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Abstract

There is a controversy over what causes the low robustness of some programs for predict-

ing protein stability change upon mutation. Some researchers suggested that low-quality

data and insufficiently informative features are the primary reasons, while others attributed

the problem largely to a bias caused by data imbalance as there are more destabilizing

mutations than stabilizing ones. In this study, a simple approach was developed to construct

a balanced dataset that was then conjugated with a leave-one-protein-out approach to illus-

trate that the bias may not be the primary reason for poor performance. A balanced dataset

with some seemly good conventional n-fold CV results should not be used as a proof that a

model for predicting protein stability change upon mutations is robust. Thus, some of the

existing algorithms need to be re-examined before any practical applications. Also, more

emphasis should be put on obtaining high quality and quantity of data and features in future

research.

Introduction

The ability to predict protein stability change upon mutation is both theoretically important

and practically relevant [1,2]. Consequently, many tools using machine learning (ML) technol-

ogies have been developed for that purpose in the past decades [2–13]. Recently, however, re-

evaluation of some of these tools has shown inferior performance compared to the original

publications and therefore low robustness [5,6,14–16]. While some researchers have suggested

that low-quality data and insufficiently informative features are the primary reasons for the

weak robustness of the tested algorithms [5,15–19], others have put more emphasis on a bias

caused by data imbalance [3,6,20–24].

There are more destabilizing mutations than stabilizing mutations in the experimental data,

resulting in an unbalanced dataset whereas a dominating group has more cases than a minor

group of fewer cases. On the contrary, a balanced dataset has similar cases in different groups.

Predictive models built on an unbalanced dataset usually deliver better performance for the

dominating group (i.e., destabilizing mutations), than the minor group (i.e., stabilizing muta-

tions). To overcome the data imbalance problem, hypothetical reverse mutations (HRMs), rel-

ative to experimental mutations (termed forward mutations in the following section), were
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utilized to achieve balanced datasets by combining native mutations with HRMs [3,12,13,22].

HRMs can be easily generated based on a physical principle that the following relation must

hold: ΔΔGAB = = −ΔΔGBA (where ΔΔGAB is the free energy change upon mutation, A and B

are proteins before and after mutation).

The bias theory has its merits and the tactics of using HRMs in the training may help

improve prediction performance to some degree; it falls short, however, to adequately explain

why some models completely failed to predict HRMs, rather than reduced performance when

HRMs were not included in the training [15]. In addition, many features used to build models

are rather rudimentary and unlikely sufficiently informative for the purpose [15]. Besides,

recently Yang et al. reported that less than 30% of the ProTherm [25], the database many pre-

dictive tools were developed upon, was deemed to be useful [5]. Similarly, other researchers

have also found that the ProTherm database has numerous errors [18,26]. With such a high

error rate, it is unimaginable that models built upon this database could achieve the accuracies

as described in some of these papers. Taken together, it is necessary to evaluate the significance

of the bias’s contribution to the performance issue of some programs for predicting protein

stability change upon mutation.

This work is an attempt to examine whether models built on a combined dataset that

included both forward and reverse mutations may suffer from the problem of data leakage.

Data leakage refers to a situation when the training and testing datasets are overlapped or

share significant similarity during the development process of ML models. Consequently, the

performance evaluated on the test dataset can be over-estimated, resulting in unreliable and

bad prediction outcomes in real-world applications. If this is true, the performance of these

models is over-optimistic and the improvement by using HRMs to generate a balanced data

may not be as significant as suggested by the bias theory advocators.

Data leakage happens when highly similar cases exist in training and test datasets. For pro-

tein stability change prediction, there may exist two types of data leakage: inter-protein and

intra-protein ones. Intra-protein data leakage refers to the situation when mutations at the

same location of a protein but with different incoming residues are split into training and test

datasets. These mutations can be highly correlated. Inter-protein data leakage happens when

mutations from two similar proteins are distributed to training and test datasets. Sequence

similarity may exist locally even when two proteins have low overall similarity. In this study, a

simple way was developed to construct a balanced dataset. It was then conjugated with a leave-

one-protein-out approach (LOPO) that eliminates intra-protein data leakage. The study shows

that it is highly possible data leakage may happen when HRMs are used in the training/testing

and conventional n-fold cross validation (n-FCV) is employed [27]. Thus, data imbalance and

the bias may only play a secondary role in the performance of the predictive models.

