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Abstract

The Coronavirus disease 2019 (COVID-19) has exposed many systemic vulnerabilities in
many countries’ health system, disaster preparedness, and adequate response capabilities.
With the early lack of data and information about the virus and the many differing local-spe-
cific factors contributing to its transmission, managing its spread had been challenging. The
current work presents a modified Susceptible-Exposed-Infectious-Recovered compartmen-
tal model incorporating intervention protocols during different community quarantine peri-
ods. The COVID-19 reported cases before the vaccine rollout in Davao City, Philippines, are
utilized to obtain baseline values for key epidemiologic model parameters. The probable
secondary infections (i.e., time-varying reproduction number) among other epidemiological
indicators were computed. Results show that the cases in Davao City were driven by the
transmission rates, positivity proportion, latency period, and the number of severely symp-
tomatic patients. This paper provides qualitative insights into the transmission dynamics of
COVID-19 along with the government’s implemented intervention protocols. Furthermore,
this modeling framework could be used for decision support, policy making, and system
development for the current and future pandemics.
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Introduction

The Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus has globally spread
since its first detection in Wuhan, China, last December 2019 and has caused millions of
deaths worldwide [1-4]. From then on, different control measures have been implemented to
mitigate its spread. In the absence of vaccines, different countries have resulted in the imple-
mentation of non-pharmaceutical interventions (NPIs) [5-10], such as the quarantine mea-
sures/isolation, contact tracing, physical distancing, and mass testing. In the Philippines,
various levels of community quarantines have been implemented in different parts of the
country since the first confirmed COVID-19 case was reported [11]. These community
quarantines are classified as enhanced community quarantine (ECQ), modified enhanced
community quarantine (MECQ), general community quarantine (GCQ), or modified general
community quarantine (MGCQ). Regardless of the quarantine classification, the general
public is urged to stay in their respective households, practice physical distancing, and wear
face masks and face shields to lessen the spread of the disease. School closures, halting of mass
gatherings and other potentially superspreading events (e.g., religious activities) have been
imposed. NPIs are continually being implemented to prevent a surge of cases due to the
crowding of individuals [12, 13]. Noteworthy, however, is the apparent difference in the strict-
ness in implementing different control measures between quarantine classifications as summa-
rized in Table 1 [14]. Furthermore, the number of deployed quarantine enforcers and the
number of monitoring stations put up differs among respective quarantine classifications.
Even between regions in the Philippines under similar quarantine classification, differences
in resources and workforce, among others, contribute to variability in the efficacy of the inter-
vention. Hence, assessing the effects of the different quarantine classifications on a regional,
provincial, or city-level could help decision-makers formulate a more appropriate policy to
mitigate the health crisis.

A baseline measure should be developed to properly comprehend the effect of an interven-
tion to the COVID-19 cases; this will be a basis for determining any subsequent changes
brought about by these interventions [15, 16]. Epidemiological models help identify critical
factors of non-pharmaceutical interventions (NPIs) implementation, such as timing and fre-
quency, that support the control of disease spread [17]. Understanding the parameters that
determine the course of an epidemic is critical for health-related decision-making, as it allows
for the development of disease mitigation and control methods, as well as the provision of
treatment to individuals who have been infected or become ill [18]. These models have been
used as guides to policy and decision-makers as well as implementers to combat outbreaks
[19-21]. To this end, several mathematical models on the dynamics of COVID-19 with NPIs
have been developed and published to project the different COVID-19 transmission scenarios

Table 1. Quarantine classification, sample restrictions, Davao City, Philippines [14].

ECQ
Population | 100% stay at home
Gathering | Not Allowed
Travel No public transport; no domestic
flights; limited international flights
Government | Skeletal onsite; Others work from

home

https://doi.org/10.1371/journal.pone.0283068.t001

Quarantine Classification
GCQ
Elderly & youth

Restricted to 10 max

MECQ MGCQ

100% stay at home Permissive socio-economic activities

Restricted to 5 max with minimal public health standards

No public transport; limited
international flights; controlled inbound
travels

Public transport with strict
distancing

Alternative work
arrangement; 4-day
workweek

Skeletal onsite; Others work from home
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on a larger scale, i.e., national level [22, 23]. Nevertheless, assessing the effects of different quar-
antine classifications to key epidemiological parameters on a more specific scale, i.e., regional
level, has not been widely documented.

The high transmissibility and virulence of SARS-CoV-2 resulted in a significant number of
severe and critical cases requiring specialized treatment and intensive care beds— forcing the
development of predictive models capable of estimating healthcare demands and assisting
decision-making [24-26]. For better contextualization of the model, local COVID-19 dynam-
ics and NPIs in Davao City were used in the current case study. Davao City is the largest city
in the Philippines based on land area. It is located in Region 11 (Davao Region), the most pop-
ulous region in Mindanao—the southern part of the country [27]. The statistics from the
Department of Health-Davao Center for Health Development (DOH-DCHD) show that
Davao City accounts for almost 57% of Davao Region’s COVID-19 cases (as of June 26, 2021).
Davao City is also the capital of Region 11, serving as the focal business hub and other activities
in the region. Hence, the importation and transmission risk of COVID-19 from and to neigh-
boring provinces and regions is high.

