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Abstract

The Coronavirus disease 2019 (COVID-19) has exposed many systemic vulnerabilities in

many countries’ health system, disaster preparedness, and adequate response capabilities.

With the early lack of data and information about the virus and the many differing local-spe-

cific factors contributing to its transmission, managing its spread had been challenging. The

current work presents a modified Susceptible-Exposed-Infectious-Recovered compartmen-

tal model incorporating intervention protocols during different community quarantine peri-

ods. The COVID-19 reported cases before the vaccine rollout in Davao City, Philippines, are

utilized to obtain baseline values for key epidemiologic model parameters. The probable

secondary infections (i.e., time-varying reproduction number) among other epidemiological

indicators were computed. Results show that the cases in Davao City were driven by the

transmission rates, positivity proportion, latency period, and the number of severely symp-

tomatic patients. This paper provides qualitative insights into the transmission dynamics of

COVID-19 along with the government’s implemented intervention protocols. Furthermore,

this modeling framework could be used for decision support, policy making, and system

development for the current and future pandemics.
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Introduction

The Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus has globally spread

since its first detection in Wuhan, China, last December 2019 and has caused millions of

deaths worldwide [1–4]. From then on, different control measures have been implemented to

mitigate its spread. In the absence of vaccines, different countries have resulted in the imple-

mentation of non-pharmaceutical interventions (NPIs) [5–10], such as the quarantine mea-

sures/isolation, contact tracing, physical distancing, and mass testing. In the Philippines,

various levels of community quarantines have been implemented in different parts of the

country since the first confirmed COVID-19 case was reported [11]. These community

quarantines are classified as enhanced community quarantine (ECQ), modified enhanced

community quarantine (MECQ), general community quarantine (GCQ), or modified general

community quarantine (MGCQ). Regardless of the quarantine classification, the general

public is urged to stay in their respective households, practice physical distancing, and wear

face masks and face shields to lessen the spread of the disease. School closures, halting of mass

gatherings and other potentially superspreading events (e.g., religious activities) have been

imposed. NPIs are continually being implemented to prevent a surge of cases due to the

crowding of individuals [12, 13]. Noteworthy, however, is the apparent difference in the strict-

ness in implementing different control measures between quarantine classifications as summa-

rized in Table 1 [14]. Furthermore, the number of deployed quarantine enforcers and the

number of monitoring stations put up differs among respective quarantine classifications.

Even between regions in the Philippines under similar quarantine classification, differences

in resources and workforce, among others, contribute to variability in the efficacy of the inter-

vention. Hence, assessing the effects of the different quarantine classifications on a regional,

provincial, or city-level could help decision-makers formulate a more appropriate policy to

mitigate the health crisis.

A baseline measure should be developed to properly comprehend the effect of an interven-

tion to the COVID-19 cases; this will be a basis for determining any subsequent changes

brought about by these interventions [15, 16]. Epidemiological models help identify critical

factors of non-pharmaceutical interventions (NPIs) implementation, such as timing and fre-

quency, that support the control of disease spread [17]. Understanding the parameters that

determine the course of an epidemic is critical for health-related decision-making, as it allows

for the development of disease mitigation and control methods, as well as the provision of

treatment to individuals who have been infected or become ill [18]. These models have been

used as guides to policy and decision-makers as well as implementers to combat outbreaks

[19–21]. To this end, several mathematical models on the dynamics of COVID-19 with NPIs

have been developed and published to project the different COVID-19 transmission scenarios

Table 1. Quarantine classification, sample restrictions, Davao City, Philippines [14].

Quarantine Classification

ECQ MECQ GCQ MGCQ

Population 100% stay at home 100% stay at home Elderly & youth Permissive socio-economic activities

with minimal public health standardsGathering Not Allowed Restricted to 5 max Restricted to 10 max

Travel No public transport; no domestic

flights; limited international flights

No public transport; limited

international flights; controlled inbound

travels

Public transport with strict

distancing

Government Skeletal onsite; Others work from

home

Skeletal onsite; Others work from home Alternative work

arrangement; 4-day

workweek

https://doi.org/10.1371/journal.pone.0283068.t001
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on a larger scale, i.e., national level [22, 23]. Nevertheless, assessing the effects of different quar-

antine classifications to key epidemiological parameters on a more specific scale, i.e., regional

level, has not been widely documented.

The high transmissibility and virulence of SARS-CoV-2 resulted in a significant number of

severe and critical cases requiring specialized treatment and intensive care beds— forcing the

development of predictive models capable of estimating healthcare demands and assisting

decision-making [24–26]. For better contextualization of the model, local COVID-19 dynam-

ics and NPIs in Davao City were used in the current case study. Davao City is the largest city

in the Philippines based on land area. It is located in Region 11 (Davao Region), the most pop-

ulous region in Mindanao—the southern part of the country [27]. The statistics from the

Department of Health-Davao Center for Health Development (DOH-DCHD) show that

Davao City accounts for almost 57% of Davao Region’s COVID-19 cases (as of June 26, 2021).

Davao City is also the capital of Region 11, serving as the focal business hub and other activities

in the region. Hence, the importation and transmission risk of COVID-19 from and to neigh-

boring provinces and regions is high.

