules

using overlapping molecular fingerprints. The compound having minimum similarity with

Lanifibranor was Raltitrexed, having a similarity score of 0.575099 and the compound with

maximum similarity was Lifitegrast with a 66% score that is 0.669944 whereas Forasartan

showed the similarity score of 60%. All three compounds showed similarity >50% with

Lanifibranor.

On similarity search, it was found that methylsulfonyl benzene, chlorobenzene, and the

butyric acid group were present in both Lifitegrast and Lanifibranor. The Lanifibranor and

Raltitrexed had a butyric acid group common in both. These groups can be effective in design-

ing new drugs for NASH. Furthermore, it was also observed that the usual structural features

of PPAR agonists such as sulfur, carbon, oxygen, and nitrogen except fluoride were also pres-

ent in these compounds [66]. The detail of the similarity search is listed in Table 4.

3.6. Molecular dynamics simulations

The molecular dynamic method is frequently used to analyze atom behavior, structural stabil-

ity, and atomic-level conformational changes. Molecular dynamic simulations are the most

prominent tool used in the all-atom modeling of biomolecules to get insight into the system’s

dynamical characteristics. Through MD simulations, the protein interactions, conformational,

and structural modification in the protein, and the ligand associated movements within the

hydrated environment can be studied.

The MD simulation of 200 nanoseconds (ns) was carried out for each complex to measure

the behavior of docked complexes in real-time. The MD simulation trajectories were evaluated

by the time series of root mean square deviation (RMSD) and root mean square fluctuation

(RMSF). Upon ligand binding, the protein in all PPAR complexes does not undergo significant

structural changes. However, it is generally known that PPAR has a significant degree of flexi-

bility, particularly in the Ω-loop. This loop is highly disordered and has high molecular flexi-

bility, due to which it remains unmodeled in many PPAR X-ray crystal structures [76–78].

3.6.1. PPARα complexes. The mean RMSD of crystal bound ligand APHM13, FDA

approved drug Forasartan and clinical trial Pan-PPAR drug Lanifibranor were 1.94 Å, 2.36 Å,

and 1.92 Å, respectively. The combined trajectories of all PPARα complexes during the 200-ns

time are illustrated in Fig 10(A) and 10(B). Initially, the RMSD of the APHM13-PPARα com-

plex increased from zero to 20 ns, with the mean of 1.7 Å, later from 20 ns to 153 ns the

Table 4. The similarity score obtained from fingerprinting.

Compounds Similarity SA SB SC

Lifitegrast 0.669944 477 303 -68

Forasartan 0.6098 336 142 73

Raltitrexed 0.575099 291 97 118

https://doi.org/10.1371/journal.pone.0283743.t004
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equilibrium was observed in RMSD through the trajectory plot followed by a gradual increase

showing the highest RMSD at 176 ns of 2.52 Å after that the complex attained stability. The

ligand showed no movement and was continuously interacting with the residues of the bind-

ing site. In the Forasartan-PPARα complex, an abrupt change in RMSD was observed from

zero ns to 5 ns, followed by a decrease in RMSD to 15 ns. The former shift was explored as a

complex’s sudden exposure adjustment to a dynamic environment. Afterward, the gradual

increase in RMSD value occurred, showing the highest peak at 41 ns of 3.05 Å. During simula-

tion, Forasartan’s orientational shift allowed it to engage with two key residues: Ser84 and

His244, both of which are required for agonist-induced PPAR activation [79]. The superim-

posed structure of pdbs of 0-ns and 200-ns scale can be seen in Fig 11.

Fig 10. RSMD and RMSF plots of all complexes.

https://doi.org/10.1371/journal.pone.0283743.g010
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Among all PPARα complexes, more fluctuations were observed in the Lanifibranor-PPARα
complex. From zero ns to 87 ns, the fluctuations and random peaks were observed but after-

ward, the plot showed fewer fluctuations and more stability towards the very end of the simu-

lation. The Lanifibranor-PPARα RSMD plot showed the highest peak at 192 ns of 2.78 Å. The

variability in the RMSD of Lanifibranor-PPARα was detected due to the noteworthy move-

ment of Lanifibranor in the docked pocket and inward movement of Ω-loop which brought

Lanifibranor closer to the Helix-12 (H-12) of PPARα and developed new interactions with the

residues (Pro262 and Gln265) of H-12 (Fig 12).

The RMSF was evaluated for residue-by-residue fluctuation of docked protein during simu-

lation. The RMSF average value for APHM13, Forasartan, and Lanifibranor complex was 0.94

Å, 0.98 Å, and 1.18 Å, respectively. Among all PPARα complexes, the highest RMSF average

value was observed for the Lanifibranor-PPARα complex as for the RMSD value, which indi-

cates greater flexibility in the residues during simulation (Fig 12). In all complexes, the fluctua-

tions were observed in the loop between helix-2 and beta-sheet-1 (Ser34-Pro42), Ω-loop

(Ala64-Glu71), and helix11-helix12 loop at C-terminus (Thr254 and His261). The same sec-

ondary structure shift was observed in PPARα-APHM13 and PPARα-Forasartan complexes,

the change was of beta-sheet (Phe43-Ile45) conversion to loop near the active pocket. Whereas

away from the binding pocket, the interconversion of the helix near Ω-loop (Ala60-Val63) to

loop and loop to helix occurred was observed in all PPARα complexes at different times during

the simulation. The Ω-loop in Lanifibranor-PPARα complex showed more fluctuations than

in APHM13-PPARα and Forasartan-PPARα complexes. The fluctuating residues of Ω-loop

Fig 11. (A) Superimposed structure of pdbs of PPARα-Forasartan complex at 0-ns (dark slate grey) and 200-ns

(Sienna) and closer view of conformational shifts. (B) 2D interaction of Forasartan-PPARα at 200-ns.

https://doi.org/10.1371/journal.pone.0283743.g011
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were the most liable area for the uneven RMSF. The last set of residues was of C-terminus resi-

dues that showed little mobility.

