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Abstract

Arylamine N-acetyltransferase 2 has been related to drug side effects and cancer suscepti-

bility; its protein structure and acetylation capacity results from the polymorphism’s arrays

on the NAT2 gene. Absorption, distribution, metabolism, and excretion, cornerstones of the

pharmacological effects, have shown diversity patterns across populations, ethnic groups,

and even interethnic variation. Although the 1000 Genomes Project database has portrayed

the global diversity of the NAT2 polymorphisms, several populations and ethnicities remain

underrepresented, limiting the comprehensive picture of its variation. The NAT2 clinical

entails require a detailed landscape of its striking diversity. This systematic review spans the

genetic and acetylation patterns from 164 articles from October 1992 to October 2020.

Descriptive studies and controls from observational studies expanded the NAT2 diversity

landscape. Our study included 243 different populations and 101 ethnic minorities, and, for

the first time, we presented the global patterns in the Middle Eastern populations. Europe-

ans, including its derived populations, and East Asians have been the most studied genetic

backgrounds. Contrary to the popular perception, Africans, Latinos and Native Americans

have been significantly represented in recent years. NAT2*4, *5B, and *6A were the most

frequent haplotypes globally. Nonetheless, the distribution of *5B and *7B were less and

more frequent in Asians, respectively. Regarding the acetylator status, East Asians and

Native Americans harboured the highest frequencies of the fast phenotype, followed by

South Europeans. Central Asia, the Middle East, and West European populations were the

major carriers of the slow acetylator status. The detailed panorama presented herein,

expands the knowledge about the diversity patterns to genetic and acetylation levels. These

data could help clarify the controversial findings between acetylator states and the suscepti-

bility to diseases and reinforce the utility of NAT2 in precision medicine.
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Introduction

Arylamine N-acetyltransferase 2 (NAT2) is a phase II xenobiotic-metabolising enzyme with

medical relevance, responsible for the biotransformation of several therapeutic drugs, environ-

mental and diet compounds [1–5]. The NAT2 gene is strikingly diverse; 45 nucleotide variations

have been reported hitherto, of which most are single nucleotide polymorphisms (SNPs) and

two deletions (Δ859T and Δ3237A) found in South Indian and Japanese populations, respec-

tively [6–9]. The combination of these variants affects the protein structure and the acetylation

capacity, thereby producing at least three phenotypes: fast, intermediate, and slow [1]. Such

acetylation states modify the efficient detoxification of exogen substances. Thus, the NAT2

genetic patterns could influence susceptibility to adverse drug effects and induce genetic dam-

age such as DNA adduct formation [1,2,10]. Although genotype-phenotype associations have

remained controversial, lifestyle and the acetylation phenotype have been associated with sus-

ceptibility to neoplasia, insulin resistance, and certain cardiometabolic traits [2–4]. On the other

hand, absorption, distribution, metabolism, and excretion, cornerstones of the pharmacological

effects, have shown relevant differences regarding the ancestral background [11]. NAT2 also

exhibits allele, haplotype, and phenotype frequency variations across populations and ethnic

groups. Demographic events, historical and cultural transmissions of the populations shape the

genetic variation. Hence, some authors have pointed out that lifestyle, acetylation state, and

genetic background, have delineated the current epidemiological transitions [12].

The 1000 Genomes Project database has portrayed the global diversity of the NAT2 poly-

morphisms; other studies have described its gene variability in specific populations (https://

www.internationalgenome.org/). Nonetheless, several populations and ethnicities remain

underrepresented. Furthermore, most studies have been limited to populational descriptive

data, leaving gaps in the knowledge of the NAT2 genetic architecture that observational studies

could make accurate.

Despite evidence about the NAT2 clinical relevance, the reconstruction of its worldwide

diversity remains partial, requiring a comprehensive and detailed landscape. The present sys-

tematic review is state of the art, compiling the NAT2 genetic and acetylation patterns from

164 articles published from October 1992 to October 2020, representing 80 countries, 243 dif-

ferent populations and 101 ethnic minorities. The articles included descriptive studies and

controls from observational studies expanding the diverse landscape of this phase II enzyme.

We conducted the diversity analyses from 35,561 genotypes, 51,860 haplotypes and 70,484

phenotypes, providing one of the most complete and detailed panoramas to date. This review

expands the knowledge about the diversity patterns of NAT2, applicable to drug therapies,

pharmacogenetics, and susceptibility to diseases. Our data may even suggest the genetic pat-

terns of unrepresented populations, where their close genetic ties with related populations

could constitute the possible scenery of the harboured genetic architecture.

Materials and methods

Eligibility criteria

We conducted a systematic review following the Preferred Reporting Items for Systematic

Reviews and Meta-analyses 2020 statement (PRISMA) [13]. Inclusion criteria were restricted

to articles published in English and Spanish languages, conducted on human populations

where at least two individuals were genotyped. These articles included both population genetic

papers and observational studies with hospital- and/or population-based control groups evalu-

ating the genetic contributions of NAT2 polymorphisms to allergy, asthma, hypersensitivity,

and cancer. Data from observational studies were obtained from control groups to avoid any
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skewed diversity related to a health condition. Several databases with an agreement with our

institutions to acquire full-text papers (e.g., Embase, Lilacs, PubMed, and Scopus, among oth-

ers) were used. In those studies where full-text access was denied, the corresponding author(s)

was contacted on three occasions via e-mail, requesting the full-text; the article was removed

from the analysis database if they failed to respond to our request.

Studies contravening the eligibility criteria in the primary research focus were excluded, as

well as those whose genetic variant frequencies were< 1%. Commentaries, newsletters,

reviews, overviews and overlapping publications were also removed from the analysis, along

with systematic reviews. Articles lacking crucial information in their documentation, such as

those lacking information about the number and reference sequence (rs) of SNPs used and

those whose authors did not give access to its data, were also omitted.

Information sources and search strategy

Articles indexed in Embase, Lilacs, PubMed, and Scopus databases published from October

1992 to October 2020 were included. The initial date was chosen because, from 1992 onwards,

the number of articles, including the terms of the NAT2 gene and polymorphisms, increased

exponentially. The search strategy included free-text terms such as "allergy", "asthma", "can-

cer", "hypersensitivity", "diversity", "ethnic group", "N-acetyltransferase 2" and "NAT2". These

headings were combined with the terms "polymorphism, genetic", "polymorphism, single

nucleotide", "genetic variation", and "DNA". Relevant articles selected from the reference list of

the included items were searched manually to identify additional studies. All studies reviewed

and included herein were from published data.