This paper modified the classic Susceptible-Exposed-Infected-Recovered (SEIR) deter-

ministic compartmental model [28] into a Susceptible-Exposed-Infectious Hospitalized-

Infectious Monitored-Recovered (SEIHIMR) model to describe the dynamics of COVID-19

in Davao City incorporating the Philippines’ Department of Health’s quarantine and isola-

tion protocols, namely quarantining exposed individuals and isolating confirmed positive

cases according to the severity of symptoms or presence of comorbidity [13]. This model

incorporated an outflow from the E compartment back to S similar to [29]— a dynamic that

has not been widely applied to models in a Philippine regional setting. This link signified

that, instead of the standard classification of the E compartment [28], not all exposed indi-

viduals in this model are on a latent stage of the disease, do not become infectious, and hence

become susceptible again after they were released from quarantine or isolation. Moreover,

the model also incorporates the progression or worsening of symptoms of some previously

asymptomatic positive cases (i.e., presymptomatic). Disease-related deaths also in this model

are assumed to only occur among severely symptomatic patients. Furthermore, in Davao

City’s context, isolation and, or quarantining of the infectious individuals do not guarantee

that the patient has stopped contributing to the pathogen’s transmission; viral spread may

occur before an intervention due to delays in test result. Moreover, health and emergency

workers can still get infection from quarantined or isolated individuals. Hence in this model,

we assumed that the compartments IH and IM equally drive the transmission regardless of

isolation or quarantine. Nevertheless, the contact tracing method in Davao City during the

period covered in this paper is assumed to be efficient whereby minimizing the possibility of

an untraced infectious individual. Thus, the model does not incorporate a compartment for

undetected cases to make analysis tractable.

We aimed to estimate the baseline epidemiological parameters, i.e., pre-vaccination

COVID-19 period, using the least-square method and bootstrapping techniques in quantifying

parameter uncertainty. Epidemiological measures such as the basic reproduction number(R0),

statistical time-varying reproduction number (Rs
t), and the deterministic time-varying repro-

duction number (Rd
t ) have also been computed. These numbers generate insightful thresholds

on the secondary infections generated by a COVID-19 infectious patient upon interaction

with the susceptible population [30]. We also provided basic local stability analysis of the

model. The COVID-19 outbreak has led researchers to investigate numerous factors of disease

transmission and evolution [31, 32]. The empirical results from the generated model can guide

the local government unit in reviewing their respective protocols to mitigate the spread of

PLOS ONE Transmission dynamics, baseline epidemiological estimates of COVID-19 pre-vaccination

PLOS ONE | https://doi.org/10.1371/journal.pone.0283068 April 7, 2023 3 / 20

https://doi.org/10.1371/journal.pone.0283068


COVID-19. Furthermore, the model described here is general enough to be used in studying

COVID-19 dynamics in other regions, cities, or municipalities.

Materials and methods

Ethics statement

In compliance with the Joint Memorandum Circular No. 2020–0002 by the Philippines’

Department of Health on the data privacy guideline, processing and disclosure of COVID-

19-related data for disease surveillance and response, the study was reviewed by the Depart-

ment of Health XI Cluster Ethics Review Committee with protocol number P211111601.

Furthermore, this study does not involve human participants or personally identifiable

information.

Model formulation

In this paper, the closed homogeneous population was divided into five population classes,

namely, susceptible (S), quarantined/exposed (E), infectious individuals treated in either a

monitoring facility (IM) or hospitals handling severe cases (IH), and recovered (R) individuals.

We specifically defined the compartments as follows:

• Susceptible (S): Individuals who have not been infected with COVID-19 but are at risk of

contracting the disease;

• Exposed (E): Individuals who were under quarantine who may have been exposed to the dis-

ease and were still in the latent stage or who may have been exposed but have not necessarily

contracted the virus;

• Hospitalized (IH): Infected individuals confirmed positive for COVID-19 treated in COVID-

19-designated referral hospitals and exhibited moderate to critical symptoms or have known

comorbidities;

• Monitored (IM): Infected individuals confirmed positive for COVID-19 under monitoring

in designated Temporary Treatment and Monitoring Facilities (TTMFs). These are infected

persons who exhibited no symptoms (asymptomatic) or who had mild COVID-19 symp-

toms; and

• Recovered (R): Individuals who recovered from the disease and possessed a certain level of

immunity.

The schematic diagram in Fig 1 depicted the disease transmission dynamics, with the corre-

sponding parameter descriptions, range of values, and sources, were detailed in Table 2.