Methods

The dataset used to develop I-Mutant2.0 [28] was chosen in this study because it was derived

from the noisy ProTherm database and its 62 features are not sufficiently informative for pre-

dicting protein stability change upon mutation, as thoroughly analyzed previously [15]. Thus,

models built based on these features and data aren’t expected to be robust and perform well.

The dataset for the training and test I-Mutant2.0 sequence-only SVM model was down-

loaded from https://folding.biofold.org/i-mutant//pages/dbMut.html. There are 2048 muta-

tions from 64 proteins. Among them, 600 are stabilizing mutations, 31 are neutral, and 1417

are destabilizing mutations. To faithfully reproduce the results in literature, no attempt to

reduce redundance was made as the literature [28]. The sequences of proteins in the dataset

were retrieved from PDB and other relevant databases based on protein IDs available in the
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dataset. In addition to temperature and pH of the experiments available in the downloaded

dataset, I-Mutant2.0 utilized 40 features calculated from the sequences. The first 20 values (for

20 residue types) encode the mutation by setting -1 to the residue corresponding to the deleted

residue and 1 to the incoming residue, while all the remaining residues are set to 0. Each of the

last 20 input values are the number of the encoded residue type inside a window of 19 residues

centered at the mutation site.

Balanced dataset

To demonstrate that the data imbalance is not the primary issue, a balanced dataset was con-

structed using a straightforward approach. A half of the entries in the forward dataset were

randomly selected. The remaining half dataset was replaced with their corresponding reverse

mutations. This dataset was named as “balanced” since the numbers of stabilizing and destabi-

lizing mutations were almost identical. Since the number of replacement HRMs is identical to

the replaced original mutations, the number of mutations in the balanced dataset is still 2048

from 64 proteins. Approximately half of these mutations are forward and the other half are

hypothetical reverse mutations.

Combined dataset

The forward and reverse datasets were merged into a combined dataset. Thus, there are 4096

cases in this dataset. This dataset is perfectly balanced. The combined approach was used by

bias theory advocators to build their models.

Leave-one-protein-out (LOPO)

A leave-one-protein-out approach was used in the study. Mutations from one single protein

were used as test data while mutations from all other proteins were used to develop a model.

Each protein was used as test data once. In this way, intra-protein data leakage is avoided. The

results were then compared to 10-fold cross validation (10-FCV), an approach commonly

used in the literature of the protein stability change upon mutation studies. In a conventional

10-FCV, all cases are randomly partitioned into 10 equal sized folds [27]. One of the folds is

retained as the test dataset and remaining 9 folds are combined and used as training dataset.

Therefore, some mutations from a protein are likely partitioned to training and test datasets,

causing intra-protein data leakage.

Support vector machine (SVM) based predictive models, same as I-Mutant2.0, were built

using the R e1071 package (https://cran.r-project.org/package=e1071).

Performance metrics

Three statistical metrics were used to measure the performance of models in the study. The

Pearson correlation coefficients of the experimental and predicted ΔΔG values were calculated.

In addition, different ΔΔG values were used as thresholds to convert the predictions into

binary classes (i.e., stabilizing and destabilizing), and then the area under receiver operating

characteristic (ROC) curves were generated and the area under the ROC curve (AUC) were

calculated. Finally, Q2, the proportion of the number of correct predictions to the number of

examples, were calculated after the predictions were converted to binary classification, where

mutation with negative ΔΔG values were considered destabilizing and positive ones as stabiliz-

ing [28].
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Results

A series of experiments were performed to compare the LOPO and 10-FCV approaches

(Table 1). The scatter plots and ROC curves of all experiments are provided in Figs 1 and 2.