Selection process

Two reviewers independently screened all studies retrieved from the research strategy using

the title and/or abstract as eligibility criteria. These two reviewers further participated in the

full-text revision of potentially eligible documents and assessed whether the articles met the

inclusion criteria for their eligibility. Said reviewers independently carried out the data extrac-

tion and quality assessment of all the documents. Three more reviewers worked independently

as arbiters to solve inconsistencies and screen disagreements. Disputes among these five

reviewers were resolved through group discussion.

Data collection process

Data extraction. Data extraction was conducted following the guidelines for observa-

tional studies in epidemiology. First author’s name, publication year, country, ethnicity, geo-

graphic region, study design (i.e., case-control, cohort, cross-sectional and population-based),

sample size, and gender were included in the data extraction [14,15]. Polymorphism was

described as a gene variant with at least 1% frequency in the population; the location and “rs”

of each single nucleotide polymorphism (SNPs) were also included.

Observed frequencies from alleles and genotypes were collected for each study (S1 Table).

In those studies where allele frequency was not reported, it was set up using the haplotype fre-

quencies reported; these data were underlined. Likewise, when the genotype frequencies were

not described, these were constructed assuming Hardy-Weinberg equilibrium.

Concerning the haplotypes, observed frequencies, as reported by the authors, were included

in the data extraction. Nonetheless, the statistical analyses were made only with those haplo-

types representing the consensus nomenclature [https://nat.mbg.duth.gr] and assigned from at

least six SNPs. These criteria were also used regarding the acetylator phenotypes frequencies

(i.e., fast, intermedia and slow) reported by the authors. The fast phenotype was defined by the
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presence of two fast acetylation haplotypes (i.e., *4, *11A, *12A, *12B, *12C, *13A, *18) in agree-

ment with the consensus nomenclature [https://nat.mbg.duth.gr]. The slow phenotype was

defined by two slow acetylation haplotypes (i.e., *5A to *5J, *6A to *6E, *7A and *7B, *10, *12D,

*14A to *14G, *17 and *19). The intermedia phenotype was defined by the presence of one hap-

lotype fast and one slow. In those studies, reporting very slow phenotypes, such data were

added to slow phenotypes. Some authors reported the phenotypes frequencies using at least

6-SNPs and the tag SNP rs1495741; in such cases, the first option was solely considered; prior

reports have suggested a similar panel to infer accurately the acetylator status [16]. Nonetheless,

if the six-SNPs haplotypes included rs1801279, these data were excluded because this SNP was

highly conserved amongst the worldwide populations. In those articles where only the tag SNP

rs1495741 was reported, these data were used to obtain the three phenotype statuses where AA

represented the slow phenotype, GG, the fast one and the heterozygous state, the intermedia

phenotype. This tag has shown similar accuracy to those inferred with seven SNPs panel [16].

Those studies where the authors did not define the specific haplotype (i.e., NAT2*5A) and

only reported the general haplotype (i.e., NAT2*5) were included in the database but excluded

from the rest of the analyses to avoid a skewed panorama about the diversity. Likewise, in the

studies where the authors only reported the haplotypes without the phenotype statuses, the fre-

quency of these was obtained by adding the number of individuals with fast (to the fast pheno-

type) or slow haplotypes (to the slow phenotype) and dividing by in the total number of

haplotypes reported. In this situation, only fast and slow phenotypes were reported without

the intermedia phenotype.

Quality evaluation. The quality, internal validity, risk of bias and comparability were

evaluated in each selected study using the Quality of Genetic association studies tool

(Q-Genie) [17]. Q-Genie encloses the statements developed both STrengthening the REport-

ing of Genetic Association studies (STREGA) as a means of strengthening the reporting of

Genetic RIsk Prediction Studies (GRIPS) [14,15]. STREGA guidelines are built on the

STrengthening of the Reporting of OBservational Studies in Epidemiology (STROBE) [18].

From these two lineaments (STREGA and GRIPS), Q-Genie evaluates the quality of genetic

studies with eleven items, each one with seven numeric classification answers: one and two

suggest poor quality, three and four suggest moderate quality and five to seven suggest high

quality [17]. Three reviewers independently assessed the quality of all the articles selected; dis-

agreements were resolved through group discussions with all five reviewers. Only those studies

considered good quality were included: for diversity studies, the threshold score was� 40,

whereas, for the studies with a control group, the score was� 45.

Effect measures. Given the characteristics of the study, measures of effect were not

applied.

Other statements. This review was not registered, and the protocol was not prepared.

Diversity patterns

Allele frequencies were collected for each study (S1 Table) and depicted in global maps

obtained from the United States Geological Survey National Map Viewer [https://viewer.

nationalmap.gov/viewer/], that is a public domain.

Although multi-ethnic studies were excluded from all analyses and comparisons, they were

included in S1 Table.

Statistical analysis

The frequency distribution of the fast and slow phenotypes of the different populations

included in the present study was depicted by geographic regions (Africa; AFR, the Americas;
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AMR, Asia; ASI, Europe; EUR, the Middle East; MEA, and Oceania; OCE) through violin

plots. All continents were subdivided into regions according to the WorldAtlas webpage

(http://worldatlas.com), and the frequency data was shown using box plots. Africa was sepa-

rated into Central (CAf), East (EAf), Nort (NAf), South (SAf), and West (WAf), regions. The

Americas were subdivided into Central (CAm), North (NAm) and South (SAm) regions. Its

population diversity landscape was also separated into Afrodescendants (from the USA and

Brazil), Asian Americans (from the USA), Native Americans, European-derived populations

(whites from Canada and the USA represented as non-Hispanic whites, NHW), and Latinos.

Asia was separated into Central (CAs), East (EAs), Southeast (SEAs), and South (SAs) regions.

Europe was separated into East (EEu), North (NEu), South (SEu), and Western (WEu). Coun-

tries belonging to each region appeared in the footnote of each plot.

