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Abstract

Throughout the COVID-19 pandemic, valuable datasets have been collected on the effects

of the virus SARS-CoV-2. In this study, we combined whole genome sequencing data with

clinical data (including clinical outcomes, demographics, comorbidity, treatment information)

for 929 patient cases seen at a large UK hospital Trust between March 2020 and May 2021.

We identified associations between acute physiological status and three measures of dis-

ease severity; admission to the intensive care unit (ICU), requirement for intubation, and

mortality. Whilst the maximum National Early Warning Score (NEWS2) was moderately

associated with severe COVID-19 (A = 0.48), the admission NEWS2 was only weakly asso-

ciated (A = 0.17), suggesting it is ineffective as an early predictor of severity. Patient out-

come was weakly associated with myriad factors linked to acute physiological status and

human genetics, including age, sex and pre-existing conditions. Overall, we found no signifi-

cant links between viral genomics and severe outcomes, but saw evidence that variant sub-

type may impact relative risk for certain sub-populations. Specific mutations of SARS-CoV-

2 appear to have little impact on overall severity risk in these data, suggesting that emerging

SARS-CoV-2 variants do not result in more severe patient outcomes. However, our results

show that determining a causal relationship between mutations and severe COVID-19 in the

viral genome is challenging. Whilst improved understanding of the evolution of SARS-CoV-
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2 has been achieved through genomics, few studies on how these evolutionary changes

impact on clinical outcomes have been seen due to complexities associated with data link-

age. By combining viral genomics with patient records in a large acute UK hospital, this

study represents a significant resource for understanding risk factors associated with

COVID-19 severity. However, further understanding will likely arise from studies of the role

of host genetics on disease progression.

Introduction

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome

Coronavirus-2 (SARS-CoV-2) pathogen [1], has resulted in arguably the most significant

global health crisis in recent history. SARS-CoV-2 was first identified in Wuhan, China in win-

ter 2019 [2] and quickly spread across the globe, being declared a pandemic by the World

Health Organisation (WHO) a few months later in March 2020 [3]. At the time of writing,

COVID-19 has resulted in over 625 million infections and 6.57 million deaths worldwide [4].

As well as this significant death toll, many survivors have suffered life-altering complications

as a result of contracting the disease [5]. The COVID-19 pandemic has also resulted in signifi-

cant social and economic disruption, including the biggest global recession since the Great

Depression [6]. Additionally, healthcare services such as the UK National Health Service

(NHS) have been significantly impacted by COVID-19, resulting in staff shortages, long wait

times for ambulances [7] and a significant backlog for patients needing elective care [8].

The factors that influence severe cases of COVID-19 are not yet fully understood but have

been clearly linked primarily to older age groups (predominantly the over 65s), primarily due

to a higher proportion of comorbidities [9]. However, younger patients still experience severe

outcomes from COVID-19, albeit more rarely. Severe outcomes include requirements for

intubation and mechanical ventilation, admission to intensive care units (ICU), and death.

Factors currently associated with an increased risk of severe outcomes include smoking, hav-

ing a pre-existing condition such as obesity, asthma, cardiovascular disease, and diabetes, or

socio-economic factors [9–11]. Children especially are far less likely to become seriously ill

from COVID-19 [12,13].

Large-scale SARS-CoV-2 sequencing programs throughout the pandemic have allowed

researchers to explore the role of viral genomics and different variants of the virus. However,

whilst genomic epidemiology has been used in a number of studies to understand viral trans-

mission in settings such as hospitals [14–17], long-term care facilities [18–22], and army bar-

racks [23,24], well-powered studies of patient outcomes with high numbers of cases currently

remain limited [25–31]. One of the largest studies looking at large-scale effects of viral geno-

mics on patient outcomes are papers from the Hospital Onset COVID-19 Infections (HOCI)

study in the UK [25,26,28]. In one such study, Stirrup et al. (2021) identified a higher hazard

ratio of mortality for female patients with the Alpha variant compared to other variants when

compared to male patients [26]. More recently, Webster et al. [30] identified lower or equiva-

lent risk of severe outcomes for the BA.2 Omicron variant compared to BA.1.

Here we combined data from two resources developed over the course of the pandemic in

the city of Portsmouth in the UK; whole-genome sequencing (WGS) of SARS-CoV-2 samples

from COVID-19 positive samples collected through the COVID-19 Genomics UK (COG-UK)

Consortium by researchers at the University of Portsmouth (UoP), and patient-specific infor-

mation (e.g. demographics, COVID-19 status, illness severity scores, comorbidities, treatments

PLOS ONE Assessment of risk factors for severe COVID-19 in a large acute UK NHS hospital Trust

PLOS ONE | https://doi.org/10.1371/journal.pone.0283447 March 23, 2023 2 / 29

filtered sequencing data for COG-UK samples are

routinely deposited in the European Nucleotide

Archive (ENA) at EMBL-EBI under accession

PRJEB37886 (https://www.ncbi.nlm.nih.gov/

bioproject/?term=PRJEB37886). In addition, high-

quality consensus genome files with coverage

greater than 90% are routinely deposited to the

Global Initiative for Sharing of All Influenza Data

(GISAID) database (https://gisaid.org/). Aggregated

clinical data are provided within the manuscript and

its Supporting Information files. Raw clinical data

cannot be shared publicly because of risks to

patient confidentiality. Data are available from the

Portsmouth Hospitals University NHS Trust

Institutional Data Access / Ethics Committee

(contact via research.office@porthosp.nhs.uk) and

may be made available for researchers who meet

the criteria for access to confidential data.
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and outcomes) for all hospital admissions collected by the Portsmouth Academic Consortium

For Investigating COVID-19 (PACIFIC-19) team at Portsmouth Hospitals University NHS

Trust (PHU). PHU saw a steep rise in COVID-19 cases over the winter of 2020, with 3,272

new hospital cases between September and February, and a peak of 539 positive inpatients,

representing a national outlier for infections compared to the average peak of 219 in the South

East (https://coronavirus.data.gov.uk/).

The aim of this study was to combine the COG-UK dataset and PACIFIC-19 Clinical Out-

comes Research Group (CORG) database to develop a data resource linking clinical disease

severity, therapeutic interventions, comorbidities and demographics to SARS-COV-2 genomic

lineage data. One such metric, the National Early Warning Score 2 (NEWS2), provides a sim-

ple metric for identifying acutely ill patients and those requiring transfer to ICU [32,33]. It is

calculated based on 6 physiological parameters recorded at the bedside (respiration rate, oxy-

gen saturation, systolic blood pressure, pulse rate, level of consciousness or new-onset confu-

sion, temperature), each assigned a score of 0–3 by the healthcare team, with a score greater

than 7 suggesting a high-risk patient requiring emergency assessment by the critical care team.

These data cover COVID-19 infections in the area between March 2020 and May 2021, includ-

ing the major UK wave of COVID-19 over winter 2020, and were used to explore factors influ-

encing clinical severity of COVID-19 and identify specific mutations or constellations of

mutations associated with severe COVID-19. In particular, this time period covers the intro-

duction of the first variant of concern (VOC) Alpha, known also by the Pangolin (https://cov-

lineages.org/) lineage name B.1.1.7, allowing us to address whether the emergence of this line-

age impacted on the clinical severity of COVID-19.

As global restrictions continue to flex in response to ongoing changes in case-loads, and we

learn to live with the SARS-CoV-2 virus as new VOCs develop, it is increasingly important to

look back at what we have learned to fully understand the factors associated with poor out-

comes from COVID-19. There is significant motivation to further expand our knowledge of

potential risk factors for severe COVID-19, especially where such factors may allow medical

staff to predict a severe outcome of COVID-19 for early intervention. This study thus provides

a significant resource for understanding the role that a variety of clinical factors and viral geno-

mics play in determining patient outcomes.

Materials and methods

Study sites

PHU is one of England’s largest acute hospital trusts, serving the major coastal port city of

Portsmouth and surrounding areas on the South Coast of the UK. The primary site for this

study was Queen Alexandra Hospital (QAH), a research hospital within PHU with an 800-bed

capacity treating >500,000 patients per year.

Laboratory diagnosis

Quantitative polymerase chain reaction (qPCR) COVID-19 tests for hospital staff, patients,

and members of the local community within Portsmouth and surrounding areas were carried

out at QAH. Samples were collected from participants using nasopharyngeal swabs and stored

and transported in Sigma-Virocult 1 mL Viral Transport Media (VTM) (Medical Wire &

Equipment, Corsham, UK).

Multiple clinically validated testing methods were used over the period of the study, follow-

ing manufacturer’s directions. These approaches include using the Panther system with the

Aptima SARS-CoV-2 assay (Hologic, Marlborough, USA). This method involves automated

RNA extraction and transcription-mediated amplification, providing a qualitative result to
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confirm the presence or absence of SARS-CoV-2 by amplifying two conserved regions of the

SARS-CoV-2 ORF1ab gene, comparing the fluorescence signal to an internal control.

Additional testing was performed using the Anatolia Geneworks SARS-CoV-2 PCR v2 kit,

which has 2 SARS-CoV-2 targets: ORF1ab and E gene alongside an internal control. VTM

sample extraction was performed on the QIAsymphony SP/AS extraction system (Qiagen, Hil-

den, Germany) off-board lysis protocol (PATHOGEN, COMPLEX 200_OBL_V4_DSP) using

the QIAsymphony DSP Virus/Pathogen Midi or Mini Kit and reverse transcription (RT) real-

time qPCR amplification was performed on the LightCycler 480 II (Roche, Basel, Switzerland).

Additional rapid testing was conducted using the Xpert1 Xpress SARS-CoV-2 assay on

the GeneXpert (Cepheid, California, USA), a cartridge-based system for rapid detection,

extraction and amplification using real-time RT-qPCR to detect 2 targets for SAR-COV-2 in

the N2 and E gene regions, alongside internal controls.

Sampling

All samples, including patients, healthcare workers (HCWs) and community cases tested for

COVID-19 at PHU, were made available for viral extraction and whole genome sequencing.

Samples from PHU were sequenced alongside samples from a wide range of NHS Trusts

across the South Coast of the UK by the University of Portsmouth as part of the COG-UK con-

sortium [34]. Where samples could not be sequenced due to limits in capacity, the COG-UK

surveillance sampling strategy was applied to ensure that cases represented a random represen-

tation of currently circulating variants. Briefly, samples were selected either due to targeted

sequencing priorities, such as HCWs for the SARS-CoV-2 Immunity & Reinfection Evalua-

tioN (SIREN) study (https://snapsurvey.phe.org.uk/siren/), or were selected randomly from

available samples each day up to local capacity.