For the original unbalanced dataset, the predictions of forward mutations from 10-FCV have a

Pearson Correlation Coefficient (R) of 0.7845 and area under curve (AUC) of 0.8803, similar

to the results presented in the i-Mutant2 paper [28]. However, the prediction power largely

diminished for the reverse mutations (R = 0.0523, AUC = 0.5569), revealing the data leakage

problem of the model [15]. For the balanced dataset, the results are more consistent between

forward and reverse mutations (R: 0.6727 and 0.7186, AUC: 0.8443 and 0.8494, respectively).

For the combined dataset, the R and AUC (0.8705 and 0.9278, respectively) are better than the

original unbalanced and balanced datasets, consistent with the results provided by the advoca-

tors of the bias theory but obviously over-optimistic, considering the model was based on

noisy data and insufficiently informative features [15,22].

The results of the LOPO experiments are more realistic than that of 10-FCV ones. The per-

formance of the predictive model for the forward mutation is modest (R: 0.3336, AUC:

0.6412), notably different from the 10-FCV results (R: 0.7845, AUC: 0.8803). The predictions

of the model on reverse mutations are even worse (R: 0.1326, AUC: 0.5951). This indicates

that LOPO is more stringent than 10-CV and confirms that the data and features are not suit-

able for this type of prediction. For the balanced dataset, the performance of models on for-

ward and reverse mutations are similar but have much lower R and AUC values than their

corresponding experiments of the 10-CV approach. Since the data are noisy and the features

are not sufficiently informative for protein stability changes, LOPO should be closer to the

reality than 10-FCV. The combined dataset showed a very similar trend as the balanced data-

set. Evidently, LOPO models built from all three datasets delivered similar results. Thus, the

models of LOPO approach are likely more realistic than the 10-FCV approach and data imbal-

ance does not play a significant role in prediction performance.

Discussion and conclusions

The I-Mutant2.0 dataset was used in the study because it is among few if not the only

dataset allowing other researchers calculate its features relatively easily. More importantly,

these features have been thoroughly examined and deemed not possible to have significant

prediction power [15]. Logically, if any model built upon this dataset and its features could

achieve any meaningful predictive power, the tactic used to build such a model is questionable

which should not be used as a proof of robustness.

Table 1. Comparison of 10-FCV and LOPO results.

10-FCV LOPO

R AUC Q2 R AUC Q2

Unbalanced Forward 0.7845 0.8803 0.8271 0.3336 0.6412 0.6851

Reverse 0.0523 0.5569 0.3374 0.1326 0.5951 0.3545

Balanced Forward 0.6727 0.8443 0.7514 0.3266 0.6608 0.5996

Reverse 0.7186 0.8494 0.7432 0.3426 0.6643 0.6035

Combined 0.8705 0.9278 0.8474 0.3408 0.6606 0.6038

R: Pearson correlation coefficient; AUC: Area under ROC curve; Q2: Number of correct predictions/number of examples; 10-FCV: 10-fold cross validation; LOPO:

Leave-one-protein-out.

https://doi.org/10.1371/journal.pone.0283727.t001
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Fig 1. Scatter plots of experimental ΔΔG versus predictions of unbalanced, balanced, and combined approaches.

https://doi.org/10.1371/journal.pone.0283727.g001
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Fig 2. ROC curves and their AUCs of ΔΔG prediction of the unbalanced, balanced and combined approaches.

Different ΔΔG values were used as thresholds to convert the prediction into binary stabilizing and destabilizing classes.

https://doi.org/10.1371/journal.pone.0283727.g002
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Using the newly constructed balanced dataset, conjugated with the LOPO approach, the

present study has demonstrated that data imbalance and therefore bias is not the primary rea-

son that caused the performance issue, as models built using balanced and combined data

were only able to achieve similar performance to the unbalanced data. If the bias plays a signif-

icant role, the performance of the balanced dataset should be better than the unbalanced one.

But they are very similar in this study (R = 0.3266 for balanced vs. R = 0.3336 for unbalanced).

