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Abstract

An in-depth analysis of the epidemiological patterns of TB/HIV co-infection is essential since

it helps to target high-risk areas with effective control measures. The main objective of this

study was to assess the spatial clustering of TB/HIV co-infection prevalence in Ethiopia for

the year 2018 using district-level aggregated TB and HIV data obtained from the Ethiopian

Federal Ministry of Health. The global Moran’s index, Getis-Ord G�i local statistic, and

Bayesian spatial modeling techniques were applied to analyse the data. The result of the

study shows that TB among people living with HIV (PLHIV) and HIV among TB patients

prevalence were geographically heterogeneous. The highest prevalence of TB among

PLHIV in 2018 was reported in the Gambella region (1.44%). The overall prevalence of TB

among PLHIV in Ethiopia in the same year was 0.38% while the prevalence of HIV among

TB patients was 6.88%. Both district-level prevalences of HIV among TB patients and TB

among PLHIV were positively spatially autocorrelated, but the latter was not statistically sig-

nificant. The local indicators of spatial analysis using the Getis-Ord statistic also identified

hot-spots districts for both types of TB/HIV co-infection data. The results of Bayesian spatial

logistic regression with spatially structured and unstructured random effects using the

Besag, York, and Mollié prior showed that not all the heterogeneities in the prevalence of

HIV among TB patients and TB among PLHIV were explained by the spatially structured

random effects. This study expanded knowledge about the spatial clustering of TB among

PLHIV and HIV among TB patients in Ethiopia at the district level in 2018. The findings pro-

vide information to health policymakers in the country to plan geographically targeted and

integrated interventions to jointly control TB and HIV.

Background

Human immunodeficiency virus (HIV) and tuberculosis (TB) are major global public health

concerns. TB is the single infectious disease that takes more lives each year, ranking above

HIV until the coronavirus (COVID-19) pandemic spread worldwide [1]. TB and HIV diseases

are epidemiologically associated [2]. Observed co-dynamics suggest that the two diseases are

directly related at the population level [3] and also within the host [4].

Although TB is a preventable and treatable disease, it is the leading cause of death among peo-

ple living with HIV (PLHIV) claiming millions of lives each year [5]. The emergence of the HIV
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pandemic has also had a major impact on TB incidence rates [6]. HIV affects TB epidemiology

by altering the natural course of infection and increasing the risk of latent TB infection (LTBI)

reactivation [7]. According to WHO, the risk of developing active TB is estimated to be 20 times

greater in PLHIV than in people who are HIV-negative [8]. Sub-Saharan Africa is the hardest-hit

region as it is home to 70% of all people living with TB/HIV co-infection in the world [9]. In

2018, on average PLHIV were 19 times more likely to fall ill with TB than those without HIV. In

this year, an estimated 862,000 PLHIV worldwide fell ill with TB, of which 251,000 people (about

one-third of total AIDS deaths) died from HIV-associated TB cases. [10]. In 2019, there were an

estimated 815,000 global TB incident cases among PLHIV, 55% of which were diagnosed. In

addition, there were an estimated 210,000 TB-related deaths among PLHIV, about a 63% reduc-

tion compared to 2010, where TB-related death was 570,000 among PLHIV [11].

In 2016, an estimated 16,000 PLHIV had or were infected with TB in Ethiopia. During this

year, the routine National Tuberculosis Program (NTP) reported that 8,625 (about 54%) were

receiving co-treatment. A study in Ethiopia also suggests that TB incidence rate is high in areas

where HIV is highly prevalent [12]. Based on the WHO recommendation, the integrated TB

and HIV collaborative activities were updated in 2012, and aimed at reducing the burden of

both HIV among TB patients and TB among PLHIV. The Ethiopian guidelines recommend

functional TB/HIV collaborative mechanisms at all levels, which include national, regional,

sub-regional or district and health service facility levels. Studies on the prevalence of TB/HIV

co-infection have shown that the co-infection varies widely in Ethiopia (see e.g. [12, 13]) and

has geographical clustering [14]. Other studies, e.g. [15, 16] have reported the epidemiology of

TB/HIV co-infection at the hospital level in Ethiopia. Similar observations have been made in

other countries [17, 18]. Additionally, the recent work of Alene et al. [14] justified the spatial

distribution of TB/HIV co-infection in Ethiopia at a national level using three-year aggregated

data. However, to our knowledge, there is no report on Bayesian spatial modeling of TB/HIV

co-infection at least using yearly data at a national level in Ethiopia. In order to design the most

effective strategies that can help to reduce the TB and HIV transmission rates, it is essential to

have a more in-depth analysis of the epidemiological patterns of TB/HIV co-infection at the dis-

trict level. Identifying districts or areas where the burden of TB/HIV co-infection is concen-

trated may help to identify populations at higher risks of co-infection. Targeting high-risk areas

with effective control measures yields good results in controlling the pandemic;TB, HIV and

TB/HIV [19]. In addition, knowledge of hot-spots and cold-spots (or high and low burden)

areas is required for successful surveillance programs and optimal resource allocation [20].