Whole genome sequencing

Sequencing was conducted following the ARTIC nCoV-2019 sequencing protocol V.3

(LoCost) [35]. RNA was reverse transcribed and then amplified with amplicon PCR using the

ARTIC nCoV-2019 V3 primer panel (Integrated DNA Technologies, Iowa, USA). This primer

panel tiles the SARS-CoV-2 genome with 98 pairs of primers, each producing an amplicon of

~500 bp. Odd-numbered primers were pooled separately from even-numbered primers to pre-

vent over-amplification of overlapping amplicon regions.

Nuclease-free water (NFW) was used as a negative control on each sequencing run to assess

contamination in the amplification stage. A synthetic SARS-CoV-2 RNA control (Twist Bio-

science, San Francisco, CA, USA) was also added to each run as a positive control. To confirm

sample quality and assess likely failures or contamination issues, positive and negative con-

trols, along with representative samples from each run, were quantified using the Qubit DNA

Assay Kit in a Qubit 2.0 Fluorometer (Life Technologies, California, USA).

The LSK-109 Ligation Sequencing Kit and EXP-NBD196 Native Barcoding Expansion 96

Kit from Oxford Nanopore Technologies (ONT, Oxford, UK) were used to generate libraries

for Nanopore sequencing. Libraries were sequenced on R9.4.1 flow cells on a GridION X5

platform (ONT, Oxford, UK) for 24–36 hours (depending on library sample number) to

achieve a final coverage of ~100,000 reads per sample. Raw reads were demultiplexed by the

MINKnow software on the GridION using Guppy v3.2.10.

Sequencing data were processed using the ARTIC field bioinformatics toolkit v1.2.1

(https://github.com/artic-network/artic-ncov2019). Real-time sequencing performance was

monitored using RAMPART (v1.0.6) [36]. Reads were mapped to the SARS-CoV-2 reference

genome (Wuhan-Hu-1, GenBank, MN908947.3) using MiniMap2 (v2.17-r941) [37].
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Nucleotide variation from the reference sequence was identified using Nanopolish (v0.13.2;

https://github.com/jts/nanopolish). SARS-CoV-2 variant type was assigned using Pangolin

(https://github.com/cov-lineages/pangolin) with PANGOLearn version 2021-10-18.

Sample exclusion

If genome sequencing failed (e.g., as a result of the negative control showing evidence of PCR

contamination), samples were repeated from scratch. If sufficient RNA was not available, sam-

ples were excluded from the study. Samples from PHU were also excluded if the participant

involved indicated their retrospective desire to opt out from the study.

For the outcome analysis, further exclusions were also applied to the combined dataset.

Samples where the sequence data covered less than 50% of the genome were excluded due to

poor resolution of viral variant subclasses. Samples were also excluded for individuals aged less

than 16 years old, individuals that were not admitted to the main hospital (e.g., residents of

long-term care facilities), and individuals who had not yet completed their hospital stay. In

cases where multiple samples were taken from a single individual, the sample with the highest

genome coverage was taken forward for further analysis. This is summarised in S1 Fig.

Clinical outcome data

The PACIFIC-19 team at PHU holds a database of patient-specific information (e.g. demo-

graphics, COVID-19 status, illness severity scores, treatments and outcomes) for all hospital

admissions, including COVID-19 positive patients, between January 2018 and May 2021. The

PACIFIC-19 CORG database contains data collated from the Local Laboratory Information

Systems (LIMS) using COGNOS for interrogation to identify all positive samples, and manu-

ally from the APEX Pathology LIMS. These data were linked to SARS-CoV-2 genome

sequence data using the COG-UK sequencing codes and locally assigned sample source IDs.

Clinical data analysis

To maximise the number of near-complete entries usable for our analyses, we dropped data

columns where 15% or more of the entries contained missing data. Imputation of missing val-

ues was not used to avoid significantly biassing the results.

Three main measures of severity as a result of COVID-19 infection were used in this analy-

sis; patient death within 30 days of diagnosis, patient admission to ICU or intubation of the

patient. In addition, we took a general measure of case severity based on the occurrence of at

least one of these three outcomes.

For pair-wise associations between categorical variables, the association strength was calcu-

lated using Cramer’s V score V (with bias correction) [38], based on the χ2 statistic, with statis-

tical significance calculated using the p-value from a χ2 test [39]. For pair-wise associations

between continuous variables, the correlation coefficient ρ and p-value from a Spearman’s

Rank test were used to determine the association strength and statistical significance respec-

tively. For pair-wise associations between categorical and continuous variables, the association

strength was determined using the Correlation Ratio η2 [40].

To ensure no bias as a result of non-normally distributed data, the continuous variable was

ranked prior to calculation. Statistical significance was determined using the p-value from a

Kruskal–Wallis H test. In each case, the association strength score A was assumed to be negli-

gible if |A| < 0.1, weak if 0.1� |A| > 0.3, moderate if 0.3� |A| > 0.5, and strong if |A|� 0.5.

Associations were determined to be statistically significant when p< 0.05.
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Machine learning for the identification of mutations associated with

disease severity

Mutation information from sequencing experiments was numerically encoded as follows:

1 = wild-type, 2 = substitution, 3 = insertion, 4 = deletion. These data were linked to clinical

data as input for machine learning models to further explore the role of viral mutations of

SARS-CoV-2 on severity of disease in COVID-19. We screened nine machine learning models

and one deep-learning neural network method to rank and identify mutations with a possible

role in determining patient outcomes. Training of models and calculation of accuracy metrics

were determined from 6-fold stratified cross-validation screening using Python V3.8.8 with

TensorFlow V2. Data were proportioned into an 80:20 train-test split.

A binary-outcome variable for severity was defined based on mortality having occurred fol-

lowing escalation to the ICU. To address the imbalance in these data, with 3.2-fold fewer cases

of mortality than survival, Synthetic Minority Oversampling (SMOTE) techniques were imple-

mented. Hyperparameters were tuned for optimal performance using a Grid-search method

while implementing 6-fold cross-validation. To get an overall view of the metrics incorporat-

ing both classes, precision, recall and F1 statistics were calculated for cases in the test set with

outcome = 0 or outcome = 1 separately, with the macro-average scores calculated based on the

mean of the two.

The best accuracy combined with minimal loss scores were obtained using the multi-layer

perceptron artificial neural network (MLP-ANN), using the sequential API within Tensor-

Flow. The input layer to the MLP-ANN introduces linear weighted input variables to the neu-

rons in the hidden-layers. Dropout regularization was employed to offset the overfitting

dilemma typically encountered in machine-learning models [41]. This approximates training

of a large number of neural networks with different architectures in parallel, where a number

of layers are randomly ignored or dropped out. Model accuracy and loss scores began to pla-

teau by 4,000 epochs, so were run to 10,000 epochs to maximise the accuracy (S2 Fig).

Ethics statement

This work has been approved by the Health Research Authority (HRA) and Health and Care

Research Wales (HCRW) following a favourable opinion from the North West–Haydock

Research Ethics Committee on 24th April 2020 (Ref: 20/NW/0217). Participants were offered

the opportunity to opt out of having their anonymised data used in this study retrospectively.

This work is part of the Sequencing and Tracking of Phylogeny (STOP COVID-19) study,

which was posted to ClinicalTrials.gov (Ref: NCT04359849) on 24th April 2020. This work also

forms part of the wider COVID-19 Genomics UK (COG-UK) Consortium surveillance study,

which was approved by the Public Health England Research Ethics Governance Group and

granted ethical approval by the PHE Research Ethics and Governance Group (REGG) on 8th

April 2020, (PHE R&D ref: R&D NR0195). The PACIFIC-19 Clinical Outcomes Research

Group (CORG) database was approved by the HRA Research Ethics Committee in April 2021

(Ref: 21/SC/0080), with a study extension provided to allow access to the data for the STOP

COVID-19 project (IRAS 282394).

Results

Patient demographics

The primary dataset used in this analysis combines viral genomics with clinical metadata for

PHU. Following filtering of cases (see Materials and methods) and merging of the data sets,

combined data for 929 individual patients were used for downstream analyses (S1 Fig). A
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breakdown of these data based on some of the key demographics and clinical factors can be

seen in Table 1. Of these 929 cases, 360 (38.8%) showed severe outcomes (ICU admission,

intubation or death within 30 days of diagnosis), with 569 (61.2%) showing non-severe out-

comes. Looking at the severe outcomes in more detail, 295 (31.8%) patients died, 111 (11.9%)

patients were admitted to ICU, and 93 (10.0%) required intubation in ICU. Of those patients

on ICU, 46 (41.4%) also died, suggesting that the majority of fatalities (249; 84.4%) occurred

outside of ICU, with 70 (23.7%) occurring outside of the hospital. However, the majority of

these deaths (181; 61.4%) occurred in patients aged 80 or above, with only 5 admitted to ICU.

In general, patients suffering severe outcomes were older, with a median age of 76 (IQR

[63,85]), with 52.8% of cases between 70 and 90 years old. The split between male and female

cases was relatively even, with 426 (45.8%) female compared with 503 (54.1%) male cases. The

majority of all cases were of white ethnic background (701; 75.5%), 192 (20.7%) cases were of

unstated or unknown ethnic origin and the remaining 36 (3.8%) cases were comprised of non-

white ethnic minority groups.

At the time of COVID-19 diagnosis, almost half of all patients were inpatients (450 cases,

48.4%), with a large proportion being identified through the Emergency Department (ED; 360

cases, 38.8%). A smaller proportion of cases were identified in Critical Care (CC; 62 cases,

6.7%) and the Acute Medical Units (AMU; 33 cases, 3.6%). The majority of patients suffered

from at least one of the comorbidities (801 cases, 86.2%) explored in this dataset; diabetes,

hypertension, renal disease, malignancy (cancer), heart disease, asthma, or chronic obstructive

pulmonary disease (COPD). Hypertension and heart disease were the most common, with 485

(52.2%) and 490 (52.7%) cases respectively, whilst asthma and cancer were rarer, with 101

(10.9%) and 108 (11.6%) cases respectively.

Associations with disease severity

To understand the factors that most affect disease severity (defined by either admission to

ICU, receiving invasive mechanical intubation, or death within 30 days of diagnosis), pairwise

statistical association analyses were performed for all experimental variables using either Cra-

mer’s V, Spearman’s Rank or the Correlation Ratio, depending on the data types (see Materials

and methods). S3 Fig shows the pairwise association score between all variables in the data set,

and Table 2 shows those with a statistically significant (p< = 0.05) and non-negligible

(A� 0.1) association with COVID-19 severity. A description of these data points is shown in

S1 Table. In general, these data show that clinical variables show mild association with out-

comes, and demonstrate a lack of individual strong indicators in our dataset that could poten-

tially predict a severe case of COVID-19.