3.6.2. PPARγ complexes. To measure the deviation and conformation stability of back-

bone atoms the RMSD of all PPARγ complexes were computed. Average RMSD of protein elu-

cidates the stability of the structure and it is also an important indicator of the biological

process. The mean RMSD value of Raltitrexed-PPARγ and Lanifibranor-PPARγ complexes

were 1.8 Å and 1.7 Å respectively (Fig 10(C) and 10(D)). A rise in RMSD was observed at 110

ns, which was due to the formation of a small helix at residues (Gln65, Glu66, and Gln67) in

the Ω-loop (Fig 13) which again attained its original structure that is the loop. Raltitrexed’s

movement was witnessed in the docked pocket, but it didn’t cause any major change in inter-

acting residues. The 2-methylquinazolin-4(3H)-one ring of the ligand was more stable and lit-

tle movement occurred at its place while the rest part ((S)-2-(5-(dimethylamino)thiophene-

2-carboxamido)pentanedioic acid) of the Raltitrexed was more flexible and changed its posi-

tion in the docking pocket at various time of the simulation (Fig 13).

The Lanifibranor-PPARγ complex shows the stable RMSD plot. The pentanoic acid group

of Lanifibranor constantly changed its interacting residues. At the beginning of the simulation,

the 5-chloro-1H-indole group was interacting with Gln80, His243, Leu247, and Leu263 and

the pentanoic acid was interacting with Phe76 and Phe154. At 80ns, Cys79, Phe76, and His243

engaged with the 5-chloro-1H-indole group, whereas Phe154 formed a hydrogen bond with

pentanoic acid. During simulation, the ligand structure compacted, bringing the pentanoic

acid and benzo[d]thiazole rings closer. At the end of the simulation, residues Cys79 were inter-

acting with both the 5-chloro-1H-indole group and the benzo[d]thiazole group. Lys161 made

contact with the 5-chloro-1H-indole group and sulfur dioxide which linked both these groups.

Fig 12. (A) Superimposed structure of pdbs of PPARα-Lanifibranor complex at 0-ns (dark slate grey), 39-ns (dark

magenta), 194-ns (green), and 200-ns (Sienna). A closer view of conformational changes occurred in PPARα during

simulation and Movement of Lanifibranor towards H-12. (B) 2D interaction of Lanifibranor-PPARα at 200-ns.

https://doi.org/10.1371/journal.pone.0283743.g012
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Ile120 was seen interacting with the benzo[d]thiazole group whereas no residue was seen inter-

acting with pentanoic acid (Fig 14).

The majority of subtle conformational changes in PPARγ complexes were seen within the

loop (Gly33-Asp45) and O-loop (Lys55-Glu70). The fluctuations in H-12 were detected during

trajectory analysis. This might be due to the ligand’s lack of direct interaction with H-12. The

mean RMSF of 1.10 Å and 0.97 Å were calculated for Raltitrexed-PPARγ and Lanifibranor-

PPARγ, respectively. The ligands were interacting with the residues of Arm II and Arm III.

Both ligands bind to PPARγ and partially activate it.

3.6.3. PPARδ complexes. RMSD analysis was performed to measure the similarity

between two superimposed atomic coordinates. The RMSD analysis for PPARδ complexes

showed the mean RMSD for crystal bound ligand Iloprost, FDA-approved drug Lifitegrast and

Lanifibranor 1.56 Å, 1.44 Å, and 1.80 Å, respectively (Fig 10(E) and 10(F)). The RMSD plot of

all PPARδ complexes showed tremendous stability. Trajectory analysis revealed that all three

PPARδ ligands were well anchored and showed interaction with the residues of the binding

site throughout the simulation. The majority of fluctuations were detected in the loop regions.

The fluctuations were associated with the structural stability and movements during MD simu-

lations. The general pattern of RMSD in Iloprost-PPARδ and Lifitegrast-PPARδ systems did

not reveal any noteworthy structural fluctuations or structural shifts, indicating the complex’s

stability. The Iloprost and Lifitegrast stayed at their place throughout the simulation whereas

the abrupt exposure adjustment of the Lanifibranor-PPARδ complex to a dynamic environ-

ment resulted in the rise in RMSD value in the beginning. The Lanifibranor changed its orien-

tation, and a notable movement of the 5-chloro-1H-indole group was observed at 50 ns. After

that, significant conformational changes were observed. The change in orientation helped the

ligand to form stronger interaction with PPARδ. The His413 established a hydrogen bond

with the ligand’s thiazol group.

The root-mean-square fluctuation (RMSF) measures the average fluctuations of protein

residue over the time course. It measures the deviations of protein residues from a reference

position. The mean RMSF for PPARδ in complex with Iloprost and Lifitegrast were same i.e.,

0.88 Å whereas the mean RMSF of 0.94 Å was observed for Lanifibranor-PPARδ (Fig 10(E)

Fig 13. (A) Superimposed structures of pdb of Raltitrexed-PPARγ Complex at 0-ns (lime green), 110-ns (dodger

blue), 184-ns (orchid), and 200-ns (gold), and closer view of conformational shift and Raltitrexed movement.

https://doi.org/10.1371/journal.pone.0283743.g013
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and 10(F)). The fluctuations occur in the protein residues to make the ligand well anchored

and stable at its place. The significant fluctuations were observed in loops: entrance loop of the

cavity (Gly303-Pro210), Ω-loop (Gly225-Lys239), and loop (His389-Tyr394) in all three com-

plexes. In Iloprost-PPARδ, the maximum fluctuation of 3.7 Å was shown at Gln230. During

150 ns, a small helix was formed by Gln230-Asn233, after that it disappeared and never formed

again till the end of the simulation and the extension and contraction of H-12 was also

observed throughout the simulation.

In Lifitegrast-PPARδ, the maximum fluctuation of 4.7 Å was shown by residue Lys204,

away from the binding pocket. This residue is present at the entrance to the ligand-binding

site, it might be crucial in making the ligand intact with the protein by providing flexibility to

the overall structure. Other than these sets of residues, the residues of the active site

(Ala306-Gly308) were structurally changing from loop to helix and helix to loop during simu-

lation. Asn307 is the most flexible residue it allows the large ligand to enter the ligand-binding

cavity [80]. In Lanifibranor-PPARδ another structural change was observed at 190 ns in the

important residues, the H-12 changed into a loop but at 200 ns it again adopted its original

structure (Fig 15). The helical structures of activation function-2 (AF-2) provide hydrophobic

docking sites for Nuclear Receptor coactivators and are crucial for the ligand-dependent trans-

activation activity of Nuclear receptors [81]. All three PPARδ ligands were forming bonds with

amino acid residues Thr253, His287, His413, and Tyr437 which are crucial for stabilizing the

AF-2 domain [79].

3.7. Hydrogen bond analysis

The formation and breaking of hydrogen bonds are reported to be an essential discipline in

the development of protein stability and flexibility.