Therefore, the main aim of this study was to assess the spatial distribution of TB/HIV co-infec-

tion in Ethiopia at the district level using the Bayesian approach. The Bayesian spatial modeling

allows to incorporate spatial or geographical neighborhood information on the variable of

interest. Four different Bayesian spatial models were fitted for the data using different priors

and the best model was selected using DIC and WAIC measures.

The rest of the paper is organized as follows. We first describe the data, then discuss the

Bayesian spatial modelling giving more emphasis to spatial priors applied in the present study.

The results are presented in the Results section. Finally, a discussion of the results and the limi-

tations of the study, and the conclusions are given in the Discussion and the Conclusion sec-

tions, respectively.

Methods

Study area

Ethiopia is located in the North-Eastern part of Africa. It shares borders with Sudan in the west,

Eritrea in the north, Djibouti in the Northeast, Somalia in the east and south east and Kenya in
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the south. The country occupies an area of approximately 1,127,127 square kilometers. Adminis-

tratively, before 2020 the Federal Democratic Republic of Ethiopia was divided into nine

regional states (Tigray; Afar; Amhara; Oromia; Somali; Benishangul-Gumuz; Southern Nations,

Nationalities, and Peoples’ (SNNP); Gambella; and Harari) and two city administrations (Addis

Ababa and Dire Dawa). Each regional state was divided into zones, a zone divided into districts

(called “woreda”), and a district divided into Kebeles (sub-districts). The spatial plot of the

regions and the zones of Ethiopia are displayed in Fig 1. With the devolution of power to

regional governments, public service delivery is under the jurisdiction of the regional states. The

regional health bureaus are responsible for the administration of public health while the districts

are responsible for planning and implementation of the health services. Each district is a clearly

delineated administrative and geographical area with a well-defined population. Districts have

networks of primary health care units such as health centers, health posts, and a district hospital.

Health-related data are compiled at the district level and are reported to the Zone Health

Department, Region Health Bureau, and then to the Federal Ministry of Health [21].

Data sources

The data used in this study was district-level aggregated data of TB and HIV co-infection cases

of year 2018. The data includes the total number of TB patients enrolled in the national TB

program who tested for HIV, TB patients with HIV positive test results, TB patients with HIV

negative test results, HIV positive clients who were screened for TB, HIV positive patients with

active TB, and HIV positive patients with no TB. The data were compiled and reported by the

district Health Office to the Federal Ministry of Health (FMoH) through the Health

Fig 1. Regions and Zones in Ethiopia. Spatial plot of regions and zones in Ethiopia, where E, N, S, W, N-W, Sp. and Z represent east, noth, south, west,

north-west, special and zone, respectively.

https://doi.org/10.1371/journal.pone.0283334.g001
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Management Information System (HMIS) quarterly [22, 23]. In this study, the data were used

to investigate the spatial clustering of TB/HIV co-infection in Ethiopia at the district level.

Geographical coordinates with district mapping shape files prepared by the Central Statistics

Agency (CSA) of Ethiopia was also obtained from FMoH. The response variables of interest in

this study were the prevalence of HIV among TB patients and the prevalence of TB among

PLHIV, and their values were calculated from the above-described raw data.

Statistical analyses

In this paper, spatial analysis was used to identify geographical clustering of the observed prev-

alence of HIV among TB patients, r(h)i, calculated as the proportion of the number of TB

patients with HIV positive test results in a district m(h)i to the total number of TB patients who

were tested for HIV in the same district n(t)i. Similarly, the observed prevalence of TB among

PLHIV, r(t)i was defined as the proportion of the number of the TB patients among PLHIV in

a district m(t)i to the total number of HIV patients in the same district enrolled in HIV care

facilities who were screened for TB during their visit n(h)i. Two TB/HIV co-infection preva-

lences were spatially analyzed separately in order to assess the spatial patterns of the two types

of co-infections at the district level in 2018. In the spatial analyses, the district geographical

boundaries were geo-referenced and linked to the district data described in the Data Source

section. The choropleth maps were developed for visualization using ArcGIS software ver-

sion 10.3 [24]. The statistical techniques used in this paper are discussed below.

Spatial pattern analysis. The global spatial autocorrelation of TB/HIV co-infection, i.e.

