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Abstract

Autonomous vehicles (AV) can be programmed to act cooperatively. Previous research on

cooperative and autonomous vehicles (CAV) suggests they can substantially improve traffic

system operations in terms of mobility and safety. However, these studies do not explicitly

take each vehicle’s potential gain/loss into consideration and ignore their individual levels of

willingness to cooperate. They do not account for ethics and fairness either. In this study,

several cooperation/courtesy strategies are proposed to address the above issues. These

strategies are grouped into two categories based on non-instrumental and instrumental prin-

ciples. Non-instrumental strategies make courtesy/cooperation decisions based on some

courtesy proxies and a user-specified courtesy level, while instrumental strategies are

based only on courtesy proxies related to local traffic performance. Also, a new CAV behav-

ior modeling framework is proposed based on our previous work on cooperative car-follow-

ing and merging (CCM) control. With such a framework, the proposed courtesy strategies

can be easily implemented. The proposed framework and courtesy strategies are coded in

SUMO microscopic traffic simulator. They are evaluated considering different levels of traffic

demand on a freeway corridor consisting of a work zone and three weaving areas of different

types. Interesting findings are drawn from the simulation results, one of which is that the

instrumental Local Utilitarianism strategy performs the best in terms of mobility, safety, and

fairness. In the future, auction-based strategies can be considered to model how CAV make

decisions.

1. Introduction

Recent research on Autonomous vehicles (AV) focuses on training them to make safe and effi-

cient maneuvers from the viewpoint of individual vehicles. When a group of AV interact in

the real world, even if they all make the “best” decisions individually, these interactions may

not lead to a system-optimal state, similar to what the well-known Wardrop’s first and second

principles describe. This research targets an important emerging research area in AV:
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cooperation among AV. It is possible to programing cooperation and courtesy into AV control

algorithms, while we cannot do this to human-driven vehicles (HDV). This study focuses on

two questions: (1) how to design ethical AV control algorithms that consider cooperative and

courteous behaviors, and (2) how will such behaviors affect traffic system operations?

The importance of cooperation could be illustrated by the difference between Adaptive

Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC). ACC and CACC are

typical examples of level-1 autonomy [1] and they both automate vehicle longitudinal control.

ACC adapts vehicle velocity to ensure a safe following distance when there is a preceding vehi-

cle. CACC is built on ACC. It further adopts wireless inter-vehicle communications for sharing

additional information (e.g., acceleration rate) among two or more vehicles (not just the imme-

diately preceding vehicle), which allows for precise longitudinal control of the following vehicle.

Both analytical [2–4] and reinforcement learning [5, 6] methods have been proposed for

CACC. In CACC, cooperation comes from the willingness of preceding vehicle(s) to share

information. Such information can help the following vehicle reduce speed and acceleration

oscillations [5], stabilize stop-and-go shockwave [2], and lead to significant safety benefits [7].

In addition to longitudinal control, cooperative lane change has been investigated in several

studies. Ren et al. [8] developed a rule-based cooperative merge control strategy that substan-

tially improves work zone mobility and safety compared to the widely used early merge and

late merge. Wang and Chan [9] proposed a reinforcement-learning based vehicle agent that

can generate safe, smooth and timely merging maneuvers. Existing studies on cooperative lane

change could be grouped into three categories: highway ramp operations [9–13], work zone

merge control [8, 14], and discretionary lane-changing decision [15, 16]. All these studies sug-

gested that cooperation among AV plays an important role in improving traffic operations.

Existing methods for modeling cooperation among AV are inflexible, requiring AV to fol-

low a pre-defined control strategy designed for maximizing system performance (e.g., safety

and mobility). This cannot accommodate individual variation in user needs, for example an

AV passenger in an urgent situation, such as when lawyer Joshua Neally was driven by his

Tesla to a hospital while suffering a pulmonary embolism [17]. Alternately, AV in these inflexi-

ble models may have to spend extra time and cooperate with other vehicles even if AV passen-

gers are willing to financially pay for uncooperative behavior. Another issue with existing

studies is that they do not quantitatively consider fairness or the utility gain (loss) to individual

AV requesting (performing) courteous or cooperative maneuvers. The control algorithms are

designed to optimize the performance of all AV (i.e., the system). This may lead to systematic

discrimination against certain AV: e.g., in a work zone AV in the open lane may be required to

yield to vehicles in the closed lane to minimize total travel time, but only by disproportionately

increasing the travel time of AV in the open lane [8, 14].

This study aims to address these concerns by incorporating efficiency, safety, cooperation,

fairness, and ethics into modeling the courteous behavior of AV. The main contributions of

this study are summarized as follows:

1. Based on our previous work on cooperative car-following and merging (CCM) control [18]

for AV, a new behavior framework which incorporates courtesy evaluation module is

proposed.

2. Courtesy and its derivatives are formally defined and quantified, which measure the willing-

ness of AV to cooperate with others.

3. Different courtesy strategies for AV to make yield decisions are proposed and categorized

into two major groups. One group consists of non-instrumental strategies, which take an

individual view and require a courtesy level to be assigned to each AV. The other group is
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for instrumental courtesy strategies, where decisions are made by rules that are designed to

achieve certain goals.

4. Microscopic simulation studies are conducted to evaluate each courtesy strategy in terms of

mobility, safety, and fairness.

2. Background

The courtesy strategies proposed and evaluated in this study are all based on the CCM frame-

work. To make this paper self-contained, the CCM control is briefly described in this section.

Abbreviations used in this study are defined in Table 1.

CCM control facilitates merge maneuvers at lane reduction points caused by accidents,

work zones, etc. It is built on ACC and CACC. Instead of following the lead vehicle in the

same lane, an AV controlled by CCM follows the nearest (in terms of longitudinal distance)

downstream lead vehicle regardless which lane it is in as illustrated in Fig 1. This downstream

lead vehicle is referred to as the generalized lead vehicle, or G-lead vehicle for short. With this

straightforward extension of CACC/ACC, a CCM-controlled AV could keep a “safe” longitu-

dinal distance with the G-lead vehicle and facilitate smooth merging maneuvers before the

lane closure point.

With CCM control, an AV’s car-following behavior depends on whether its G-lead vehicle

is equipped with an on-board device (OBD) to share real-time maneuver information. If the

G-lead vehicle is equipped with OBD, the AV is assumed to have access to the G-lead vehicle’s

acceleration, speed, and position information. Otherwise, the AV can only know the G-lead

Table 1. Abbreviations in this study.