The maximum NEWS2 score showed the highest association with severe cases of COVID-

19 (A = 0.48, p = 5.10e-46; Fig 1A), indicating a moderate but statistically significant associa-

tion. In particular, this metric was more strongly associated with death (A = 0.43, p = 3.49e-37)

than with ICU admission (A = 0.21, p = 2.30e-09) or intubation (A = 0.21, p = 2.52e-09). The

maximum NEWS2 score shows median scores of 9 (high-risk; IQR [6,10]) for severe cases and

5 (medium-risk; IQR [3,7]) for non-severe cases. The NEWS2 score assigned to a patient on

admission is also associated with severity, albeit much more weakly overall (A = 0.17,

p = 1.11e-08; Fig 1B). Interestingly, whilst associated with ICU admission (A = 0.24, p = 1.15e-

16) and intubation (A = 0.24, p = 5.61e-17), the admission NEWS2 score was not associated

with patient death alone. The admission NEWS2 score shows median scores of 4 (IQR [1,8])

for severe cases and 3 (IQR [1,5]) for non-severe cases with a large amount of overlap between

the distributions, indicating that the NEWS2 score at admission may not be a strong initial

predictor of severe COVID-19.
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Table 1. Patient data summary.

All Cases Non-Severe Severe Fatal ICU Intubation

All Cases 929 569 (61.2%) 360 (38.8%) 295 (31.8%) 111 (11.9%) 93 (10.0%)

Admission Age 76 [63, 85] 74 [60, 85] 80 [68, 86] 82 [73, 88] 63 [54, 71] 64 [56, 71]

0–59 192 (20.7%) 142 (15.3%) 50 (5.4%) 16 (1.7%) 44 (4.7%) 33 (3.6%)

60–69 133 (14.3%) 83 (8.9%) 50 (5.4%) 29 (3.1%) 37 (4.0%) 34 (3.7%)

70–79 205 (22.1%) 126 (13.6%) 79 (8.5%) 69 (7.4%) 25 (2.7%) 21 (2.3%)

80–89 285 (30.7%) 156 (16.8%) 129 (13.9%) 129 (13.9%) 5 (0.5%) 5 (0.5%)

90–99 109 (11.7%) 60 (6.5%) 49 (5.3%) 49 (5.3%) - -

100+ 5 (0.5%) 2 (0.2%) 3 (0.3%) 3 (0.3%) - -

Length of Stay (days) 13 [6, 23] 11 [5, 20] 16 [8, 26] 14 [6, 22] 25 [16, 54] 25 [16, 54]

Time to Discharge or Death from Diagnosis (hours) 201 [98, 383] 164 [87, 344] 245 [123, 502] 202 [110, 325] 546 [351, 1033] 584 [355, 1073]

Admission NEWS2 Score 3 [1, 6] 3 [1, 5] 4 [1, 8] 4 [1, 7] 7 [4, 10] 8 [5, 9]

Maximum NEWS2 Score 6 [4, 9] 5 [3, 7] 9 [6, 10] 9 [6, 11] 8 [7, 10] 8 [7, 10]

Sex - - - - - -

Male 503 (54.1%) 276 (29.7%) 227 (24.4%) 180 (19.4%) 79 (8.5%) 64 (6.9%)

Female 426 (45.8%) 293 (31.5%) 133 (14.3%) 115 (12.4%) 32 (3.4%) 29 (3.1%)

Ethnic Origin - - - - - -

Asian 16 (1.7%) 8 (0.9%) 8 (0.9%) 6 (0.6%) 7 (0.8%) 7 (0.8%)

Black 6 (0.6%) 3 (0.3%) 3 (0.3%) 1 (0.1%) 3 (0.3%) 1 (0.1%)

Mixed 8 (0.9%) 4 (0.4%) 4 (0.4%) 1 (0.1%) 4 (0.4%) 2 (0.2%)

Other 6 (0.6%) 6 (0.6%) - - - -

Unknown 192 (20.7%) 122 (13.1%) 70 (7.5%) 59 (6.4%) 18 (1.9%) 19 (2.0%)

White 701 (75.5%) 426 (45.9%) 275 (29.6%) 228 (24.5%) 79 (8.5%) 64 (6.9%)

Lineage - - - - - -

Alpha 404 (43.5%) 255 (27.4%) 149 (16.0%) 116 (12.5%) 57 (6.1%) 51 (5.5%)

Non-Alpha 525 (56.5%) 314 (33.8%) 211 (22.7%) 179 (19.3%) 54 (5.8%) 42 (4.5%)

Patient Type - - - - - -

Inpatients 450 (48.4%) 290 (31.2%) 160 (17.2%) 147 (15.8%) 18 (1.9%) 12 (1.3%)

Emergency Department 360 (38.8%) 238 (25.6%) 122 (13.1%) 108 (11.6%) 29 (3.1%) 29 (3.1%)

Critical Care 62 (6.7%) 3 (0.3%) 59 (6.4%) 23 (2.5%) 59 (6.4%) 49 (5.3%)

Acute Medical Unit 33 (3.6%) 21 (2.3%) 12 (1.3%) 11 (1.2%) 3 (0.3%) 2 (0.2%)

Outpatients 15 (1.6%) 10 (1.1%) 5 (0.5%) 4 (0.4%) 2 (0.2%) 1 (0.1%)

Healthcare Workers 4 (0.4%) 4 (0.4%) 0 (0%) - - -

Community Cases 3 (0.3%) 2 (0.2%) 1 (0.1%) 1 (0.1%) - -

External PHU Hospital Patients 1 (0.1%) 1 (0.1%) 0 (0%) - - -

Long-Term Care Facility Residents 1 (0.1%) 0 (0%) 1 (0.1%) 1 (0.1%) - -

Diabetes - - - - - -

0 (No) 636 (68.5%) 403 (43.4%) 233 (25.1%) 195 (21.0%) 61 (6.6%) 52 (5.6%)

1 (Yes) 293 (31.5%) 166 (17.9%) 127 (13.7%) 100 (10.8%) 50 (5.4%) 41 (4.4%)

Hypertension - - - - - -

0 (No) 444 (47.8%) 293 (31.5%) 151 (16.3%) 123 (13.2%) 45 (4.8%) 37 (4.0%)

1 (Yes) 485 (52.2%) 276 (29.7%) 209 (22.5%) 172 (18.5%) 66 (7.1%) 56 (6.0%)

Renal Disease - - - - - -

0 (No) 583 (62.8%) 401 (43.2%) 182 (19.6%) 151 (16.3%) 49 (5.3%) 42 (4.5%)

1 (Yes) 346 (37.2%) 168 (18.1%) 178 (19.2%) 144 (15.5%) 62 (6.7%) 51 (5.5%)

Malignancy - - - - - -

0 (No) 821 (88.4%) 513 (55.2%) 308 (33.2%) 246 (26.5%) 104 (11.2%) 87 (9.4%)

1 (Yes) 108 (11.6%) 56 (6.0%) 52 (5.6%) 49 (5.3%) 7 (0.8%) 6 (0.6%)

(Continued)
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Moderate to weak associations were also seen with the ward location category (A = 0.28,

p = 4.50e-16), specific ward (A = 0.21, p = 7.88e-06) and the location where the qPCR swab

was originally collected (A = 0.16, p = 9.74e-03). All three are associated with ICU admission

and intubation, but not with patient death as an outcome (Table 2). All three were also associ-

ated with admission NEWS2 score (ward location category A = 0.44, p = 1.59e-37; specific

ward A = 0.60, p = 3.15e-49; qPCR swab location A = 0.56, p = 8.61e-38) and maximum

NEWS2 score (ward location category A = 016, p = 1.27e-03; specific ward A = 0.33, p = 1.56e-

06; qPCR swab location A = 0.31, p = 6.08e-03), as well as whether the patient was admitted to

ICU (ward location category A = 0.66, p = 2.39e-89; specific ward A = 0.49, p = 1.63e-43;

qPCR swab location A = 0.43, p = 9.61e-24). Together, these indicate that patients who suffered

from a severe case of COVID-19 were typically acutely unwell in general and therefore more

likely to be transferred to ICU.

Pre-existing comorbidities also appeared to play a role in susceptibility for severe COVID-

19, with a weak association seen for the number of pre-existing conditions a patient might

have (A = 0.20, p = 6.81e-09), as well as a weak association to those who have any pre-existing

conditions (A = 0.13, p = 2.05e-05; Fig 2A). These links were seen with the death outcome, but

not with ICU admission nor intubation (Table 2). Specifically, those with renal disease

(A = 0.19, p = 6.32e-09; Fig 2B) or heart disease (A = 0.12, p = 3.10e-04; Fig 2C) showed weak

but statistically significant associations with COVID-19 severity, in particular death. These

links therefore result in increased odds of having a severe case of COVID-19 (pre-existing con-

dition OR = 2.81, 95% CI [1.79, 4.42]; renal disease OR = 2.33, 95% CI [1.77, 3.07]; heart dis-

ease OR = 1.71, 95% CI [1.31, 2.24]).

Demographics such as age (A = 0.15, p = 1.00e-04; Fig 1C) and sex (A = 0.13, p = 6.05e-05;

Fig 2A) of the patient also show statistically significant, albeit weak effects on COVID-19 sever-

ity. These data show a median age of 80 (IQR [68,86]) in severe cases compared to 74 (IQR

Table 1. (Continued)

All Cases Non-Severe Severe Fatal ICU Intubation

Heart Disease - - - - - -

0 (No) 439 (47.3%) 298 (32.1%) 141 (15.2%) 107 (11.5%) 53 (5.7%) 44 (4.7%)

1 (Yes) 490 (52.7%) 271 (29.2%) 219 (23.6%) 198 (20.2%) 58 (6.2%) 49 (5.3%)

Asthma - - - - - -

0 (No) 828 (89.1%) 504 (54.3%) 324 (34.9%) 267 (28.s%) 98 (10.5%) 80 (8.6%)

1 (Yes) 101 (10.9%) 65 (7.0%) 36 (3.9%) 28 (3.0%) 13 (1.4%) 13 (1.4%)

COPD - - - - . .

0 (No) 760 (81.8%) 477 (51.3%) 283 (30.5%) 225 (24.2%) 96 (10.3%) 80 (8.6%)

1 (Yes) 169 (18.2%) 92 (9.9%) 77 (8.3%) 70 (7.5%) 15 (1.6%) 13 (1.4%)

Number of Pre-Existing Conditions - - - - - .

0 128 (13.8%) 102 (11.0%) 26 (2.8%) 19 (2.0%) 10 (1.1%) 6 (0.6%)

1 220 (23.7%) 145 (15.6%) 75 (8.1%) 59 (6.4%) 24 (2.6%) 22 (2.4%)

2 261 (28.1%) 161 (17.3%) 100 (10.8%) 88 (9.5%) 23 (2.5%) 22 (2.4%)

3 212 (22.8%) 112 (12.1%) 100 (10.8%) 79 (8.5%) 32 (3.4%) 24 (2.6%)

4 95 (10.2%) 46 (5.0%) 49 (5.3%) 41 (4.4%) 20 (2.2%) 17 (1.8%)

5 13 (1.4%) 3 (0.3%) 10 (1.1%) 9 (1.0%) 2 (0.2%) 2 (0.2%)

Summary table breaking down key variables from the joint dataset for all, non-severe and severe cases, respectively. Data presented is either the number of cases and

percentage of all cases for categorical variables, or the median with the interquartile range for continuous variables.

https://doi.org/10.1371/journal.pone.0283447.t001
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[60,85]) in non-severe cases, and that male patients showed a higher ratio of severe to non-

severe cases when compared to female patients (OR = 1.81, 95% CI [1.38, 2.37], p = 6.05e-05;

Fig 2D).