Herein, the mean residence time in E, in IM, and in IH are respectively given as

A� 1 ¼ ðcð1 � rÞ þ dHrqþ dMrð1 � qÞ þ dÞ� 1
;

B� 1 ¼ ðφHmþ gMð1 � mÞ þ dÞ� 1
; and

C� 1 ¼ ðmH þ dþ gHÞ
� 1
:

The system of differential equations that represents the transmission dynamics of the

SARS-CoV-2 virus in the city was obtained by adding the inflow rate and subtracting the out-

flow rate for each respective component. The following system (1) mathematically described

PLOS ONE Transmission dynamics, baseline epidemiological estimates of COVID-19 pre-vaccination

PLOS ONE | https://doi.org/10.1371/journal.pone.0283068 April 7, 2023 4 / 20

https://doi.org/10.1371/journal.pone.0283068


the disease dynamics

dS
dt
¼ a � dS �

bðIM þ IHÞS
N

þ cð1 � rÞE;

dE
dt
¼
bðIM þ IHÞS

N
� ðcð1 � rÞ þ dHrqþ dMrð1 � qÞ þ dÞE;

dIH
dt

¼ dHrqEþ φHmIM � ðmH þ dþ gHÞIH;

dIM
dt

¼ dMrð1 � qÞE � ðφHmþ gMð1 � mÞ þ dÞIM;

dR
dt
¼ gHIH þ gMð1 � mÞIM � dR;

dN
dt

¼ a � dN � mHIH

ð1Þ

Fig 1. Schematic diagram of the regional COVID-19 transmission dynamics. Circles represent the compartments

(state variables of the model), while arrows indicate flows between compartments SEIHIMR. The outflow from IH
indicated by μH indicates disease-induced mortality.

https://doi.org/10.1371/journal.pone.0283068.g001

Table 2. Parameter description, values, and sources for Davao City, Philippines.

Parameter Description Value/Range Unit Source

N Total Population 1,816,987 indv [33]

β Transmission rate [0, 1] per day Estimated

r Positivity proportion of Exposed that becomes infectious [0, 1] % per day Estimated

δH E! IH: Reciprocal of the latency period from onset of illness to Hospital Admission [0, 1] per day *
δM E! IM: Reciprocal of the latency period from onset of illness to TTMF Admission 1

3
,[0, 1]

per day *

γH IH! R: Recovery rate of IH individuals [0, 1] per day *
γM IM! R: Recovery rate of IM individuals [0, 1] per day *
μH IH! D: COVID-19 related death rate [0, 1] per day *
q Severity proportion of reported cases that are moderate-critical [0, 1] % per day *
m Presymptomatic proportion of IM cases that become critical/severe [0, 1] % per day *
ψ Discharging rate of Exposed 1

14

per day [13]

φH IM! IH: Hospitalization rate of IM 1

5

per day *

δ Natural Death Rate 1

26017:2

per day [34]

α Recruitment Rate 69.8379** per day [34]

A−1 Mean residence time in E [0, 20] days Calculated

B−1 Mean residence time in IM [0, 20] days Calculated

C−1 Mean residence time in IH [0, 20] days Calculated

* estimated from the data,

**α� Nδ

https://doi.org/10.1371/journal.pone.0283068.t002
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with/where S(t), E(t), IM(t), IH(t), and R(t) are nonegative, and N(t) = S(t) + E(t) + IM(t) + IH(t)
+ R(t). The parameters were piecewise functions of time subject to the duration of implemen-

tation of the different levels of quarantine classifications (i.e., ECQ, MECQ, GCQ, and

MGCQ). It could be easily seen from the system (1) that because
dN
dt
¼ a � dN � mHIH ,

supt!þ1NðtÞ �
a

d
when

dN
dt
¼ 0. As such, the system’s feasible region is

O ¼ fS; E; IM; IH;R 2 R5
þ

: 0 � N �
a

d
g:

Hence, the model is well posed, and all solutions remain in O.

Data

Publicly available data on the daily COVID-19 new infected cases in the Philippines can be

accessed through the government data drop [35]. However, the data used in this study were

obtained under a partnership and non-disclosure agreement from the DOH—DCHD:

Regional Epidemiology and Surveillance Unit (RESU). This partnership and data-sharing

agreement were sought for better and more efficient data, and result validation, which would

have been difficult if the data was acquired from the data drop. The epidemiological dataset

used included dates of illness’ onset, dates of surveillance report, and the health status upon

admission of confirmed cases (e.g., asymptomatic, mild, moderate, severe, and critical). The

dataset was between March 8, 2020, to March 5, 2021. We categorized the epidemic data

according to two groups: the infected individuals under monitoring in TTMFs (e.g., asymp-

tomatic and mild cases), and the infected patients admitted to COVID-19 referral hospitals

(e.g., moderate, severe, and critical cases). Even though the working model is a baseline model

that does not distinguish vaccination as a disease control measure, the model could be used to

assess pre-vaccination transmission dynamics. Hence, we only used data before the start of the

vaccine rollout in Davao City, which was on March 5, 2021. For reproducibility, a sample data-

set which is in compliance with the non-disclosure agreement could be accessed through [36].

Community quarantine timeline pre-vaccination

Pre-vaccination, the city government of Davao, following the recommendations and guide-

lines issued by the Inter-Agency Task Force (IATF), imposed NPIs such as social distancing,

lockdowns, curfews, and office and school closures, among others, to reduce disease transmis-

sion. The intensity of the implementation of NPIs varied according to the type of community

quarantine imposed as summarized in Table 1. Thus, we divided the epidemiological data into

four distinct periods according to the intensity and classification of community quarantine

implemented in the city. The government first imposed community quarantine (CQ) in

Davao City on March 15—April 3, 2020. On April 4—May 15, 2020, Davao City was placed

under ECQ. For simplicity, the study assumes that Davao City is under ECQ from March 8,

2020, to May 15, 2020. The first quarantine period is referred to as Q1. The periods Q2, Q3,

and Q4 occurred on May 16—June 30, July 1—November 19, and November 20—March 5,

2021, which were under GCQ, MGCQ, and back to GCQ, respectively.