Violin and box plots were made with R software using GGplot2 [19]. The median differ-

ences among and within continents were performed using the chi-square test (χ2) with Med-

Calc1 Statistical Software v20.118 [20]. P-values� 0.05 were considered significant. Bar plots

with proportions, area charts with the allele frequencies and doughnut charts were made using

the Numbers app v12.2 (Apple Inc., 2022).

Haplotype diversity (h) and mean pairwise differences (MPD) were conducted only in the

most frequent haplotypes to have a comparison panorama. These two calculous were made

with Arlequin v3.5 using 1000 permutations [21]. MPD statistical differences among the differ-

ent geographic regions were made using the Wilcoxon’s test with MedCalc1 Statistical Soft-

ware v20.11 [20]. P-values� 0.05 were considered as significative.

Comparison with other populations. Data were compared with several populations bear-

ing similar ancestral and geographic backgrounds from the 1000 Genomes Project database

(1KGP; https://www.internationalgenome.org/). These comparisons were only made in Africa,

the Americas, Asia, and Europe.

Results

A total of 1090 publications, including 31 additional articles and 61 records identified by cita-

tion searching, were obtained from the first screening. Of these, 926 articles were excluded for

various reasons (Fig 1). Two hundred and forty-three potential full-text articles were thor-

oughly assessed, of which 164 were included in the present study (S1 Table).

The generalities of the studies included

The selected articles represented 80 countries, 243 different populations and 101 ethnic minor-

ities. Of the total of studies, ~ 30% were from the Americas, followed by Asia (24%), Africa

(21%), Europe (19%), the Middle East (5.263%), and Oceania (0.330%). From each geographic

region, several sub-regions were analysed regarding the number of studies (Fig 2). The most

studied area in Africa and Asia was the East (28% and 70%, respectively), whereas in the Amer-

icas and Europe was the South region (~ 54% and 35%, respectively).

The countries contributing to the significant number of populations studied in Africa were

Cameroon, with ten populations, and Nigeria and Tanzania, with six populations (S1 Table).

In the Americas were the USA and Brazil (26 and 18 populations, respectively), excluding the

multi-ethnic studies reported in the USA, whereas in Asia were China and Japan with 18 and

12 populations, respectively. Germany (seven populations) and Spain (nine populations) were

the European countries with the most population studied. However, the Russian Federation

has contributed to 12 populations both in Europe and Asia regions. The Middle East has stud-

ied 15 populations.
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Regarding the data source, 60% of the studies came from descriptive population studies; the

European ones contributed to the most observational studies.

Based on ethnicity, 96% of the articles were from well-established geographic regions; the

remaining studies involved multi-ethnic (more than three ethnicities) origins, which were

excluded from all analyses. Present-day, European and European-derived populations have

been the most studied.

Allele and genotype diversity

The most studied polymorphisms within NAT2 were rs1801279, rs1041983, rs1801280,

rs1799929, rs1799930, rs1208, rs1799931, and rs149574 (S1–S5 Figs). Of these, rs1801279 and

rs1799931 depicted a conserved distribution of ancestral alleles being the most prominent. In

the case of rs1801279, the African populations and the United Arab Emirates presented the

major frequencies of the derivative allele. By contrast, Asians and Latinos showed the highest

frequencies of the derivative allele regarding the SNP rs179931. Of note is the high frequency

of this allele in Swedish (0.364) and Emiratis (0.244). Another SNP with similar distribution

worldwide was rs1041983, whose ancestral allele frequencies presented a range from 0.591 (in

Asians) to 0.710 (in Europeans). SNPs such as rs1801280, rs1799929, and rs1208 exhibited

Fig 1. Selection process used in the systematic review following the PRISMA 2020 statement. Note: Reason 1, low quality. Reason 2, duplicated data.

https://doi.org/10.1371/journal.pone.0283726.g001
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several distribution patterns with remarkably high frequencies of the ancestral allele in the

Asian populations.

Regarding the derivative alleles of these three SNPs, they presented the highest frequencies

within European populations. About rs1799930 polymorphism, the highest frequency of the

ancestral allele was shown in Latinos (range: 0.775 in Brazilians to 0.999 in Ecuadorians) and

Papuans, this last population with a low portrayal (n = 2). The derivative allele was uniformly

distributed worldwide (except in Latinos), although Swedish exhibited a remarkable frequency

(0.663).

Concerning the tag SNP rs1495741 (Fig 3), it has been the least studied with high frequen-

cies of the derivative allele representing the slow phenotype, which was more frequent in

South Asia (f = 0.779) and Europe (f = 0.756). Worthy of note are the distributions of the deriv-

ative allele in the Mali population and the opposite pattern in Brazil.

Haplotype diversity by geographic region

The present systematic review depicted the distribution of 97 different haplotypes (S1 and S2

Tables); 68 were determined using at least 6-SNPs. Such 6-SNPs haplotypes were obtained

from 19,301 individuals (38,601 haplotypes). Of these, 34 singletons were found. Overall, the

Fig 2. Percentage of articles by region included in the systematic review considering geographic regions and subregions. Note: AAM, Asian Americans;

AFD, Afro-descendants; LAT, Latinos; MEA, Middle East, Nat Am, Native Americans; OCE, Oceania.

https://doi.org/10.1371/journal.pone.0283726.g002
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haplotype NAT2*4 (wild type) was the most common globally, followed by *5B, *6A, and *7B

(S6 Fig). Other haplotypes with critical frequencies were *12A (in African, European and the

Americas populations), *5A, *5C, *7A (Asian and the Americas populations) and *14B (in

Africa and the Middle East).