3.7.1. Hydrogen bond analysis of PPARα complexes. In APHM13-PPARα several resi-

dues were participating in hydrogen bonds and contributing to the stability. The residues of

PPARα Asn23, Met24, Thr83, Thr87, Ala137, and Thr138 were involved in making hydrogen

bonding with APHM13. All these residues were making more than one hydrogen bond except

Thr83. Asn23, Met24, and Thr87 formed hydrogen bonds with O2 and O4 of the ligand. These

bonds were forming and interchanging with one another during the simulation. Asn23 and

Met24 were not seen forming bonds after 160 ns and 150 ns respectively while can also be seen

Fig 14. (A) Movement of Lanifibranor in PPARγ at different time scales. (B) 2D interaction diagram of Lanifibranor

at 200ns with interacting residues of PPARγ.

https://doi.org/10.1371/journal.pone.0283743.g014
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forming hydrogen bonds at 200ns with O2 of the APHM13. The OH of Tyr138 was forming

the hydrogen bond with O2 and O4, and O35 of the ligand was interacting with N of Tyr138.

Tyr138 with O35 was making a strong and consistent bond till 180 ns after that the bond was

not observed in the plot. Forasartan interacting with PPARα formed two hydrogen bonds

(Fig 16(A)). Thr83 and Ser84 formed Hydrogen bonds with N3 and N4 respectively, of Fora-

sartan. These bonds were strong and consistent bonds that played an important role in keeping

Forasartan and PPARα in contact and stable throughout the simulation. In Lanifibranor-

PPARα, Gly66 and Gn265 were involved in hydrogen bonds (Fig 16(B)). At the beginning of

the simulation, no hydrogen was displayed, at 40 ns Gln265 formed a bond with O6 and O7 of

Lanifibranor whereas Gly99 formed a hydrogen bond at 90 ns. The appearance and disappear-

ance of the bonds were due to the movement of the ligand in the binding cavity.

3.7.2. Hydrogen bond analysis of PPARγ complexes. Numerous hydrogen bonds were

found throughout the simulation of the Raltitrexed-PPARγ complex. Residues of PPARγ:

Lys59, Arg82, Ser136, and Glu137 were involved in strong hydrogen bonding and were consis-

tent while other residues forming hydrogen bonds were seen on and off throughout the simu-

lation with Raltitrexed (Fig 16(C)). NZ atom of Lys59 was forming hydrogen bonds with the

O2, O3, O4, and O7. The fluctuating residue Lys59 of Ω-loop was making a hydrogen bond

with various atoms of the Raltitrexed such as O2, O3, O4, and O7. The bond with O2 atom

and O4 atom of ligand was more coherent so their radial distribution was analyzed using RDF

analysis. NE atom and NH2 atom of Arg82 were alternatively involved in hydrogen bond for-

mation with O6. The O6 atom was forming a bond throughout the simulation course. The

ligand’s O3 and O2 atoms were establishing hydrogen bonds with Ser136 and Glu137. Glu137

was not involved in bond formation at the start of the simulation, but it began to make bonds

at 25 ns and remained visible until the completion of the simulation, suggesting that it aids in

maintaining the ligands in place. During the simulation of Lanifibranor-PPARγ, the residues

Fig 15. (A) Superimposed structures of pdb of PPARδ-Lanifibranor Complex, Movement of ligand at different time

scales during the simulation, and Closer view of conformational changes at H-12. (B) 2D interaction of Lanifibranor

with PPARδ at 50-ns time.

https://doi.org/10.1371/journal.pone.0283743.g015
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of PPARγ: Ala72, Arg82, Phe154, and Lys161 were participating in hydrogen bond formation

(Fig 16(D)). By 40 ns of simulation, the O6 was creating a stronger hydrogen bond with

Phe154, but after 85 ns, the O6 was no longer visible forming a hydrogen bond, which was

owing to the ligand’s change in conformation. Whereas Lys131 was found forming two hydro-

gen bonds i.e: with O4 and O5 of the Lanifibranor throughout the simulation trajectories, as a

result, the ligand mobility within the binding cavity was detected.

3.7.3. Hydrogen bond analysis of PPARδ complexes. For more than 80% of the simula-

tion time, hydrogen bonding was detected in PPARδ complexes. PPARδ in complex with crys-

tal ligand, Hydrogen bonds formed at the docking, Cys249, and Thr437 were diminished

during the simulation while Thr253 was forming strong bond alternately with O6 and O8 of

the ligand, throughout the simulation duration. New hydrogen bonds formed between

Gln250, Thr256, His287 His413, and ligand atoms. Bonds between time duration of 100 ns to

160 ns were not observed for Gln250 and Thr256, due to change in orientation of the ligand.

The formation and breaking of the hydrogen bonds at various time was noted. Hydrogen

bonds in PPARδ and Lifitegrast complex involved, Arg248, Gln250, His413, and Tyr437 reside

with the ligand. Gln250 forming a hydrogen bond with the O4 of the ligand was not observed

after 160 ns (Fig 16(E)). Arg248, His413, and Tyr437 help in the binding of ligand during 200

ns simulation. NE and NH2 of Arg248 were forming bonds simultaneously with the O27 of

the ligand. These residues play a vital role in keeping the ligand in a particular orientation.

Thr253 and Lys331 were the strongest hydrogen bonds in the Lanifibranor-PPARδ complex

(Fig 16(F)). Thr253 was showing hydrogen bond interaction with the O5 of the ligand whereas,

Fig 16. Hydrogen bond analysis of (A) PPARα-Forasartan, (B) PPARα-Lanifibranor, (C) PPARγ-Raltitrexed, (D)

PPARγ-Lanifibranor, (E) PPARδ-Lifitegrast, (F)PPARδ-Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g016
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in case of Lys331, NZ-HZ1, NZ-HZ2, and NZ-HZ3 atoms were making hydrogen bonds with

the O7 of the ligand interchangeably. In the beginning, Ile155 was observed forming a bond

with the O6 of the ligand but then it varnished due to a movement in the ring of Lanifibranor.

Thr253 and Lys331 were participating in constant and strong hydrogen bond interactions that

stabilized the ligand within the cavity. The trajectory analysis showed the presence of stable

hydrogen bonding among the complexes.

3.8. Radial distribution function

Important residues of the binding site that stabilized the agonist throughout the simulation

were imperiled to the RDF [53] to perform their role in agonist binding. It has been employed

to determine the distribution of atoms and molecules surrounding targets.