SV Subject vehicle, usually denoting the one that sends cut-in requests

FV Front vehicle

LV Lag vehicle

TFV Target front vehicle

TLV Target lag vehicle

RV Vehicle that sends cut-in requests

TFG Target front gap

TLG Target lag gap

Accfree Acceleration for free driving

AccCACC Acceleration for CACC

AccCF Acceleration constraints for car following

AccMP Acceleration constraints before merging point

AccCCM Acceleration for CCM mode

Acccourtesy Acceleration for CAV that decides to yield

CF Car following

MLC Mandatory lane change

DLC Discretionary lane change

Ego Egoism courtesy strategy

Alt Altruism courtesy strategy

CDE Courtesy distribution expected (MIT survey)

CDM Courtesy distribution moral (MIT survey)

LU Local Utilitarianism courtesy strategy

LM Local Maximin courtesy strategy

Ega Egalitarianism courtesy strategy

https://doi.org/10.1371/journal.pone.0283649.t001
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vehicle’s speed and position through its sensors (e.g., Lidar, camera). With CCM, the AV lon-

gitudinal behavior is described mathematically in Eq (1) below.

u2ðtÞ ¼
kCACC

0
€x1ðtÞ þ kCACC

1
ð _x1ðtÞ � _x2ðtÞÞ þ kCACC

2
ðrðtÞ � Z � te _x2ðtÞÞ; OBD ¼ 1

kACC
1
ð _x1ðtÞ � _x2ðtÞÞ þ kACC

2
ðrðtÞ � Z � te _x2ðtÞÞ; OBD ¼ 0

ð1Þ

(

where,

u2(t) = acceleration of the following vehicle,

€x1ðtÞ = acceleration of the G-lead vehicle,

_x1ðtÞ = speed of the G-lead vehicle,

_x2ðtÞ = speed of the following vehicle,

r(t) = current longitudinal distance between the G-lead and following vehicles,

η = jam distance,

τe = the desired effective time-gap, and

k0 = 1, k1>0, k2>0 = gains.

In Eq (1), OBD = 1 (0) indicates the G-lead vehicle is (is not) equipped with OBD. To differ-

entiate from the traditional CACC, we refer to OBD = 1 as G-CACC mode. On the other hand

(when OBD = 0), the AV will drive in the G-ACC mode. Just like the CACC and G-CACC

modes, the only difference between ACC and G-ACC modes is that the AV will follow the G-

lead vehicle, not the lead vehicle in the same lane.

This study assumes that all vehicles are AV and equipped with OBD. Therefore, for CCM

control only G-CACC is applicable. With properly calibrated coefficients k0, k1, and k2 in Eq

(1), a property of string stability [19] could be achieved. In this study, the parameters calibrated

by Van Arem et al. [20] are used.

With CCM, vehicles in different lanes cooperate with each other so that they are provided

with safe target front gap (TFG) and target lag gap (TLG) before they reach the merging point.

CCM requires all AV to follow the G-CACC mode all the time. However, this study relaxes

this CCM assumption of full cooperation. As the example in Fig 2 shows, the ego vehicle in the

right lane is trying to merge into the left lane. the ego vehicle would follow the target front

vehicle (TFV) in G-CACC mode and send a cut-in request to the target lag vehicle (TLV) in

the meantime. If TLV (also an AV) is courteous/cooperative enough to yield to the ego vehicle,

it would approve the cut-in request and follow the ego vehicle in G-CACC mode (Otherwise,

Fig 1. Comparison of Regular CACC/ACC (a) and CCM (b).

https://doi.org/10.1371/journal.pone.0283649.g001
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the TLV will not follow the G-CACC mode). When the TLG and TFG are sufficiently large

(and other lane-changing criteria are met), the ego vehicle will change lane. More descriptions

about the modified CCM strategy are given in the methodology section.

3. Methodology

3.1 Behavior model

In this study, AV follow the behavior model outlined in Fig 3. The key component of the AV

behavior model is courtesy evaluation, which is indicated by the yellow box in Fig 3. When an

AV receives cut-in (e.g., lane change) requests for other vehicles, it will evaluate the current sit-

uation and decide whether to yield to others or not. More details about courtesy evaluation are

given later in Section 3.2 Courtesy and Courtesy Strategies.

Fig 2. A lane-changing scenario.

https://doi.org/10.1371/journal.pone.0283649.g002

Fig 3. CAV behavior flowchart.

https://doi.org/10.1371/journal.pone.0283649.g003
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Fig 3 has three main types of stages: decision, process, and AV action. At every simulation

step, an AV would begin with the “start” stage in Fig 3. After going through various subsequent

stages, each AV will eventually arrive at least one AV action stage and execute the correspond-

ing car-following and/or lane-changing actions. There are several important constraints on

CAV acceleration. These constraints are detailed in the following four subsections.

3.1.1 Car-following (CF). AV longitudinal acceleration is denoted as AccCF and is con-

strained by the following factors (CF constraint). If there are no vehicles ahead of an AV within

100m, the AV will drive in free mode. The vehicle speed oscillates around an expected speed of

33 m/s. An acceleration of 2 m2/s (deceleration of -0.5 m2/s) would be adopted if the speed of

the AV is less (greater) than the expected speed. Otherwise, the AV will drive in CACC mode

and follow the formula with OBD = 1 in Eq (1).

The AV would drive in the CF mode (either free or CACC) if it (1) does not have lane-

changing motivation, (2) has not received any cut-in request, or (3) has received a cut-in

request but decided not to yield. Under the CF mode, the G-lead vehicle in Eq (1) is simply the

front vehicle (FV) in the same lane. Note that the CF constraint should also be enforced in

some other AV action stages in Fig 3. For example, when an AV changes lane, it still needs to

consider the CF constraint to avoid colliding with its FV.

3.1.2 Mandatory lane change (MLC). As shown in Fig 4, an MLC involves four partici-

pants, which are the subject vehicle (SV), front vehicle (FV), target front vehicle (TFV), and

target lag vehicle (TLV). AccCF is also used as a constraint here (i.e., the acceleration of SV

should be equal or smaller than AccCF) so that SV would not collide with its FV. Besides on

ramps and lane reduction points, MLC can also happen before off ramps when vehicles have

to change lanes in order to exit a highway.

For HDV, a vehicle’s lane-changing motivation typically increases as it approaches the

merging point. In this study, AV follow “the earlier the better” principle and try to change

lanes right after they enter the lane-change (LC) feasible region (e.g., acceleration lane for vehi-

cles from the on-ramp to merge). However, successful lane changes are also subject to con-

straints such as sufficient TLG and TFG. Since an AV has to fully stop when reaching the

merging point without being able to change lane, a deceleration constraint AccMP (MP stands

for merging point) is introduced to make this happen. This deceleration is implemented by

introducing a hypothetical stopped vehicle at the merging point in the closed lane, and the sub-

ject AV follows the CACC mode when it reacts to this “stopped vehicle”. The deceleration con-

straint AccMP is described in Eq (2) below and the only required input is the SV distance to the

merging point (i.e., “stopped vehicle”).