Regarding the different haplotypes found by region, Africa presented 41 haplotypes, of

which twenty have been described, as yet, only in this region (singletons). Such singletons have

been characterised, mainly within *6 and *12 haplotype clusters. The Middle East was repre-

sented by 32 haplotypes and nine singletons within the *5 haplotype cluster. The Americas

exhibited 31 haplotypes and six singletons within *6 and *7 haplotype clusters, whereas Europe

presented 26 haplotypes and three singletons. Asia was the least diverse region, with seventeen

haplotypes and one singleton. Oceania was only represented by two haplotypes from two indi-

viduals. Such patterns may present bias because they depend on the resolution power of each

study, the sample size and the dates on which they were made; the new technologies have the

advantage of the resolution within haplotypes. Hence, the haplotype diversity and mean pair-

wise differences were conducted with the data from the eight most represented haplotypes

Fig 3. Frequency of the ancestral and derivative allele of rs1495741. Note: AFR, Africa; AMR, The Americas; BRA, Brazil; CHN, China; DEU, Germany;

EAS, East Asia; ESP, Spain; ETH, Ethiopia; EUR, Europe; HUN, Hungary; MLI, Mali; PAK, Pakistan; SAS, South Asia. The map was obtained from the United

States Geological Survey National Map Viewer [https://viewer.nationalmap.gov/viewer/], that is a public domain.

https://doi.org/10.1371/journal.pone.0283726.g003
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excepting NAT2*4 (i.e., *12A, *5A, *5B, *5C, *6A, *7A, *7B, and *14B). These results showed

comparable patterns to those described as a whole without any significant difference amongst

the different regions (Table 1). In Africa, the western and central countries contributed to the

greatest diversity, principally in those haplotypes within *6 and *12. The countries within the

southern region were the least diverse but also the minor studied. In Europe, the most diverse

region was the southern one, followed by the Easter and Western.

No significant values (p-values� 0.05) were found among MPD by geographic regions by

the Wilcoxon’s test.

Acetylation capacities

Slow phenotype. The substantial charge of the slow phenotype worldwide was a conse-

quence of the high frequency of the slow haplotypes. This status was more frequent in the Mid-

dle East, where most data were distributed around the median (0.782) with remarkable

frequencies in the Ashkenazi Jews, Emiratis and Pakistanis (S1 Table). Significant differences

(p� 0.0001) were found between MEA and Asia (~1.4 times lower) and the Americas (~1.3

times lower) when comparing the median values (Fig 4). Africa and Europe also presented

high frequencies of this phenotype (median values: 0.758 and 0.751, respectively, without sig-

nificant differences). About Africa, the north region presented the highest median value

(0.823), showing marked differences with CAf, SAf, and WAf (p� 0.001) (S7 Fig). The promi-

nent frequencies were presented in Cameroon (CAf) within the Fulani ethnicity and Tanzania

(EAf) in Burunges, Hazdas and Maasais. Of note, the contrasting frequencies are even within

the same country (i.e., Cameroon). Conversely, SAf presented the lowest median value (0.391)

with significant differences (p� 0.0001) with all regions.

Europe regions presented similar slow phenotype distributions with median values in a

rank of 0.736 (SEu) to 0.795 (NEu). Thus, any significant difference (p� 0.05) among the dif-

ferent regions was identified (S8 Fig). The highest frequencies were seen in NEu (Sweden) and

WEu (France), whereas the lowest ones were found in SEu (Serbia) and France. The Americas

(0.612) and Asia (0.565) presented the lowest median values (S9 and S10 Figs). The lowest fre-

quencies were observed in Japan (EAs) and within the Native Americans. Inside the Americas,

the lowest median values (0.147) were seen in CAm, which was ~ 4.5 and 3.8 times lower in

comparison with NAm and SAm, respectively (p� 0.0001); this interpretation should be

taken with caution. The patterns of this phenotype were dissimilar depending on the ancestral

background. Latinos presented the most significant frequencies of the slow phenotype: Brazil

(0.480) and Mexico (0.560). High frequencies were also observed within the Afro-descendants

from Brazil (0.290) and the USA (0.260) and in the European-derived populations from Can-

ada and the USA (0.310) (Fig 5).

Regarding the Asian region, the highest values of the slow phenotype were presented in SAs

(0.839), represented by two Indian studies. SEAs (0.640), CAs (0.615) also presented similar

Table 1. Diversity patterns for NAT2 haplotypes by continental regions.

Region N h Haplotype diversity MPD

Africa 1,955 15 0.728 ± 0.007 2.508 ± 1.352

America 5,362 20 0.689 ± 0.004 2.648 ± 1.414

Asia 3,206 13 0.648 ± 0.006 2.002 ± 1.129

Europe 13,176 21 0.583 ± 0.003 2.444 ± 1.324

Middle East 2,957 16 0.715 ± 0.005 2.736 ± 1.452

Note: N, number of samples; h, Number of different haplotypes found; MPD, mean pairwise differences.

https://doi.org/10.1371/journal.pone.0283726.t001

PLOS ONE Global landscape of the genetic diversity and acetylator status of NAT2

PLOS ONE | https://doi.org/10.1371/journal.pone.0283726 April 6, 2023 9 / 25

https://doi.org/10.1371/journal.pone.0283726.t001
https://doi.org/10.1371/journal.pone.0283726


frequencies (S10 Fig). By contrast, EAs (0.429) exhibited the lowest values, particularly within

Japanese populations, except in the Eskimos and Yakuts from Siberia. Yet, the pattern of this

region should not be generalised, given the paucity number of studies.

Fast phenotype. Regarding the fast phenotype, it was more frequent in Asia

(median = 0.435) and the Americas (median = 0.388). Thus, significant differences

(p� 0.0001) were found to compare with Africa (median = 0.242), Europe (median = 0.249)

and MEA (median = 0.218), where it was almost twice less frequent (Fig 6). Some African pop-

ulations, such as Baka and Bakola Pygmies from Cameroon, Biaka Pygmies (Central African

Republic), and San (Namibia), also presented high frequencies of this phenotype (S1 Table). A

similar pattern was found in Serbia and France within the European region.

Inside Asia, the Eastern region presented the higher median frequencies (0.571); Chinese,

Han Chinese, Koreans and Western Siberians exhibited the highest values. Thus, significant

differences (p� 0.0001) were found to compare it with the other regions (CAs = 0.385;

SEAs = 0.360; and SAs = 0.161) (S11 Fig). About the Americas, overall, the Native American

populations exhibited the major frequencies; Emberas and Ngawbes from Panama presented

Fig 4. Violin plots of the slow phenotype distribution by geographic region. Note: AFR, Africa; AME, The Americas; ASI, Asia; EUR, Europe; MEA,

Middle East, OCE, Oceania.

https://doi.org/10.1371/journal.pone.0283726.g004
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the highest frequencies (0.853 and 0.924, respectively) (S12 Fig). Latinos also presented high

values of this phenotype (Fig 5).