3.8.1. RDF of PPARα complexes. The APHM13-PPAR complex included many hydro-

gen bonds but the Thr138: N was making the most consistent hydrogen bond interaction with

the O35 atom of the ligand. Initially, the distribution peak was not sharp and exhibited the g(r)

value of 0.61 at 3.01 Å whereas, at 100 ns, the sharp definite peak was observed having the g(r)

value of 1.61 at 2.92 Å. After simulation, the highest distribution was observed at 4.9 Å with

the g(r) value of 0.24. The peak was seen to be high in the middle of the simulation, and the

density distribution expanded enhances the likelihood of the probability of finding ligand

around Thr135. The lowering of density and increase in the distance occurred at the end simu-

lation because of the involvement of the O35 atom of the ligand with another residue; Ala137.

The active site residues of PPARα: Thr83 and Ser84 were found as vital residues involved in

Hydrogen bond interaction with Forasartan (Fig 16(A)). Initially, the distribution peak for

Thr83:OG1 and N3 atom of Forasartan was observed having g(r) of 0.16 at the distance of 2.97

Å. At 100 ns of simulation, the peak was observed at a distance 0.67 Å showing a g(r) value

2.87. Finally, towards the end of the simulation, this distribution revealed a g(r) value of 0.62 at

3.03 Å. The RDF analysis for Ser84:OG showed that at the start and in the middle of simulation

duration the distribution was almost the same such that 0.58 and 0.60 at the same distance

3.02 Å while the sharp and a definite peak was observed at the end of the simulation with the

increase in g(r) of 0.74 and decrease in distance of 2.8 Å (Fig 17(A)). This shows that the ligand

moved closer to the binding site and interaction became stronger.

The RDF of Gly66:N of PPARα and N9 atom of Lanifibranor was performed (Fig 17(B)).

Due to the mobility of the Lanifibranor, no hydrogen bond was seen in the PPARα-Lanifibra-

nor complex at the beginning of the simulation. The sharp peak was detected at 100 ns with

the value of g(r) 1.31 at 3.01 Å, while following simulation the sharpness of the peak was no

longer there and a lower distribution was seen. During the simulation, the bond was stronger.

3.8.2. RDF of PPARγ complexes. The hydrogen bonds in PPARγ complexes depicted the

tight bound of active cavity residue with the ligand over the timescale of simulation. Binding

site residues were mainly involved in making hydrogen bonds with the ligand within the dif-

ferent time scales. The residues Arg82:NE, Arg:NH2 and Ser136:N were subject to RDF as

these residues were playing a critical role in the stability of Raltitrexed inside the binding cavity

of PPARγ (Fig 17(C)). The Arg82:NE atom of PPARγ was simultaneously involved in the

hydrogen bonding with two atoms (O6 and O7) of ligand. The RDF of Arg82:NE with O6

showed a sharp distribution peak with the g (r) value of 1.1 at 100 ns whereas, with O7, the

sharp peak of the g (r) value of 1.0 was observed at 200 ns. The other atom (NH2) of Arg82

was also engaged in a strong hydrogen bond with the O7 of the ligand. Initially, it showed the

g (r) value of 0.31 at 2.7 Å whereas at 100 ns the peak become narrower and showed maximum

distribution. The value of g (r) highest peak at 100 ns with the g(r) of 0.95 at the distance of 2.7

Å which again decreased at the end of simulation having the value for g(r) of 0.48 at the 2.9 Å.
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Residue Ser136:N interacting with O3 atom of ligand showed the g(r) value of 0.75 and 0.60 at

2.9 Å before and after simulation respectively.

In Lanifibranor-PPARγ, the RDF for Lys161:NZ was calculated as it was strongly involved

in the hydrogen bond (Fig 16(D)). Between the ligand and protein, a steep peak with a g(r)

value of 1.3 at the start and 1.4 at the end of simulation was seen, however at 100 ns, the g(r)

value was 0.87 with no evident sharp peak identified. All peaks were observed at the same dis-

tance of 2.7 Å (Fig 17(D)). The value of gyration at the end of the simulation was very close to

the starting peak. This shows that the ligand was moving closer in the active cavity of the pro-

tein in the timespan of 200 ns simulation and was tightly bound at its active site till the end of

the simulation.

3.8.3. RDF of PPARδ complexes. Hydrogen bond analysis revealed the active residues of

the PPARδ (GLN250 and THR256 of Iloprost-PPARδ, Arg248, and Tyr437 of Lifitegrast-

PPARδ and ILE327 and THR253 of Lanifibranor-PPARδ) were found as key residues involved

in strong intermolecular interactions. An RDF graph was generated for interacting residues

with ligands for further investigation. In the Iloprost-PPARδ complex, GLN250:NE2 was mak-

ing two hydrogen bonds. At the beginning of the simulation, the highest peak for GLN250:

NE2 and atom O6 the ligand appeared at 2.7 Å and g(r) value was 2.59, atom O8 of the ligand

was also found interacting with GLN250:NE2 value 4.7 Å having the g(r) value 0.40. At time

100 ns, the peak for GLN250:NE2 with O6 and O8 of the ligand appeared at 4.3 Å and 2.8 Å
with the value of g (r) 0.30 and 2.0 respectively whereas finally at the end of simulation

Fig 17. Radial Distribution Function calculated for (A) PPARα-APHM13, (B) PPARα-Forasartan, (C) PPARα-

Lanifibranor, (D) PPARγ-Raltitrexed, (E) PPARγ-Lanifibranor, (F) PPARδ-Iloprost, (G) PPARδ-Lifitegrast, (H)

PPARδ-Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g017
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GLN250:NE2 interacting with ligand, distributed to a maximum value of g(r) value 1.02 for

O6 and 1.44 for O8 of the ligand at 2.7 Å. It was observed that the peak was high initially. The

other residue THR256:OG interacting with the O4 of the ligand, at the start of the simulation

showed a maximum distribution peak at 2.9 Å and the g(r) value was 1.21. At 100 ns the distri-

bution peak was observed for THR256:OG1 and atom O4 of the ligand at 3.6 Å with the g(r) of

0.55. Finally, at the 200 ns time scale, the distribution peak for the same interaction was

observed at 3.5 Å having the g (r) value of 0.46. The distribution peak in the graph shows that

the peak was narrow in width initially than at the end of the simulation.