AccMPðtÞ ¼ k0€x1ðtÞ þ k1ð _x1ðtÞ � _x2ðtÞÞ þ k2ðrðtÞ � Z � te _x2ðtÞÞ ð2Þ

where €x1ðtÞ and _x1ðtÞ are the acceleration and speed of the hypothetical stopped vehicle,

respectively, and they are both set to 0. r(t) is the distance of the SV to the stopped vehicle. All

other parameters are defined in the same way as in the original CACC formula Eq (1).

Fig 4. An MLC scenario.

https://doi.org/10.1371/journal.pone.0283649.g004
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To create enough space in the target lane for the SV to merge into, the SV first executes

CCM (with AccCCM, as indicated in Eq (1)) to generate a safe gap to the TFV. At the same

time, the SV would perform a feasibility check to see if the TLV is ready for the SV to merge

into its lane. This check is done by calculating the forced deceleration of the TLV assuming the

SV is already in the target lane. If the calculated deceleration is larger than the maximum decel-

eration allowed by the TLV, the feasibility check is considered failed. The forced deceleration

is calculated following the G-CACC formula (OBD = 1) in Eq (1) except that the following

vehicle is the TLV and the G-lead vehicle is the SV.

The feasibility check is to make sure the intended lane change will not cause trouble to the

TLV. If the feasibility check is passed, the SV would further execute a gap acceptance check

just like human drivers do to ensure safety from the SV perspective. The difference is that the

SV would adopt smaller gaps than human drivers. The gap acceptance check is based on a cer-

tain threshold rather than probability. A gap would be accepted if it is larger than a critical

time gap threshold. Both front and lag gaps need to be larger than the threshold. The front gap

can be created by the CCM strategy. However, sometimes the lag gap (because of TLV) is not

enough for the SV to change lane. In this case, the SV would send a LC request to the TLV for

creating a larger lag gap. Upon receiving the request, the TLV would perform a courtesy evalu-

ation and decide what to do next. More details on the courtesy evaluation are discussed later in

this paper.

To conclude, the acceleration required for the SV due to MLC is governed by three con-

straints, which are AccMP, AccCCM, and AccCF. The minimum of them will be chosen. For lane-

changing maneuvers of the SV, they are based on feasibility check and gap acceptance check.

3.1.3 Discretionary lane change (DLC). The motivation of DLC is different from MLC.

DLC is for pursuing higher speed or reducing travel time. In this study, AV DLC is modeled

using utility. An AV would choose lanes based on their utilities. The utility of target lane i is

defined as:

Ulanei
¼ MINðvt; vlaneiÞ ð3Þ

where vt is the speed of the target vehicle, and vlanei is the average speed of target lane i. If the

SV is currently in target lane i, the target vehicle is the SV’s FV. If the SV is not in target lane i,
the target vehicle is the TFV. A utility difference threshold is defined so that the SV would not

change lanes too often. In other words, DLC itself has an initial cost. To overcome this initial

cost, the utility gain from changing lane has to be greater than a threshold of 5 m/s.
Once the utilities of each lane have been determined, the SV’s DLC decision can be made.

What happens next for the SV is not much different from MLC. The SV can still send requests

via vehicle-to-vehicle communications for a larger TLG. The only difference is that AccMP

would not be considered as a constraint.

3.1.4 Courtesy acceleration. MLC and DLC are control logics from the perspective of the

SV. In this subsection, courtesy acceleration (Acccourtesy) is introduced to model the behavior

of the TLV. If a TLV decides to yield to another lane-changing vehicle, Acccourtesy is the corre-

sponding acceleration needed. Again, Acccourtesy is determined following the CCM framework

in Eq (1), in which the following vehicle is the vehicle behaving courteously (i.e., TLV) and the

G-lead vehicle is the one sending the cut-in request.

3.2 Courtesy and courtesy strategies

Some important concepts need to be introduced before going forward. Courtesy may mean a

number of things in social interactions, and might be characterized as either a behavior (e.g.

opening a door for another is the courteous thing to do) or a disposition (i.e. one has the
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character traits of being courteous). Presumably, AV have no dispositions, so we rely on cour-

tesy in the context of MLC/DLC as cooperating with another vehicle on the road when a lane

change is necessary as part of the flow of traffic. From here we can define three important

terms for our model: courtesy level, courtesy proxy, and courtesy principles. Courtesy level is a

pre-determined attribute of AV, and it measures AV’s level of willingness to cooperate. Cour-
tesy proxy is an environment-dependent variable, and it is utilized by AV to decide whether to

cooperate or not. Courtesy principles (or courtesy strategies) are a group of principles and/or

strategies taken by AV to achieve various goals.

Fig 3 shows how AV in this study would decide whether to cooperate (i.e., show courtesy—

in the case of MLC/DLC, yield) or not when receiving Lane-Changing (LC) requests. In previ-

ous studies, this decision process is implicitly considered in AV’s behavior model [8, 9] whose

disadvantages are discussed in the previous section. Here, courtesy is explicitly modeled by

1. following how human behave: AV with high courtesy levels would be more likely to yield in

a given scenario, but AV can have different courtesy levels that determine their

cooperation.

2. pursuing certain systematic goals. In other words, courtesy can be important for its own

sake (i.e., as a principle of a good road system) or can be instrumental to some other good

(e.g. to minimize congestion).

This paper provides a set of courtesy principles to guide courteous interactions among AV,

using speed difference as a courtesy proxy. In future work this could be replaced by other prox-

ies such as time to crash (as a proxy for safety) or required maximum deceleration rate (for

passenger experience and safety). Noninstrumental principles have been considered elsewhere,

albeit not for courtesy, but we set them aside here for simplicity’s sake [21]. The proposed

courtesy strategies are categorized into two groups: non-instrumental (Egoism and Altruism)

and instrumental (Local Utilitarianism, Local Maximin and Local Egalitarianism), and they

are detailed in the rest of this section. The strategies chosen are popular in autonomous vehi-

cles research that focuses on ethical decisions made by these vehicles. Utilitarianism is one of if

not the most commonly considered moral system for autonomous vehicle decision-making

[22], while there has been recent attention to maximin as a proxy for popular social contract

theories of ethics [23, 24]. Egalitarianism is less studied but is seen as a proxy for a particular

kind of fairness in interactions of vehicles in which the parameter in question is equalized, or

the benefit distributed, between parties [25].

3.2.1 Egoism. Under Egoism, Target Lag Vehicle (TLV) yields only when it would be in

its own interest to do so–here, when it would not require the TLV to sacrifice too much of its

own velocity. In this study, we use a raw courtesy level (RCL) to describe the maximum velocity

loss the TLV will incur in the name of cooperating with other cars. For example, a TLV with a

RCL of 5 m/s would yield in a scenario that requires it to decelerate by 3 m/s, since 3 m/s is

less than the prespecified 5 m/s. The courtesy proxy (CP) used in Egoism is thus defined as the

speed difference of the TLV before and after a lane change.