TB among PLHIV and HIV among TB patients, was investigated using the univariate global

Moran’s I [25]. Let xi and xj denote the observed values at districts si and sj, i, j = 1, . . ., m,

where m is the number of districts. Then the global Moran’s Index or Moran’s I [25] statistic is

defined as

I ¼
Pm

i¼1

Pm
j¼1
wijðxi � �xÞðxj � �xÞ

W0

Pm
i¼1
ðxi � �xÞ2

; ð1Þ

whereW0 ¼
Pm

i¼1

Pm
j¼1
wij and spatial weight wij is chosen according to the spatial relationship

between districts of xi and xj. If the two districts are neighbors, the wij = 1; otherwise wij = 0.

The simplest and most commonly used neighbourhood definition is given by the binary con-

nectivity matrix [26]:

wij ¼
1 if districts si and sj share a boundary

0 otherwise:

(

According this definition, wij = wji and wii = 0, implies no self-correlation of an element with

itself, hence the resulting spatial proximity matrix is necessarily symmetric. In expression (1),

if the values of neighboring districts are close and (or values are spatially clustered), then I is

close to 1 which indicates positive spatial autocorrelation. On the other hand, if most of the

neighboring districts have different values (or spatially dispersed), then I is close to -1 which

indicates a negative spatial autocorrelation [26, 27]. The global Moran’s I become close to 0

when the deviation values of some pairs of neighbours and others have deviations in the oppo-

site direction( [28], pp. 175).

Getis-Ord G�i statistic. The Getis-Ord G�i local statistic is an alternative to the local Mor-

an’s I index determining the type of spatial cluster which can be either hot-spot or cold-spot
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[29]. It is given by

G�i ¼
Pm

j¼1
wijxj � �x

Pm
j¼1
wij

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
m
Pm

j¼1
w2
ij � ð

Pm
j¼1
wijÞ

2
i
=ðm � 1

r ;
ð2Þ

where xj is the disease count in district j, wij is the spatial weight associated with administrative

districts sj and si, �x ¼
Pm

j¼1
xj=m and S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1
x2
j

m � �x2

r

, i.e. the standard deviation.

Under the approximate normality assumption [29], G�i is assumed to be an estimate of the

normal variant [30]. Depending on the choice of confidence level (e.g. 90%, 95%, or 99%) on a

map, clusters with a 90 / 95 /99 percent significance level from a two-tailed normal distribution

indicate significant clustering, i.e. cold-spots and hot-spots. For a given confidence interval, a

hot-spot cluster consists of districts with z-scores which are greater than the upper confidence

limit, and a cold-spot cluster consists of districts with z-scores which are lower than the lower

confidence limit.

Unlike the local Moran’s I statistic [31], the Getis-Ord G�i statistic computed for each dis-

trict is a z-scores [32], and hence allows for a more direct interpretation of statistical signifi-

cance. In addition, more than one confidence interval can be plotted on a map. Therefore, in

the current study, Getis-Ord G�i statistic was used to identify the hot-spots and cold-spots dis-

trict clusters with respect to for the prevalence of HIV among TB patients and TB among

PLHIV.

Bayesian spatial models

Spatial data has a property of spatial dependence [33]. A spatial correlation analysis, discussed

in the previous section, can be used to check if this property is present for a given data. In the

context of this study the Bayesian approach is based on the prior distributional assumptions

that are placed on the district-specific parameters of the spatial dependence structure. Four

spatial models with Bayesian smoothing conditional autoregressive (CAR) structure [34, 35]

and spatially structured random effects were considered for the analysis. A CAR model

assumes a form of local spatial continuity so that neighbouring districts have the same residual

risks after accounting for the fixed effects [36]. Suppose that for the case of modelling preva-

lence of HIV among TB patients, r(h)i = m(h)i/n(t)i*Binomial(p(h)i, n(t)i).

Then a Bayesian spatial smoothing logistic regression model is defined using a logit as

logitðpðhÞiÞ ¼ b0 þ uðhÞi þ vðhÞi; i ¼ 1; . . . ;m; ð3Þ

where m is the number of districts (804 in this study), β0 is the intercept, u(h)i is the unstruc-

tured random component which assumed to follow a uðhÞi � Nð0; s2
uÞ distribution, v(h)i, is the

structured spatial random component associated with district si. In this paper, the structured

spatial random component was modelled with the intrinsic conditional autoregressive (ICAR)

[34]; proper CAR (pCAR); Besag, York and Mollié (BYM) [34] and Leroux conditional autore-

gressive (LCAR) [37] models. Similarly, for the case of modelling the prevalence of TB among

PLHIV r(t)i* Binomial(p(t)i, n(h)i) and the model is given as

logitðpðtÞiÞ ¼ b0 þ uðtÞi þ vðtÞi; i ¼ 1; . . . ;m: ð4Þ

The above prior models are discussed below.