In the Lifitegrast-PPARδ complex, hydrogen bond analysis showed that ARG248 was form-

ing two hydrogen bonds (Fig 17(E)). ARG248:NE interaction with the O27 of the ligand

showed the same distribution i-e: 2.8 Å showing the g(r) value 1.01 at the start and the end of

simulations while at 100 ns this interaction showed the same distribution of 2.8 Å but with the

g (r) value 0.75. The highest peak was observed for ARG248:NH2 and O27 of ligand at 2.8 Å
with a g (r) value of 0.42. No specific change in this interaction was observed during the whole

course of the simulation, the value of g (r) was observed 0.45 and 0.59 at 100 ns and 200 ns

respectively. The interaction of TYR437: OH with O3 of the ligand showed the maximum peak

at 3.3 Å revealing g(r) of 0.20 initially at the simulation, at 100 ns the peak increased and the

distance decreased to 2.7 Å with g(r) 1.13 then a minor change of g(r) 1.15 at 2.6 Å was

observed at the end of the simulation. The decrease in the distance shows that the ligand tries

to move closer to the active cavity. In Lanifibranor-PPARδ THR253:OG1 formed the strongest

bond with O5 of the ligand (Fig 17(F)). At different timescales during the simulation highest

peak was observed at the same distribution i-e: 2.6 Å with the g (r) of 2.66, 2.28, and 2.63 at 0

ns, 100 ns, and 200 ns respectively showing almost little or no change. The continuous high

peak shows that the ligand is highly stable in the active cavity.

3.9. Binding free energy calculation

The binding free energy calculations are used to determine the strength of ligand-protein

binding affinities [82]. It is a powerful tool in rational drug design. In drug designing, the most

common and reliable end-point techniques for estimating binding free energy are MM/GBSA

and MM/PBSA. All PPAR complexes were elucidated for binding free energies using the MM/

GBSA and MM/PBSA approach of AMBER.

3.9.1. BFEC of PPARα complexes. Table 5 summarizes the binding energies of

APHM13, Forasartan, and Lanifibranor to PPARα from MM/GBSA and MM/PBSA. The Van

der Waals energy was the favorable energy calculated for all the PPARα complexes, ranging

from (-33.5590 to -58.9482 kcalmol-1) same for both Poisson-Boltzmann (PB) and Generalized

Born (GB). The difference of binding energies between GB and PB is dependent on the polar

solvation energy (EPB/GB) which ranges between (0.2471 to 50.2175 kcalmol-1) from PB and

between (0.9022 to 53.3592 kcalmol-1) from GB. The total binding energies for APHM13-P-

PARα, Forasartan-PPARα and Lanifibranor-PPARα from MM/PBSA were -36.1840 kcalmol-

1, -37.5329 kcalmol-1 and -23.0744 kcalmol-1 respectively and from MM/GBSA, it was

-45.0078 kcalmol-1, -36.5399 kcalmol-1 and -22.5616 kcalmol-1. All complexes were stable

whereas the APHM13 and Forasartan showed higher binding affinity with PPARα.

3.9.2. BFEC of PPARγ complexes. The total binding energy for PPARγ in complex with

Raltitrexed and Lanifibranor were -26.4731 kcalmol-1 and -39.8324 kcalmol-1 respectively,

from PB calculations whereas from GB it was -26.8237 kcalmol-1 for with Raltitrexed and

-43.0828 kcalmol-1 for Lanifibranor. The favorable Van der Waals energy for PPARγ-Ralti-

trexed and PPARγ-Lanifibranor from both PB and GB were-43.4097 kcalmol-1 and -47.1082

kcalmol-1. The binding energy calculations of Raltitrexed in complex with PPARγ showed
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higher binding energy from both methods which depict the stability and strong binding

potency between receptor and ligand molecules. The binding energies of all PPARγ complexes

are shown in Table 6.

3.9.3. BFEC of PPARδ complexes. In MM/GBSA and MM/PBSA, the PPARδ complexes

have binding energy in the range between (-36.7277 to -45.4016 kcalmol-1) for PB where the

GB range is between (-27.3368 to -45.0213 kcalmol-1). The formation of PPARδ complexes

results were highly favorable for coulombic interactions during calculations. The electrostatic

contributions were in the range between (-102.5498 to -166.2902 kcalmol-1) for PB and GB

both. The PB and GB values for Iloprost-PPARδ, Lifitegrast-PPARδ, and Lanifibranor-PPARδ
are listed in Table 7.

3.10. Principal component and free energy landscape analysis

Numerous internal movements of the protein molecules are hard to comprehend. Principal

component analysis (PCA) is a method for reducing the massive dimensions of a data set to

the primary principal components, displaying the key variations that would represent the pro-

tein’s global motion with the crucial information. The PCs obtained during MD simulation

are derived from the eigenvector values of the covariance matrix, each of which correlates to a

variation in protein trajectories. PCA was employed to analyze the dynamics of protein-ligand

complexes in order to better understand the influence of ligands binding on protein dynamics.

Table 5. The binding energies of MMPBSA and MMGBSA for the PPARα complexes.

Energy Component Energy Values (kcalmol-1)

APHM13-PPARα Forasartan-PPARα Lanifibranor-PPARα

GB PB GB PB GB PB

VDWAALS -58.9482 -58.9482 -56.2629 -56.2629 -33.5590 -33.5590

EEL -4.2216 -4.2216 -26.0858 -26.0858 13.2301 13.2301

EGB/PB 25.6807 32.9698 53.3592 50.2175 0.9022 0.2471

ESURF -7.5187 N/A -7.5503 N/A -3.1349 N/A

ENPOLAR N/A -5.9840 N/A -5.4017 N/A -2.9926

EDISPER N/A 0.0000 N/A 0.0000 N/A 0.0000

DELTA G gas -63.1698 -63.1698 -82.3487 -82.3487 -20.3289 -20.3289

DELTA G solv 18.1620 26.9858 45.8089 44.8158 -2.2327 -2.7455

DELTA TOTAL -45.0078 -36.1840 -36.5399 -37.5329 -22.5616 -23.0744

https://doi.org/10.1371/journal.pone.0283743.t005

Table 6. The binding energies of MMPBSA and MMGBSA for the PPARγ complexes.