CPEgo ¼ vbeforeTLV � vafterTLV ð4Þ

Courteous behavior of TLV would be triggered if CPEgo is less than the courtesy level of the

TLV as shown in Eq (5). Otherwise, the TLV will ignore the cut-in request and choose not to

cooperate.

TLV will cooperate ¼
1; if courtesy proxy � RCL

0; if courtesy proxy > RCL
ð5Þ

(
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Raw courtesy level can vary for each AV, representing its individualized willingness to coop-

erate. As shown in Eq (6), it is derived from a standard courtesy level which ranges from 0 to 1.

RCL ¼ standard courtesy level∗vs ð6Þ

Here, 0 means AV will never yield to others, and 1 means that AV will always cooperate if

there is a request. vs is the maximum speed of the subject vehicle (which usually is the speed

limit on the road).

3.2.2 Altruism. Under Altruism, TLV makes cooperation decisions from the perspective

of the vehicle requesting courtesy (i.e., cut-in requests). In this case, TLV would yield if the

utility gained by the SV requesting courtesy is less than what the TLV’s courtesy level allows.

For example, TLV with a RCL of 5 m/s would not yield in a scenario where the SV could speed

up from 5 m/s to 11 m/s after a lane change, since the speed gain is greater than the prespeci-

fied courtesy level (11 m/s– 5 m/s> 5 m/s).

The courtesy proxy for Altruism is defined in Eq (7), which is the speed difference of SV

(i.e., the one sending cut-in request) before and after a lane change. As in Egoism, courteous

behavior of TLV would be triggered if the courtesy proxy is less than TLV’s RCL as in Eq (5).

The courtesy proxy for each AV under Altruism is also calculated based on a standard courtesy

level as in Eq (6).

CPAlt ¼ vAfterSV � vBeforeSV ð7Þ

3.2.3 Local Utilitarianism (LU). Local Utilitarianism strategy accounts for the utility gain

of the SV attempting to change lane and the sacrifice (i.e., utility loss) to be made by the TLV.

The TLV would yield to the SV if the sum of the utility resulting from a change is positive,

accounting for the change in utility in both vehicles. It is called local utilitarianism because

only two vehicles are involved and the immediate impacts (speed changes in this study) are

considered in the decision process. However, the local decision may also benefit the operations

of the entire traffic system. While considering more vehicles and the broader impacts (e.g.,

missing a downstream green light) of local cooperative behavior is desirable, it is very difficult

to quantify and capture such effects given the complex relationship between individual vehicle

behaviors and traffic system dynamics.

CPLU ¼ ðv
after
TLV � vbeforeTLV Þ þ ðv

after
SV � vbeforeSV Þ ð8Þ

One example of Local Utilitarianism (LU) is that TLV with a courtesy level of 5 m/s would

yield in a scenario where the SV could accelerate from 1 m/s to 9 m/s after changing lane and

the TLV would have to decelerate from 15 m/s to 9 m/s, since the sum of utility changes is pos-

itive (i.e., 9–1 + 9–15 = 2> 0). The cooperative decision rules for TLV under LU are further

defined in Eq (9).

TLV will cooperate ¼
1; if CPLU � 0

0; if CPLU < 0
ð9Þ

(

3.2.4 Local Maximin (LM). The idea behind Local Maximin (LM) is that the worst off

vehicle (here, the one with lower speed) should be made better off. In other words, LM aims to

maximize the lower bound of the interaction, and like LU only considers the two vehicles in

question. Based on this strategy, if the speeds of TLV before and after changing lane are 15 m/s

and 7 m/s, respectively, and the corresponding speeds of SV are 3 m/s and 8 m/s, a courteous
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yield would be triggered, since the minimum speed is improved from 3 m/s (i.e., Min(15,3)) to

7 m/s (i.e., Min(7,8)).

CPLM ¼ MinðvafterTLV ; v
after
SV Þ � MinðvbeforeTLV ; v

before
SV Þ ð10Þ

The LM decision rules for TLV are the same as those defined in Eq (9) except that CPLM
defined in Eq (10) is adopted instead of CPLU.

3.2.5 Local Egalitarianism. Egalitarianism is related to LM: courteous behavior requires

that the deviations between vehicle speeds from the real-time global average speed should be

reduced. The courtesy proxy for Egalitarianism is defined in Eq (11).

CPEga ¼ ½ðv
before
TLV � vGÞ

2
þ ðvbeforeSV � vGÞ

2
� � ½ðvafterTLV � vGÞ

2
þ ðvafterSV � vGÞ

2
� ð11Þ

where vG is the real-time global average speed, which is the average speed of all vehicles in the

network. The decision rules defined in Eq (9) still apply for this Egalitarianism courtesy strat-

egy, but for CPEga.
Assuming a scenario where the global average speed is 15 m/s; the speeds of TLV before

and after changing lane are 16 m/s and 12 m/s, respectively; and the corresponding speeds of

the SV are 5 m/s and 11 m/s. Since (16–15)2 + (5–15)2 > (12–15)2 + (11–15)2, a courteous

behavior is triggered. The Egalitarianism strategy does not consider the courteous behavior’s

impact on other vehicles except for TLV and SV, including the potential change in vG.

3.3. Simulation setup

To evaluate various courtesy strategies, a corridor comprising 4 critical segments is designed

as in Fig 5. The four segments have different levels of traffic demand and require different

types of lane-changing maneuvers. Two adjacent segments are separated by a 500-meter

straight roadway segment without on/off-ramps. The various types of on- and off-ramps gen-

erate many opportunities for vehicles to behave courteously and to test the proposed courtesy

strategies. From left to right in Fig 5, the four segments are Type A weaving area, Type B weav-

ing area, work zone, and Type C weaving area, respectively. The layouts of these weaving areas

are taken from the Highway Capacity Manual (HCM) [26].

To test the proposed courtesy strategies’ performance under different levels of traffic

demand, three levels of traffic inputs (light, moderate, and heavy) are adopted, corresponding

to different levels of service (LOS) described in the HCM [26]. Table 2 shows some sample ser-

vice traffic volumes and the corresponding LOS taken from the HCM. In this study, light traf-

fic represents LOS A, moderate traffic demand indicates LOS C, and heavy traffic input is for

LOS E. LOS B and D are omitted for simplicity. If we use the traffic volumes directly from the

HCM, upstream highway mainline traffic + onramp traffic–offramp traffic may not equal

downstream mainline traffic, leading to imbalanced flows. To ensure flow conservation, minor

adjustments (in the range of 25~125 veh/h/lane) are made to the traffic volumes correspond-

ing to LOS A, C, and E in the HCM as in Table 2. In Table 2, numbers outside parentheses are

directly from the HCM and those inside parentheses are final traffic volumes used in this study

Fig 5. Simulation corridor.

https://doi.org/10.1371/journal.pone.0283649.g005
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for light, moderate, and heavy traffic conditions. Note that only four volumes have been

adjusted and are highlighted in bold font in Table 2. The same simulation parameters are used

across different levels of traffic demand (e.g., free-flow speed: 120 km/s, volume ratio (weaving

volume by non-weaving volume): 0.20, etc.)