About Africa, the highest frequencies of the fast phenotype were found within SAf popula-

tions (median = 0.609), followed by the Central region where Bakola Pygmies (Cameroon)

presented the greatest values, accompanied by Namibia (SAf, 0.857) and the Wolaitas from

Ethiopia (EAf, 0.621) (S13 Fig). Significant values were found amongst the different regions

(range p� 0.05—p� 0.0001). Among the different countries belonging to the Middle East,

the highest frequencies were presented in Jordan (0.279), and Druze from Israel (0.273); the

Ashkenazi Jews (0.100) and the Emiratis (0.119) presented the lowest frequencies (S1 Table).

Europe depicted similar median distributions among the regions (range:0.205 in Neu to

0.264 in SEu) without any significative differences (S14 Fig). Of note is the high frequencies of

the fast phenotypes in Serbia (0.730) and France (0.711).

Intermedia phenotype. Although this phenotype has not been fully reported, those stud-

ies that included it have illustrated high frequencies in East and South African populations as

well as African Americans. By contrast, the lowest values were found among Europeans, its

descendant populations, and in the Middle East (Fig 7).

Fig 5. Doughnut charts representing the fast and slow phenotypes distributions by ethnicity in Brazil, Mexico and the United States of the America.

https://doi.org/10.1371/journal.pone.0283726.g005
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Comparative with 1000 genomes project data

Overall, the allele frequency distributions of the eight most studied NAT2 polymorphisms

were congruent with those reported in 1KGP. However, the panorama of populations analysed

herein portrayed a more accurate frequency distribution and included more populations and

individuals. Our contribution to the scenery of genetic diversity in Africa comprised 22 popu-

lations. The Americas had several populations (Natives, Afro-descendants, Asian Americans,

and European-derived populations) from Canada, the USA, Mexico, Nicaragua, Panama,

Colombia, Argentina, Paraguay, Brazil, Peru and Ecuador. Inside Asia, Central and Southeast

regions were included herein, enlarging the diverse representation landscape of East Asian and

South populations. About Europe, our study represented populations from the East, West,

North and South of the continent.

Of note is the behaviour of the distribution of rs1495741 in the Americas and African popula-

tions, which presented different patterns (e.g., Brazil and Mali, respectively) to those described by

1KGP. In addition, the Middle East populations were represented for the first time.

Fig 6. Violin plots of the fast phenotype distribution by geographic region. Note: AFR, Africa; AME, The Americas; ASI, Asia; EUR, Europe; MEA, Middle

East, OCE, Oceania.

https://doi.org/10.1371/journal.pone.0283726.g006
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Discussion

NAT2 polymorphisms have shown variations in the allelic distributions across populations

and at inter-ethnic and inter-individual levels. Although, several studies have described the

gene variability of NAT2, these have been limited to populational descriptive data, leaving gaps

in the knowledge of its genetic architecture. The present systematic review explored, in detail,

the global NAT2 diversity patterns from 304 populations, including 164 articles from popula-

tional-descriptive and observational studies.

Particularities of the studies included

Akin to other documents related to several pathologies and pharmacogenetic studies, Europe-

ans (including European-derived populations from Canada and the USA) have been the most

characterised, mainly to avoid spurious results given its genetic homogeneity [22–26]. Such

Fig 7. Bar plots with the distributions of the slow, fast and intermedia phenotypes by geographic region. Note: ARE, United Arab Emirates; BFA, Burkina

Faso; BRA, Brazil; CAF, Central African Republic; CAN, Canada; CHN, China; CMR, Cameroon; COL, Colombia; Czech Republic; DZA, Algeria; DEU,

Germany; EGY, Egypt; ESP, Spain; ETH, Ethiopia; FIN, Finland; FRA, France; GAB, Gabon; GBR; United Kingdom; GRC, Greece; HUN, Hungary; IDN,

Indonesia; IND, India; ISR, Israel; ITA, Italy; JOR, Jordan; JPN, Japan; KGZ, Kyrgyzstan; KHM, Cambodia; KOR, Korea; KZA, Kazakhstan; LBN, Lebanon;

MAR, Morocco; MEX, Mexico; MLI, Mali; NAM, Namibia; NGA, Nigeria; NIC, Nicaragua; NLD, Netherlands; OMN, Oman; PAK, Pakistan; PAN, Panama;

PER, Peru; POL, Poland; RUS, Russian Federation; SAU, Saudi Arabia; SEN, Senegal; SDN, Sudan; SOM, Somalia; SRB, Serbia; SVK, Slovakia; SWE, Sweden;

TCD, Chad; THA, Thailand; TUR, Turkey; TWN, Taiwan; TZA, Tanzania; USA, The United State of America; UZB, Uzbekistan; ZAF, South Africa. LAT,

Latinos; Nat Am, Native Americans NHW, mom-Hispanic Whites representing the European-derived populations from Canada and the United States of

America.

https://doi.org/10.1371/journal.pone.0283726.g007
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homogeneity was demonstrated in the distribution of both the slow and fast phenotypes in the

different regions of Europe without significant differences among them (S8 and S14 Figs).

East Asia, particularly the Han Chinese populations was the second most studied region.

This ethnic group has also been considered homogeneous, given its age (traced back to the

Neolithic) and the gene-flow with surrounding populations [27,28]. The remarkable number

of studies in East Asia could be associated with the earliest stages of sedentism and plant culti-

vation found in northern China, the second oldest domestication centre in Eurasia [29]. In

this region, several agricultural systems (e.g., millets and rice) emerged independently and

gradually increased in the Hexi Corridor and the Yellow River Basin [29,30]. Several human

groups interacted during this period, and with the human expansions, the cultures spread

southward and northwards (almost simultaneously) as well as central China [29,31,32]. The

genetic background of the Han Chinese population has been associated with different subsis-

tence strategies such as hunter-gatherers (Mongolia and Amur River Basin), farmers (from

Yellow River Basin) and pastoralists (from western Mongolia), all around 3000 years Before

Christ (BC) [33]. Thus, East Asians may derive from different mixture proportions, which

makes their study remarkably interesting regarding the acetylator statuses, but also particularly

complex. Han Chinese populations depicted a genetic cline where farmers from the Upper and

Middle Yellow River share a gene pool with the north Han group [33]. The Yellow River Valley

connected to China and Southeast Asia, and in turn, Han Chinese also shared a gene pool with

Southeast Asians, probably, through southern Chinese agriculturalists [33]. These particular-

ities could explain several phenotype patterns described in Han populations.