The Intrinsic Conditional Autoregressive (ICAR) model. The Intrinsic Conditional

Autoregressive (ICAR) model [34] is a prior model which imposes a spatial dependence
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structure on v(h)i and v(t)i in models (3) and (4). This is done by specifying a conditional nor-

mal distribution for the parameter of each district si that depends on the parameters of the

neighbours of si. For example, for each i = 1, . . .,m:

vðtÞijvðtÞ� i; s2
v ;W � Normal

P
j24i

vðtÞj
mi

;
s2
v

mi

� �

; ð5Þ

where: v(t)−i denotes the set of district-specific parameters excluding v(t)i, s
2
v is an unknown

variance parameter which controls the amount of local smoothing for the entire study region

[28], i.e. the amount of variation between the spatially structured random effects;4i denotes

the set of neighbours of district si as defined in W and mi is the number of neighbours of dis-

trict si and equals the sum of the ith row of W. The joint probability distribution of v(t) has a

form (see [38], pp 410–419)

PðvðtÞ1; . . . ; vðtÞmÞ ¼ PðvðtÞÞ / exp �
1

2s2
v

v0
ðtÞðDw � WÞvðtÞ

� �

; ð6Þ

where Dw is an m ×m diagonal matrix with the diagonal elements equal to the row sums of the

W matrix, i.e. the ith diagonal element of Dw is (D)ii is equal to wiþ ¼
Pm

j¼1
wij, 8 i, i = 1. . .,m.

The conditional distribution (5) is a local dependence structure that leads to a local or

neighbourhood smoothing of the area-specific parameters. Given the parameters of all other

areas, the conditional mean
P

j24i
vðtÞj=mi only depends on the parameters of the neighbouring

areas. With a global dependence structure, the conditional mean of v(t)i depends on all other

v(t)j with j 6¼ i. In the ICAR model, the variance parameter s2
v is the only unknown parameter,

and hence to estimate it via the Bayesian approach a prior distribution is required. Since the

ICAR model assumes positive spatial autocorrelation on the area-specific parameters, this is to

be tested at the exploratory data analysis stage before fitting the ICAR model. In addition,

since the joint distribution (6) is improper, i.e. the distribution does not integrate to 1, the

ICAR model places a sum-to-zero constraint, i.e.
Pm

i¼1
vðtÞi ¼ 0 on the district-specific parame-

ters v(t).

The Proper CAR (pCAR) model. The ICAR model can converted to a proper CAR

model by introducing a multiplicative parameter ρ to the spatial weights. This is defined via a

set of m full conditionals as

vijv� i; s2
v;W � Normal r

Pm
j¼1
wijvj

wiþ
;
s2
v

wiþ

 !

; ð7Þ

or, equivalently, by the joint multivariate distribution given as:

PðvðtÞÞ / exp �
1

2s2
v

S0
ðtÞðDw � rWÞvðtÞ

� �

: ð8Þ

For this joint distribution to be proper, the precision matrix Q = (Dw−ρ W) needs to be invert-

ible so that the covariance matrix S = Q−1 exists. This requires that the multiplicative parame-

ter ρ to be in the interval (1/λmin, 1/λmax), where λmin and λmax are the smallest and the largest

eigenvalues of the row-standardised spatial weights matrix, respectively (see Section 3.3.1 in

[28, 39], p.250). The parameter ρmeasures the strength of the spatial autocorrelation.

The Besag, York and Mollié (BYM) model. The Besag, York and Mollié (BYM) model

[34] linearly combines the spatially-structured variability and the spatially unstructured
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variability to model the district-specific parameter θ(t)i as

yðtÞi ¼ b0 þ uðtÞi þ vðtÞi; ð9Þ

where β0 is the intercept, quantifying the average prevalence rate in the entire study region, i.e.

Ethiopia, v(t)i is the spatially-structured random component and u(t)i the spatially-unstructured

random component u(t) = (u(t)1, . . ., u(t)m). The effects in the above model are district-specific

and are modelled hierarchically. For the parameters in v(t), the ICAR model is used and the

parameters in v(t) are modelled through an exchangeable model with u(t)i independently

N ð0; s2
uÞ distributed for i = 1, . . ., m. Therefore, the BYM model is a convolution of an intrin-

sic CAR model and the independently identically distributed (IID) Gaussian model. Recall the

sum-to-zero constraint on v(t) in the ICAR model, and because of this constraint the prior

mean of 0 for elements in vector v(t) and the intercept β0 should be included to represent the

overall level.