The proposed AV behavior models as well as courtesy strategies are coded and simulated

using SUMO [27] via the Traffic Control Interface (TraCI). Each simulation run is equivalent

to one hour in the real world. The AV behaviors are updated at 2 Hz frequency, which means

AV make decisions every 0.5 seconds. Such decisions include longitudinal control (accelerate

or decelerate), lateral control (change lane or not), and communications with each other

(sending and receiving lane-changing courtesy requests). Each combination of courtesy strat-

egy and traffic demand (light, moderate and heavy) is simulated 10 times with different ran-

dom seeds. The 10 simulation runs for each scenario allow us to calculate the means and

standard deviations of performance metrics, which can be used to characterize how stable and

reliable the simulation results are. As illustrated in Figs 7–11 below, the shaded areas are based

on the means and standard deviations, showing the 95% confidence intervals for each strategy

at each courtesy level.

For non-instrumental strategies, courtesy level can have significant impacts on the results.

Therefore, the same strategy with different courtesy levels is regarded as distinctive strategies

during the simulation. Table 3 summarizes the strategies simulated/evaluated in this study.

For non-instrumental strategies (i.e., Egoism and Altruism), a courtesy level needs to be speci-

fied and all AV apply the same courtesy level throughout the simulation. Various courtesy lev-

els have been tested. The test results suggest that the network performance is more sensitive to

low courtesy levels. Therefore, an incremental interval of 0.02 is used when the courtesy level

is between 0 and 0.2, while an interval of 0.1 is used for courtesy level between 0.2 and 1.

Heterogenous courtesy is also considered. In this case, AV courtesy levels could follow cer-

tain distributions. We opt to use two distributions described based on human preferences for

altruistic or egoistic AV behavior conducted at the Massachusetts Institute of Technology

(MIT) [22]. In this example, an AV has to either kill its passenger for saving ten pedestrians or

kill the ten pedestrians to save the passenger. The choices provided range from 0 ‘protect pas-

senger at all costs’ to 1 “minimize pedestrian casualties on the road”. The 182 survey respon-

dents were asked this question in two distinctive ways: (1) what will AV do? and (2) what

should AV do? These two ways resulted in two distributions shown in Fig 6. Considering the

connection between the MIT survey and this study (i.e., should AV be concerned more about

its passenger or other people), the two distributions are also adopted in this research to model

AV courtesy level: Courtesy Distribution Expected (CDE) for “what will AV do”, and Courtesy

Distribution Moral (CDM) for “what should AV do?”

3.4 Evaluation

The evaluation of courtesy strategies has been conducted at both network and individual seg-

ment levels in terms of mobility, safety, and fairness. At each time step, a vehicle could be in

Table 2. HCM example service volumes for freeway weaving segments.

Weaving Area Type Service Volumes (veh/h) for LOS

A (light traffic) C (moderate traffic) E (heavy traffic)

Type A 1710 (1710) 3920 (3970) 5490 (5640)

Type B 1780 (1780) 4430 (4280) 6320 (6170)

Type C 1790 (1790) 4380 (4380) 6320 (6320)

https://doi.org/10.1371/journal.pone.0283649.t002

PLOS ONE Simulation study of cooperative and autonomous vehicles considering courtesy, ethics, and fairness

PLOS ONE | https://doi.org/10.1371/journal.pone.0283649 May 3, 2023 11 / 25

https://doi.org/10.1371/journal.pone.0283649.t002
https://doi.org/10.1371/journal.pone.0283649


one of three possible states: courteous, lane-changing, and other. Being in courteous state indi-

cates the SV is yielding to a lane-changing vehicle from adjacent lane. Being in lane-changing
(LC) state means that the SV is sending LC request to its TLV in the target lane and managing

to find a sufficient gap to cut in (the actual lane-changing behavior is assumed to occur instan-

taneously). All other situations are grouped into the other state. There is also an all state cover-

ing all those three nonoverlapping states, reflecting the average performance of all possible

states. The performance measures are calculated for each state and all states combined.

Mobility is measured by global average speed. For the ith state, the global average speed is

obtained by:

vi ¼
P

j

P
tr
j
it∗v

j
t

TS
ð12Þ

where vi is the global average speed for the ith kind of state. vjt is the speed of vehicle j at time

step t. rjit ¼ 1 indicates vehicle j is in state i at time step t and rjit ¼ 0 otherwise. TS is the total

number of states for all vehicles, which is the sum of numbers of time steps experienced by all

vehicles.

Safety is measured by Deceleration Rate to Avoid a Collision (DRAC). In this study, only

the DRAC of TLV is considered when the SV is merging into the target lane. The DRAC for

Fig 6. Two distributions from an MIT survey [22].

https://doi.org/10.1371/journal.pone.0283649.g006

Table 3. Courtesy strategies tested.

Courtesy Strategy Courtesy Level or Distribution

Non-

instrumental

Egoism–Uniform From 0 to 0.2 with 0.02 interval, and from 0.2 to 1 with 0.1

interval

Altruism–Uniform From 0 to 0.2 with 0.02 interval, and from 0.2 to 1 with 0.1

interval

Egoism–Non-uniform /

Distrubition

Courtesy distribution expected (CDE)

Courtesy distribution moral (CDM)

Altruism–Non-uniform /

Distrubition

CDE

CDM

Instrumental Local Utilitarianism N/A

Local Maximin N/A

Egalitarianism N/A

https://doi.org/10.1371/journal.pone.0283649.t003
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Fig 7. Evaluation of the mobility performance of different courtesy strategies.

https://doi.org/10.1371/journal.pone.0283649.g007
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TLV is calculated as:

DRACTLV ¼ 0:5∗ðvSV � vTLVÞ
2
=s ð13Þ

where vSV and vTLV are the speeds of the SV and TLV (when the SV is changing lane), respec-

tively. s is the corresponding space headway between the SV and TLV. DRACTLV measures

how risky it is when a specific lane change occurs. A global DRAC is also calculated as the aver-

age of all DRACTLV observed during the entire simulation.

Fairness is also an important measure when courtesy and cooperation are considered [28,

29]. This study adopts Gini coefficient as a metric to measure system fairness. Two Gini coeffi-

cients are proposed: global Gini coefficient (G_GC) and categorical Gini coefficient (C_GC).