Energy Component Energy Values (kcalmol-1)

Lanifibranor-PPARγ Raltitrexed-PPARγ

GB PB GB PB

VDWAALS -43.409 -43.409 -47.108 -47.108

EEL -34.413 -34.413 -81.989 -81.989

EGB/PB 56.889 56.007 92.839 94.611

ESURF -5.889 N/A -6.825 N/A

ENPOLAR N/A -4.657 N/A -5.346

EDISPER N/A 0.000 N/A 0.000

DELTA G gas -77.823 -77.823 -129.097 -129.097

DELTA G solv 50.999 51.350 86.014 89.264

DELTA TOTAL -26.823 -26.473 -43.082 -39.832

https://doi.org/10.1371/journal.pone.0283743.t006
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It can be seen from Fig 18, that the clusters of APHM13-PPARα were more compact and the

movements were confined to smaller space whereas the projection of the Forasartan-PPARα
and Lanifibranor-PPARα captured more essential subspace. The distortion in the projection

of Lanifibranor-PPARα system showed the high flexibility of the Ω-loop during the simulation

which aided in protein ligand interaction, compliance with RMSD and RMSF results (Fig 10).

This depicts how the Lanifibranor increased the internal movements due to the interaction

between Lanifibranor and PPARα, prompting PPARα to adopt a new configuration with a

smaller subspace. The U-shaped projection of Lanifibranor-PPARγ demonstrates the rise and

decrease in mobility around the protein backbone whereas the compactness of the clusters

indicates the stability of the system. The PCA plot for Raltitrexed-PPARγ depicted a minor dis-

tortion which was due to a structural change in the Ω-loop (Fig 13). The motions of the Ilo-

prost-PPARδ were confined to a lesser space and the clusters showed compactness which

indicated the system was highly stable. The compactness in the cluster projections was also

observed in Lifitegrast-PPARδ and Lanifibranor-PPARδ systems but takes wider space. It

implies that the binding of Lifitegrast and Lanifibranor to PPARδ promotes internal motion

due to their strong interaction.

The free energy landscape (FEL) approach, which is based on PCA, provides a more accu-

rate depiction of the protein conformational space in terms of energy and time. Fig 19 illus-

trates the free energy landscapes projected onto the first two principal components of all

complexes for the backbone atoms of the proteins. The Lanifibranor and the FDA-approved

drugs have far more stability, as evidenced by the size and form of the minimal energy area

(black) in the free energy contour map. Orange regions that are smaller and more concen-

trated imply that the respective complex is more stable. All the ligands binding to their respec-

tive receptors tend to reach thermodynamically stable conformation. The results show that

these agonists offer favorable conformational change towards the PPARs.

3.11. Dynamic cross correlation matrix

Dynamic Cross-correlation matrix was constructed using the coordinates of Cα atoms from

MD trajectories to illustrate the impact of agonists binding on the internal dynamics of

PPARs, and the dynamic cross-correlation map (DCCM) is shown in Fig 20. In the case of

PPARα complexes, the increase in correlation motion was observed in Forasartan-PPARα and

Lanifibranor-PPARα especially in the Ω-loop region and in the region around it. The maps

also revealed the diagonals to be highly correlated with a particular probability of similar con-

formational changes. The Raltitrexed-PPARγ map represents the rise in both correlated and

Table 7. The binding energies of MMPBSA and MMGBSA for the PPARδ complexes.

Energy Component Energy Values (kcalmol-1)

Iloprost-PPARδ Lifitegrast-PPARδ Lanifibranor-PPARδ

GB PB GB PB GB PB

VDWAALS -50.738 -50.738 -69.476 -69.476 -45.416 -45.416

EEL -102.549 -102.549 -166.290 -166.290 -164.892 -164.892

EGB/PB 115.656 121.569 200.031 196.637 189.237 173.941

ESURF -7.389 N/A -8.670 N/A -6.265 N/A

ENPOLAR N/A -5.009 N/A -6.273 N/A -4.126

EDISPER N/A 0.000 N/A 0.000 N/A 0.000

DELTA G gas -153.287 -153.287 -235.766 -235.766 -210.308 -210.308

DELTA G solv 108.266 116.560 191.361 190.364 182.972 169.815

DELTA TOTAL -45.021 -36.727 -44.405 -45.401 -27.336 -40.493

https://doi.org/10.1371/journal.pone.0283743.t007
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anti-correlated motion while the anti-correlation motion on the map for Lanifibranor-PPARγ
was minimized. This revealed the major differences occurred in specific regions of PPARγ in

complex with Raltitrexed. Compared to the Iloprost- PPARδ system, the correlation map for

Lifitegrast- PPARδ showed a little decrease in correlation motion. The Lanifibranor-PPARδ
exhibited a similar correlation to the Iloprost-PPARδ, confirming that the positive correlation

may be attributable to the adopted confirmation of the PPARδ. These observations of ligand-

induced conformational changes reveal the significance of internal dynamics in activation of

PPARs.

3.12. Role of AF-2 domain

The H-12 forms a large portion of the AF-2 surface since stabilization of H-12 allows the

receptor to heterodimerize with the retinoid X receptor (RXR) and allows the recruitment of

coactivators for PPAR regulated target gene transcription [83]. From the literature, it was

determined that Lanifibranor is a Pan PPAR agonist that fully activates PPARα and PPARδ
while partially activating PPARγ [43]. The computational analysis agrees with the outcome

obtained from clinical trials since MD simulations demonstrated that Lanifibranor showed

interaction with H-12 in PPARα and PPARδ whereas it lacked interaction with H-12 in

PPARγ, resulting in the partial activation of PPARγ. During simulation, inward movement of

Fig 18. Constructed Principal component analysis (PCA) for (A) PPARα-APHM13, (B) PPARα-Forasartan, (C) PPARα-Lanifibranor, (D) PPARγ-

Raltitrexed, (E) PPARγ-Lanifibranor, (F) PPARδ-Iloprost, (G) PPARδ-Lifitegrast, (H) PPARδ-Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g018
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Ω-loop brought Lanifibranor closer to the H-12 of PPARα (interacting with Pro262 and

Gln265 residues) and provided proximity to bound ligands, which might play a crucial role in

ligand-receptor interactions [76–78]. Whereas Lanifibranor formed bonds (residues Thr253,

His287, His413, and Tyr437) with H-12 of PPARδ, which are crucial for stabilizing the AF-2

domain [79]. The structural assistance for co-activator recruitment is provided by the stability

of the AF-2 domain in the active helical state.