Other East Asian populations (e.g., Japan, Korea and Taiwan) and its counterparts in West-

ern countries (i.e., Asian-Americans) were also represented. Nevertheless, the findings in these

last populations might lead to flagrant under- or overestimation of their diversity, given the

remarkable inbreeding rates regarding the outbred populations from which they arise [34,35].

Similar findings have been described in the equivalent of South Asian populations (i.e., India

and Pakistan) [35,36]. In turn, the reported data regarding Asian Americans should be inter-

preted with prudence because their patterns could be closely related to the genetic architecture

of each population, limiting its applicability.

Historically ethnicities such as Africans, Latinos and Native Americans’ populations have

been understudied. Nonetheless, our findings depicted an increase in the number of studies

involving them in recent years [37–39]. Particularly, the subsistence mode and the diversity in

climatic zones and biomes have been proposed as keystones in the evolution of NAT2, exerting

a positive selection [9]. Thus, studies on African ethnic groups have been interested in eluci-

dating the adaptation signals related to diet and lifestyle practices [40–43]. African populations

are ethnically and genetically diverse, forging a cornerstone for answering such questions [42].

Thus, it was not wholly surprising that the most extraordinary NAT2 diversity has been found

in Africa.

Latinos are a cradle of diversity; their genetic background was shaped by the fusion amongst

European and East Asian migratory waves peopling the New World and African populations

[44,45]. Thus, the Americas are a melting pot of diversity that emerged 500 years ago (ya).

Both European and African migrants came from several regions. The European migrants that

colonised the Americas came from England, France, Portugal and Spain. Regarding the Ibe-

rian peninsula’s geographic position, it favoured the trade interchange with circum-Mediterra-

nean cultures (i.e., Greeks, Phoenicians and Carthaginians) besides the colonisation by the

Romans and the Muslim domination [46]. English, French and the Netherlands migrations, as

pirates and corsair, also invaded the Caribbean region, which also concentrated the enslaved

Africans from Angola, Congo, Gambia, Ghana, Guineas, Mozambique, and Senegal, amongst

others [46–49].
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Furthermore, the Jewish and Muslim Diaspora in Latin America as Conversos lead to

genetic diversification [46,50]. Native Americans traced their origins back to a host of regions

from Eurasia, explaining their numerous diversities in languages and lineages [49,51]. A

remarkable intrapopulation diversity has been observed in the Native Americans, supporting

the results found in this review [37,52]. Likewise, the genetic wealth of contemporary Native

Americans, in conjunction with the several admixture degrees in their non-Native American

populations, makes the Americas an excellent candidate for pharmacogenetic studies

[39,49,53,54].

Hence, Africans and Americans were the most diverse populations regarding NAT2 diver-

sity, reinforcing the relevance of including ethnic minorities in studies on diversity. The pres-

ence of new variants in these two ethnic backgrounds depicted their diversities and possibly a

recent growth within their demographic history. Nonetheless, such variants could mirror the

ability of modern technologies (e.g., sequence of the whole gene and array-based genotyping

platforms) compared to genotyping with a limited number of SNPs. The findings from prior

studies do not rule out the diversity of the populations, which could be skewed by the number

of SNPs selected (i.e., not-informative markers). In turn, the number of singletons described

and the diversity within haplotypes should be taken with caution.

Concerning those similar patterns described in Native Americans and East Asians, there

seem to be related to the Americas peopling, and the bottlenecks and genetic drive underwent

for the first settler populations [49,55]. Nonetheless, the Asian and Native American popula-

tions included herein did not represent the full diversity because most belonged to ethnic and

religious groups besides the small sample sizes described. Similar arguments also might explain

the diverse patterns found in Asia, where the least number of haplotypes were described. As

mentioned earlier, the diversity depends on sample sizes and the genetic drift effect in these

small and endogamic populations, the distinct ethnic backgrounds and the resolution power

of the technologies employed [9].

Despite the reduced number of studies, the remarkable diversity of the Middle East was

remarkable. Akin to Africa, this feature could be related to lifestyle practices. The transition

from hunter-gatherers to an agricultural lifestyle has been associated with the domestication of

wild cereals and plants [56]. Wheat, barley, among other cereals were domesticated in the Fer-

tile Crescent during the Neolithic era (circa ~8,000–10,000 ya) [57–60]. This region spans the

current countries of Iraq, Syria, Lebanon, Israel, Palestine, Jordan, Kuwait (northern region),

Iran (western region), and Turkey (southern region). Early evidence of cultivation and domes-

tication have been reported in Syria (11,150–10,450 BC), Jordan valley (9,700–8800 BC),

South-eastern Turkey, the Upper Euphrates valley (Abu Hureyra, Syria), and Jericho (Israel)

[59,60]. Besides, the Levant was one of the earliest regions where agriculture and animal

domestication emerged [61]. Archaeological and genetic studies have reinforced that the north

of Iraq (8,000–11,000 years Before Present) was the core of sheep’s initial domestication [62].

Both plant cultivation and animal domestication are cornerstones of human societies’ modifi-

cation because these were learned from one region to another, favouring the genetic exchange,

which could explain the diversity patterns [59].

SNP diversity patterns

As in other studies, SNPs such as rs1801279 and rs1799931 depicted particular distributions,

especially in Africa and the Americas, respectively [9]. The other SNPs’ distribution patterns were

similar to those previously reported by other research groups [9]. Yet, the peculiar pattern of

rs1495741 distribution in Brazilian populations might be a reflection of the demographic events

in the peopling of this young population (~ 500 years) and the subsequent bottleneck events [46].
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Slow acetylators explanations

NAT genes (NAT1 and NAT2), as others (i.e., FADS1), have been targets for natural selection

[63]. Several studies have explained the prevalence of the slow acetylator status through selec-

tive pressures exerted by environment and lifestyle. Briefly, the transition from the fast acetyla-

tors to slow ones has been associated with the emergence of agriculture and pastoralism,

replacing the hunting-gathering subsistence mode [40,63,64]. The shift in lifestyles involved

the introduction of new foods to the diet with different nutrients and fats, as well as exposures

to new pathogen [63]. These changes, in turn, could be implicated in the participation of meta-

bolic pathway genes and those polymorphisms related to slow haplotypes, conferring certain

advantages [63,65,66]. Finally, these genetic variants were fixed in the populations, increasing

their frequency to favour adaptation. Hence, the slow acetylator phenotype has been more fre-

quent within food-producing populations from Central and Southern Asia, North and Central

Africa, Europe, and the Middle East [65–67]. By contrast, in hunter-gatherer populations, the

rapid acetylator phenotype has been the most frequent [41,65]. The heterogeneous phenotypes

in Africa and the Americas, which could be explained by their intrinsic diversity and the

remarkable differences among and within populations [9].