G GC ¼
Pn

i¼1

Pn
j¼1
jvi � vjj

2n2�v
ð14Þ

where n is the total number of state speeds for all vehicles (if a vehicle stays in the network for

10 seconds, there will be 10 state speeds for it). vi and vj could be any state speed of all vehicles.

�v is the average state speed. G_GC essentially measures how imbalanced the distribution of all

state speeds is. The more imbalanced it is, the larger G_GC becomes. C_GC, on the other

hand, measures how imbalanced the mobility of a particular state is.

C GC ¼
P3

k¼1

P3

l¼1
jVk � Vlj

2∗32∗ �V
ð15Þ

where Vk (k = 1,2,3) is the average speed for a state (i.e., courteous state, LC state and other

state). �V is the average speed of V1, V2, and V3.

4. Analysis of results

4.1 Mobility

Fig 7 shows how different courtesy strategies may affect traffic operations. The results for all

states consider all vehicle states, including LC, courteous and other state. For Egoism and

Altruism, courtesy level is modeled by two approaches. The first approach assumes all AV

have the same courtesy level, which varies between 0 and 1 and leads to different simulation

scenarios (see the left halves of each subplot in Fig 7). The second approach considers the two

distributions generated by the MIT survey [22], and in each simulation run different AV can

have different courtesy levels based on the CDE and CDM distributions. The results from the

second approach are presented in the right halves of each subplot in Fig 7.

Fig 8. Different cooperative behavior under low and high global average speed in an egalitarianism system.

https://doi.org/10.1371/journal.pone.0283649.g008
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Fig 9. Evaluation of the safety performance of different courtesy strategies.

https://doi.org/10.1371/journal.pone.0283649.g009
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Fig 10. Evaluation of the fairness performance of different courtesy strategies.

https://doi.org/10.1371/journal.pone.0283649.g010
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Fig 11. Vehicle state distributions for different courtesy strategies.

https://doi.org/10.1371/journal.pone.0283649.g011
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For Egoism and Altruism, the average speeds for all states in general increase monotonically

as the courtesy level goes up regardless of traffic volumes—that is, as their tendency to cooper-

ate increases according to Eqs (4), (5), and (7). This trend is also true for two component states,

LC and other, except for some minor local fluctuations.

For courteous state the impacts of courtesy level on average speed also depend on traffic.

Under low traffic volume, average speed changes with the inverse of courtesy. This trend is

reversed, however, with high volume. This suggests that the system benefits more from courteous
behaviors when the traffic becomes more congested. When Egoism and Altruism are compared

on the same courtesy level, it could be concluded that Egoism results in better overall (for all

states) mobility performance under medium and heavy traffic. Although Egoism performs

slightly worse than Altruism under light traffic, the differences are much smaller than those

under medium and heavy traffic. After decomposing all states into three component states, the

superiority of Egoism compared to Altruism primarily comes from its advantage in LC state

and other state.

For non-uniform courtesy, the mean and standard deviation of courtesy distribution from

the MIT survey are 0.58 and 0.35 for CDE, and 0.75 and 0.30 for CDM. The system perfor-

mance considering CDE and CDM (see the right halves of each subplot in Fig 7) are compared

to those with uniform courtesy levels set to 0.58 and 0.75, respectively. It is found that the

global average speeds of uniform courtesy for LC and courteous states are consistently higher

than or at least equal to those of non-uniform courtesy. It implies that for egoistic and altruistic
courtesy strategies, a system with non-uniform courtesy may bring instability and thus cause sys-
tem inefficiency. A closer look at the results of individual simulation runs for CDE and CDM

suggests that some of them (about 1~2 out of 10) have surprisingly low average speeds (under

5m/s) for LC state, and there are no courteous state (means no vehicles yielded) at all. This is

the same as what happens when the courtesy level is zero under uniform courtesy and no vehi-

cles cooperate. A possible explanation is that although CDE and CDM have relatively high

average courtesy levels, AV with very low courtesy level (on the left tail of the courtesy distri-

bution) may sometimes result in system failure, where the courtesy proxy becomes very high

(for both Egoism and Altruism) compared to RCL due to SV which attempt to change lane

queueing up at the end of the segment. Under system failure, even AV with high courtesy lev-

els would find it very costly or impossible to yield.

The mobility performance for CDM overall is better than CDE. This may be caused by the

fact that the courtesy distribution of CDM is more skewed towards 1 compared to CDE (see

Fig 6). Although under heavy traffic Egoism with CDM has smaller average speed for LC state

than Egoism with CDE, this could be attributed to the randomness of simulation as more sys-

tem failures occur for Egoism CDM (it is also hinted by the larger margin of standard devia-

tion of simulation results).

Local Utilitarianism achieves the highest average mobility. This is an unsurprising result

given that the courtesy strategy itself is encoded with a limited account of mobility maximiza-

tion. At least in simple road networks we should expect that if individual interactions aim to

maximize mobility, then the overall network will also maximize mobility.

Local Maximin and Egalitarianism perform about the same under light and moderate traf-

fic. It is worth noting that Egalitarianism degenerates sharply under heavy traffic. This is

because in this case the cooperative behavior of AV is guided by the real-time global average

speed (as in Fig 8). After changing lane, the speed of SV is assumed to reach the speed of TLV,

which is usually an increase during the process. When the global speed is high, the system

under Egalitarianism encourages (see Eq (11)) TLV to behave courteously because the resul-

tant speed will become closer to global speed (the speed of TLV is assumed to be unchanged

after LC). However, under heavy traffic when the global speed is typically lower, egalitarian
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principles might discourage TLV to yield to other vehicles because a local speed increase after

changing lane would increase the variation of the system’s speed. Non-cooperation would fur-

ther exacerbate the congestion situation and the global speed would decrease even more,

finally leading to a system failure.

4.2 Safety

DRAC is a safety measure that mandates the least deceleration a TLV needs to execute for not

colliding with a lane-changing SV. The smaller the DRAC is, the safer a yielding maneuver can

be. In this study, each time a TLV yields to an SV, the corresponding DRAC is recorded and

the average is shown in Fig 9. For Egoism and Altruism strategies with uniform courtesy, as

the courtesy level increases, the DRAC first goes up and peaks at courtesy level = 0.04, then

decreases and reaches the least value (less than 0.5 m/s2) at a relatively low courtesy level

(about 0.1 for moderate traffic and 0.2 for heavy traffic). This pattern is different from those
seen in mobility results, where the system performance monotonically increases with courtesy
level.

Altruism is found to be safer than Egoism when a small amount of uniform courtesy in

introduced into the system, but converges with Egoism at about 0.1 courtesy level under all

three traffic inputs. It is proved again that variance (i.e., standard deviation of courtesy level)

added to courtesy level could negatively affect the network performance especially under high

traffic input. For instrumental courtesy strategies, Local Utilitarianism achieves the most stable

(very small variance) and lowest DRACs.