More likely, the data and features are responsible for the unsatisfactory performance as we dis-

cussed previously [15]. While utilizing HRMs to deal with the bias is a good tactic that should

improve performance when sufficient data and informatic features are used, it alone is unlikely

sufficient to deal with fundamental issues such as poor-quality data and insufficiently informa-

tive features. HRMs should not be used to create balanced data AND evaluate the performance

simultaneously, as they may cause the data leakage.

This work does not imply all the existing algorithms for predicting protein stability change

upon mutation have the data leakage problem. Instead, the results suggest that solving data

imbalance and consequently the bias issue alone doesn’t guarantee that the trained models are

robust. Therefore, a balanced dataset with some seemly good conventional n-fold CV results

should not be used as a proof that a model for predicting protein stability change upon muta-

tions is robust. It is urgent to re-evaluate existing algorithms using more rigid approaches such

as LOPO.

While it is true that LOPO is more stringent than 10-FCV in regarding of the problem

under study, as it does not allow intra-protein data leakages. It should be pointed out, however,

it is still possible that the LOPO may suffer from the inter-protein data leaking problem.

Therefore, LOPO should be considered as a necessary but not sufficient proof of robustness of

predictive models. Although the inter-protein data leakage problem was not addressed in the

study, the LOPO study is adequate to illustrate the underlying performance problem of some

of the algorithms developed for predicting protein stability change upon mutation.

In conclusion, this study provided strong evidences to support that the data and features,

instead of data imbalance, may be the primary reason for the performance issue of some of the

predictive models for protein stability changes upon mutations. Therefore, future research in

the field should be focused on generating more significant amounts of reliable experimental

data and informative features. Lessons learned from experimental results should be used to

guide designing novel informative features [29]. It is encouraging that recently the ProTherm

database was finally updated [30] and other new databases for protein stability changes have

also been developed [19,26]. Besides, some newly developed algorithms used data with

improved quality together with data balancing [31,32] while others introduced creative

approach [33,34] and novel features [35]. Nevertheless, the models built upon the bias theory

and estimated using conventional n-FCV, especially those using the old ProTherm database

should be re-evaluated before any practical application. Future research in this field should be

cautious of both inter- and intra- protein data leakages.

The present study also outlines the potential data leakage problem for applications of artifi-

cial intelligence (AI) including machine learning in medicinal chemistry and structural biology

in general. Cautions should be always taken as the data leakage problem may happen subtly

and the conventional cross validation approach may not provide realistic estimation.

Supporting information

S1 Fig. Scatter plots of experimental ΔΔG versus predictions.

(DOCX)

PLOS ONE Bias and prediction of protein stability change upon mutation

PLOS ONE | https://doi.org/10.1371/journal.pone.0283727 March 30, 2023 7 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0283727.s001
https://doi.org/10.1371/journal.pone.0283727


S2 Fig. ROC curves and their AUCs of ΔΔG prediction.

(DOCX)

S1 File. S2048.

(XLS)

S2 File. S2048_rev.

(XLS)

Acknowledgments

I wish to thank Drs Lisa McShane, Yingdong Zhao for their valuable suggestions and support.

I also thank Diane Cooper, MSLS, National Institutes of Health (NIH) Library, for her diligent

editorial assistance. I am grateful to the editor and anonymous reviewers for their constructive

comments and suggestions.

Author Contributions

Conceptualization: Jianwen Fang.

Data curation: Jianwen Fang.

Investigation: Jianwen Fang.

Methodology: Jianwen Fang.

Project administration: Jianwen Fang.

Resources: Jianwen Fang.

Software: Jianwen Fang.

Validation: Jianwen Fang.

Visualization: Jianwen Fang.

Writing – original draft: Jianwen Fang.

Writing – review & editing: Jianwen Fang.