This paper modified the classic Susceptible-Exposed-Infected-Recovered (SEIR) deter-
ministic compartmental model [28] into a Susceptible-Exposed-Infectious Hospitalized-
Infectious Monitored-Recovered (SEIyI,R) model to describe the dynamics of COVID-19
in Davao City incorporating the Philippines’ Department of Health’s quarantine and isola-
tion protocols, namely quarantining exposed individuals and isolating confirmed positive
cases according to the severity of symptoms or presence of comorbidity [13]. This model
incorporated an outflow from the E compartment back to S similar to [29]— a dynamic that
has not been widely applied to models in a Philippine regional setting. This link signified
that, instead of the standard classification of the E compartment [28], not all exposed indi-
viduals in this model are on a latent stage of the disease, do not become infectious, and hence
become susceptible again after they were released from quarantine or isolation. Moreover,
the model also incorporates the progression or worsening of symptoms of some previously
asymptomatic positive cases (i.e., presymptomatic). Disease-related deaths also in this model
are assumed to only occur among severely symptomatic patients. Furthermore, in Davao
City’s context, isolation and, or quarantining of the infectious individuals do not guarantee
that the patient has stopped contributing to the pathogen’s transmission; viral spread may
occur before an intervention due to delays in test result. Moreover, health and emergency
workers can still get infection from quarantined or isolated individuals. Hence in this model,
we assumed that the compartments Iy and I, equally drive the transmission regardless of
isolation or quarantine. Nevertheless, the contact tracing method in Davao City during the
period covered in this paper is assumed to be efficient whereby minimizing the possibility of
an untraced infectious individual. Thus, the model does not incorporate a compartment for
undetected cases to make analysis tractable.

We aimed to estimate the baseline epidemiological parameters, i.e., pre-vaccination
COVID-19 period, using the least-square method and bootstrapping techniques in quantifying
parameter uncertainty. Epidemiological measures such as the basic reproduction number(R,),
statistical time-varying reproduction number (R}), and the deterministic time-varying repro-
duction number (R?) have also been computed. These numbers generate insightful thresholds
on the secondary infections generated by a COVID-19 infectious patient upon interaction
with the susceptible population [30]. We also provided basic local stability analysis of the
model. The COVID-19 outbreak has led researchers to investigate numerous factors of disease
transmission and evolution [31, 32]. The empirical results from the generated model can guide
the local government unit in reviewing their respective protocols to mitigate the spread of
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COVID-19. Furthermore, the model described here is general enough to be used in studying
COVID-19 dynamics in other regions, cities, or municipalities.

Materials and methods
Ethics statement

In compliance with the Joint Memorandum Circular No. 2020-0002 by the Philippines’
Department of Health on the data privacy guideline, processing and disclosure of COVID-
19-related data for disease surveillance and response, the study was reviewed by the Depart-
ment of Health XI Cluster Ethics Review Committee with protocol number P211111601.
Furthermore, this study does not involve human participants or personally identifiable
information.

Model formulation

In this paper, the closed homogeneous population was divided into five population classes,
namely, susceptible (S), quarantined/exposed (E), infectious individuals treated in either a
monitoring facility (I,) or hospitals handling severe cases (I5;), and recovered (R) individuals.
We specifically defined the compartments as follows:

o Susceptible (S): Individuals who have not been infected with COVID-19 but are at risk of
contracting the disease;

Exposed (E): Individuals who were under quarantine who may have been exposed to the dis-
ease and were still in the latent stage or who may have been exposed but have not necessarily
contracted the virus;

Hospitalized (Iy): Infected individuals confirmed positive for COVID-19 treated in COVID-
19-designated referral hospitals and exhibited moderate to critical symptoms or have known
comorbidities;

Monitored (I,): Infected individuals confirmed positive for COVID-19 under monitoring
in designated Temporary Treatment and Monitoring Facilities (TTMFs). These are infected
persons who exhibited no symptoms (asymptomatic) or who had mild COVID-19 symp-
toms; and

Recovered (R): Individuals who recovered from the disease and possessed a certain level of
immunity.

The schematic diagram in Fig 1 depicted the disease transmission dynamics, with the corre-
sponding parameter descriptions, range of values, and sources, were detailed in Table 2.
Herein, the mean residence time in E, in Iy, and in I are respectively given as

A7 = (Y(L—1)+0urq+ S,r(1—q) + ),
B = ((PHm + VM(l - m) + 5)717 and
Cl= (g +0+74)

The system of differential equations that represents the transmission dynamics of the
SARS-CoV-2 virus in the city was obtained by adding the inflow rate and subtracting the out-
flow rate for each respective component. The following system (1) mathematically described
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Fig 1. Schematic diagram of the regional COVID-19 transmission dynamics. Circles represent the compartments

(state variables of the model), while arrows indicate flows between compartments SEI;IR. The outflow from Ij;

indicated by yy indicates disease-induced mortality.

https://doi.org/10.1371/journal

the disease dynamics

ds

dt
dE

dt
d,
dt
ALy
dr
dR
dt
dN
dr

.pone.0283068.9001

a—as—ﬁ(IMT“H”w(l _ME,
POEIS (1 1) 4-5,mq + 8,1 — ) +O)E,

OyrqE + pyml, — (g + 0 + 7)1y,
Oyr(1 = q)E — (pm + 7y (1 — m) + S)I,
Vuly + Vu(1 —m)L, — OR,

o — ON — py I,

Table 2. Parameter description, values, and sources for Davao City, Philippines.