Forasartan showed interactions with two critical residues: Ser84 of H-3 and His244 of H-

10, both of which play essential roles in the agonist-induced activation of PPARα [79]. Indi-

rectly, this interaction between H-3 and loop 11–12 contributes to the further stabilization of

H-12’s active conformation. Raltitrexed and Lifitegrast followed the same binding pattern as

Lanifibranor in PPARγ and PPARδ respectively. Lifitegrast was stabilizing the AF-2 domain

by interacting with the crucial residues of H-12 in PPARδ whereas Ralititrexed devoid interac-

tion with H-12 in PPARγ. In the case of the PPARγ-Raltitrexed complex, the extension and

contraction of H-12 were also detected. This might be due to the ligand’s lack of direct interac-

tion with H-12. When H-12 of the complex was not stabilized by the ligand, the overall fluctua-

tions in the complex rise [83]. Upon mapping top-scored FDA-approved drugs on their

respective pharmacophore, it was revealed that Forasartan and Lifitegrast mapped nicely with

all essential features of pharmacophore, on the other hand, one HBA failed to map on Ralti-

trexed same as Lanifibranor. Since no PPARγ’s ligands were found to be interacting with the

H-12 and both missed one pharmacophoric feature (HBA), assuming in this way a character

of partial agonist. When compared to full agonists, partial agonists are weak activators of

PPAR that evoke the same activation pattern and have connected dose-response curves with

reduced transactivation potential [84]. Considering over-activation of PPARγ might result in

significant adverse effects such as weight gain and steatosis, PPARγ partial agonists are

Fig 19. FEL is calculated as a function of MD trajectory projections onto the first (PC1) and second (PC2)

eigenvectors, respectively. (A) PPARα-APHM13, (B) PPARα-Forasartan, (C) PPARα-Lanifibranor, (D) PPARγ-

Raltitrexed, (E) PPARγ-Lanifibranor, (F) PPARδ-Iloprost, (G) PPARδ-Lifitegrast, (H) PPARδ-Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g019
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preferable [84]. This study might facilitate in designing of balanced drugs for PPARs in the

future, eliminating the side effects seen with PPARγ full agonist currently available in markets

which is a major challenge for pharmaceutical firms.

4. Conclusion

This study performed a series of computer-aided structural techniques to explore therapeutic

potential of the third phase clinical trial PPAR pan-agonist; Lanifibranor. Molecular dynamic

studies of Lanifibranor showed that it can be a promising drug candidate in treating NASH,

that fully activates PPARα, and PPARδ whereas partially activate PPARγ. Moreover, FDA-

approved drugs: Forasartan, Raltitrexed, and Lifitegrast also stand out as potential agonists for

PPARα (full agonist), PPARγ (partial agonist), and PPARδ (full agonist), respectively. Lanifi-

branor facilitates compact AF-2 Domain organization which in turn assists the attachment of

co-activator. The PPARγ agonist Raltitrexed and Lanifibranor exhibited as partial activators

due to the lack of a pharmacophore feature (HBA) leading to the loss of H-12 interactions.

Furthermore, this study has also led to the identification of common chemical scaffolds

(methyl sulfonyl benzene, butyric acid, and chlorobenzene) which provide a good starting

point for designing new drugs against PPARs. These drugs can also be considered in combina-

tional therapy against NASH followed by in vitro and in vivo studies to determine the practical

function of combination treatment. This study will facilitate in designing of balanced drugs for

Fig 20. The dynamic cross-correlation matrix of backbone atoms throughout the simulation duration of 200-ns.

(A) PPARα-APHM13, (B) PPARα-Forasartan, (C) PPARα-Lanifibranor, (D) PPARγ-Raltitrexed, (E) PPARγ-

Lanifibranor, (F) PPARδ-Iloprost, (G) PPARδ-Lifitegrast, (H) PPARδ-Lanifibranor.

https://doi.org/10.1371/journal.pone.0283743.g020
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PPARs in the future, eliminating the side effects seen with PPARγ full agonist currently avail-

able in markets which is a major challenge for pharmaceutical firms.
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51. Kräutler V, Van Gunsteren WF, Hünenberger PH. A fast SHAKE algorithm to solve distance constraint

equations for small molecules in molecular dynamics simulations. Journal of computational chemistry.

2001; 22(5):501–8.

52. Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular

dynamics trajectory data. Journal of chemical theory and computation. 2013; 9(7):3084–95. https://doi.

org/10.1021/ct400341p PMID: 26583988

53. Donohue J. Radial distribution functions of some structures of the polypeptide chain. Proceedings of the

National Academy of Sciences. 1954; 40(6):377–81. https://doi.org/10.1073/pnas.40.6.377 PMID:

16589491

54. Hemmer MC, Steinhauer V, Gasteiger J. Deriving the 3D structure of organic molecules from their infra-

red spectra. Vibrational spectroscopy. 1999; 19(1):151–64.

55. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an efficient

program for end-state free energy calculations. Journal of chemical theory and computation. 2012; 8

(9):3314–21. https://doi.org/10.1021/ct300418h PMID: 26605738

56. Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson− Boltzmann sur-

face area method. Molecular informatics. 2012; 31(2):114–22. https://doi.org/10.1002/minf.201100135

PMID: 27476956

57. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free ener-

gies of complex molecules: combining molecular mechanics and continuum models. Accounts of chem-

ical research. 2000; 33(12):889–97. https://doi.org/10.1021/ar000033j PMID: 11123888

58. Pearson K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin philosophical magazine and journal of science. 1901; 2(11):559–72.

59. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and intelligent laboratory

systems. 1987; 2(1–3):37–52.

60. Balsera MA, Wriggers W, Oono Y, Schulten K. Principal component analysis and long time protein

dynamics. The Journal of Physical Chemistry. 1996; 100(7):2567–72.

61. Ernst M, Sittel F, Stock G. Contact-and distance-based principal component analysis of protein dynam-

ics. The Journal of chemical physics. 2015; 143(24):12B640_1. https://doi.org/10.1063/1.4938249

PMID: 26723658

62. Zhang S, Krieger JM, Zhang Y, Kaya C, Kaynak B, Mikulska-Ruminska K, et al. ProDy 2.0: increased

scale and scope after 10 years of protein dynamics modelling with Python. Bioinformatics. 2021; 37

(20):3657–9. https://doi.org/10.1093/bioinformatics/btab187 PMID: 33822884

63. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007; 9

(03):90–5.

64. Kuwabara N, Oyama T, Tomioka D, Ohashi M, Yanagisawa J, Shimizu T, et al. Peroxisome prolifera-

tor-activated receptors (PPARs) have multiple binding points that accommodate ligands in various con-

formations: phenylpropanoic acid-type PPAR ligands bind to PPAR in different conformations,

depending on the subtype. Journal of medicinal chemistry. 2012; 55(2):893–902. https://doi.org/10.