Sensitivity analysis

Sensitivity analysis was performed a priori to parameter estimation. This was used as the basis

why certain parameters needed to be identified while some were fixed. Parameters with higher

sensitivity needed to be estimated reliably subject to the available information. We performed
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uncertainty and sensitivity analysis using the Latin Hypercube Sampling (LHS) and Partial

Rank Correlation Coefficient (PRCC) method [37]. To perform the LHS analysis, 11 of the 13

system parameters plus a dummy were varied simultaneously while we fixed the values of the

α and δ parameters according to Table 2. We assumed a uniform distribution for the 11

parameters with [0, 1] bounds for the transmission rate β and [0, 1] bounds for the rest of the

parameters. The LHS/PRCC method was then applied utilizing the codes by Massey, which

were publicly available on GitHub [38]. The method involved generating 10,000 samples via

the LHS scheme to populate the LHS matrix. Each row on the LHS matrix was then passed to

the SEIHIMR model to run 10,000 Monte Carlo simulations. We considered three (3) outcome

measures: the infectious monitored individuals (IM), hospitalized infectious individuals (IH),

and the deterministic time-varying reproduction number (Rd
t ). Parameters with PRCC values

close to −1 and +1 were highly negatively (positively) correlated to the selected outcome

measures.

Model parameterization

Model parameters were estimated following the methods of Chowell, and Banks et al. [39, 40].

The model was calibrated to the daily new infected cases in Davao City from March 8, 2020

(the first case of COVID-19) to March 5, 2021. The model calibration was performed

individually for each quarantine period considered (e.g., Q1—Q4). The model has 13 epidemi-

ological parameters. Two (2) of these parameters were estimated: the transmission rate (β),

and the positivity proportion (r). First, a seven (7)-day moving average filter was applied to

smoothen the random variations in the daily incidence data. To fit the asymptomatic-or-mild

daily incidence data to the model, we defined the newly infected people under monitoring as

M(t) = δMr(1 − q)E. The moderate-to-critical daily incidence data were fitted to the model

using the new hospitalized infected people defined as H(t) = δHrqE. The data-fitting problem

was then solved using the least squares (LS) technique given by the objective function

f̂ tiÞ ¼ argminSn
i¼1
ðf ðtiÞ � yðtiÞÞ

2
, y(ti) was the observed daily new cases, and f(ti) was the corre-

sponding model simulation. In particular, f(ti) = (M(ti), H(ti)) and y(ti)’s are the daily reported

monitored and hospitalized cases. The fitting procedure was executed using the MATLAB

lscurvefit function with numerical optimization through a trust-region reflective algo-

rithm [41]. Other parameter values were either estimated from the data [42, 43] or taken from

existing published literature. The complete list of the system parameters and their sources is

presented in Table 2. The estimated parameter values are presented in Table 3. These values

were then analyzed for feasibility and were verified or compared to other existing literature.

The analysis is expounded in the results section.

Table 3. Estimated parameter values per quarantine period for Davao City, Philippines.

Parameter Q1 (ECQ) Q2 (GCQ) Q3 (MGCQ) Q4 (GCQ)

β 0.2862 0.1284 0.2359 0.2142

r 0.1013 0.1758 0.1702 0.1238

δH 1

7

1

5

1

3

1

3

γH 0.0238 0.0257 0.0244 0.0193

γM 1

19

1

16

1

14

1

11

μH 0.1223 0.1579 0.2928 0.3002

q 0.2271 0.0788 0.0842 0.0742

m 0 0 0.0002 0.0054

https://doi.org/10.1371/journal.pone.0283068.t003
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Bootstrapping method

The bootstrapping method was used to simulate the lower and upper bounds (95% confidence

level) around the model fit in assessing parameter identifiability [39]. The parametric boot-

strapping approach generated 10,000 bootstrap realizations assuming a Poisson error structure

of the best fit from the LS fitting method. The generated bootstrap realizations were used to re-

simulate the SEIHIMR model and to derive the empirical distributions of the estimated parame-

ters within a 95% confidence interval.

Time-varying reproduction number

The daily statistical time-varying reproduction number (Rs
t) in this paper was computed fol-

lowing the methods of Cori and colleagues with prior mean μSI = 2.6 and standard deviation

σSI = 2 [37, 44] and mean μSI = 4.8 and standard deviation σSI = 2.3 [45]. Furthermore, the

COVID-19 cases according to the onset of symptoms, were used to statistically estimate the Rs
t.

On the other hand, a formula for the deterministic time-varying reproduction number (Rd
t )

was also derived from the compartmental model using the next-generation matrix method

[30]. The Rs
t was then compared to the Rd

t .