Parameter Description Value/Range Unit Source
N Total Population 1,816,987 indv [33]
B Transmission rate [0, 1] per day Estimated
r Positivity proportion of Exposed that becomes infectious [0, 1] % per day Estimated
Sy E — Iy Reciprocal of the latency period from onset of illness to Hospital Admission [0, 1] per day *
Sm E — I, Reciprocal of the latency period from onset of illness to TTMF Admission %’ 0, 1] per day *
Yu I;; — R: Recovery rate of I; individuals [0, 1] per day *
YMm Ip; — R: Recovery rate of Iy, individuals [0, 1] per day *
Un Iy — D: COVID-19 related death rate [0, 1] per day *
q Severity proportion of reported cases that are moderate-critical [0, 1] % per day *
Presymptomatic proportion of I, cases that become critical/severe [0, 1] % per day *
v Discharging rate of Exposed 1 per day [13]
14
on Iy — Iy Hospitalization rate of I 1 per day *
5
5 Natural Death Rate 1 per day [34]
26017.2
a Recruitment Rate 69.8379** per day [34]
A7! Mean residence time in E [0, 20] days Calculated
B! Mean residence time in I, [0, 20] days Calculated
c! Mean residence time in I;; [0, 20] days Calculated

* estimated from the data,

**a =~ N§

https://doi.org/10.1371/journal.pone.0283068.t002
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with/where S(£), E(t), In(t), I(t), and R(f) are nonegative, and N(t) = S(¢) + E(t) + Ip(t) + Iu(?)
+ R(#). The parameters were piecewise functions of time subject to the duration of implemen-
tation of the different levels of quarantine classifications (i.e., ECQ, MECQ, GCQ, and

dN
MGCQ). It could be easily seen from the system (1) that because P ON — uy L,

o dN
—~ when — = 0. As such, the system’s feasible region is

SuPt%#»ooN(t) S 5 dt

Q={SEI,[,RER :0<N< %}.
Hence, the model is well posed, and all solutions remain in Q.

Data

Publicly available data on the daily COVID-19 new infected cases in the Philippines can be
accessed through the government data drop [35]. However, the data used in this study were
obtained under a partnership and non-disclosure agreement from the DOH—DCHD:
Regional Epidemiology and Surveillance Unit (RESU). This partnership and data-sharing
agreement were sought for better and more efficient data, and result validation, which would
have been difficult if the data was acquired from the data drop. The epidemiological dataset
used included dates of illness’ onset, dates of surveillance report, and the health status upon
admission of confirmed cases (e.g., asymptomatic, mild, moderate, severe, and critical). The
dataset was between March 8, 2020, to March 5, 2021. We categorized the epidemic data
according to two groups: the infected individuals under monitoring in TTMFs (e.g., asymp-
tomatic and mild cases), and the infected patients admitted to COVID-19 referral hospitals
(e.g., moderate, severe, and critical cases). Even though the working model is a baseline model
that does not distinguish vaccination as a disease control measure, the model could be used to
assess pre-vaccination transmission dynamics. Hence, we only used data before the start of the
vaccine rollout in Davao City, which was on March 5, 2021. For reproducibility, a sample data-
set which is in compliance with the non-disclosure agreement could be accessed through [36].

Community quarantine timeline pre-vaccination

Pre-vaccination, the city government of Davao, following the recommendations and guide-
lines issued by the Inter-Agency Task Force (IATF), imposed NPIs such as social distancing,
lockdowns, curfews, and office and school closures, among others, to reduce disease transmis-
sion. The intensity of the implementation of NPIs varied according to the type of community
quarantine imposed as summarized in Table 1. Thus, we divided the epidemiological data into
four distinct periods according to the intensity and classification of community quarantine
implemented in the city. The government first imposed community quarantine (CQ) in
Davao City on March 15—April 3, 2020. On April 4—May 15, 2020, Davao City was placed
under ECQ. For simplicity, the study assumes that Davao City is under ECQ from March 8,
2020, to May 15, 2020. The first quarantine period is referred to as Q1. The periods Q2, Q3,
and Q4 occurred on May 16—June 30, July 1—November 19, and November 20—March 5,
2021, which were under GCQ, MGCQ, and back to GCQ, respectively.