In addition, the length of stay (A = 0.17, p = 1.82e-07; Fig 1D) and time to discharge or

death (A = 0.15, p = 6.14e-07) also appear to be statistically significant (albeit weak) factors,

with a longer median stay of 16 days (IQR [8,26]) seen in severe cases compared to 11 days

(IQR [5,20]) in non-severe cases. In particular, we see a long tail for long stays for severe cases,

as a result of patients who contracted severe, but non-fatal, COVID-19 and required a signifi-

cant amount of recovery time. Interestingly, both metrics were associated with ICU admission

and intubation, but not with patient death (Table 2).

Table 2. Association between clinical variables and disease severity.

Feature Association Strength

Metric

A p A p A p A p
(Combined) (Combined) (Fatal) (Fatal) (ICU) (ICU) (Intubated) (Intubated)

Maximum NEWS2 Score Correlation Ratio 0.48 5.10E-46 0.43 3.49E-

37

0.21 2.30E-

09

0.21 2.52E-09

Location Category Cramer’s V 0.28 4.50E-16 - - 0.66 2.39E-

89

0.59 1.77E-71

Ward Cramer’s V 0.21 7.88E-06 - - 0.49 1.63E-

43

0.43 3.31E-31

Number of Pre-Existing Conditions Correlation Ratio 0.20 6.81E-09 0.18 9.10E-

08

- - - -

Renal Disease Indicator Cramer’s V 0.19 6.32E-09 0.15 3.30E-

06

0.12 7.40E-

05

- -

Admission NEWS2 Score Correlation Ratio 0.17 1.11E-08 - - 0.24 1.15E-

16

0.24 5.61E-17

Length of Stay Correlation Ratio 0.17 1.82E-07 - - 0.30 3.51E-

19

0.28 5.26E-16

Swab Location Cramer’s V 0.16 9.74E-03 - - 0.43 9.61E-

24

0.32 3.52E-12

Time to Discharge/Death from

Diagnosis

Correlation Ratio 0.15 6.14E-07 - - 0.36 5.32E-

28

0.34 1.12E-24

Admission Age Correlation Ratio 0.15 1.00E-04 0.30 4.62E-

18

0.29 1.15E-

18

0.25 4.55E-14

Pre-Existing Condition Indicator Cramer’s V 0.13 2.05E-05 0.13 4.78E-

05

- - - -

Sex Cramer’s V 0.13 6.05E-05 - - 0.10 5.00E-

04

- -

Heart Disease Indicator Cramer’s V 0.12 3.10E-04 0.14 2.13E-

05

- - - -

Malignancy Indicator Cramer’s V - - 0.11 4.29E-

03

- - - -

Admission Specialty Cramer’s V - - - - 0.32 6.01E-

15

0.32 2.17E-16

Ethnic Origin Cramer’s V - - - - 0.22 1.12E-

07

0.22 4.14E-04

Lineage Cramer’s V - - - - 0.18 3.76E-

03

- -

Diabetes Indicator Cramer’s V - - - - 0.11 3.93E-

03

- -

Table of variables with statistically significant links with patient severity, showing the association strength A (based on Cramer’s V for categorical-categorical

relationships and Correlation Ratio for categorical-continuous relationships) and p-value p of the relationship. Associations with A< 0.1 or p < 0.05 are not shown.

https://doi.org/10.1371/journal.pone.0283447.t002
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The effect of the Alpha variant on clinical severity of COVID-19

The Alpha variant (B.1.1.7) was imported to PHU during the second wave of COVID-19 cases

in the UK, in particular rising in prevalence during the winter period in December 2020. Over

the period between September 2020 and June 2021, 1,404 cases were sequenced from PHU, of

which 970 (523 patient, 447 HCWs) proved to be of the Alpha lineage. Across the dataset used

in this study, spanning cases in PHU from March 2020 until May 2021, 43.5% of COVID-19

cases were cases of the Alpha lineage (Table 1). In contrast, the next most common variant,

Pangolin lineage B.1.1, comprised only 6% of cases, making Alpha the most common single

variant identified by a significant margin. Across the whole dataset, we found no statistically

Fig 1. Association of disease severity with continuous variables. Violin plots comparing the distribution of continuous variables with

statistically significant relationships with disease severity between severe cases (death, ICU admission or intubation) and non-severe cases.

Variables shown are a) the maximum NEWS2 score, b) the admission NEWS2 score, c) the age at admission and d) the length of stay (days).

Association strength A (based on the Correlation Ratio) and p-values p are shown above each panel.

https://doi.org/10.1371/journal.pone.0283447.g001
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significant link between lineage and case severity (A = 0.08, p = 0.356), and no statistically sig-

nificant links between COVID-19 severity and whether the case was Alpha lineage or not

(A = 0.00, p = 0.435).

Fig 2. Association of disease severity with discrete variables. Heatmaps comparing the counts between severe cases (death, ICU

admission or intubation) and non-severe cases for a selection of categorical features with statistically significant relationships with disease

severity. Variables shown are a) the presence of existing conditions, b) whether the patient suffers from renal disease, c) whether the patient

suffers from heart disease and d) sex at birth. Association strength A (based on Cramer’s V), p-values p, and odds ratio between the classes

are shown above each panel.

https://doi.org/10.1371/journal.pone.0283447.g002
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To further understand the effect of the Alpha lineage on disease severity, we looked at asso-

ciations with disease severity for Alpha and non-Alpha cases separately (Fig 3). Fig 3A–3F

explore how the Alpha variant may have impacted severity outcomes for those with pre-exist-

ing conditions, and specifically renal and heart disease, which were identified as being associ-

ated with disease severity (Table 2). We see that the Alpha variant had no statistically

significant impact on patients with (OR = 0.85, 95% CI [0.64, 1.13], p = 0.292; Fig 3A) or with-

out (OR = 1.47, 95% CI [0.61, 3.51], p = 0.510; Fig 3B) a pre-existing condition; with

(OR = 1.02, 95% CI [0.66, 1.57], p = 1.00; Fig 3C) or without (OR = 0.83, 95% CI [0.58, 1.18],

p = 0.348; Fig 3D) renal disease; or with (OR = 0.72, 95% CI [0.50, 1.03], p = 0.089; Fig 3E) or

without (OR = 1.16, 95% CI [0.78, 1.73], p = 0.546; Fig 3H) heart disease. Finally, we see that

whilst the Alpha variant had no statistically significant impact on male patients (OR = 1.17,

95% CI [0.82, 1.68], p = 0.437; Fig 3G), female patients showed a mild but non-significant

decrease in the ratio of severe cases with the Alpha variant (OR = 0.65, 95% CI [0.43, 0.99],

p = 0.054; Fig 3H).

Further breaking down the relationship of the Alpha variant with severity for male and

female patients, the Alpha variant showed no statistically significant impact on mortality for

male patients (OR = 0.94, 95% CI [0.65, 1.37], p = 0.839; Fig 4A) nor for female patients

(OR = 0.65, 95% CI [0.42, 1.00], p = 0.061; Fig 4B), although a moderate decrease in odds was

seen. Interestingly, the Alpha variant did have an impact on ICU admission (OR = 2.03, 95%

CI [1.25, 3.30], p = 5.50e-03; Fig 4C) and whether intubation was required (OR = 2.32, 95% CI

[1.36, 3.95], p = 2.51e-03; Fig 4E) for male patients, with almost twice the odds when compared

to non-Alpha variants in both cases. However, no statistically significant impact on ICU

admission (OR = 0.84, 95% CI [0.41, 1.73], p = 0.762; Fig 4D) nor whether intubation was

required (OR = 1.02, 95% CI [0.48, 2.17], p = 1.00; Fig 4F) was seen with female patients.

Fig 3. Effect of the Alpha variant on disease severity. Heatmaps exploring the changes in relative risk of severe outcome (death, ICU admission or

intubation) for subpopulations within the data when comparing Alpha cases to non-Alpha cases. The subpopulations shown are based on those identified as

being associated with disease severity. They are (in column order): Whether the patient has a pre-existing condition or not (a-b), whether the patient has renal

disease or not (c-d), whether the patient has heart disease or not (e-f), and sex at birth (g-h). The odds ratio and p-values p between the classes are shown above

each panel.

https://doi.org/10.1371/journal.pone.0283447.g003
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Fig 4. Effect of the Alpha variant on disease severity for male and female patients. Heatmaps exploring the changes

in relative risk of death (a-b), ICU admission (c-d) and intubation (e-f) for male and female patients when comparing

Alpha cases to non-Alpha cases. The odds ratio and p-values p between the classes are shown above each panel.

https://doi.org/10.1371/journal.pone.0283447.g004
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SARS-CoV-2 mutations associated with severe COVID-19

As the SARS-CoV-2 virus has mutated over time, a number of key mutations have been identi-

fied, particularly in the spike protein of the virus. We used our dataset to identify whether any

specific mutations or clusters of mutations could be identified that might be associated with an

increased risk of a negative outcome, thus acting as predictors of outcome in future cases. Fea-

tures from the joint outcomes and mutation dataset that showed statistically significant rela-

tionships with single nucleotide polymorphisms (SNPs) and deletions of the SARS-CoV-2

genome are shown in Table 3. We found no statistically significant link between the SNPs and

any of our chosen indicators of disease severity (death, ICU admission, or intubation). Inter-

estingly, we found a moderately weak link between the mutations and the NEWS2 score, both

at admission (A = 0.25, p = 1.01e-15) and the maximum recorded score (A = 0.23, p = 1.27e-

09). This may indicate that some mutations impact acute physiological status, but not enough

to directly result in a severe case of COVID-19. This hypothesis is supported by the weak asso-

ciation between the mutations and the patient’s length of stay (A = 0.25, p = 5.89e-16), indicat-

ing a weak link between the types of mutations found in patients who experienced symptoms

of COVID-19 for longer periods of time. Also interestingly, we see that the mutations were

associated with the number of pre-existing conditions the patient has (A = 0.24, p = 3.15e-06)

as well as whether the patient has cancer (A = 0.14, p = 1.57e-13), renal disease (A = 0.13,

p = 4.08e-11), or COPD (A = 0.11, p = 7.01e-08), although these associations are quite weak.