References
1. Damborsky J, Brezovsky J. Computational tools for designing and engineering enzymes. Current opin-

ion in chemical biology. 2014; 19:8–16. https://doi.org/10.1016/j.cbpa.2013.12.003

ISI000336471600004. PMID: 24780274

2. Marabotti A, Scafuri B, Facchiano A. Predicting the stability of mutant proteins by computational

approaches: an overview. Brief Bioinform. 2020. Epub 2020/06/05. https://doi.org/10.1093/bib/bbaa074

PMID: 32496523.

3. Li B, Yang YT, Capra JA, Gerstein MB. Predicting changes in protein thermodynamic stability upon

point mutation with deep 3D convolutional neural networks. PLoS Comput Biol. 2020; 16(11):

e1008291. Epub 2020/12/01. https://doi.org/10.1371/journal.pcbi.1008291 PMID: 33253214; PubMed

Central PMCID: PMC7728386.

4. Nisthal A, Wang CY, Ary ML, Mayo SL. Protein stability engineering insights revealed by domain-wide

comprehensive mutagenesis. Proceedings of the National Academy of Sciences of the United States of

America. 2019; 116(33):16367–77. https://doi.org/10.1073/pnas.1903888116

WOS:000481404300039. PMID: 31371509

5. Yang Y, Urolagin S, Niroula A, Ding XS, Shen BR, Vihinen M. PON-tstab: Protein Variant Stability Pre-

dictor. Importance of Training Data Quality. Int J Mol Sci. 2018; 19(4). ARTN 1009 https://doi.org/10.

3390/ijms19041009 WOS:000434978700088. PMID: 29597263

6. Usmanova DR, Bogatyreva NS, Bernad JA, Eremina AA, Gorshkova AA, Kanevskiy GM, et al. Self-

consistency test reveals systematic bias in programs for prediction change of stability upon mutation.

PLOS ONE Bias and prediction of protein stability change upon mutation

PLOS ONE | https://doi.org/10.1371/journal.pone.0283727 March 30, 2023 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0283727.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0283727.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0283727.s004
https://doi.org/10.1016/j.cbpa.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24780274
https://doi.org/10.1093/bib/bbaa074
http://www.ncbi.nlm.nih.gov/pubmed/32496523
https://doi.org/10.1371/journal.pcbi.1008291
http://www.ncbi.nlm.nih.gov/pubmed/33253214
https://doi.org/10.1073/pnas.1903888116
http://www.ncbi.nlm.nih.gov/pubmed/31371509
https://doi.org/10.3390/ijms19041009
https://doi.org/10.3390/ijms19041009
http://www.ncbi.nlm.nih.gov/pubmed/29597263
https://doi.org/10.1371/journal.pone.0283727


Bioinformatics. 2018; 34(21):3653–8. https://doi.org/10.1093/bioinformatics/bty340

WOS:000450038900008. PMID: 29722803

7. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut: predicting the impact of mutations on protein confor-

mation, flexibility and stability. Nucleic Acids Research. 2018; 46(W1):W350–W5. https://doi.org/10.

1093/nar/gky300 WOS:000438374100056. PMID: 29718330

8. Dehghanpoor R, Ricks E, Hursh K, Gunderson S, Farhoodi R, Haspel N, et al. Predicting the Effect of

Single and Multiple Mutations on Protein Structural Stability. Molecules. 2018; 23(2). Epub 2018/02/01.

https://doi.org/10.3390/molecules23020251 PMID: 29382060; PubMed Central PMCID: PMC6017198.

9. Pandurangan AP, Ochoa-Montano B, Ascher DB, Blundell TL. SDM: a server for predicting effects of

mutations on protein stability. Nucleic Acids Res. 2017; 45(W1):W229–W35. Epub 2017/05/20. https://

doi.org/10.1093/nar/gkx439 PMID: 28525590; PubMed Central PMCID: PMC5793720.

10. Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein stability changes upon single-

point mutation. Bioinformatics. 2016; 32(19):2936–46. https://doi.org/10.1093/bioinformatics/btw361

PMID: 27318206; PubMed Central PMCID: PMC5039926.