Sensitivity analysis

Sensitivity analysis was performed a priori to parameter estimation. This was used as the basis
why certain parameters needed to be identified while some were fixed. Parameters with higher
sensitivity needed to be estimated reliably subject to the available information. We performed
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uncertainty and sensitivity analysis using the Latin Hypercube Sampling (LHS) and Partial
Rank Correlation Coefficient (PRCC) method [37]. To perform the LHS analysis, 11 of the 13
system parameters plus a dummy were varied simultaneously while we fixed the values of the
o and & parameters according to Table 2. We assumed a uniform distribution for the 11
parameters with [0, 1] bounds for the transmission rate § and [0, 1] bounds for the rest of the
parameters. The LHS/PRCC method was then applied utilizing the codes by Massey, which
were publicly available on GitHub [38]. The method involved generating 10,000 samples via
the LHS scheme to populate the LHS matrix. Each row on the LHS matrix was then passed to
the SEIyI,R model to run 10,000 Monte Carlo simulations. We considered three (3) outcome
measures: the infectious monitored individuals (I,;), hospitalized infectious individuals (Ir),
and the deterministic time-varying reproduction number (RY). Parameters with PRCC values
close to —1 and +1 were highly negatively (positively) correlated to the selected outcome
measures.

Model parameterization

Model parameters were estimated following the methods of Chowell, and Banks et al. [39, 40].
The model was calibrated to the daily new infected cases in Davao City from March 8, 2020
(the first case of COVID-19) to March 5, 2021. The model calibration was performed
individually for each quarantine period considered (e.g., Q1—Q4). The model has 13 epidemi-
ological parameters. Two (2) of these parameters were estimated: the transmission rate (f),
and the positivity proportion (r). First, a seven (7)-day moving average filter was applied to
smoothen the random variations in the daily incidence data. To fit the asymptomatic-or-mild
daily incidence data to the model, we defined the newly infected people under monitoring as
M(t) = 5pr(1 — g)E. The moderate-to-critical daily incidence data were fitted to the model
using the new hospitalized infected people defined as H(t) = dyrqgE. The data-fitting problem
was then solved using the least squares (LS) technique given by the objective function

ft) = argminZ! (f(t,) — y(t,))*, y(t,) was the observed daily new cases, and f{t;) was the corre-
sponding model simulation. In particular, f{t;) = (M(t;), H(t;)) and y(t;)’s are the daily reported
monitored and hospitalized cases. The fitting procedure was executed using the MATLAB
1scurvefit function with numerical optimization through a trust-region reflective algo-
rithm [41]. Other parameter values were either estimated from the data [42, 43] or taken from
existing published literature. The complete list of the system parameters and their sources is
presented in Table 2. The estimated parameter values are presented in Table 3. These values
were then analyzed for feasibility and were verified or compared to other existing literature.
The analysis is expounded in the results section.

Table 3. Estimated parameter values per quarantine period for Davao City, Philippines.

Parameter

B

r
on

Yu
™M

UH
q
m

Q1 (ECQ) Q2 (GCQ) Q3 (MGCQ) Q4 (GCQ)
0.2862 0.1284 0.2359 0.2142
0.1013 0.1758 0.1702 0.1238

1 1 1 1

7 5 3 3
0.0238 0.0257 0.0244 0.0193

1 1 1 1

19 16 14 11
0.1223 0.1579 0.2928 0.3002
0.2271 0.0788 0.0842 0.0742

0 0 0.0002 0.0054

https://doi.org/10.1371/journal.pone.0283068.t003
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Bootstrapping method

The bootstrapping method was used to simulate the lower and upper bounds (95% confidence
level) around the model fit in assessing parameter identifiability [39]. The parametric boot-
strapping approach generated 10,000 bootstrap realizations assuming a Poisson error structure
of the best fit from the LS fitting method. The generated bootstrap realizations were used to re-
simulate the SEIyI)R model and to derive the empirical distributions of the estimated parame-
ters within a 95% confidence interval.

Time-varying reproduction number

The daily statistical time-varying reproduction number (R) in this paper was computed fol-
lowing the methods of Cori and colleagues with prior mean yg; = 2.6 and standard deviation
osr =2 [37, 44] and mean pg; = 4.8 and standard deviation og; = 2.3 [45]. Furthermore, the
COVID-19 cases according to the onset of symptoms, were used to statistically estimate the R’.
On the other hand, a formula for the deterministic time-varying reproduction number (R?)
was also derived from the compartmental model using the next-generation matrix method
[30]. The R¢ was then compared to the RY.