Results and discussion

Qualitative analyses

Some of the qualitative analyses performed in this study involved computing the basic (R0)

and time-varying deterministic reproduction numbers (Rd
t ), and solving for the model’s local

stability, equilibrium points, and elasticity indices. The detailed steps to these analyses, proof

and calculation can be found in the supplementary S1 File. The basic reproduction number

(R0) was the initial reproduction number of the pathogen at the start of the pandemic, whereas

the deterministic time-varying reproduction number Rd
t was the reproduction number at any

particular point in time t. The Rd
t described the average number of secondary infections caused

by an infective individual in a susceptible population in the presence of control measures

[38]. It provided a threshold for disease outbreak: if Rd
t < 1, the disease cannot persist; when

Rd
t � 1, the virus can spread within the population where each infectious individual produced

at least one new infection [46, 47]. The derived closed-form formulas of R0 and Rd
t were as fol-

lows:

R0 ¼ br
dMð1 � qÞ

AB
þ br

dHqBþ φHmdMð1 � qÞ
ABC

> 0;

Rd
t ¼ br

dMð1 � qÞS
ABN

þ brS
dHqBþ φHmdMð1 � qÞ

ABCN
;

r, q 2 [0, 1] where A = ψ(1 − r) + δHrq + δMr(1 − q) + δ> 0, B = φHm + γM(1 −m) + δ> 0, and

C = μH + δ + γH> 0. Recall that A−1, B−1, and C−1 are just the mean residence time of compart-

ments E, IM, and IH, respectively. This result meant that the average number of secondary

infections caused by an infective individual is directly proportional to the transmission rate β
and the positivity proportion r and is inversely proportional to A, and B.

To further determine how the parameters affect R0, we solved for the elasticity index (nor-

malized sensitivity index) [48]. The elasticity index measures the relative change of R0 with
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respect to a parameter, for example, β, denoted by U
R0

b , such that

U
R0

b ¼
@R0

@b
�
b

R0

:

The following are the proportionality and the elasticity indices for the relevant parameters:

1. The direct proportionality of the transmission rate β to R0 is supported by its elasticity

index of 1. This means that a unit increase of β results in a unit increase of R0. Hence,

any increase or decrease of the transmission of the pathogen from one person to another

directly affects the size of the pandemic and its mitigation. Conversely, this result supports

that the measures designed to hamper this transmission, such as wearing facemasks, hand

washing, disinfection, observing physical distancing, and isolation, among others, [49, 50]

can directly slow down the spread of the disease.

2. The direct proportionality of the positivity proportion r to R0 is also quantified with an elas-

ticity index of 1. This means that a unit increase in r also results in a unit increase of R0.

Thus, interventions designed to decrease r could directly lead to the mitigation of the spread

of the disease. The interventions related to r are, but not limited to, contact tracing and test-

ing. An increase in the effort in these interventions will directly increase the identified posi-

tive cases, thereby helps curb the pandemic for better management. That is, the more

contact traced, quarantined, and tested individuals, the better, regardless if only a few

among them become a confirmed positive case. It is even more ideal to have a lower positiv-

ity rate among tested individuals.

3. The elasticity index of A on R0 is −1. This backs the inverse proportionality of A to R0,

which means that a unit increase in A results to a unit decrease of R0. Conversely, as A is

just the inverse of the mean residence time in E (A−1), a unit increase/decrease in A−1

would contribute to a unit increase/decrease in R0, i.e., the faster the individual transitions

out of the E compartment (smaller residence time), the more manageable the spread of the

pathogen will be (with a reduced R0). Since each term of A is an outflow rate identified with

an intervention, this result lends support to more immediate COVID-19 test results com-

bined with a reasonably shorter quarantine/isolation period (days) for reducing the risk of

viral spread. However, due to the biological dynamics of COVID-19, there is a minimum

required quarantine/isolation period, which imposes a positive lower bound for practical

values of A when isolation is combined with limited testing capacity.

4. The inverse proportionality of B to R0 is corroborated by its elasticity index of −0.99937.

A unit increase of B would lead to a decrease in R0 by 0.99937 units. Conversely, a unit

increase in the mean residence time in the IM compartment (B−1) would lead to an increase

of 0.99937 units to R0. This signifies that the more number of asymptomatic and, or mildly

symptomatic COVID-19 cases, the more the pandemic can be controlled. Hence, measures

in ensuring that the vulnerable population gets due protection and medical attention pro-

duce positive results in preventing the further spread of the virus and disease-related deaths

[51, 52].

The disease free, and endemic equilibrium points of the model were also solved and were

verified by the proof of its local stability. This meant that two scenarios could be expected to

come about in the COVID-19 pandemic dependent on certain conditions: (1) the disease

would die out, or (2) becomes endemic [48]. These conditions were then verified to Davao

City’s circumstances, for which it was found that endemicity would, at best, be the more
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favorable scenario to be expected, as the disease free scenario is relatively too difficult to

achieve, and at the point when this paper is written, is not yet realistic. Hence, policies toward

the management of COVID-19 should consider an endemic scenario where the disease contin-

ues to exist but on a controlled manner. Recommendations relative to this are further

expounded in the Conclusion part of this paper.