11. Pires DEV, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stabil-

ity using an integrated computational approach. Nucleic Acids Res. 2014; 42(W1):W314–W9. https://

doi.org/10.1093/Nar/Gku411 ISI000339715000052. PMID: 24829462

12. Li Y, Zhang J, Tai D, Russell Middaugh C, Zhang Y, Fang J. Prots: A fragment based protein thermo-

stability potential. Proteins. 2012; 80(1):81–92. Epub 2011/10/07. https://doi.org/10.1002/prot.23163

PMID: 21976375.

13. Li Y, Fang J. PROTS-RF: A Robust Model for Predicting Mutation-Induced Protein Stability Changes.

PLoS ONE. 2012; 7(10):e47247. Epub 2012/10/19. https://doi.org/10.1371/journal.pone.0047247

PMID: 23077576; PubMed Central PMCID: PMC3471942.

14. Huang P, Chu SKS, Frizzo HN, Connolly MP, Caster RW, Siegel JB. Evaluating Protein Engineering

Thermostability Prediction Tools Using an Independently Generated Dataset. ACS Omega. 2020; 5

(12):6487–93. Epub 2020/04/08. https://doi.org/10.1021/acsomega.9b04105 PMID: 32258884;

PubMed Central PMCID: PMC7114132.

15. Fang J. A critical review of five machine learning-based algorithms for predicting protein stability

changes upon mutation. Brief Bioinform. 2019. Epub 2019/07/06. https://doi.org/10.1093/bib/bbz071

PMID: 31273374.

16. McGuinness KN, Pan W, Sheridan RP, Murphy G, Crespo A. Role of simple descriptors and applicabil-

ity domain in predicting change in protein thermostability. PLoS One. 2018; 13(9):e0203819. Epub

2018/09/08. https://doi.org/10.1371/journal.pone.0203819 PMID: 30192891; PubMed Central PMCID:

PMC6128648 presented and preparing the article for publication. This does not alter the authors adher-

ence to PLOS ONE policies on sharing data and materials.

17. Mazurenko S. Predicting protein stability and solubility changes upon mutations: data perspective.

Chemcatchem. 2020. https://doi.org/10.1002/cctc.202000933 WOS:000565378700001.

18. Wang CY, Chang PM, Ary ML, Allen BD, Chica RA, Mayo SL, et al. ProtaBank: A repository for protein

design and engineering data (vol 27, pg 1113, 2118). Protein Science. 2019; 28(3):672–. https://doi.org/

10.1002/pro.3585 WOS:000458407700021. PMID: 30747468

19. Stourac J, Dubrava J, Musil M, Horackova J, Damborsky J, Mazurenko S, et al. FireProtDB: database

of manually curated protein stability data. Nucleic Acids Res. 2021; 49(D1):D319–D24. Epub 2020/11/

10. https://doi.org/10.1093/nar/gkaa981 PMID: 33166383; PubMed Central PMCID: PMC7778887.

20. Savojardo C, Martelli PL, Casadio R, Fariselli P. On the critical review of five machine learning-based

algorithms for predicting protein stability changes upon mutation. Brief Bioinform. 2021; 22(1):601–3.

Epub 2019/12/31. https://doi.org/10.1093/bib/bbz168 PMID: 31885042.

21. Montanucci L, Savojardo C, Martelli PL, Casadio R, Fariselli P. On the biases in predictions of protein

stability changes upon variations: the INPS test case. Bioinformatics. 2019; 35(14):2525–7. https://doi.

org/10.1093/bioinformatics/bty979 WOS:000477703600102. PMID: 30496382

22. Fariselli P, Martelli PL, Savojardo C, Casadio R. INPS: predicting the impact of non-synonymous varia-

tions on protein stability from sequence. Bioinformatics. 2015; 31(17):2816–21. https://doi.org/10.1093/

bioinformatics/btv291 WOS:000361395700008. PMID: 25957347

23. Montanucci L, Capriotti E, Frank Y, Ben-Tal N, Fariselli P. DDGun: an untrained method for the predic-

tion of protein stability changes upon single and multiple point variations. Bmc Bioinformatics. 2019; 20