Results and discussion
Qualitative analyses

Some of the qualitative analyses performed in this study involved computing the basic (Ro)
and time-varying deterministic reproduction numbers (R?), and solving for the model’s local
stability, equilibrium points, and elasticity indices. The detailed steps to these analyses, proof
and calculation can be found in the supplementary S1 File. The basic reproduction number
(Ro) was the initial reproduction number of the pathogen at the start of the pandemic, whereas
the deterministic time-varying reproduction number R¢ was the reproduction number at any
particular point in time ¢. The RY described the average number of secondary infections caused
by an infective individual in a susceptible population in the presence of control measures

[38]. It provided a threshold for disease outbreak: if R? < 1, the disease cannot persist; when
R¢ > 1, the virus can spread within the population where each infectious individual produced
at least one new infection [46, 47]. The derived closed-form formulas of Ry and R¢ were as fol-

lows:
_ 5M(1 — Q) 5HqB + (PHméM(l — q)
Ry= =g thr ABC >0,
Rl = ﬁr(SM(l —q)S + ﬂrSéHqB + ¢,moy(1 —q)

ABN ABCN ’

r,q € [0, 1] where A =y(1 — 1) + Syrq + Opr(1 —q) + 6 > 0, B= oym + yp(1 —m) + § > 0, and
C=uy+6+yy>0.Recall that A", B”!, and C " are just the mean residence time of compart-
ments E, I, and Iy, respectively. This result meant that the average number of secondary
infections caused by an infective individual is directly proportional to the transmission rate 3
and the positivity proportion r and is inversely proportional to A, and B.

To further determine how the parameters affect Ry, we solved for the elasticity index (nor-
malized sensitivity index) [48]. The elasticity index measures the relative change of R, with
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respect to a parameter, for example, 3, denoted by Y;“, such that

oR, P
T =—2 X
P Top R

The following are the proportionality and the elasticity indices for the relevant parameters:

1. The direct proportionality of the transmission rate 3 to R, is supported by its elasticity
index of 1. This means that a unit increase of 8 results in a unit increase of R,. Hence,
any increase or decrease of the transmission of the pathogen from one person to another
directly affects the size of the pandemic and its mitigation. Conversely, this result supports
that the measures designed to hamper this transmission, such as wearing facemasks, hand
washing, disinfection, observing physical distancing, and isolation, among others, [49, 50]
can directly slow down the spread of the disease.

2. The direct proportionality of the positivity proportion r to Ry is also quantified with an elas-
ticity index of 1. This means that a unit increase in r also results in a unit increase of R.
Thus, interventions designed to decrease r could directly lead to the mitigation of the spread
of the disease. The interventions related to r are, but not limited to, contact tracing and test-
ing. An increase in the effort in these interventions will directly increase the identified posi-
tive cases, thereby helps curb the pandemic for better management. That is, the more
contact traced, quarantined, and tested individuals, the better, regardless if only a few
among them become a confirmed positive case. It is even more ideal to have a lower positiv-
ity rate among tested individuals.

3. The elasticity index of A on Ry is —1. This backs the inverse proportionality of A to Ry,
which means that a unit increase in A results to a unit decrease of Ry. Conversely, as A is
just the inverse of the mean residence time in E (A™Y), a unit increase/decrease in A™
would contribute to a unit increase/decrease in Ry, i.e., the faster the individual transitions
out of the E compartment (smaller residence time), the more manageable the spread of the
pathogen will be (with a reduced R). Since each term of A is an outflow rate identified with
an intervention, this result lends support to more immediate COVID-19 test results com-
bined with a reasonably shorter quarantine/isolation period (days) for reducing the risk of
viral spread. However, due to the biological dynamics of COVID-19, there is a minimum
required quarantine/isolation period, which imposes a positive lower bound for practical
values of A when isolation is combined with limited testing capacity.

4. The inverse proportionality of B to Ry is corroborated by its elasticity index of —0.99937.
A unit increase of B would lead to a decrease in Ry by 0.99937 units. Conversely, a unit
increase in the mean residence time in the I; compartment (B™') would lead to an increase
0f 0.99937 units to Ro. This signifies that the more number of asymptomatic and, or mildly
symptomatic COVID-19 cases, the more the pandemic can be controlled. Hence, measures
in ensuring that the vulnerable population gets due protection and medical attention pro-
duce positive results in preventing the further spread of the virus and disease-related deaths
[51, 52].

The disease free, and endemic equilibrium points of the model were also solved and were
verified by the proof of its local stability. This meant that two scenarios could be expected to
come about in the COVID-19 pandemic dependent on certain conditions: (1) the disease
would die out, or (2) becomes endemic [48]. These conditions were then verified to Davao
City’s circumstances, for which it was found that endemicity would, at best, be the more
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favorable scenario to be expected, as the disease free scenario is relatively too difficult to
achieve, and at the point when this paper is written, is not yet realistic. Hence, policies toward
the management of COVID-19 should consider an endemic scenario where the disease contin-
ues to exist but on a controlled manner. Recommendations relative to this are further
expounded in the Conclusion part of this paper.