Fast acetylators explanations

Although slow acetylator status is the most frequent worldwide, fast acetylators have remained

mainly in EAS and Native American populations. These results support the findings of former

studies [41,68]. The hunter-gatherer lifestyles in ancient populations have been documented in

Eastern Asians [63]. Regarding the Native Americans, it is likely that they have maintained the

lifestyles of their ancestors. Cultural diffusion (i.e., subsistence practices) also shapes gene fre-

quency patterns [69]. Studies have reinforced the ancestral connection between Native Ameri-

cans and the East Asian populations [49,70–72]. Given the fossil evidence described in this

region (i.e., bison, horse, and mammoth, among others), ancient North Americans’ diet has

been associated with the hunter-gatherer subsistence mode [73–75]. Other processes could

explain the genetic architecture. Demographic events such as bottlenecks sustained prior to or

during the colonisation of the Americas could also involve the frequency of fast acetylators dis-

tribution in these populations [76]. Instead, the effect of genetic drift is most substantial in

small populations. At the same time, the number of migrants during the peopling of the Amer-

icas is controversial; the effective population size could have been small [49,77]. These migra-

tory waves could be carriers of heritable traits “fixed” amongst populations or sub-populations

under selective pressures, transmitting the “modified” haplotypes to other geographic regions

[78]. Notably, the folate-rich diet and green leafy vegetables have also been associated with this

phenotype [41,66,79,80]. Fish and soy, both folate-rich sources, are key ingredients of East

Asian cuisine [81–83].

These adaptations could also have arisen independently in other geographic regions. Thus,

one possibility that explains the subtle difference patterns in the frequency of the fast pheno-

type in Africa could be that the north region has mainly been occupied by hunter-gatherer

populations of at least 5,000 ya [84]. Amongst these, the ethnic groups from Cameroon,

Gabon, and Namibia depicted a significant frequency of fast acetylators. A comparable argu-

ment might explain Europe’s highest proportions of the fast phenotype in Europe. Hunter-

gatherer ancient populations have been established in Central, North, and South European

regions [63]. By contrast, the East and West European regions have been associated chiefly

with agricultural practices and, in turn, with carriers of slow phenotypes [63]. Nonetheless, the

frequency patterns in this geographic region did not necessarily correspond to the agriculture

diffusion, suggesting that the different gene flow levels could have influenced the frequency
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distributions in Eurasian populations [85]. As mentioned before, demographic events play a

critical role in gene frequency variations. The out-of-Africa and the Arabian aridification by

climate change are two bottlenecks that could have impacted the diversity patterns of the Mid-

dle East and Eurasian populations [86,87].

Because not all natural xenobiotics were related to Nat2, other xenobiotic biotransformation

genes could have been affected by the selective pressures exerted by environment and lifestyle

[88,89]. Such selection effect could bring about behavioural adjustments in physiological and

biochemical pathways as well as in the gut microbiome [63,90–92]. Complex biological path-

ways regulate metabolisms; in turn, hundreds of genes are likely involved in this physiological

process. Nat2 is expressed in the intestines and liver; thus, possible coevolution would entail.

Consequently, it is unlikely that the adaptation proceeding acted on single genes but rather, was

a polygenic selection process that could also shape the NAT2 frequency patterns. Genes related

to diet and metabolisms have been persistent in the models of polygenic selection [63,75].

A similar argument might explain the dissimilarities between the frequencies of NAT2*5B in

worldwide populations regarding some areas of Asia, where its haplotype is less frequent, repli-

cating the findings of prior studies [41]. On the one hand, the rs1801280-C allele, encoding for

the altered slow phenotype, is more frequent in Central and Western Eurasians (range 0.287 to

0.500) than in East Asians (range 0.037 to 0.269). Such differences could result from a selection

process, given that the rs1801280-C allele has increased its frequency significantly in Eurasians

[65,89]. Again, the emergence of agriculture could be the selective pressure to the shift from the

ancestral state rs1801280-T to the derivative one [65]. By contrast, the low frequency of the

NAT2*5 haplotype in East Asians could be related to its liking for the hunter-gatherer lifestyle

and other aspects mentioned before [63,93–96]. The NAT2*5 haplotype has shown an associa-

tion with NAT1*4 in western and central Eurasians by 80% [65]. This association is twice and

four times more than those found in Eastern Eurasians and sub-Saharan populations, respec-

tively [65,89]. The effective metabolisms of environmental xenobiotics should require the collec-

tive action of phase I and II enzymes. Since these two genes are located on the same

chromosome coevolution, it should not be unlikely [89]. Hence, the NAT2*5B selective advan-

tage could affect the evolution of NAT1 as other genes [65]. Other studies have suggested that

NAT1 and NAT2 could evolve under distinct selective regimes. These two genes have a physical

distance fairly close to 200 kilobases, exhibiting linkage equilibrium among them [9].

In addition to 341 C> T, another three sets of polymorphisms (191 G>A, 590 G>A, and

857 G>A) are encoded for the slow acetylator state. Of these, 857G>A have depicted more fre-

quency in Asians than Europeans [89]. The hunter-gatherer subsistence mode could also

explain these differences, which acquires food from their surrounding environment. However,

it did not discard the effect of demographic events. Contemporary populations maintaining

this subsistence mode have shown a correlation between population density and local primary

production [97]. While contemporary populations are not analogues to the ancient ones, the

climate conditions to which ancient populations were exposed could use up the aliments from

the environment with the subsequent bottleneck. Similar to the out-of-Africa model, the fam-

ine could have favoured migrations like those peopling the Americas.