Sensitivity analysis

The sensitivity analysis helped ascertain which parameters were to be identified or which

parameters were to be fixed. Fig 2 presents the LHS/PRCC analysis results for the different

response functions considered with the corresponding values presented in Table 4. It was

observed that the parameters β and r were strongly positively correlated to IH and IM cases. In

addition to β and r parameters, δM was also strongly positively correlated to IM cases. These

indicated a strong association between high values of the β, r, δM parameters to the number of

COVID-19 cases, specifically during the early stages of the pandemic. The correlation of these

parameters to the response functions decreased over time during the course of the pandemic.

This result supported the need to distinguish these three (3) parameters as essential factors in

the transmission dynamics of the virus. However, as δM is dependent on the biology of SARS-

CoV-2, intervention recommendations focused mainly on policy-preventable parameters β
and r. Moreover, as the severity proportion q and disease-induced death rate μH directly

equates to COVID-19 morbidities that we also put attention to these parameters. The imple-

mentation of control interventions were essential for the reduction of the values of these

parameters (β, r, q, and μH) to mitigate the spread and lessen the hospitalizations due to

COVID-19. Logrosa and colleagues corroborate that if the local government prioritized reduc-

ing COVID-19 fatality, the COVID-19 pandemic will be manageable, at least in the context of

Davao City, Philippines [27].

Fig 2. The PRCC of model parameters. Using 10,000 LHS samples for the period March 8, 2020, to March 5, 2021, for (A) the number of

monitored cases, (B) hospitalized cases, and (C) the deterministic time-varying reproduction number (Rd
t ). The uncertainty and sensitivity

analysis was performed via the LHS/PRCC method.

https://doi.org/10.1371/journal.pone.0283068.g002
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Epidemiological parameters

From the gathered data, Fig 3 shows the COVID-19 daily and cumulative incidence in Davao

City over the date of illness onset and the four-time periods that cover the community quaran-

tine levels from March 8, 2020, to March 5, 2021. The complete list of system parameters as a

result of the data fitting is presented in Table 3. Fig 3 showed the observed COVID-19 cases

and the best model fit to the data and that the model was able to approximate the dynamics of

Table 4. Output from sensitivity analysis.

Parameter Outcome: IM Outcome: IH Outcome: Rd
t

PRCC p-value PRCC p-value PRCC p-value

β 0.6762* 1.29e−258* *0.6773 5.07e−240* −0.2466 2.63e−138

r 0.7542** 3.063e−315** 0.7514** 2.24e−274** −0.4075 0.0000

δH 0.1605 9.12e−06 0.3480 9.79e−07 −0.1687 1.09e−64

δM 0.5433* 4.01e−110* 0.3710 1.04e−15 −0.1878 6.19e−80

γH −0.1150 1.39e−08 −0.2589 6.42e−84 0.0682 8.63e−12

γM −0.2339 3.52e−116 −0.1417 2.53e−36 0.0370 0.0002

μH −0.1022 1.53e−06 −0.2479 2.29e−79 −0.0162 0.1052

q −0.4346 4.49e−164 −0.0117 0.0034 0.0327 0.0011

m 0.0563 0.0638 0.1529 8.88e−22 −0.0454 5.68e−06

ψ −0.2396 9.31e−72 −0.2342 1.08e−66 0.0191 0.0569

φH −0.1688 3.59e−92 0.0245 0.0033 −0.0022 0.8234

dummy −0.0002 0.9891 −0.0045 0.6349 −0.0044 0.6573

*possible contributors to uncertainty;

** very likely contributors to uncertainty

https://doi.org/10.1371/journal.pone.0283068.t004

Fig 3. The best fit of the SEIHIMR model to the daily new cases according to health status upon admission. The four quarantine

periods are separated by broken lines. The bars are the daily new incidence data in Davao City, while the solid blue line corresponds to

the model simulations. It shows the model fit vs daily data (A), the model fit vs. cumulative data for monitored cases (B), the model fit vs.

daily data (C), and the model fit vs. cumulative data for hospitalized cases (D).

https://doi.org/10.1371/journal.pone.0283068.g003
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the pathogen. Following the bootstrapping method, the resulting empirical distribution of

parameters β and r, including Rd
t and the 95% confidence intervals of the estimated parameter

values are presented in Fig 4. These show that the distribution is normal and that the model

and the best fit values were able to capture the transmission dynamics of COVID-19 in Davao

City, Philippines.

It was observed in the Figs 3 and 4 that the estimated values of the transmission rate (β)

were at its highest at the start of the pandemic and increased as the quarantine lockdowns were

eased over time (compare Table 3). The values show that one infected individual transmits the

disease every approximately
1

bQ1

¼
1

0:2862
� 3:49 days (83.86 hours) during the Q1 period,

7.79 days (186.92 hours) during Q2, 4.24 days (101.74 hours) during Q3, and 4.67 days (112.05

hours) during Q4. The effectiveness of the implemented CQ conform to a perceived lag effect

[53], where the strictest measure implemented in ECQ (Q1) led to the least transmission rate

at the next classification (Q2). However, since right after Q1 (ECQ; strictest), Q2 (GCQ; most

permissive) was implemented, its perceived lag effect brought about a higher transmission rate

in Q3, which was almost twice as much as in Q2. The abrupt relaxation of quarantine classifica-

tion from the strictest to the most relaxed one led to high transmissibility of the disease as

more people were allowed mobility. Hence, it would have been best if a gradual relaxation of

protocols were followed instead. Nevertheless, comparatively, these estimated values are simi-

lar and or within the range of published estimates throughout the world [22], for example, in

India [51], and China [52]. Hence, the same as the case of China, with proper stringent preven-

tive measures, the COVID-19 cases in Davao can still be brought down to manageable levels.