Sensitivity analysis

The sensitivity analysis helped ascertain which parameters were to be identified or which
parameters were to be fixed. Fig 2 presents the LHS/PRCC analysis results for the different
response functions considered with the corresponding values presented in Table 4. It was
observed that the parameters § and r were strongly positively correlated to I and I cases. In
addition to § and r parameters, J,; was also strongly positively correlated to I, cases. These
indicated a strong association between high values of the S, r, 6, parameters to the number of
COVID-19 cases, specifically during the early stages of the pandemic. The correlation of these
parameters to the response functions decreased over time during the course of the pandemic.
This result supported the need to distinguish these three (3) parameters as essential factors in
the transmission dynamics of the virus. However, as d,, is dependent on the biology of SARS-
CoV-2, intervention recommendations focused mainly on policy-preventable parameters 3
and r. Moreover, as the severity proportion g and disease-induced death rate yz; directly
equates to COVID-19 morbidities that we also put attention to these parameters. The imple-
mentation of control interventions were essential for the reduction of the values of these
parameters (5, r, g, and ppy) to mitigate the spread and lessen the hospitalizations due to
COVID-19. Logrosa and colleagues corroborate that if the local government prioritized reduc-
ing COVID-19 fatality, the COVID-19 pandemic will be manageable, at least in the context of
Davao City, Philippines [27].
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Fig 2. The PRCC of model parameters. Using 10,000 LHS samples for the period March 8, 2020, to March 5, 2021, for (A) the number of
monitored cases, (B) hospitalized cases, and (C) the deterministic time-varying reproduction number (R?). The uncertainty and sensitivity
analysis was performed via the LHS/PRCC method.

https://doi.org/10.1371/journal.pone.0283068.9002
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Table 4. Output from sensitivity analysis.

Parameter Outcome: I, Outcome: Iy Outcome: Rf
PRCC p-value PRCC p-value PRCC p-value
B 0.6762* 1.29¢ 2%8% *0.6773 5.07¢ 240% -0.2466 2.63¢ 18
r 0.7542** 3.063¢317%* 0.7514** 2.24¢ 274 -0.4075 0.0000
Sy 0.1605 9.12¢7% 0.3480 9.79¢™7 —0.1687 1.09¢%*
Sur 0.5433* 4.01¢°110% 0.3710 1.04¢7 -0.1878 6.19¢7%°
Yu -0.1150 1.39¢7% -0.2589 6.42¢7%* 0.0682 8.63¢ 12
Yt -0.2339 3.52¢7 116 -0.1417 2.53¢7%° 0.0370 0.0002
e -0.1022 1.53¢7% -0.2479 2.29¢77° -0.0162 0.1052
q -0.4346 44907164 -0.0117 0.0034 0.0327 0.0011
m 0.0563 0.0638 0.1529 8.88¢ 2 —0.0454 5.68¢ %
v —0.2396 9.31¢77* —0.2342 1.08¢7%° 0.0191 0.0569
o —0.1688 3.59¢"2 0.0245 0.0033 —0.0022 0.8234
dummy —0.0002 0.9891 —0.0045 0.6349 —0.0044 0.6573

*possible contributors to uncertainty;
** very likely contributors to uncertainty

https://doi.org/10.1371/journal.pone.0283068.t004

Epidemiological parameters

From the gathered data, Fig 3 shows the COVID-19 daily and cumulative incidence in Davao
City over the date of illness onset and the four-time periods that cover the community quaran-
tine levels from March 8, 2020, to March 5, 2021. The complete list of system parameters as a
result of the data fitting is presented in Table 3. Fig 3 showed the observed COVID-19 cases
and the best model fit to the data and that the model was able to approximate the dynamics of
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Fig 3. The best fit of the SEII,R model to the daily new cases according to health status upon admission. The four quarantine
periods are separated by broken lines. The bars are the daily new incidence data in Davao City, while the solid blue line corresponds to
the model simulations. It shows the model fit vs daily data (A), the model fit vs. cumulative data for monitored cases (B), the model fit vs.
daily data (C), and the model fit vs. cumulative data for hospitalized cases (D).

https://doi.org/10.1371/journal.pone.0283068.9003
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Fig 4. The histograms obtained from the parametric bootstrapping approach. These show the empirical
distributions of the estimated parameters  and r, including R, for (from up to down) Q1, Q2, Q3, and Q4 estimations,
respectively. We characterized the empirical distributions using 10,000 Bootstrap realizations assuming a Poisson error
structure.

https://doi.org/10.1371/journal.pone.0283068.g004

the pathogen. Following the bootstrapping method, the resulting empirical distribution of
parameters  and r, including R¢ and the 95% confidence intervals of the estimated parameter
values are presented in Fig 4. These show that the distribution is normal and that the model
and the best fit values were able to capture the transmission dynamics of COVID-19 in Davao
City, Philippines.

It was observed in the Figs 3 and 4 that the estimated values of the transmission rate ()
were at its highest at the start of the pandemic and increased as the quarantine lockdowns were
eased over time (compare Table 3). The values show that one infected individual transmits the

1
By 0.2862
7.79 days (186.92 hours) during Q2, 4.24 days (101.74 hours) during Q3, and 4.67 days (112.05
hours) during Q4. The effectiveness of the implemented CQ conform to a perceived lag effect
[53], where the strictest measure implemented in ECQ (Q1) led to the least transmission rate
at the next classification (Q2). However, since right after Q1 (ECQ; strictest), Q2 (GCQ; most
permissive) was implemented, its perceived lag effect brought about a higher transmission rate
in Q3, which was almost twice as much as in Q2. The abrupt relaxation of quarantine classifica-
tion from the strictest to the most relaxed one led to high transmissibility of the disease as
more people were allowed mobility. Hence, it would have been best if a gradual relaxation of
protocols were followed instead. Nevertheless, comparatively, these estimated values are simi-
lar and or within the range of published estimates throughout the world [22], for example, in
India [51], and China [52]. Hence, the same as the case of China, with proper stringent preven-
tive measures, the COVID-19 cases in Davao can still be brought down to manageable levels.