We also see weak associations between the mutations and the demographics of the patient, in

particular their ethnic origin (A = 0.15, p< 1.00e-300), sex (A = 0.12, p = 7.48e-08) and age

(A = 0.10, p = 1.94e-283). Similar weak associations are also seen with the locations of the

patient, particularly the admission speciality (A = 0.16, p< 1.00e-300), the location where the

patient was swabbed (A = 0.14, p < 1.00e-300) and the ward the patient was located after

admission to the hospital (A = 0.14, p< 1.00e-300), likely arising as a result of nosocomial

spread of the virus within wards.

Table 3. Association between patient variables and SARS-CoV-2 mutations.

Feature Association Strength Metric A p
Length of Stay Correlation Ratio 0.25 5.89E-16

Admission NEWS2 Score Correlation Ratio 0.25 1.01E-15

Number of Pre-Existing Conditions Correlation Ratio 0.24 3.15E-06

Maximum NEWS2 Score Correlation Ratio 0.23 1.27E-09

Time to Discharge/Death from Diagnosis Correlation Ratio 0.23 5.93E-06

Admission Specialty Correlation Ratio 0.16 0.00E+00

Ethnic Origin Cramer’s V 0.15 0.00E+00

Malignancy Indicator Cramer’s V 0.14 1.57E-13

Swab Location Cramer’s V 0.14 0.00E+00

Ward Cramer’s V 0.14 0.00E+00

Renal Disease Indicator Cramer’s V 0.13 4.08E-11

Sex Cramer’s V 0.12 7.48E-08

COPD Indicator Cramer’s V 0.11 7.01E-08

Location Category Cramer’s V 0.11 1.02E-35

Admission Age Cramer’s V 0.10 1.94E-283

Table of variables with statistically significant links with the single nucleotide polymorphisms and other mutations of

the SARS-CoV-2 genome, showing the association strength A (based on Cramer’s V for categorical-categorical

relationships and Correlation Ratio for categorical-continuous relationships) and p-value p of the relationship.

https://doi.org/10.1371/journal.pone.0283447.t003
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Machine learning (ML) and artificial neural network (ANN) analysis of

mutations and comorbidity risk-factors associated with disease severity

To further explore the role of viral mutations of SARS-CoV-2 in severity of disease in COVID-

19, we utilised machine learning approaches to identify mutations with a possible role in deter-

mining patient outcomes. Nine machine learning algorithms and one deep-learning neural

network method were tested and ranked according to their accuracy (Fig 5A), with a binary

outcome of death (outcome = 1) or no death (outcome = 0) following escalation of care to the

ICU. Of these, the XGradient Boosted (XGBoost) and the Multi-Layer Perceptron Artificial

Neural Network (MLP-ANN) approaches produced the best results, with the MLP-ANN

model resulting in slightly improved accuracy (76.2%; Fig 5B, right) compared to XGBoost

(74.6%; Fig 5B, left).

Comparison of macro-average metric scores between the XGBoost and MLP-ANN models

are shown in Fig 5B, with the breakdown for the different outcomes shown in Fig 5C. In both

models, Precision and Recall were high in discrimination of COVID-19 patients with greater

survival probability (low-risk patients) following their admission to intensive care units, but

low for discrimination of high-risk patients. The MLP-ANN model showed a higher Recall

(100% vs 92%), but lower Precision (74% vs 78%) for identification of low-risk patients com-

pared to the XGBoost model. Whilst potentially unsuitable for identification of high-risk

patients, this model may potentially offer an approach for exclusion of low-risk patients, allow-

ing for the remaining cohort to be observed as potentially high risk, with resources prioritised

for more intensive clinical surveillance, management, and attention.

The ranking of SNPs, deletions, and clinical criteria in the order of importance to the

model (from top to bottom), based on the Shapley additive explanation (SHAP) values, is

shown for the XGBoost model (Fig 5D) and the MLP-ANN model (Fig 5E). For mutations

identified as the top predictors variables, the numeric ID indicates the nucleotide position of

the nucleotide change relative to the reference SARS-CoV-2 genome, and the gene domain in

which the mutation is located is highlighted (S4 Fig).

The feature importance of the predictor variables is different for the XGBoost model com-

pared to the MLP-ANN model, with individual genomic features in the XGBoost model typi-

cally showing higher mean SHAP values than those in the MLP-ANN model. Another striking

difference is in the ranking of clinical variables, which represent the top ranked features in the

XGBoost model, but appear less significant than a number of mutations (in particular dele-

tions) in the MLP-ANN model. Renal disease, heart disease and diabetes feature for both mod-

els, with risk factors such as history of hypertension, COPD, prior history of malignancy, and

asthma prominent in the XGBoost model, but not in the MLP-ANN model.

One notable similarity between the two models, SNP 23403, corresponds to an A->G muta-

tion at site 23,403, resulting in an Aspartic Acid to Glycine amino acid substitution (D614G)

within the spike (S) protein domain. This SNP, seen in the top 20 for both models, became rap-

idly dominant globally due to increased viral fitness and higher viral loads [42–45]. It became

fixed in the population after the first wave in the UK, with 0% of cases showing the Glycine res-

idue in January 2020, rapidly increasing to 70% of cases in May 2020 [45]. It is therefore likely

that association of this SNP with severity is closely linked with temporal developments of the

pandemic, with significant improvements in treatment options and vaccine developments

from the second wave onwards.

Whilst the spike protein has been linked with increased viral load and fitness [46], and thus

may represent an obvious source for identification of mutations linked with disease severity

due to its role in host cell receptor binding, the majority of the identified mutations actually

seem to lie in other regions of the viral genome. In particular, for the XGBoost model, the
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Fig 5. Machine learning and artificial neural network analysis of mutations in the SARS-CoV2 genome isolated

from patients with COVID-19. (a) Screening and comparison of nine machine-learning and one deep-learning

multi-layer perceptron artificial neural network (MLP-ANN) method showing mean percentage accuracy of

prediction of outcome; death (1) or no death (0). Error bars shown represent standard deviation of accuracy run over

200 estimators (machine-learning) or 300 epochs for neural-net analysis. (b) Macro-average (where metrics for

outcomes 1 and 0 are averaged) metrics comparison between the XGBoost and the MLP-ANN method. The

MLP-ANN gave better macro-average accuracy metrics. (c) Individual metrics shown for outcomes 1 (death) and 0

(no death), compared between XGBoost and MLP-ANN models. The MLP-ANN gave better accuracy metrics and

overall Sensitivity metrics. (d) Ranking of SNPs and clinical parameters in order of importance, displayed according to

their SHapley Additive exPlanations (SHAP) values in their predictive ability in the respective models. The location of

the SNPs in relation to the SARS-CoV2 genome is based on mapping to the reference genome (Wuhan-Hu-1,

GenBank, MN908947.3) and shown using colour-coded keys. Also shown are the nucleotide changes noted in relation

to each SNP.

https://doi.org/10.1371/journal.pone.0283447.g005
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majority of other significantly associated mutations were identified within the ORF1ab gene.

These include synonymous SNPs such as SNP 913 (C->T), SNP 3037 (C->T), SNP 14408 (C-

>T), SNP 16468 (C->T), as well as non-synonymous SNPs such as SNP 23603, an A->T tran-

sition resulting in a change from Asparagine to Tyrosine at amino acid (AA) 501 in the spike

domain identified in Alpha cases.

Interestingly, whilst no deletions are present in the top ranked features for the XGBoost

model, they represent the top three mutations in the MLP-ANN model. All three deletions

(SNP 28270, a 1 bp frameshift deletion in the Nucleocapsid (N) domain; SNP 21764, a 6 bp

deletion in the spike (S) domain; SNP 11287, a 9 bp deletion in ORF1ab) are specific to the

Alpha lineage B.1.1.7, and clearly delineate Alpha from non-Alpha cases. Similarly, the major-

ity of the remaining mutations identified by the MLP-ANN model appear to be highly specific

to the Alpha lineage, indicating that this model primarily identifies the presence of the Alpha

lineage as being associated with disease severity. As with SNP 23403, this is likely linked to

temporal development in treatment options for those with Alpha later in the pandemic com-

pared to cases with severe symptoms in earlier waves.

Discussion

As the world returns to a more normal state after being plunged into a global pandemic, many

questions remain to be answered about COVID-19. In particular, it is still not well understood

exactly which factors are most associated with the likelihood of an individual suffering from

the most significant negative outcomes, including long-term post-COVID-19 respiratory

issues (“long COVID”), requirement for invasive mechanical intubation, admission to ICU, or

even death.

In this study, clinical data were linked to viral genomic data from patients seen across an

acute NHS Trust on the south coast of the UK. This data resource was used to explore potential

links between severe outcomes and viral subtype, patient demographics, and clinical history,

to further understand factors that may influence patient responses to the virus. Overall, this

study found no strong factors associated with severe cases of COVID-19, instead showing

weak influence from myriad factors including age, sex, and existence of pre-existing

conditions.

Of course, certain pre-existing conditions are more likely than others to directly influence

COVID-19 illness. For example, given that cataracts are typically seen in older individuals,

many of those most clinically vulnerable for severe COVID-19 outcomes may suffer from cata-

racts, with one-fifth of patients awaiting cataract surgery found to be at high risk of severe dis-

ease or death from COVID-19 in a 2022 study [47]. However, whilst a serious malady and a

leading cause of preventable blindness, suffering from cataracts is itself unlikely to have a sig-

nificant bearing on the severity of COVID-19 pneumonia. The context of the comorbidity in

relation to the subsequent pathology of SARS-CoV-2 pathophysiology is important, since the

primary target organs are the lungs, and pathophysiological progression may require mechani-

cal ventilation in areas where high-dependency or intensive care is offered.

One of the frequently observed disease progressions in COVID-19 is the persistence of

micro-coagulopathy, where tiny clots systemically occlude capillaries, such as in the glomeruli

[48]. Thus, a patient with a pre-existing compromised renal function, or those with pre-exist-

ing cardiac dysfunction (especially previous coronary ischaemia) might show poor recovery

trajectories in hospital. It is thus clear that certain pre-existing conditions, particularly renal

and heart disease, may make an individual more likely to suffer from severe complications

with COVID-19 and have been previously identified as risk factors [49]. Indeed, as shown in

Table 2, renal disease (A = 0.15), heart disease (A = 0.14), and cancer (A = 0.11) were identified
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as being significantly associated with the likelihood of death. Such patients should therefore

continue to be monitored closely, to observe signs of deterioration.

It is worth noting however, that the absolute increase to risk is low based on our data, and a

relatively large proportion of those analysed suffered from heart disease (52.7%), renal disease

(37.2%), and cancer (11.6%) (Table 1). Indeed, only 13.8% of patients in our dataset had no

pre-existing condition at all, highlighting a significant selection bias in the data. There is also a

selection bias with admission age, with 79.3% of patients aged 60 and above and a median age

of 76. These biases are likely closely related, since older patients typically experience a higher

proportion of comorbidities compared to younger age groups [9]. These selection biases may

impact other association scores, potentially resulting in underestimated scores for pairwise

associations with admission age and comorbidities.