Leroux Conditional Autoregressive (LCAR) model. Since the BYM model is a convolu-

tion of an intrinsic CAR model and IID Gaussian model, it has an identification problem. As

an alternative to the ICAR and the pCAR models, Leroux, Lei & Breslow [37] proposed a more

general conditional autoregressive model (LCAR) in which the covariance structure of the

model is a mixture of uncorrelated and correlated effects, specifically the LCAR has the follow-

ing distribution

vðtÞ � Nð0; s2
v QðW; rÞ

� 1
Þ; ð10Þ

where

QðW; rÞ ¼ rWþ ð1 � rÞI;

and I is an identity matrix of order m, W is a neighborhood weight matrix, and the parameter

ρ controls the overall degree to which the effects are correlated. If ρ = 0, then the LCAR model

reduces to a model with independent random effects, and as in the pCAR model, it reduces to

the ICAR model when ρ = 1. LCAR model allows the degree of clustering to be estimated,

thereby circumventing having to use a BYM model with two components. Furthermore, if 0�

ρ< 1, then the joint distribution of v(t) with precision matrix Q(W, ρ) is proper [40].

Computation and models comparison. The classical approach to Bayesian inference is to

use the Markov Chain Monte Carlo (MCMC) simulation techniques [41]. However, MCMC is

computationally expensive. Hence, we used the integrated nested Laplace approximation

(INLA) numerical method [42] to fit the Bayesian spatial models.

The spatial relationships of the districts were defined using a spatial weight matrix and

neighbourhoods were defined using Queen’s contiguity whereby neighbours districts are shar-

ing borders or a common vertex with each another. This was done using the nb2listw func-

tion in the spdep [42] R package. The Bayesian analyses were done using the inla()
function in the R-INLA package [43]. The significance of the Moran’s I statistic was assessed

using the Monte Carlo randomization technique.

The fitted models were compared using the Deviance Information Criterion (DIC) [44]

and the widely applicable information criteria (WAIC) [45].

Ethical consideration

Permission of the study was obtained from the School of Science Ethics Committee, University

of South Africa (ERC Reference Number: 2021/CSET/SOS/045). In addition, permission to

use the data for this study was obtained from Ethiopian Ministry of Health Office. In this
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study we have used aggregated district level data, therefore informed consent was not obtained

from the study participants.

Results

Descriptive statistics

The total number of TB, HIV, and TB/HIV patients in Ethiopia stratified by gender is pre-

sented in Table 1. In 2018, 52,402 TB and 719,651 HIV patients were reported to the national

Health Management Information System (HMIS) (Table 1). All these reported cases were con-

sidered in this study. Except for those districts where their TB or HIV data were not available,

the data used covers all the regions, the zones and the districts of Ethiopia. Of a total number

of 52,402 TB patienst enrolled in the Directly Observed Therapy Short Course (DOTS) and

who were tested for HIV in Ethiopia in 2018, 55.32% (28,991) were male. However, a higher

proportion of patients enrolled in HIV care who were screened for TB were female 62.91%

(452,701).

The prevalence of HIV among TB patients, denoted by HIV(TB), and the prevalence of TB

among PLHIV, denoted by TB(HIV), in the regions and the two city administrations in 2018

are given in Table 2. The highest prevalence of TB among PLHIV was reported in the Gam-

bella region (1.44%) and the overall prevalence of TB among PLHIV in Ethiopia in the same

year was 0.38 percent (Table 2; Fig 2). On the other hand, the overall prevalence of HIV

among TB patients in the country was 6.88 percent and the highest prevalence was observed in

Addis Ababa (20.76%). The results in Table 2 and Fig 2 show that the prevalence of TB among

PLHIV and that of HIV among TB patients were geographically heterogenous in 2018, and

this will be further explored in the next sections. However, as the two maps in Fig 2 show, the

observations that were made at a regional level are not necessarily reflected at all district levels

within a region. For example, in Fig 2(b), except Harar, Gambella, and Dire Dawa city admin-

istration, there were some districts in other regions and Addis Ababa city administration

which had high prevalences of TB among PLHIV.

Spatial analyses

Spatial clustering of TB/HIV co-infection in Ethiopia. There is evidence of spatial clus-

tering of TB/HIV co-infection, specifically for HIV among TB patients (Global Moran’s

I = 0.093, p-value = 0.0003). In the case of the prevalence of TB among PLHIV, the Global

Moran’s I = 0.017 and is statistically nonsignificant with p-value = 0.2663. The positive Global

Moran’s I values show that any two spatial neighbouring districts tend to have a similar preva-

lence of TB among PLHIV and similar prevalence of HIV among TB patients. To explore the

spatial heterogeneity further and identify the hot-spots and cold-spots districts for the preva-

lence of both HIV among TB patients and TB among PLHIV, we used the Getis-Ord G�i statis-

tic. Maps showing the distribution of the spatial clusters of the prevalence are presented in

Table 1. The number of TB, HIV and TB/HIV co-infected patients reported in Ethiopia by gender in 2018.