4.3 Fairness

An interesting pattern in the fairness evaluation results (Fig 10) is that a strategy with better

mobility (for all states) often comes with better fairness. Egalitarianism under heavy traffic

yields the lowest fairness performance, which is the opposite of its design intention. This prob-

ably is because it encourages courteous behavior that generates after-lane-change speed not

surpassing the global average speed. When the global average speed is relatively low (usually

under heavy traffic), cooperative behavior that can help to improve traffic operations and

increase global speed would not be selected by the Egalitarianism strategy, although it works

well under moderate and light traffic.

4.4 Vehicle state distribution

To better understand how each courtesy strategy affects system performance, the percentages

of courteous state and lane-changing state generated by each strategy are computed and

shown in Fig 11. Such percentages can reflect how often each courtesy strategy takes effects.

Also, all courtesy strategies are evaluated using the same set of traffic demand (see Table 2).

For each OD matrix, the required number of lane changes (i.e., to join/leave the highway) is

the same for all strategies. Therefore, comparing the percentages of courteous and lane-chang-

ing states can be useful to understand how each courtesy strategy works, for example, how

long vehicles are in the lane-changing process. When driving in a very courteous environment,

the lane-changing state percentage (LCSP) should be lower than driving in an uncourteous

environment where nobody yields, since it takes less time for vehicles to wait for safe gaps and

change lanes.

It is worth noting that high courteous state percentage (CSP) does not necessarily result in

low LCSP. Given a very congested on-ramp or work zone, courteous vehicles may need to wait

for a long time for lane-changing vehicles to clear the bottleneck. In this case, both CSP and

LCSP could be high.
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Fig 11 clearly shows that with uniform courtesy between 0 and 0.3, Egoism has lower LCSP

and higher CSP than Altruism under moderate and heavy traffic. Recall that Egoism also has

better mobility results than Altruism in Fig 7 under the same traffic and courtesy conditions.

This suggests that more courteous behaviors contribute to reducing the LCSP and improving

system mobility performance. It also suggests the importance of carefully defining courtesy

proxy and courtesy level. Egoism defines courtesy proxy from the perspective of TLV, while

Altruism defines it based on SV. As the magnitude of courtesy proxy (i.e., speed difference) is

different for TLV and SV (the speed gained by SV is usually larger than the speed lost by TLV)

during lane change, courteous behavior would be more likely to occur under Egoism than

Altruism (Since the CSP for Egoism is higher than Altruism as indicated in Fig 11) under the

same uniform courtesy level. This explanation is further illustrated in Fig 12 and Eqs (4)–(7).

For the same courtesy level and speed loss and gain, Egoism (Fig 12A) will yield based on Eqs

(4)–(6), while Altruism (Fig 12B) will not based on Eq (7).

Another interesting finding from Figs 7 and 11 is that for a system to work well, the CSP

should not be too low or too high. One example is the Egalitarianism. Low CSP indicates a

lack of willingness for cooperation, which makes it difficult for SV (i.e., LC vehicles) to change

lanes. While a very high CSP could be the result of a system failure.

4.5 Performance of individual segments

In addition to analyzing the performance of the entire network, the mobility results for indi-

vidual segments and lanes are also collected. Table 4 shows the lane-by-lane average speed

results for each of the four important segments.

Under light traffic, the rightmost lane of the type C weaving area’s speed performance is

among the lowest under all instrumental courtesy strategies, indicating this type C weaving

area is the bottleneck of this corridor. For Egoism and Altruism with low uniform courtesy, it

is hard for vehicles in the closed lane (i.e., rightmost lane) to merge in the work zone area, lead-

ing to low average speeds. Overall, the results suggest that Egoism and Altruism with low level

of uniform courtesy do not work well under light traffic particularly for the type A and type C

weaving areas and the work zone.

Similar trends could be found for moderate and heavy traffic. For Egoism and Altruism

with uniform courtesy, a higher courtesy level is critical to accommodate the increased

demand from lane changes. Congestion with low average speed is mostly found in the right-

most lanes of the type A weaving area and work zone and the middle lane of the type C weav-

ing area. Results in Table 4 are consistent with the global average speed results in Fig 7. The

Fig 12. An illustration of the difference between egoism and altruism under the same uniform courtesy level.

https://doi.org/10.1371/journal.pone.0283649.g012
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low speed may be caused by few slow-moving vehicles seeking lane-changing opportunities

due to a lack of cooperative TLVs.

To further understand the contributions of each segment to the global mobility perfor-

mance. The contribution of the ith segment under each courtesy strategy is calculated using Eq

(16).

CTi ¼
vg � v� i

vg
ð16Þ

where vg is the global average speed, and v−i is the average speed without considering vehicles

in the ith segment. The idea behind Eq (16) is to calculate the removal effect, which tells the

results difference between with and without the ith segment. A positive CTi value means having

Table 4. Lane-by-lane average speed under various courtesy strategies. (A, B, WZ, and C represent segment types; LL, ML and RL are for leftmost lane, middle lane,

and rightmost lane, respectively; red and green colors are for congested and uncongested situations, respectively).

Courtesy Strategy Lane Position Light Traffic Moderate Traffic Heavy Traffic

A B WZ C A B WZ C A B WZ C

Ego (Uniform Courtesy = 0) LL 33.6 33.6 33.7 33.0 31.0 26.7 31.9 28.6 27.4 23.3 26.6 24.0

ML 33.4 33.5 33.4 26.3 31.9 28.0 31.2 8.8 29.7 19.4 26.7 6.0

RL 29.5 33.3 21.9 27.5 10.8 32.3 6.1 18.8 4.6 28.5 5.2 20.7

Ego (Uniform Courtesy = 0.5) LL 33.7 33.7 33.7 33.2 33.6 33.6 33.6 32.1 33.4 33.6 32.6 29.6

ML 33.3 33.6 33.3 33.2 32.3 33.1 31.9 32.1 30.9 31.8 28.8 29.3

RL 32.8 33.4 31.6 28.9 31.1 33.3 29.5 29.4 29.6 33.1 27.2 28.7

Alt (Uniform Courtesy = 0) LL 33.7 33.4 33.6 33.0 30.7 25.4 31.8 28.4 27.4 23.3 26.6 24.0

ML 33.3 33.5 33.4 25.8 31.9 28.3 31.0 9.0 29.7 19.4 26.7 6.0

RL 32.8 33.3 21.4 26.9 10.2 32.4 5.0 18.2 4.6 28.5 5.2 20.7

Alt (Uniform Courtesy = 0.5) LL 33.7 33.7 33.7 33.2 33.6 33.6 33.6 32.1 33.5 33.6 32.8 29.8