These data also highlight that acute physiological derangement of the patient is linked to

severe COVID-19, indicated by a moderate-strong association between the maximum NEWS2

score and whether the patient died within 30 days of diagnosis (A = 0.43), was admitted to

ICU (A = 0.21), or required invasive mechanical intubation (A = 0.21) (Table 2). The NEWS2

score reports on a constellation of dynamically changing (particularly within an acute setting)

clinical features, but is a simple to calculate metric to identify and address patient deterioration

[32,33], and has been previously identified as a potential screening tool for severe patient out-

comes [50–52]. However, a UK multicentre study identified poor to moderate discrimination

of medium-term COVID-19 outcomes from NEWS2 scores and age alone, calling into ques-

tion its use as a screening tool [53]. A common observation with COVID-19 is of mild pheno-

types deteriorating towards severe phenotypes (resulting in an increased NEWS2 score) as a

result of the respiratory distress caused by COVID-19 pneumonitis. In comparison, the

NEWS2 score given to a patient on admission shows no significant association with death, sug-

gesting that it is unlikely to represent a significant predictive factor for COVID-19 severity. A

weak association is seen between admission NEWS2 and both ICU admission (A = 0.24) and

intubation (A = 0.24), but given that the NEWS2 score is often a tool used to determine

whether a patient has deteriorated sufficiently to require intubation or ICU treatment, this is

perhaps unsurprising. Length of stay also showed moderate associations with ICU admission

(A = 0.30). There are several risk factors which become apparent with an increased length of

hospital stay, for instance the likelihood of the patient being on prolonged prescription of sev-

eral non-routine medications. These include medication for prevention of venous thrombo-

embolism (heparin and other anticoagulants), medications to aid somnolence at night (sleep

medication is frequently requested by the elderly while at hospital due to unfamiliar disturbing

noises at night in a busy clinical environment), antibiotics, anti-anxiety medication, medica-

tion to help bowel movements (due to prolonged bed-rest and immobility), medication to off-

load water retention from immobility (again from prolonged bed-rest) and pain medication.

Other factors showing moderate association with ICU admission included the location cat-

egory of their treatment ward (A = 0.66), the specific ward number (A = 0.49), and the ward in

which their COVID-19 test swab was collected (A = 0.43). Patients at PHU are triaged and

risk-stratified on admission, and the location of the clinical setting that they are initially taken

to for treatment would reflect the clinical need for specialist services, equipment or staff-train-

ing levels distributed within a particular sector within the hospital. Such a sector is typically

populated with a high number of patients needing high-dependency care and treatment. Since

aerosolization of the virus is a potential and proven risk, along with the potential for direct

transmission from person to person, nosocomial spread within such high-dependency care

units results in increased cases within these areas. It is therefore likely that associations of out-

comes with location-related data are a result of localized outbreaks, resulting in cases with

shared mutation patterns between patients who share similar treatment and comorbidity
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characteristics. Indeed, nationally over 15% of all cases have been estimated as having been

hospital acquired in the first wave in the UK [54], with up to 20% of infections in inpatients

and 73% in HCW due to nosocomial transmission [55]. It has been suggested that up to 80%

of nosocomial infections were caused by only 20% of patients due to “super-spreader” events

[14], with such rapid outbreak dynamics having been previously characterised in at least one

outbreak at PHU [56].

One key question to address as new variants of SARS-CoV-2 continue to arise is the effect

on severity of the disease as a result of new variants. Whilst the data described here do not

span the emergence of variants such as Delta and Omicron, they do represent the emergence

and subsequent rapid expansion of the first VOC, Alpha (B.1.1.7). Increased prevalence of

Alpha in the local region led to increased transmission of a range of currently circulating vari-

ants within the hospital [56]. Interestingly, Table 1 shows that the rate of severe cases amongst

Alpha cases (36.9%) was actually slightly lower than amongst non-Alpha cases (40.2%), sug-

gesting that Alpha cases may present a lower risk of severe outcomes in our dataset compared

to other variants (Table 1). However, whilst lineage was weakly associated with ICU admission

(A = 0.18), we otherwise saw no statistically significant links between lineage and death, intu-

bation, nor case severity in general (Table 2). In addition, we identified changes to the odds of

severe outcomes for cases of the Alpha VOC compared to other circulating variants for certain

sub-populations. In particular, whilst the risk of severe outcomes was significantly higher

amongst males compared to females in general (OR = 1.81), which is consistent to previous

studies [57–61], the overall risk showed a moderate (although not significant) reduction in

cases of the Alpha variant when compared to other cases for females (OR = 0.65) but not males

(OR = 1.17). Looking specifically at our three severity indicators identified a mild non-signifi-

cant decreased risk for mortality amongst females, but in contrast showed a significant

increase in risk in males for admission to ICU (OR = 2.03) and intubation (OR = 2.32).

Overall, these results suggest that whilst the Alpha variant had no significant impact on

COVID-19 severity overall, specific subgroups of the population may be more or less impacted

by specific variants of the COVID-19 virus over others. Differences in the impact of SARS--

CoV-2 infections between males and females has been suggested to result from differences in

the expression of angiotensin converting enzyme (ACE2) receptors [62]. Indeed, circulating

ACE2 levels have been shown to be higher in men, as well as in those with diabetes and pre-

existing cardiovascular conditions [63]. The study of Stirrup et al [26], a large-scale multi-cen-

tre study in the UK, also found that overall hazard of mortality and ICU admission were not

significantly affected in cases of Alpha compared to other lineages, but that sex-specific effects

may be present. Interestingly, however, they showed that it was women specifically that

showed increased risk of mortality and ICU admission in their cohort. Increased mortality

appeared to be specific to those 70 years and above, with a slight decrease seen in 50–69 year

olds. One possible explanation for this discrepancy may therefore be in differences in the age

profiles of those included in the two studies. Another possible explanation may be that our

dataset contains cases from across the entire course of the pandemic, including the first UK

wave where risk of severe outcomes was higher as a result of a lack of identified treatment and

vaccine options. Indeed, a recent large-scale study of 30 million people in the UK showed that

risk of severe COVID-19 outcomes is reduced as a result of ongoing vaccine programs [31].

However, our result remains when focussing only on cases from September 2021, indicating

that wave 1 patients do not affect the outcome data. It is worth also noting that whilst the

Alpha variant data are largely homogenous, significant heterogeneity exists in the non-Alpha

data, with cases coming from 46 distinct lineages in these data. Another difference may be

with respect to the population under consideration, since Stirrup et al was a multi-centre

study, primarily from hospitals within London (although did include data from the nearby city
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of Southampton). Both studies however point towards the role of Alpha in disease severity

being context specific and mild overall.

Linkage of WGS and clinical data represents a powerful approach for assessment of the

effects of Alpha on severity, in comparison to studies which used surrogate measures such as

S-gene target failure (SGTF) in qPCR tests to differentiate Alpha from other lineages. Indeed,

other studies based on community testing and SGTF have shown conflicting results, with stud-

ies showing increased risks of Alpha, but no difference in the effects of Alpha on mortality

[64,65] or ICU admission [65] between male and female cases. Thus, the evidence for

increased severity of the Alpha variant of concern remains inconclusive [66]. Beyond the role

of VOCs in determining disease severity, we sought to identify potential mutations or muta-

tion clusters associated with patients who suffered severe outcomes. Whilst we found no signif-

icant link between lineage and overall severity, we did find a weak link between the mutation

type and the NEWS2 scores given to the patient at admission (A = 0.25) and the maximum

score assigned (A = 0.23) (Table 3). Whilst this may indicate that there are mutations associ-

ated with patient health and physical derangement, it is also possible that such links relate to

nosocomial transmission of the disease amongst clinically vulnerable patients, as previously

discussed. This is further suggested given that the association is mostly enriched for mutations

associated with non-severe outcomes.

To explore this in more detail, we utilised a range of machine learning models with individ-

ual mutations encoded alongside other patient factors, to further explore associations with

patient mortality. Deep learning models have previously been developed for use in the diagno-

sis and screening of COVID-19 through interrogation of CT and chest X-ray images [67]. The

two models with highest accuracy, XGBoost and MLP-ANN, were compared to identify fea-

tures most linked with mortality. Renal disease, heart disease and diabetes feature for both

models, with risk factors such as history of hypertension, COPD, prior history of malignancy,

and asthma prominent in the XGBoost model, but not in the MLP-ANN model. The stochastic

nature of algorithms such as XGBoost and MLP-ANN models means a degree of randomness

exists, contrasted with deterministic algorithms such as linear regression or logistic regression-

based models. Regardless, it is clear that comorbidities are amongst the features most closely

associated with disease severity. Whilst the XGBoost model identified comorbidity status and

sex as being most predictive of severity (Fig 5D), the MLP-ANN identified a number of dele-

tions as being the features with the most impact (Fig 5E). These deletions were all specific to

the Alpha variant B.1.1.7, including the Δ69–70 deletion on the Spike protein responsible for

SGTF in qPCR testing for Alpha [68–71].

These deletions are therefore likely identified by the model as surrogates for Alpha vs non-

Alpha cases. Whilst this may indicate that Alpha may be associated with mortality, this is not

borne out when looking at male and female cases individually (Fig 4). This is therefore likely

the result of non-Alpha lineages primarily representing cases from earlier in the pandemic, but

may also be linked to selection bias due to Alpha being over-represented in these data. Simi-

larly, the well documented D614G mutation was identified by both models, which was intro-

duced at low levels during the first wave of infections in the UK, but became dominant and

fixed in the population in subsequent waves [45]. This mutation is also linked with the tempo-

ral nature of the pandemic, with severity often being worse in earlier waves due to the lack of

treatment options, reduced testing and interventions, and lack of vaccine program. It is there-

fore likely that these mutations are highlighting differences between cases early and later in the

pandemic, rather than inherently having a functional role in increasing disease severity.

Overall, our analysis indicates that there are no clear strong factors that determine severe

outcomes from COVID-19 (mortality, ICU admission or intubation). Whilst we detected a

number of significant associations, most were mild and could be explained due to conflation
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with either general patient health, their location within the hospital, or changes in our treat-

ment capabilities for the disease throughout the pandemic. It has been previously shown that

comorbidities such as cancer, renal disease and heart disease are linked to negative outcomes,

particularly mortality [49]. Also, whilst it is interesting to note that the NEWS2 score showed

significant association with disease outcomes, these are not suitable for prediction of outcomes

as discussed above. Similarly, the characteristics of the viral variant at the root of the infection

is unlikely to present a suitable predictive tool for determining disease outcomes. Whilst there

was some evidence of effects on severity from the Alpha variant compared to other circulating

variants, the effect was inconsistent, with both increase and decrease in severity seen, some-

times at odds with previous studies.

Whilst this study focuses on only the Alpha variant, and thus cannot draw conclusions for

further VOCs such as Delta and Omicron, these results suggest that within these data the

introduction of the Alpha variant did not have a significant impact on severity of the disease.