Table 3 show that the model estimates of the positivity proportion r were lowest during Q1

and highest during Q2. The results mean that 89.87% of the identified “close contacts” did not

develop the disease during Q1, 82.42% during Q2, 82.98% during Q3, and 87.62% during Q4.

As Davao City had strict mobility restrictions during Q1 may have led to lower contact among

individuals and may have lessen the transmission of the pathogen, thus the tracing and testing

capacities were more efficient hence the lowest r value. However, as lockdowns were eased in

Q2 and Q3, we observed increases in r despite the tracing and testing efforts. This is due to the

Fig 4. The histograms obtained from the parametric bootstrapping approach. These show the empirical

distributions of the estimated parameters β and r, including R0 for (from up to down) Q1, Q2, Q3, and Q4 estimations,

respectively. We characterized the empirical distributions using 10,000 Bootstrap realizations assuming a Poisson error

structure.

https://doi.org/10.1371/journal.pone.0283068.g004
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increase of the interacting population size while the tracing and testing capacity remained

constant. Furthermore, the testing and tracing guidelines during Q2 and Q3 were a bit more

relaxed causing a fewer identified “close contacts”, hence the increase of r. The decrease of

these values would have been a favorable outcome towards controlling the spread of the dis-

ease [27].

Different scenarios were considered concerning the different r values estimated as shown in

Fig 5. It shows that if mass testing was done to at least halve the positivity rate, the daily new

exposed population would have reduced from 73 to 21 individuals after 60 days of Q1 and

from 34 to 14 individuals during Q2; the daily new IM cases would have reduced from 24 to 5

individuals after 60 days of Q1 and from 30 to 8 individuals during Q2; and the daily new IH
cases would have become 0 from 2 individuals after 60 days of Q1 and 0 indv from 1 individu-

als during Q2. Moreover, if the efforts were a bit laxer to twice than what was the positivity

rate, the daily new exposed population would have increased to 358 individuals after 60 days

of Q1 and to 90 individuals during Q2, the daily new IM cases would have increased to 175

individuals after 60 days of Q1 and to 122 individuals during Q2, while the daily new IH cases

would have become 13 individuals after 60 days of Q1 and 3 individuals during Q2. These

results corroborate with the need for mass testing, contact tracing, and the need for faster

release of test results towards mitigating the disease [54].

With respect to the severity proportion q as shown in Table 3, we found that 77.29% (1

−q = 0.7729) of the confirmed cases are asymptomatic to mild, while 22.71% (q = 0.2271) were

moderate to critical cases during Q1. Likewise, during Q2, 92.12% are asymptomatic to mild

cases, and 7.88% are moderate to critical cases. The moderate to critical cases during Q3

slightly increased with 8.42% of the confirmed cases and 7.42% moderate to critical cases dur-

ing Q4. The majority of the confirmed cases in Davao City consisted of asymptomatic to mild

cases. However, even though the ratio of moderate to critical cases in Davao to asymptomatic

to mild cases is relatively low, its total number of cases still amounts to more than Davao City’s

Fig 5. The different simulations of r values and its effect on the transmission dynamics in logscale. These show the epidemic curves

using the smallest estimated r = 0.1013, biggest estimated r = 0.1758, and scenarios where the r values are half (r = 0.0507, r = 0.0879), and

twice the corresponding estimates (r = 0.2026, r = 0.3516). Solid curves are the simulations using r values from the model estimates, while

the dashed curves are simulations using arbitrarily chosen r values for scenario analysis.

https://doi.org/10.1371/journal.pone.0283068.g005
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total COVID-19 bed capacity. Hence, Davao COVID-19 referral hospitals are usually maxed

out of their capacities [55]. Policies and budgetary support towards the increase of Davao

City’s health system and increasing hospital capacities should be prioritized.

Table 3 further show that in Davao City, a COVID-19-induced death (represented by μH)

occurs every approximately
1

mH
¼ 8:17 days in Q1, 6.33 days in Q2, 3.42 days in Q3, and 3.33

days in Q4. Meanwhile, based on the data, the hospitalized cases are discharged at the rate (γH)

of 21.5 days in Q1, 20.5 days in Q2, 17 days in Q3, and 20 days in Q4. The infectious period of

moderate-critical cases shortens during Q3 as the number of hospitalized individuals eventu-

ally reached hospital capacity, which, in turn led to a faster COVID-19-induced death rate

[55].

As seen in Fig 6, the overall trend of the deterministic reproduction number Rd
t follows that

of the statistical reproduction number Rs
t. Furthermore, there is a decrease in the time-varying

reproduction number during the Q2 period as compared to Q1. This is during the early stages

of the pandemic and the community quarantine intervention has shown to have a positive

effect in mitigating the spread of the disease. However, when the government attempted to

ease the economic burden by implementing the MGCQ in Q3, the Rd
t increased indicating a

faster disease spread in the city. The reimplementation of GCQ in Q4 has reduced the Rd
t to a

value of slightly less than one.