1021/jm2014293 PMID: 22185225

65. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual

screening: advances and applications in drug discovery. Frontiers in pharmacology. 2018; 9:1275.

https://doi.org/10.3389/fphar.2018.01275 PMID: 30524275

66. Batista FA, Trivella DB, Bernardes A, Gratieri J, Oliveira PS, Figueira ACM, et al. Structural insights into

human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding. PloS

one. 2012; 7(5):e33643. https://doi.org/10.1371/journal.pone.0033643 PMID: 22606221

PLOS ONE Deciphering the relational dynamics of AF-2 domain of PAN PPAR through comparative simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0283743 March 31, 2023 34 / 35

https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1016/j.compbiolchem.2020.107367
https://doi.org/10.1016/j.compbiolchem.2020.107367
http://www.ncbi.nlm.nih.gov/pubmed/32956952
https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/ct400341p
http://www.ncbi.nlm.nih.gov/pubmed/26583988
https://doi.org/10.1073/pnas.40.6.377
http://www.ncbi.nlm.nih.gov/pubmed/16589491
https://doi.org/10.1021/ct300418h
http://www.ncbi.nlm.nih.gov/pubmed/26605738
https://doi.org/10.1002/minf.201100135
http://www.ncbi.nlm.nih.gov/pubmed/27476956
https://doi.org/10.1021/ar000033j
http://www.ncbi.nlm.nih.gov/pubmed/11123888
https://doi.org/10.1063/1.4938249
http://www.ncbi.nlm.nih.gov/pubmed/26723658
https://doi.org/10.1093/bioinformatics/btab187
http://www.ncbi.nlm.nih.gov/pubmed/33822884
https://doi.org/10.1021/jm2014293
https://doi.org/10.1021/jm2014293
http://www.ncbi.nlm.nih.gov/pubmed/22185225
https://doi.org/10.3389/fphar.2018.01275
http://www.ncbi.nlm.nih.gov/pubmed/30524275
https://doi.org/10.1371/journal.pone.0033643
http://www.ncbi.nlm.nih.gov/pubmed/22606221
https://doi.org/10.1371/journal.pone.0283743


67. Olins GM, Corpus VM, Chen ST, McMahon EG, Palomo MA, McGraw DE, et al. Pharmacology of SC-

52458, an Orally Active, Nonpeptide Angiotensin AT~ 1 Receptor Antagonist. Journal of cardiovascular

pharmacology. 1993; 22:617–. PMID: 7505365

68. Csajka C, Buclin T, Fattinger K, Brunner HR, Biollaz J. Population pharmacokinetic-pharmacodynamic

modelling of angiotensin receptor blockade in healthy volunteers. Clinical pharmacokinetics. 2002; 41

(2):137–52. https://doi.org/10.2165/00003088-200241020-00005 PMID: 11888333

69. Cunningham D, Zalcberg J, Rath U, Olver I, Van Cutsem E, Svensson C, et al. ‘Tomudex’(ZD1694):

results of a randomised trial in advanced colorectal cancer demonstrate efficacy and reduced mucositis

and leucopenia. European Journal of Cancer. 1996; 32:1945–54.

70. Zeng L, Liao Q, Zhao H, Jiang S, Yang X, Tang H, et al. Raltitrexed as a synergistic hyperthermia che-

motherapy drug screened in patient-derived colorectal cancer organoids. Cancer Biology & Medicine.

2021; 18(3):750. https://doi.org/10.20892/j.issn.2095-3941.2020.0566 PMID: 33710819

71. Zhong M, Gadek TR, Bui M, Shen W, Burnier J, Barr KJ, et al. Discovery and development of potent

LFA-1/ICAM-1 antagonist SAR 1118 as an ophthalmic solution for treating dry eye. ACS medicinal

chemistry letters. 2012; 3(3):203–6. https://doi.org/10.1021/ml2002482 PMID: 24900456

72. Keating GM. Lifitegrast ophthalmic solution 5%: a review in dry eye disease. Drugs. 2017; 77(2):201–8.

https://doi.org/10.1007/s40265-016-0681-1 PMID: 28058622

73. Murphy CJ, Bentley E, Miller PE, McIntyre K, Leatherberry G, Dubielzig R, et al. The pharmacologic

assessment of a novel lymphocyte function-associated antigen-1 antagonist (SAR 1118) for the treat-

ment of keratoconjunctivitis sicca in dogs. Investigative ophthalmology & visual science. 2011; 52

(6):3174–80. https://doi.org/10.1167/iovs.09-5078 PMID: 21330663

74. Sun Y, Zhang R, Gadek TR, O’Neill CA, Pearlman E. Corneal inflammation is inhibited by the LFA-1

antagonist, lifitegrast (SAR 1118). Journal of ocular pharmacology and therapeutics. 2013; 29(4):395–

402. https://doi.org/10.1089/jop.2012.0102 PMID: 23215542

75. Abidi A, Shukla P, Ahmad A. Lifitegrast: a novel drug for treatment of dry eye disease. Journal of Phar-

macology and Pharmacotherapeutics. 2016; 7(4):194–8. https://doi.org/10.4103/0976-500X.195920

PMID: 28163544

76. Ambrosio AL, Dias SM, Polikarpov I, Zurier RB, Burstein SH, Garratt RC. Ajulemic acid, a synthetic non-

psychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome prolifera-

tor-activated receptor γ. Journal of Biological Chemistry. 2007; 282(25):18625–33.

77. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, et al. Partial agonists activate

PPARγ using a helix 12 independent mechanism. Structure. 2007; 15(10):1258–71.

78. Johnson BA, Wilson EM, Li Y, Moller DE, Smith RG, Zhou G. Ligand-induced stabilization of PPARγ
monitored by NMR spectroscopy: implications for nuclear receptor activation. Journal of molecular biol-

ogy. 2000; 298(2):187–94.

79. Ahn S, Kim J, An S, Pyo JJ, Jung D, Lee J, et al. 2-Phenyl-8-(1-phenylallyl)-chromenone compounds

have a pan-PPAR modulator pharmacophore. Bioorganic & Medicinal Chemistry. 2019; 27(13):2948–

58. https://doi.org/10.1016/j.bmc.2019.05.028 PMID: 31128991

80. Cronet P, Petersen JF, Folmer R, Blomberg N, Sjöblom K, Karlsson U, et al. Structure of the PPARα
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