Table 3 show that the model estimates of the positivity proportion r were lowest during Q1
and highest during Q2. The results mean that 89.87% of the identified “close contacts” did not
develop the disease during Q1, 82.42% during Q2, 82.98% during Q3, and 87.62% during Q4.
As Davao City had strict mobility restrictions during Q1 may have led to lower contact among
individuals and may have lessen the transmission of the pathogen, thus the tracing and testing
capacities were more efficient hence the lowest r value. However, as lockdowns were eased in
Q2 and Q3, we observed increases in r despite the tracing and testing efforts. This is due to the

disease every approximately ~ 3.49 days (83.86 hours) during the Q1 period,
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https://doi.org/10.1371/journal.pone.0283068.9005

increase of the interacting population size while the tracing and testing capacity remained
constant. Furthermore, the testing and tracing guidelines during Q2 and Q3 were a bit more
relaxed causing a fewer identified “close contacts”, hence the increase of r. The decrease of
these values would have been a favorable outcome towards controlling the spread of the dis-
ease [27].

Different scenarios were considered concerning the different r values estimated as shown in
Fig 5. It shows that if mass testing was done to at least halve the positivity rate, the daily new
exposed population would have reduced from 73 to 21 individuals after 60 days of Q1 and
from 34 to 14 individuals during Q2; the daily new I, cases would have reduced from 24 to 5
individuals after 60 days of Q1 and from 30 to 8 individuals during Q2; and the daily new I,
cases would have become 0 from 2 individuals after 60 days of Q1 and 0 indv from 1 individu-
als during Q2. Moreover, if the efforts were a bit laxer to twice than what was the positivity
rate, the daily new exposed population would have increased to 358 individuals after 60 days
of Q1 and to 90 individuals during Q2, the daily new I, cases would have increased to 175
individuals after 60 days of Q1 and to 122 individuals during Q2, while the daily new Ij; cases
would have become 13 individuals after 60 days of Q1 and 3 individuals during Q2. These
results corroborate with the need for mass testing, contact tracing, and the need for faster
release of test results towards mitigating the disease [54].

With respect to the severity proportion q as shown in Table 3, we found that 77.29% (1
—q = 0.7729) of the confirmed cases are asymptomatic to mild, while 22.71% (g = 0.2271) were
moderate to critical cases during Q1. Likewise, during Q2, 92.12% are asymptomatic to mild
cases, and 7.88% are moderate to critical cases. The moderate to critical cases during Q3
slightly increased with 8.42% of the confirmed cases and 7.42% moderate to critical cases dur-
ing Q4. The majority of the confirmed cases in Davao City consisted of asymptomatic to mild
cases. However, even though the ratio of moderate to critical cases in Davao to asymptomatic
to mild cases is relatively low, its total number of cases still amounts to more than Davao City’s
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total COVID-19 bed capacity. Hence, Davao COVID-19 referral hospitals are usually maxed
out of their capacities [55]. Policies and budgetary support towards the increase of Davao
City’s health system and increasing hospital capacities should be prioritized.

Table 3 further show that in Davao City, a COVID-19-induced death (represented by yz;)

1
occurs every approximatelyﬂ— = 8.17 days in QI, 6.33 days in Q2, 3.42 days in Q3, and 3.33
H

days in Q4. Meanwhile, based on the data, the hospitalized cases are discharged at the rate (yy)
of 21.5 days in Q1, 20.5 days in Q2, 17 days in Q3, and 20 days in Q4. The infectious period of
moderate-critical cases shortens during Q3 as the number of hospitalized individuals eventu-
ally reached hospital capacity, which, in turn led to a faster COVID-19-induced death rate
[55].

As seen in Fig 6, the overall trend of the deterministic reproduction number R follows that
of the statistical reproduction number R;. Furthermore, there is a decrease in the time-varying
reproduction number during the Q2 period as compared to Q1. This is during the early stages
of the pandemic and the community quarantine intervention has shown to have a positive
effect in mitigating the spread of the disease. However, when the government attempted to
ease the economic burden by implementing the MGCQ in Q3, the R{ increased indicating a
faster disease spread in the city. The reimplementation of GCQ in Q4 has reduced the R¢ to a
value of slightly less than one.