(1). ARTN 335. https://doi.org/10.1186/s12859-019-2923-1 WOS:000488118300001. PMID: 31266447

24. Pucci F, Bernaerts KV, Kwasigroch JM, Rooman M. Quantification of biases in predictions of protein

stability changes upon mutations. Bioinformatics. 2018; 34(21):3659–65. https://doi.org/10.1093/

bioinformatics/bty348 WOS:000450038900009. PMID: 29718106

PLOS ONE Bias and prediction of protein stability change upon mutation

PLOS ONE | https://doi.org/10.1371/journal.pone.0283727 March 30, 2023 9 / 10

https://doi.org/10.1093/bioinformatics/bty340
http://www.ncbi.nlm.nih.gov/pubmed/29722803
https://doi.org/10.1093/nar/gky300
https://doi.org/10.1093/nar/gky300
http://www.ncbi.nlm.nih.gov/pubmed/29718330
https://doi.org/10.3390/molecules23020251
http://www.ncbi.nlm.nih.gov/pubmed/29382060
https://doi.org/10.1093/nar/gkx439
https://doi.org/10.1093/nar/gkx439
http://www.ncbi.nlm.nih.gov/pubmed/28525590
https://doi.org/10.1093/bioinformatics/btw361
http://www.ncbi.nlm.nih.gov/pubmed/27318206
https://doi.org/10.1093/Nar/Gku411
https://doi.org/10.1093/Nar/Gku411
http://www.ncbi.nlm.nih.gov/pubmed/24829462
https://doi.org/10.1002/prot.23163
http://www.ncbi.nlm.nih.gov/pubmed/21976375
https://doi.org/10.1371/journal.pone.0047247
http://www.ncbi.nlm.nih.gov/pubmed/23077576
https://doi.org/10.1021/acsomega.9b04105
http://www.ncbi.nlm.nih.gov/pubmed/32258884
https://doi.org/10.1093/bib/bbz071
http://www.ncbi.nlm.nih.gov/pubmed/31273374
https://doi.org/10.1371/journal.pone.0203819
http://www.ncbi.nlm.nih.gov/pubmed/30192891
https://doi.org/10.1002/cctc.202000933
https://doi.org/10.1002/pro.3585
https://doi.org/10.1002/pro.3585
http://www.ncbi.nlm.nih.gov/pubmed/30747468
https://doi.org/10.1093/nar/gkaa981
http://www.ncbi.nlm.nih.gov/pubmed/33166383
https://doi.org/10.1093/bib/bbz168
http://www.ncbi.nlm.nih.gov/pubmed/31885042
https://doi.org/10.1093/bioinformatics/bty979
https://doi.org/10.1093/bioinformatics/bty979
http://www.ncbi.nlm.nih.gov/pubmed/30496382
https://doi.org/10.1093/bioinformatics/btv291
https://doi.org/10.1093/bioinformatics/btv291
http://www.ncbi.nlm.nih.gov/pubmed/25957347
https://doi.org/10.1186/s12859-019-2923-1
http://www.ncbi.nlm.nih.gov/pubmed/31266447
https://doi.org/10.1093/bioinformatics/bty348
https://doi.org/10.1093/bioinformatics/bty348
http://www.ncbi.nlm.nih.gov/pubmed/29718106
https://doi.org/10.1371/journal.pone.0283727


25. Kumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, et al. ProTherm and ProNIT:

thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res. 2006;

34(Database issue):D204–6. https://doi.org/10.1093/nar/gkj103 PMID: 16381846.

26. Xavier JS, Nguyen TB, Karmarkar M, Portelli S, Rezende PM, Velloso JPL, et al. ThermoMutDB: a ther-

modynamic database for missense mutations. Nucleic Acids Res. 2020. Epub 2020/10/24. https://doi.

org/10.1093/nar/gkaa925 PMID: 33095862.

27. McLachlan GJ, Do KA, Ambroise C. Analyzing microarray gene expression data. Hoboken, N.J.: Wiley-

Interscience; 2004. xx, 320 p. p.

28. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the pro-

tein sequence or structure. Nucleic Acids Res. 2005; 33(Web Server issue):W306–10. https://doi.org/

10.1093/nar/gki375 PMID: 15980478.

29. Baase WA, Liu LJ, Tronrud DE, Matthews BW. Lessons from the lysozyme of phage T4. Protein Sci-

ence. 2010; 19(4):631–41. https://doi.org/10.1002/pro.344 WOS:000276274900002. PMID: 20095051

30. Nikam R, Kulandaisamy A, Harini K, Sharma D, Gromiha MM. ProThermDB: thermodynamic database

for proteins and mutants revisited after 15 years. Nucleic Acids Res. 2021; 49(D1):D420–D4. https://

doi.org/10.1093/nar/gkaa1035 PMID: 33196841; PubMed Central PMCID: PMC7778892.

31. Iqbal S, Ge F, Li F, Akutsu T, Zheng Y, Gasser RB, et al. PROST: AlphaFold2-aware Sequence-Based

Predictor to Estimate Protein Stability Changes upon Missense Mutations. J Chem Inf Model. 2022; 62

(17):4270–82. Epub 20220816. https://doi.org/10.1021/acs.jcim.2c00799 PMID: 35973091.

32. Baek KT, Kepp KP. Data set and fitting dependencies when estimating protein mutant stability: Toward

simple, balanced, and interpretable models. Journal of Computational Chemistry. 2022; 43(8):504–18.

https://doi.org/10.1002/jcc.26810 WOS:000743505700001. PMID: 35040492

33. Singer JM, Novotney S, Strickland D, Haddox HK, Leiby N, Rocklin GJ, et al. Large-scale design and

refinement of stable proteins using sequence-only models. PLoS One. 2022; 17(3):e0265020. Epub

20220314. https://doi.org/10.1371/journal.pone.0265020 PMID: 35286324; PubMed Central PMCID:

PMC8920274.

34. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in stability and flexibility upon

single and multiple point missense mutations. Protein Science. 2021; 30(1):60–9. https://doi.org/10.

1002/pro.3942 WOS:000568007300001. PMID: 32881105

35. Li G, Panday SK, Alexov E. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Sin-

gle Point Mutations on Protein Thermodynamic Stability. Int J Mol Sci. 2021; 22(2). Epub 20210109.

https://doi.org/10.3390/ijms22020606 PMID: 33435356; PubMed Central PMCID: PMC7827184.

PLOS ONE Bias and prediction of protein stability change upon mutation

PLOS ONE | https://doi.org/10.1371/journal.pone.0283727 March 30, 2023 10 / 10

https://doi.org/10.1093/nar/gkj103
http://www.ncbi.nlm.nih.gov/pubmed/16381846
https://doi.org/10.1093/nar/gkaa925
https://doi.org/10.1093/nar/gkaa925
http://www.ncbi.nlm.nih.gov/pubmed/33095862
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1093/nar/gki375
http://www.ncbi.nlm.nih.gov/pubmed/15980478
https://doi.org/10.1002/pro.344
http://www.ncbi.nlm.nih.gov/pubmed/20095051
https://doi.org/10.1093/nar/gkaa1035
https://doi.org/10.1093/nar/gkaa1035
http://www.ncbi.nlm.nih.gov/pubmed/33196841
https://doi.org/10.1021/acs.jcim.2c00799
http://www.ncbi.nlm.nih.gov/pubmed/35973091
https://doi.org/10.1002/jcc.26810
http://www.ncbi.nlm.nih.gov/pubmed/35040492
https://doi.org/10.1371/journal.pone.0265020
http://www.ncbi.nlm.nih.gov/pubmed/35286324
https://doi.org/10.1002/pro.3942
https://doi.org/10.1002/pro.3942
http://www.ncbi.nlm.nih.gov/pubmed/32881105
https://doi.org/10.3390/ijms22020606
http://www.ncbi.nlm.nih.gov/pubmed/33435356
https://doi.org/10.1371/journal.pone.0283727