Variable Male Female Total

Number of TB cases enrolled to DOTS and who were tested for HIV 28,991 23,411 52,402

Number of TB patients with HIV positive test result 1,988 1,616 3,604

Number of clients enrolled in HIV care who were screened for TB during their visit 266,948 452,703 719,651

Total number of HIV positive clients with active TB 1,228 1,503 2,731

HIV: Human Immunodeficiency Virus; TB: Tuberculosis; DOTS: Directly Observed Therapy, Short Course.

https://doi.org/10.1371/journal.pone.0283334.t001
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Fig 3. Fig 3(a) shows that the hot-spots were: at the border of Awsi Rasu zone of Afar with Dji-

bouti, the districts of Qeleme Wellega zone in the Oromia region; in the districts of Gamo

Gofa, South Omo, Wolaita, Dawuro and Gedio zones in SNNP region. There was no cold-

spot. Fig 3(b) shows that hot-spots for the prevalence of HIV among TB patients in Ethiopia

were: in the districts located in Afar, Amhara, Oromiya, Somali and Tigray regions and further

in Addis Ababa city administration. However, the cold-spots for the prevalence of HIV among

TB patients were concentrated in the districts of Benishangul-Gumuz region; Wellega, Illu

Aba Bora and Jimma zones of Oromia region; Harer region; districts of Kefa, Konta, and

Gamo Gofa zone in SNNP regions; and Dire Dawa city administration.

Bayesian spatial modeling for TB/HIV co-infection

Since the global Moran’s I statistic values for both prevalence data were positive, we considered

fitting the Bayesian spatial logistic models to assess the amount of variability in each co-infec-

tion type that is explained by the variations between spatially structured random effects. The

Bayesian approach requires the specification of the prior distributions for all the random ele-

ments of the model. Since the empirical information on the parameters, β0, σv, and σu or rele-

vant to the study data was not available, non-informative priors were used [46]. Specifically,

for the intercept a non-informative prior N(0, 1000) was used. For σv and σu in the four priors

or models ICAR, pCAR, BYM and LCAR, the default minimally informative priors that are

specified in the log of the structured and unstructured effect precision parameters, i.e. log(τv)
*logGamma(1, 0.0005) and log(τu)*logGamma(1, 0.0005) [47] were used.

Table 3 displays the model selection criteria DIC and WAIC from fitting the above four

prior models to the data. The DIC and WAIC values for the BYM prior were smaller than the

other priors except for TB among PLHIV data, where the values are slightly smaller for LCAR

model. Hence the BYM prior is the preferred prior for both data sets. Therefore, in what fol-

lows, we only report results based on BYM prior outcomes for the data.

The spatially structured residuals of the fitted BYM model were examined for spatial auto-

correlation. The global Moran’s I for spatially structured residuals was 0.350 (with p-value

<0.001) for HIV among TB data and 0.596 (with p-value<0.001) suggesting that there was

Table 2. The prevalence of HIV among TB patients (HIV(TB)) and the prevalence of TB among PLHIV (TB

(HIV)) by regions.

Region / City HIV(TB) TB(HIV)

Addis Ababa 20.76 0.44

Afar 5.08 1.42

Amhara 7.02 0.34

Beneshangul Gumuz 3.40 0.44

Dire Dawa 11.72 0.39

Gambela 9.72 1.44

Harari 13.06 0.25

Oromiya 3.98 0.31

SNNP 3.58 0.56

Somali 15.49 0.00

Tigray 8.00 0.63

Ethiopia 6.88 0.38

Two city administrations: Addis Ababa and Dire Dawa

https://doi.org/10.1371/journal.pone.0283334.t002
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strong spatial autocorrelation in each of the residuals data. The maps for spatial clustering of

these residuals are given in Fig 4. The plot in panel (a) shows that there are districts that were

identified as hot-spots in the Gambella region, in most of the western areas and some parts of

the west Hararge zone of the Oromia region, and the SNNP region for spatially structured

residuals from BYM model fitted to the prevalence of TB among PLHIV data. The plot of spa-

tially structured residual predicted from BYM model by fitting the prevalence of HIV among

TB patients data shows hot-spot areas (districts) in Tigray region, northwest, southwest, and

west Afar areas, border of north Gondar and Sudan, districts in north and south Wollo zones

in Amhara region, south part of Jimma zone and Finfine Zuria of Oromia region, districts in

Kefa, Wolayta, Hadiya and south Omo zones of SNNP region. The hot-spots show that there

was spatial clustering of residuals, which agrees with the global Moran’s I statistic values.