It is noteworthy however that at Q3, a difference between the R and RS can be seen. As Q3
started, the initial conditions of the transmission dynamics were during a spike of cases yield-
ing twice as much g value as Q2, hence as discussed in the results of elasticity indices, the spike
in B also doubled the RY. This implies that during the first data points in Q3, R/ captured the
spike and the extreme values of R;. Nevertheless, since R; is data and time-dependent, its values
decreased several days after day one of Q3 due to the perceived lag effect of the intervention
implemented in that period. From here, it is conjectured that discrepancies between R¢ and R
in Q3 can be due to the assumed initial conditions (i.e., condition at day 1 of Q3) of the model.
Nonetheless, the discrepancies between RY and R are deemed tolerable.
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Fig 6. The deterministic reproduction number R? from the SEI;I,R model against the statistical reproduction number R; plot for
the time periods considered.
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Conclusion

This paper presented a community-level COVID-19 transmission model incorporating the
country’s health department quarantine and isolation protocols with Davao City, Philippines,
as a case study. Key epidemiological parameters were represented and were analyzed in con-
junction with the different levels and quarantine classifications (e.g., ECQ, GCQ, and MGCQ).
Qualitative analyses indicate that the formulated mathematical model is well-posed, bounded,
and locally asymptotically stable when it is disease-free, and when the disease is endemic.
Using nonlinear least squares techniques, the parameters § and r were estimated which were
used along with other data-estimated parameters to compute epidemiological measures such
as the basic reproduction number, and time-varying reproduction number. Uncertainty and
sensitivity analyses were also performed via the LHS/PRCC method.

The result on the reproduction numbers (R, and R¢) and elasticity indices as discussed in
the Qualitative analyses subsection implied that the number of secondary infections was driven
by the number of infectious populations and how often they interact with the susceptible pop-
ulation. The transmission rate in Davao City was estimated to be highest during ECQ, i.e., at
the start of the pandemic (Table 3). This indicated that Davao City may had limited and insuf-
ficient resources against the emergence of a pandemic. Hence, there is a need to better equip
the healthcare system and the local government units (LGU) for better disaster management
and prevention of future pandemics. A multi-sectoral framework, policies, and protocols of
how the different agencies could collaboratively work should already be put in place even
before the occurrence of any health emergencies. The National, Regional, Provincial, City,
and Municipal Disaster Risk Reduction and Management Offices, the Department of Health
(DOH), the Department of Interior and Local Government, the LGU, Provincial, City, Munic-
ipal, and Barangay Health Offices are some of the core agencies necessary for effective pan-
demic management. Guides, manuals, and protocols should be collaboratively drafted by these
agencies and periodic capacity training for its personnel should be incorporated into its man-
date for better preparedness and mitigation. Based on the model results, policies toward the
reduction of the transmission rate such as the implementation of containment measures, avail-
ability and wearing of protective equipment, and sanitation are some of the key factors to
consider.

On the other hand, as discussed in the above subsection on Epidemiological parameters
and corroborated by Table 3 concerning the transmission rates, an abrupt change from a strict
containment measure to a lax one could negatively affect the control measures implemented
especially because of a perceived lag effect. A protocol for a gradual easement of containment
measures should be implemented instead. Moreover, since we know that the results with
respect to the positivity proportion r corroborated the need to put forth better monitoring and
identification protocols which include, but are not limited to, testing and contact tracing capa-
bilities, and travel and mobility surveillance. Furthermore, the results for the severity propor-
tion q suggested the need to allocate funding and to study the appropriate ratio of the hospital
carrying capacity to the city population because despite the small number of severely symp-
tomatic COVID-19 patients, the hospitals in Davao City still were overwhelmed. More than
allocating funds for equipment and buildings, the production of and adequate remuneration
for an appropriate number of nursing and healthcare professionals should be a necessity [56].
The need for this action was further supported by the results with respect to the disease-
induced death rate yyy as it only critically increased in Q4 when many of the hospitals reached
its maximum capacity, and many of the healthcare workers were overwhelmed by the number
of hospital admissions. Despite having available hospital beds, the number of attending nurses
and doctors was inadequate, and the available ones are already highly exhausted. Government
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interventions such as the provisions of scholarships, opening of job positions, and offering of
competitive remuneration among others should have more investments and be made more
accessible to all aspiring healthcare workers.

Overall, the outputs generated from this study are potentially beneficial as a basis in making
decisions crucial for impeding the spread of COVID-19 and may be a baseline basis for the
protocols against future pandemics. These outputs also provided a quantitative measure of the
respective effect of the various measures implemented during the different quarantine classifi-
cations. This model could be used for other cities and regions in the Philippines to assess the
effects of their respective efforts to combat the disease, which is contextualized on a commu-
nity level. Moreover, researchers and practitioners must be aware of the limitations of com-
partmental-based modeling (SIR, SEIR, etc.). This approach generally assumes that the
community under infection is homogeneous: each human host infects and undergoes infec-
tion in the same manner. A comparison of our analysis with agent-based models [57] and
other modelling techniques accounting heterogeneity can reveal additional factors that can
refine epidemic dynamics and projections. Since our model assumed data prior to the vaccine
rollout in Davao City, a suitable refinement of our model should incorporate community-wide
inoculation dynamics. Other possible extensions account for risk groups [58], particularly age
groups [59], and untraced and undetected infectious individuals in the context of testing and
contact tracing [54, 60].
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