ML 33.3 33.6 33.3 33.3 32.3 33.1 31.9 32.1 30.9 31.8 28.9 29.5

RL 32.8 33.4 31.6 29.0 31.1 33.3 29.4 29.8 29.5 33.1 27.3 28.9

Ego CDE LL 33.7 33.6 33.7 33.2 33.6 33.6 33.6 30.9 33.5 33.6 32.8 29.7

ML 33.3 33.6 33.3 31.6 32.3 32.9 31.9 30.4 30.9 32.0 29.1 29.3

RL 32.4 33.4 30.9 28.4 31.0 33.3 28.6 27.9 29.5 33.1 27.4 28.4

Ego CDM LL 33.7 33.7 33.7 33.2 33.5 33.6 33.6 31.8 33.4 33.5 32.6 29.1

ML 33.3 33.6 33.3 33.3 32.3 33.1 31.9 31.9 30.9 31.4 29.2 27.5

RL 32.8 33.4 31.6 29.1 31.0 33.3 29.5 28.7 29.6 33.0 25.4 28.2

Alt CDE LL 33.7 33.5 33.7 33.2 32.3 33.5 33.5 31.0 33.5 33.4 31.9 27.9

ML 33.3 33.6 33.3 31.9 32.2 32.9 32.0 25.9 31.0 30.7 28.5 24.0

RL 31.2 33.3 30.3 27.8 25.5 33.3 25.7 26.7 27.4 32.9 23.0 26.3

Alt CDM LL 33.7 33.7 33.7 33.2 33.5 30.9 32.9 31.1 33.4 33.6 32.7 29.1

ML 33.3 33.6 33.2 33.3 32.3 32.5 31.6 28.9 30.9 32.0 26.0 29.3

RL 32.8 33.4 31.6 29.1 28.7 33.2 26.5 26.5 29.5 33.1 27.4 27.8

LU LL 33.7 33.7 33.7 33.2 33.6 33.6 33.6 31.5 33.5 33.6 32.8 29.8

ML 33.3 33.6 33.2 33.2 32.3 33.1 31.6 31.6 30.9 31.8 28.8 29.9

RL 32.8 33.4 31.5 28.8 31.1 33.3 29.4 28.5 29.5 33.1 27.2 28.5

LM LL 33.7 33.6 33.6 33.1 33.6 33.3 33.5 30.6 32.4 32.5 32.0 29.3

ML 33.3 33.5 33.2 33.2 32.2 32.6 31.8 30.7 30.5 30.9 28.2 29.5

RL 32.7 33.2 31.0 28.7 30.1 32.8 29.1 27.4 28.9 31.5 25.5 27.9

Ega LL 33.7 33.6 33.6 33.1 33.6 33.4 33.4 31.0 33.1 30.8 30.7 24.6

ML 33.3 33.5 33.2 33.1 32.2 32.8 31.8 31.1 30.4 28.0 27.3 24.4

RL 32.7 33.2 31.0 28.7 30.1 32.9 28.6 27.4 24.0 29.2 24.9 22.8

https://doi.org/10.1371/journal.pone.0283649.t004
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the ith segment does not worsen the global performance, while a negative value suggests the

opposite. The distributions of segment contribution are plotted in Fig 13. It is clear that the

type C segment worsens the global average speed for most of the time. The contribution rank-

ing (from negative to positive) based on mean CTi is: type C, work zone, type A, and type B,

and the contribution stability ranking (from highest to lowest) based on the variance of CTi is:

work zone, type A, type B, and type C.

5. Conclusions and discussion

Cooperation is a critical component of roadway traffic, particularly with the introduction of

autonomous vehicles (AV). Previous studies often implicitly assume all AV to be fully coopera-

tive, without considering the many possible strategies for implementing cooperation and the

ethical and fairness issues involved. In this study, a systematic scheme to model and evaluate

AV’s cooperative behavior is proposed. A total of five courtesy strategies are proposed. A mod-

ified rule-based AV behavior model CCM is presented and utilized to evaluate the proposed

courtesy strategies.

SUMO simulation results at network and individual segment levels suggest that: (1) vehicles

adopting courteous/cooperative behaviors could also benefit themselves particularly under

heavy traffic; (2) for Egoism and Altruism, uniform courtesy is more effective than nonuni-

form courtesy with the same mean courtesy level; (3) variables such as traffic OD, courtesy

level, and courtesy distribution (only applicable for non-instrumental strategies) play impor-

tant roles in determining a system’s global performance. At the local level, segment type and

lane position are additional parameters that affect traffic operations; (4) different performance

metrics for the same courtesy strategy are correlated. For example, under moderate and heavy

traffic Egoism has better mobility, worse safety, and better fairness performance than Altruism

at the same level of uniform courtesy; and (5) Local Utilitarianism performs the best among all

instrumental strategies in terms of mobility, safety, and fairness. Its performance is also very

stable.

For future work, courtesy strategies following other principles can be explored. For exam-

ple, an AV may yield with a probability, which can be either prespecified or dependent on

real-time traffic conditions (e.g., how many times it has already yielded during that trip). AV

may be able to earn credits for yielding to others and generating a net gain for the system.

They can use such credits in the future to pay for other vehicles to yield to them. Also, in case

multiple courtesy requests are received (although this does not happen often for lane changes

on highways with two lanes in each direction), the request from the AV with the highest cour-

tesy credit score will be selected to be served. Some of these ideas have already been explored

in the context of intersection traffic management. For example, Dresner and Stone [30]

Fig 13. Contributions of each segment to the global average speed.

https://doi.org/10.1371/journal.pone.0283649.g013
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proposed a First-Come-First-Serve (FCFS) strategy in their pioneer work on intersection traf-

fic control with all autonomous vehicles. Carlino et al. [31] further extended the work by Dres-

ner and Stone [30] and proposed an innovative aution-based autonomous intersection

management strategy. Although there are important differences between lane change and

intersection management, it would still be very interesting to modify the FCFS and auction-

based methods for modeling courtesy in lane changes. When we put a price tag on courtesy,

this may generate unwanted and complicated behavior if not properly handled. For example, a

vehicle in the target lane may slow down on purpose to create a large/safe/attractive gap so

that this gap can be sold at a high price. A possible but certainly not easy solution is that this

vehicle pays to the system for the extra delay it has caused. Also, the lane-changing vehicle

needs to determine the best gap to take given costs and the potential impacts on surrounding

vehicles. These are all interesting but challenging problems to investigate and are beyond the

scope of this paper.

In this study, the equations for LU, LM, and local Egalitarianism are not derived from rigor-

ous mathematics and are essentially heuristic. Developing the optimal equations is a very chal-

lenging task both mathematically and philosophically. We will continue to investigate this

important area in future research.
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