Nevertheless, in addition to the diet, the diversity patterns could also reflect the environ-

mental xenobiotic insults, the epigenetic regulation, the history and specific pressures of the

populations, and climate features, among others [9].

Among the strengths of the present systematic review is the detailed landscape depicting

the diversity of NAT2 from 35,561 genotypes, 51,860 haplotypes, and 70,484 phenotypes.

These data portrayed the eight most studied SNPs, and for the first time, the NAT2 diversity of

the Middle East populations, which has not been reported in any former studies. Likewise, the

present diversity panorama discriminates between the most prominent ancestries in the
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Americas: Latinos, Native Americans, and non-Hispanic whites. These features reflect the

diversity among populations and individuals and could be a cornerstone for having a possible

scenario regarding other ethnicities [11]. Diversity within NAT2 has been related to the devel-

oping drug side effects such as hepatotoxicity, peripheral neuropathy, lupus, and susceptibility

to some kinds of cancer [1,98,99]. It is also necessary to highlight some of the study’s short-

comings, including that not all studies included information on the diversity patterns of the

eight polymorphisms and data from the specific haplotypes.

Conclusion

The global diversity that occurred in ancestry and demographic events begs an understanding

of the variation within genes of tremendous importance, such as NAT2. The present study pro-

vided the most up-to-date overview of the NAT2 diversity to allele, genotype, haplotype, and

acetylator status with implications in pharmacogenetics and certain complex disease suscepti-

bility. The study of this set of approaches could further illuminate its value and usefulness in

personalised and precision medicine. Nonetheless, further studies are needed to unravel such

diversity in ethnic minorities besides correlating the worldwide population diversity with

pharmacodynamics and pharmacokinetics strategies.
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S1 Fig. Frequency of the ancestral and derivative allele of rs1801279, rs1801280,

rs1799929, rs1799930, rs1799931, rs1041983, and rs1208 in the African populations. Note:

A, Adenine; C, Cytosine, G, Guanine; T, Thymine.
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S2 Fig. Frequency of the ancestral and derivative allele of rs1801279, rs1801280,

rs1799929, rs1799930, rs1799931, rs1041983, and rs1208 in the Americas populations.

Note: A, Adenine; C, Cytosine, G, Guanine; T, Thymine.

(TIFF)

S3 Fig. Frequency of the ancestral and derivative allele of rs1801279, rs1801280,

rs1799929, rs1799930, rs1799931, rs1041983, and rs1208 in the Asian populations. Note:

A, Adenine; C, Cytosine, G, Guanine; T, Thymine.

(TIFF)

S4 Fig. Frequency of the ancestral and derivative allele of rs1801279, rs1801280,

rs1799929, rs1799930, rs1799931, rs1041983, and rs1208 in the European populations.

Note: A, Adenine; C, Cytosine, G, Guanine; T, Thymine.

(TIFF)

S5 Fig. Frequency of the ancestral and derivative allele of rs1801279, rs1801280,

rs1799929, rs1799930, rs1799931, rs1041983, and rs1208 in the Middle East populations.

Note: A, Adenine; C, Cytosine, G, Guanine; T, Thymine.

(TIFF)

S6 Fig. Frequency of the most common haplotypes among the geographic regions.

(TIF)

S7 Fig. Box plots of the slow phenotype distribution among the Africa regions. Note: CAf,

Central Africa; EAf, East Africa; NAf, North Africa; SAf, South Africa; Waf, West Africa.

CMR, Cameroon; ETH, Ethiopia; NAM, Namibia; NGA, Nigeria; TZA, Tanzania; ZAF, South
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Africa.

(TIF)

S8 Fig. Box plots of the slow phenotype distribution among the European regions. Note:

EEu, East Europe; Neu, North Europe; SEu, South Europe; WEu, West Europe. CZE, Czech

Republic; FIN, Finland; FRA, France; GRC, Greece; ITA, Italy; NLD, the Netherlands; RUS,

the Russian Federation; SRB, Serbia; SWE, Sweden.

(TIF)

S9 Fig. Box plots of the slow phenotype distribution among the Americas regions. Note:

CAf, Central America; Nam, North America; Sam, South America. BRA, Brazil; COL, Colom-

bia; ECU, Ecuador; MEX, Mexico; NIC, Nicaragua; PAN, Panama; USA, the United States of

America.

(TIF)

S10 Fig. Box plots of the slow phenotype distribution among the Asia regions. Note: Cas.

Central Asia; EAs, East Asia; SEAs, Southeast Asia; SAs, South Asia. JPN, Japan; KGZ, Kirghiz-

stan; RUS, the Russian Federation; UZB, Uzbekistan.

(TIF)

S11 Fig. Box plots of the fast phenotype distribution among the Asia regions. Note: Cas.

Central Asia; EAs, East Asia; SEAs, Southeast Asia; SAs, South Asia. JPN, Japan; KGZ, Kirghiz-

stan; RUS, the Russian Federation; UZB, Uzbekistan.

(TIF)

S12 Fig. Box plots of the fast phenotype distribution among the Americas regions. Note:

CAf, Central America; Nam, North America; Sam, South America. BRA, Brazil; COL, Colom-

bia; ECU, Ecuador; NIC, Nicaragua; PAN, Panama; USA, the United States of America.

(TIF)

S13 Fig. Box plots of the fast phenotype distribution among the Africa regions. Note: CAf,

Central Africa; EAf, East Africa; NAf, North Africa; SAf, South Africa; Waf, West Africa.

CMR, Cameroon; ETH, Ethiopia; NAM, Namibia; NGA, Nigeria; TZA, Tanzania; ZAF, South

Africa.

(TIF)

S14 Fig. Box plots of the fast phenotype distribution among the European regions. Note:

EEu, East Europe; Neu, North Europe; SEu, South Europe; WEu, West Europe. CZE, Czech

Republic; DEU, Germany; FRA, France; ITA, Italy; NLD, the Netherlands; RUS, the Russian

Federation; SRB, Serbia.

(TIF)

S1 Table. Data extraction of allele, genotype, haplotypes, and acetylator status from all

articles included in this systematic review.

(XLSX)

S2 Table. Single nucleotide polymorphisms with nucleotide changes and phenotype of all

haplotypes found in the present systematic review.

(XLSX)
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