These results indicate that district-level heterogeneity in the prevalence of HIV among TB

patients and TB among PLHIV in Ethiopia in 2018 was not fully explained by the two random

effects for both data.

The variances of spatially structured random effect and unstructured effect of BYM model

fitted to HIV among TB patients data were ŝ2
v ¼ 2:469 and ŝ2

u ¼ 0:968, respectively, while

variances of BYM model fitted to TB among PLHIV were ŝ2
v ¼ 19:032 and ŝ2

u ¼ 0:713,

respectively. Therefore, about 71.8% and 96.4% of the variability in the prevalence of HIV

among TB patients and TB among PLHIV were explained by the spatial structured random

effects, respectively.

Fig 2. Prevalence plot. Geographical distribution of the prevalence of HIV among tuberculosis patients (a) and TB among PLHIV (b) in Ethiopia in

2018.

https://doi.org/10.1371/journal.pone.0283334.g002
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Discussion

TB and HIV still represent the most important infectious diseases in the globe despite the mea-

sures taken by WHO to eradicate them. These diseases still present alarming data on morbidity

and mortality [1, 48]. In this study, we have investigated the spatial clustering and heterogene-

ity in the prevalence of TB/HIV co-infection, i.e. the prevalence of TB among PLHIV and HIV

among TB patients in Ethiopia at the district level for 2018.

The prevalence of HIV among TB patients and TB among PLHIV varied between regions

and between districts in Ethiopia. The findings of the study show that the prevalence of the

TB/HIV co-infection (TB among PLHIV and HIV among TB patients) was geographically

Fig 3. Spatial clustering plot. Spatial clustering for prevalence of TB among PLHIV (panel a) and HIV among TB patients (panel b) in Ethiopia at

district level in 2018 using the Getis-Ord G�i statistic.

https://doi.org/10.1371/journal.pone.0283334.g003

Table 3. Summary of DIC and WAIC values for different priors used to fit the Bayesian spatial models on prevalence of HIV among TB patients, and TB among

PLHIV.

Models comparison criteria

HIV among TB patients TB among PLHIV

Prior DIC WAIC DIC WAIC

iCAR 2544.307 2527.077 1940.760 1967.126

pCAR 2528.100 2470.864 1906.281 1913.731

BYM 2506.427 2445.771 1898.015 1903.040

LCAR 2533.809 2467.982 1898.649 1904.488

https://doi.org/10.1371/journal.pone.0283334.t003
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heterogeneous. These results are consistent with the findings of [14], whose results indicate

that the prevalence of TB among PLHIV and the prevalence of HIV among TB patients varied

in Ethiopia at the district level but the data that we have used was yearly aggregated data for

2018 but in their study, they have used three years aggregated data.

The results from LISA using Getis-Ord G�i statistics showed that the prevalence of TB

among PLHIV was spatially clustered, i.e. there were hot spots in districts of Qeleme Wellega

zone in the Oromia region and districts of Gamo Gofa, South Omo, Wolayta, Dawuro, and

Gedio zones in the SNNP region. However, there was no cold spot observed.

Findings from similar studies conducted in Ethiopia [13, 14] revealed educational status,

wealth index, migrations, drug dependency, WHO clinical stage, and baseline CD4 count as

significant predictors of this TB/HIV co-infection. Additionally, the results of other related

studies conducted in several countries identified poverty, poor healthcare, drug, and alcohol

misuse, and mental disorders as the main determinant factors for the spatial variation of TB/

HIV co-infection [14, 17, 49, 50].

In this study, we have noticed that the hot spots for the prevalence of TB among PLHIV

have appeared in the country more in urbanized areas such as Awassa, Jimma, Shashemene,

Hosaena (Hadiya zone), and Sodo town (in Wolayta zone). This may be related to the migra-

tion of people within districts or across neighboring districts for a job and better living condi-

tions. Studies in Ethiopia have indicated that spatial clustering of TB was associated with

migration [49, 51–55] and ongoing TB transmission is also high in overcrowded and con-

gested urban areas [49, 52, 55, 56].

Fig 4. Spatial residual plot. Spatial clustering of spatially structured residuals from fitted BYM models to HIV among TB patients and TB among

PLHIV data using the Getis-Ord G�i statistic.

https://doi.org/10.1371/journal.pone.0283334.g004
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Some studies conducted in Brazil [50, 57, 58] also showed that strong spatial clustering of

TB and TB/HIV observed in urban areas and semi-urban areas with a high population density

and market places.