Of course, these data represent only a limited population, with 929 patient samples from a sin-

gle hospital site. One other key limitation of this study is that the demographics of the patient

cohort are skewed for those of the local area, in particular with over 75% of those in the study

being of a white background (Table 1). These results may therefore not be generalisable to the

population as a whole. However, despite these limitations, our study represents a useful and

in-depth interim exploration of the effects on disease severity in response to both clinical mea-

sures and viral genomics. Recently, a large-scale analysis of over 1 million patients in England

showed lower or similar risks of death, hospital admission and hospital attendance between

the BA.1 and BA.2 Omicron variants [30], matching our observation that emerging SARS--

CoV-2 variants do not result in more severe outcomes for patients.

Since our data indicate that virus genomics have limited impact on disease severity, it is

likely that understanding of those most susceptible to severe outcomes when infected by

SARS-CoV-2 (beyond clinically vulnerable individuals) will come from studies such as the

GenOMICC study in the UK (https://genomicc.org/about/), which aim to understand the

interaction between virus and host, and explore genetic factors in humans that dictate disease

outcomes. Indeed, multiple studies have already been conducted identifying potential suscepti-

bility loci in the human genome that may put patients at increased risk of death or other severe

outcomes, including mutations in genes linked to immune response, blood clotting and

mucus production [72–75]. In particular, a recent study using machine learning approaches

such as XGBoost identified variants from whole exome sequencing associated with severe

COVID-19 [76]. These data identified associations between age, gender, and 16 variants linked

to immune system and inflammatory processes able to predict severe outcomes with high

accuracy. Such studies will help to further understand the factors that predispose individuals

to severe outcomes from SARS-CoV-2 infection.

As society accustoms itself to a “new normal” way of life, we are learning to live with

endemic COVID-19. New variants will continue to emerge, and it is therefore imperative that

we learn what we can from existing data. It is particularly important for us to understand how

the most severe disease cases arise, in the hope that we may target such cases specifically and

early. Studies like this which combine clinical and laboratory data, will thus be essential to that

task.

Conclusion

Whilst many risk factors for severe COVID-19 have been identified, the precise mechanisms

resulting in severe outcomes for those infected by SARS-CoV-2 (including admission to ICU,

the need for mechanical ventilation, and mortality) remain poorly understood. In this study,
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we aimed to combine genomic sequencing data of SARS-CoV-2 viral variants with an exten-

sive database of patient records to further understand those factors most associated with severe

outcomes. In particular, we were interested to understand the precise role played by mutations

in the virus itself, and whether infection with certain variants or viruses with specific muta-

tions might be more likely to cause severe disease. Whilst patient outcome was weakly associ-

ated with factors linked with acute physiological status and human genetics, including age, sex

and pre-existing conditions, our data suggest that severity risk is not significantly impacted by

specific mutations in SARS-CoV-2. It is therefore likely that risk of severe outcomes results

from a combination of patient health and innate genetic predisposition. Thus, whilst studies

such as ours significantly further our understanding of the pathophysiology of the virus, ongo-

ing studies exploring the role of host genetics on disease progression will continue to disentan-

gle the complex factors that might increase risk to those infected with SARS-CoV-2.

Supporting information

S1 Fig. Sample flowchart. Flowchart of filtering steps for the final joint dataset.

(TIF)

S2 Fig. Machine learning performance metrics. Performance metrics during the training and

validation and the architecture of the MLP-ANN model. (a) The sequential method in Tensor-

flow v2.8 was used, incorporating the Adam optimization algorithm for stochastic gradient

descent for training of deep learning models. Parameters used were a learning rate of 0.0001,

with beta_1 = 0.9 and beta_2 = 0.799. Following initial stages of 10,000 epochs, the model was

refined and optimised for the appropriate number of nodes and hidden layers, and an “early

stopping” protocol was incorporated to stop training once the model performance stopped

improving. This was determined using a concurrent evaluation of cross-validation loss

remaining similar over 20 epochs, and ensured minimal over-fitting and improving comput-

ing time. The two graphs here show close convergence and agreement between the train and

validation sets of the MLP-ANN model. (b) The final architecture of the MLP-ANN model.

The model contained 3 hidden layers (with 700, 700 and 10 nodes each), and a final output

layer containing two nodes to pipe the categorical outcomes of 0 (no-death) and 1 (death). The

number of optimal nodes were optimised over several runs of model building and hyperpara-

meter optimisation steps. The final layer used “softmax” as the activation step, which scales

numbers/logits into probabilities. The activation steps for the hidden layers were ReLU, used

specifically to address the problem of vanishing gradients in deep-learning models. Dropout

regularization was employed to reduce overfitting of the model, where different sets of neurons

are dropped from the architecture, giving an overall result akin to training and optimizing

multiple neural networks simultaneously.

(TIF)

S3 Fig. Pairwise association score heatmap. Heatmap showing pairwise association scores

(based on Cramer’s V for categorical-categorical relationships, Spearman’s Rank for continu-

ous-continuous relationships and Correlation Ratio for categorical-continuous relationships)

between all variables in the patient outcomes dataset. Only statistically significant results are

shown, with any association with p> 0.05 shown as grey. See S1 Table for description of data

points.

(TIF)

S4 Fig. SARS-CoV-2 genome schematic. Schematic organisation of the SARS-CoV2 genome

and the coordinates of nucleotide positions marking the boundaries of the various viral

domains. The schematic diagram was generated using VectorNTI (V11). The wild-type
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SARS-CoV2 genome sequence was obtained from Genbank (Wuhan-Hu-1, GenBank,

MN908947.3). The arrows indicate the direction of translation of the gene (5’ to 3’).

(TIF)

S1 Table. Primary data point descriptions. Description of primary data points in the com-

bined data set.

(XLSX)

S1 File. COG-UK consortium. Full list and affiliations for COVID-19 Genomics UK

(COG-UK) Consortium members.

(DOCX)
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CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell [Internet]. 2021 Jan 7; 184

(1):64–75.e11. Available from: https://doi.org/10.1016/j.cell.2020.11.020 PMID: 33275900

44. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in

SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell [Internet].

2020 Aug 20; 182(4):812–27.e19. Available from: http://dx.doi.org/10.1016/j.cell.2020.06.043.

45. Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. SARS-CoV-2 spike-protein D614G

mutation increases virion spike density and infectivity. Nat Commun [Internet]. 2020 Nov 26; 11

(1):6013. Available from: https://doi.org/10.1038/s41467-020-19808-4 PMID: 33243994

46. Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and Evolution of the SARS-

CoV-2 Spike Protein. Viruses [Internet]. 2022 Mar 19; 14(3). Available from: https://doi.org/10.3390/

v14030640 PMID: 35337047

47. Stuart M, Mooney C, Hrabovsky M, Silvestri G, Stewart S. Surgical planning during a pandemic: Identi-

fying patients at high risk of severe disease or death due to COVID-19 in a cohort of patients on a cata-

ract surgery waiting list. Ulster Med J. 2022; 91: 19–25. Available from: https://doi.org/10.1038/s41598-

020-70285-7 PMID: 35169334

48. Leentjens J, van Haaps TF, Wessels PF, Schutgens REG, Middeldorp S. COVID-19-associated coagu-

lopathy and antithrombotic agents—lessons after 1 year [Internet]. Vol. 8, The Lancet Haematology.

2021. p. e524–33. Available from: https://doi.org/10.1016/S2352-3026(21)00105-8 PMID: 33930350

49. CDC. People with certain medical conditions [Internet]. Centers for Disease Control and Prevention.

2022 [cited 2022 Jul 6]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-

precautions/people-with-medical-conditions.html.

50. Wibisono E, Hadi U, Bramantono, Arfijanto MV, Rusli M, Rahman BE, et al. National early warning

score (NEWS) 2 predicts hospital mortality from COVID-19 patients. Ann Med Surg (Lond) [Internet].

2022 Apr; 76:103462. Available from: https://doi.org/10.1016/j.amsu.2022.103462 PMID: 35284070

51. Myrstad M, Ihle-Hansen H, Tveita AA, Andersen EL, Nygård S, Tveit A, et al. National Early Warning

Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19—a pro-

spective cohort study. Scand J Trauma Resusc Emerg Med [Internet]. 2020 Jul 13; 28(1):66. Available

from: http://dx.doi.org/10.1186/s13049-020-00764-3.

52. Baker KF, Hanrath AT, Schim van der Loeff I, Kay LJ, Back J, Duncan CJ. National Early Warning

Score 2 (NEWS2) to identify inpatient COVID-19 deterioration: a retrospective analysis. Clin Med [Inter-

net]. 2021 Mar; 21(2):84–9. Available from: https://doi.org/10.7861/clinmed.2020-0688 PMID:

33547065

53. Carr E, Bendayan R, Bean D, Stammers M, Wang W, Zhang H, et al. Evaluation and improvement of

the National Early Warning Score (NEWS2) for COVID-19: a multi-hospital study. BMC Med [Internet].

2021 Jan 21; 19(1):23. Available from: https://doi.org/10.1186/s12916-020-01893-3 PMID: 33472631

PLOS ONE Assessment of risk factors for severe COVID-19 in a large acute UK NHS hospital Trust

PLOS ONE | https://doi.org/10.1371/journal.pone.0283447 March 23, 2023 27 / 29

https://scholar.archive.org/work/zoyvvx2sinfonnfw33lj7gexqq/access/wayback/https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w.pdf
https://scholar.archive.org/work/zoyvvx2sinfonnfw33lj7gexqq/access/wayback/https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w.pdf
https://scholar.archive.org/work/zoyvvx2sinfonnfw33lj7gexqq/access/wayback/https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w.pdf
https://doi.org/10.1093/bioinformatics/btv056
https://doi.org/10.1093/bioinformatics/btv056
http://www.ncbi.nlm.nih.gov/pubmed/25637556
https://doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pubmed/29750242
https://www.degruyter.com/document/doi/10.1515/9781400883868/html
https://www.degruyter.com/document/doi/10.1515/9781400883868/html
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1007/978-1-4612-4380-9_6
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1038/s41586-020-2895-3
https://doi.org/10.1038/s41586-020-2895-3
http://www.ncbi.nlm.nih.gov/pubmed/33106671
https://doi.org/10.1016/j.cell.2020.11.020
http://www.ncbi.nlm.nih.gov/pubmed/33275900
http://dx.doi.org/10.1016/j.cell.2020.06.043
https://doi.org/10.1038/s41467-020-19808-4
http://www.ncbi.nlm.nih.gov/pubmed/33243994
https://doi.org/10.3390/v14030640
https://doi.org/10.3390/v14030640
http://www.ncbi.nlm.nih.gov/pubmed/35337047
https://doi.org/10.1038/s41598-020-70285-7
https://doi.org/10.1038/s41598-020-70285-7
http://www.ncbi.nlm.nih.gov/pubmed/35169334
https://doi.org/10.1016/S2352-3026%2821%2900105-8
http://www.ncbi.nlm.nih.gov/pubmed/33930350
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://doi.org/10.1016/j.amsu.2022.103462
http://www.ncbi.nlm.nih.gov/pubmed/35284070
http://dx.doi.org/10.1186/s13049-020-00764-3
https://doi.org/10.7861/clinmed.2020-0688
http://www.ncbi.nlm.nih.gov/pubmed/33547065
https://doi.org/10.1186/s12916-020-01893-3
http://www.ncbi.nlm.nih.gov/pubmed/33472631
https://doi.org/10.1371/journal.pone.0283447


54. Bhattacharya A, Collin SM, Stimson J, Thelwall S, Nsonwu O, Gerver S, et al. Healthcare-associated

COVID-19 in England: A national data linkage study. J Infect [Internet]. 2021 Nov; 83(5):565–72. Avail-

able from: https://doi.org/10.1016/j.jinf.2021.08.039 PMID: 34474055

55. Evans S, Agnew E, Vynnycky E, Stimson J, Bhattacharya A, Rooney C, et al. The impact of testing and

infection prevention and control strategies on within-hospital transmission dynamics of COVID-19 in

English hospitals. Philos Trans R Soc Lond B Biol Sci [Internet]. 2021 Jul 19; 376(1829):20200268.