The LISA cluster maps also illustrate that there was a hot-spot area on the border of the

Awsi Rasu zone of Afar with Djibouti. This finding supports the results of the existing litera-

ture [14, 55], therefore it may affirm that there is a relationship between TB transmission and

international border or territorial space. Hence it is necessary to extend the country-level anal-

ysis to higher spatial dimensions that include at least neighbouring countries to obtain global

solutions and targeted intervention [59–61].

Further, there were districts identified as hot-spots for the prevalence of HIV among TB

patients in Afar, Amhara, Oromiya, Somali (at the border of Dolobay and Somalia in the

southeastern part of Ethiopia), and Tigray regions and further in Addis Ababa city administra-

tion. This spatial variability is consistent with the results from [14] who used three years data

and found clustering of HIV among TB patients in districts located in Afar and Amhara

regions.

However, unlike the prevalence of TB among PLHIV data, some districts or areas were

identified as the cold-spots for the prevalence of HIV among TB patients in the Benishangul-

Gumuz region, Wellega, Illu Aba Bora, and Jimma zones of Oromia region, Harer region, dis-

tricts of Kefa, Konta, and Gamo Gofa zones in SNNP regions, and Dire Dawa city administra-

tion. Hot-spot areas for HIV among TB patients were also observed at the border of Adigrat

(in Tigray region) and Eritrea, and Dolobay area (in Somali region) and Somali. There is a ref-

ugee camp close to the border between Adigrat and Eritrea. Generally, refugees are often in sit-

uations where they do not have proper job access to generate additional income. As a result,

women and young girls in refugee camps often enter commercial sex work to earn income for

food, and to gain access to other resources [62], this exposes them to HIV/AIDS and other sex-

ually transmitted diseases (STDs) infections. Further, in these areas, HIV vulnerability can

raise as districts have poor access to health care facilities and integrated service provision to

address TB/HIV co-infection [14]. The current study results revealed that the prevalence of

HIV among TB patients was more spatially correlated than the prevalence of TB among

PLHIV in Ethiopia. This finding agrees with Aturinde et al. [63] who found that HIV was

more spatially correlated than TB in Uganda for the period 2015 to 2017. The positive global

Moran’s I statistic values for both data were suggesting that neighbouring districts tend to pos-

sess similar characteristics in the prevalence of TB/HIV co-infection.

The results from spatial clustering analyses on the spatially structured residuals obtained

from fitting the Bayesian spatial logistic regression with BYM priors suggested that for the

study data, not all the district-level heterogeneity in the prevalence of HIV among TB patients

and in the prevalence of TB among PLHIV in Ethiopia for 2018 were explained by the spatially

structured random effects.

Unlike the results of the current study, study conducted in Kenya [64], which applied

Bayesian hierarchical approach to study the spatial distribution of tuberculosis reported that

spatially unstructured model had better fit for their study data.

In addition, the hot-spots districts may indicate an expanded epidemiological view of the

districts with a high risk of TB/HIV co-infection in the country. These spatial heterogeneities

in the prevalence indicate an imperative for more regular surveillance to detect emerging and

existing TB/HIV hot-spots areas for targeted health interventions by authorities to prevent TB

and HIV transmissions, especially in settings where there are limited resources.

There were some limitations to this study that could have affected our findings. First, the

data were aggregated at the district level, therefore the findings of this study cannot be repre-

sentative of small administrative units of the country or Kebele or household or individual
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level. Second, since the data were collected from the national HMIS electronic surveillance sys-

tem, the notified HIV and TB cases might not reflect the actual burden of the diseases in a dis-

trict due to underreporting of cases or miss detection. For example, symptomatic individuals

who did not access HIV or/and TB diagnosis and treatment might remain unreported.

Conclusion

In this paper, we assessed the spatial clustering and heterogeneity of the prevalence of two

types of TB/HIV co-infection applying the global Moran’s I statistic, Getis-Ord G�i statistic

with LISA cluster maps, and fitting the Bayesian spatial models. The results applying these sta-

tistical methods show that the prevalence of TB among PLHIV and HIV among TB patients

were strongly spatially clustered in Ethiopia at the district level in 2018. The LISA detected dis-

tracts or areas that were hot-spots and cold-spots for TB among PLHIV and HIV among TB

patients in various regions and the two city administrations. The analysis of spatially struc-

tured and unstructured random effects of Bayesian spatial modeling showed that most of the

variability in each of the two prevalence was explained by the spatially structured random

effects. This study expanded knowledge about the clustering of TB/HIV co-infection in Ethio-

pia at the district level. The findings provide information to health policymakers in Ethiopia to

plan geographically targeted and integrated interventions to jointly control TB and HIV.
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