Available from: https://doi.org/10.1098/rstb.2020.0268 PMID: 34053255

56. Cook KF, Beckett AH, Glaysher S, Goudarzi S, Fearn C, Loveson KF, et al. Multiple pathways of

SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses

during the second wave of the COVID-19 pandemic in the UK. Front Cell Infect Microbiol. 2022; 12:

1066390. Available from: https://doi.org/10.3389/fcimb.2022.1066390 PMID: 36741977

57. Mohamed MO, Gale CP, Kontopantelis E, Doran T, de Belder M, Asaria M, et al. Sex Differences in

Mortality Rates and Underlying Conditions for COVID-19 Deaths in England and Wales. Mayo Clin Proc

[Internet]. 2020 Oct; 95(10):2110–24. Available from: https://doi.org/10.1016/j.mayocp.2020.07.009

PMID: 33012342

58. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender Differences in Patients With COVID-19:

Focus on Severity and Mortality [Internet]. Vol. 8, Frontiers in Public Health. 2020. Available from:

https://doi.org/10.3389/fpubh.2020.00152 PMID: 32411652

59. Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological

Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol [Inter-

net]. 2021 May 7; 12:659339. Available from: https://doi.org/10.3389/fimmu.2021.659339 PMID:

34025658

60. Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of COVID-19 in South

Korea. Int J Infect Dis [Internet]. 2020 Apr; 93:339–44. Available from: https://doi.org/10.1016/j.ijid.

2020.03.031 PMID: 32198088

61. Wu McGoogan. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-

19) outbreak in China: summary of a report of 72 314 cases from the Chinese . . .. JAMA [Internet].

Available from: https://jamanetwork.com/journals/jama/article-abstract/2762130.

62. Gagliardi MC, Tieri P, Ortona E, Ruggieri A. ACE2 expression and sex disparity in COVID-19. Cell

Death Discov [Internet]. 2020 May 26; 6:37. Available from: https://doi.org/10.1038/s41420-020-0276-1

PMID: 32499922

63. Patel SK, Velkoska E, Burrell LM. Emerging markers in cardiovascular disease: where does angioten-

sin-converting enzyme 2 fit in? Clin Exp Pharmacol Physiol [Internet]. 2013 Aug; 40(8):551–9. Available

from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1681.12069. PMID: 23432153

64. Davies NG, Jarvis CI, CMMID COVID-19 Working Group, Edmunds WJ, Jewell NP, Diaz-Ordaz K,

et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature [Internet].

2021 May; 593(7858):270–4. Available from: https://doi.org/10.1038/s41586-021-03426-1 PMID:

33723411

65. Patone M, Thomas K, Hatch R, Tan PS, Coupland C, Liao W, et al. Mortality and critical care unit admis-

sion associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study. Lancet

Infect Dis [Internet]. 2021 Nov; 21(11):1518–28. Available from: https://doi.org/10.1016/S1473-3099

(21)00318-2 PMID: 34171232

66. Giles B, Meredith P, Robson S, Smith G, Chauhan A, PACIFIC-19 and COG-UK research groups. The

SARS-CoV-2 B.1.1.7 variant and increased clinical severity-the jury is out. Lancet Infect Dis [Internet].

2021 Sep; 21(9):1213–4. Available from: http://dx.doi.org/10.1016/S1473-3099(21)00356-X.

67. Siddiqui S, Arifeen M, Hopgood A, Good A, Gegov A, Hossain E, et al. Deep Learning Models for the

Diagnosis and Screening of COVID-19: A Systematic Review [Internet]. Vol. 3, SN Computer Science.

2022. Available from: https://doi.org/10.1007/s42979-022-01326-3 PMID: 35911439

68. Investigation of SARS-CoV-2 variants of concern: technical briefings [Internet]. GOV.UK. 2020 [cited

2022 Jul 27]. Available from: http://www.gov.uk/government/publications/investigation-of-novel-sars-

cov-2-variant-variant-of-concern-20201201.

69. Brown KA, Gubbay J, Hopkins J, Patel S, Buchan SA, Daneman N, et al. S-Gene Target Failure as a

Marker of Variant B.1.1.7 Among SARS-CoV-2 Isolates in the Greater Toronto Area, December 2020 to

March 2021. JAMA [Internet]. 2021 May 25; 325(20):2115–6. Available from: https://doi.org/10.1001/

jama.2021.5607 PMID: 33830171

70. Walker AS, Vihta KD, Gethings O, Pritchard E, Jones J, House T, et al. Tracking the Emergence of

SARS-CoV-2 Alpha Variant in the United Kingdom. N Engl J Med [Internet]. 2021 Dec 30; 385

(27):2582–5. Available from: https://doi.org/10.1056/NEJMc2103227 PMID: 34879193

PLOS ONE Assessment of risk factors for severe COVID-19 in a large acute UK NHS hospital Trust

PLOS ONE | https://doi.org/10.1371/journal.pone.0283447 March 23, 2023 28 / 29

https://doi.org/10.1016/j.jinf.2021.08.039
http://www.ncbi.nlm.nih.gov/pubmed/34474055
https://doi.org/10.1098/rstb.2020.0268
http://www.ncbi.nlm.nih.gov/pubmed/34053255
https://doi.org/10.3389/fcimb.2022.1066390
http://www.ncbi.nlm.nih.gov/pubmed/36741977
https://doi.org/10.1016/j.mayocp.2020.07.009
http://www.ncbi.nlm.nih.gov/pubmed/33012342
https://doi.org/10.3389/fpubh.2020.00152
http://www.ncbi.nlm.nih.gov/pubmed/32411652
https://doi.org/10.3389/fimmu.2021.659339
http://www.ncbi.nlm.nih.gov/pubmed/34025658
https://doi.org/10.1016/j.ijid.2020.03.031
https://doi.org/10.1016/j.ijid.2020.03.031
http://www.ncbi.nlm.nih.gov/pubmed/32198088
https://jamanetwork.com/journals/jama/article-abstract/2762130
https://doi.org/10.1038/s41420-020-0276-1
http://www.ncbi.nlm.nih.gov/pubmed/32499922
https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1681.12069
http://www.ncbi.nlm.nih.gov/pubmed/23432153
https://doi.org/10.1038/s41586-021-03426-1
http://www.ncbi.nlm.nih.gov/pubmed/33723411
https://doi.org/10.1016/S1473-3099%2821%2900318-2
https://doi.org/10.1016/S1473-3099%2821%2900318-2
http://www.ncbi.nlm.nih.gov/pubmed/34171232
http://dx.doi.org/10.1016/S1473-3099(21)00356-Xs
https://doi.org/10.1007/s42979-022-01326-3
http://www.ncbi.nlm.nih.gov/pubmed/35911439
http://GOV.UK
http://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
http://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201
https://doi.org/10.1001/jama.2021.5607
https://doi.org/10.1001/jama.2021.5607
http://www.ncbi.nlm.nih.gov/pubmed/33830171
https://doi.org/10.1056/NEJMc2103227
http://www.ncbi.nlm.nih.gov/pubmed/34879193
https://doi.org/10.1371/journal.pone.0283447


71. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility

and impact of SARS-CoV-2 lineage B.1.1.7 in England [Internet]. Available from: http://dx.doi.org/10.

1101/2020.12.24.20248822.

72. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA, Walker S, et al. Whole-genome

sequencing reveals host factors underlying critical COVID-19. Nature [Internet]. 2022 Jul; 607

(7917):97–103. Available from: https://doi.org/10.1038/s41586-022-04576-6 PMID: 35255492

73. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al.

Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA [Internet]. 2020 Aug

18; 324(7):663–73. Available from: https://doi.org/10.1001/jama.2020.13719 PMID: 32706371

74. Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, et al. A catalog of associa-

tions between rare coding variants and COVID-19 outcomes. medRxiv [Internet]. 2021 Feb 27; Avail-

able from: https://doi.org/10.1101/2020.10.28.20221804 PMID: 33655273

75. Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, et al. Pan-ancestry exome-

wide association analyses of COVID-19 outcomes in 586,157 individuals. Am J Hum Genet [Internet].

2021 Jul 1; 108(7):1350–5. Available from: https://doi.org/10.1016/j.ajhg.2021.05.017 PMID: 34115965

76. Onoja A, Picchiotti N, Fallerini C, Baldassarri M, Fava F, GEN-COVID Multicenter Study, et al. An

explainable model of host genetic interactions linked to COVID-19 severity. Commun Biol [Internet].

2022 Oct 26; 5(1):1133. Available from: https://doi.org/10.1038/s42003-022-04073-6 PMID: 36289370

PLOS ONE Assessment of risk factors for severe COVID-19 in a large acute UK NHS hospital Trust

PLOS ONE | https://doi.org/10.1371/journal.pone.0283447 March 23, 2023 29 / 29

http://dx.doi.org/10.1101/2020.12.24.20248822
http://dx.doi.org/10.1101/2020.12.24.20248822
https://doi.org/10.1038/s41586-022-04576-6
http://www.ncbi.nlm.nih.gov/pubmed/35255492
https://doi.org/10.1001/jama.2020.13719
http://www.ncbi.nlm.nih.gov/pubmed/32706371
https://doi.org/10.1101/2020.10.28.20221804
http://www.ncbi.nlm.nih.gov/pubmed/33655273
https://doi.org/10.1016/j.ajhg.2021.05.017
http://www.ncbi.nlm.nih.gov/pubmed/34115965
https://doi.org/10.1038/s42003-022-04073-6
http://www.ncbi.nlm.nih.gov/pubmed/36289370
https://doi.org/10.1371/journal.pone.0283447