It is noteworthy however that at Q3, a difference between the Rd
t and Rs

t can be seen. As Q3

started, the initial conditions of the transmission dynamics were during a spike of cases yield-

ing twice as much β value as Q2, hence as discussed in the results of elasticity indices, the spike

in β also doubled the Rd
t . This implies that during the first data points in Q3, Rd

t captured the

spike and the extreme values of Rs
t . Nevertheless, since Rs

t is data and time-dependent, its values

decreased several days after day one of Q3 due to the perceived lag effect of the intervention

implemented in that period. From here, it is conjectured that discrepancies between Rd
t and Rs

t

in Q3 can be due to the assumed initial conditions (i.e., condition at day 1 of Q3) of the model.

Nonetheless, the discrepancies between Rd
t and Rs

t are deemed tolerable.

Fig 6. The deterministic reproduction number Rd
t from the SEIHIMR model against the statistical reproduction number Rs

t plot for

the time periods considered.

https://doi.org/10.1371/journal.pone.0283068.g006
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Conclusion

This paper presented a community-level COVID-19 transmission model incorporating the

country’s health department quarantine and isolation protocols with Davao City, Philippines,

as a case study. Key epidemiological parameters were represented and were analyzed in con-

junction with the different levels and quarantine classifications (e.g., ECQ, GCQ, and MGCQ).

Qualitative analyses indicate that the formulated mathematical model is well-posed, bounded,

and locally asymptotically stable when it is disease-free, and when the disease is endemic.

Using nonlinear least squares techniques, the parameters β and r were estimated which were

used along with other data-estimated parameters to compute epidemiological measures such

as the basic reproduction number, and time-varying reproduction number. Uncertainty and

sensitivity analyses were also performed via the LHS/PRCC method.

The result on the reproduction numbers (R0 and Rd
t ) and elasticity indices as discussed in

the Qualitative analyses subsection implied that the number of secondary infections was driven

by the number of infectious populations and how often they interact with the susceptible pop-

ulation. The transmission rate in Davao City was estimated to be highest during ECQ, i.e., at

the start of the pandemic (Table 3). This indicated that Davao City may had limited and insuf-

ficient resources against the emergence of a pandemic. Hence, there is a need to better equip

the healthcare system and the local government units (LGU) for better disaster management

and prevention of future pandemics. A multi-sectoral framework, policies, and protocols of

how the different agencies could collaboratively work should already be put in place even

before the occurrence of any health emergencies. The National, Regional, Provincial, City,

and Municipal Disaster Risk Reduction and Management Offices, the Department of Health

(DOH), the Department of Interior and Local Government, the LGU, Provincial, City, Munic-

ipal, and Barangay Health Offices are some of the core agencies necessary for effective pan-

demic management. Guides, manuals, and protocols should be collaboratively drafted by these

agencies and periodic capacity training for its personnel should be incorporated into its man-

date for better preparedness and mitigation. Based on the model results, policies toward the

reduction of the transmission rate such as the implementation of containment measures, avail-

ability and wearing of protective equipment, and sanitation are some of the key factors to

consider.

On the other hand, as discussed in the above subsection on Epidemiological parameters

and corroborated by Table 3 concerning the transmission rates, an abrupt change from a strict

containment measure to a lax one could negatively affect the control measures implemented

especially because of a perceived lag effect. A protocol for a gradual easement of containment

measures should be implemented instead. Moreover, since we know that the results with

respect to the positivity proportion r corroborated the need to put forth better monitoring and

identification protocols which include, but are not limited to, testing and contact tracing capa-

bilities, and travel and mobility surveillance. Furthermore, the results for the severity propor-

tion q suggested the need to allocate funding and to study the appropriate ratio of the hospital

carrying capacity to the city population because despite the small number of severely symp-

tomatic COVID-19 patients, the hospitals in Davao City still were overwhelmed. More than

allocating funds for equipment and buildings, the production of and adequate remuneration

for an appropriate number of nursing and healthcare professionals should be a necessity [56].

The need for this action was further supported by the results with respect to the disease-

induced death rate μH as it only critically increased in Q4 when many of the hospitals reached

its maximum capacity, and many of the healthcare workers were overwhelmed by the number

of hospital admissions. Despite having available hospital beds, the number of attending nurses

and doctors was inadequate, and the available ones are already highly exhausted. Government
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interventions such as the provisions of scholarships, opening of job positions, and offering of

competitive remuneration among others should have more investments and be made more

accessible to all aspiring healthcare workers.

Overall, the outputs generated from this study are potentially beneficial as a basis in making

decisions crucial for impeding the spread of COVID-19 and may be a baseline basis for the

protocols against future pandemics. These outputs also provided a quantitative measure of the

respective effect of the various measures implemented during the different quarantine classifi-

cations. This model could be used for other cities and regions in the Philippines to assess the

effects of their respective efforts to combat the disease, which is contextualized on a commu-

nity level. Moreover, researchers and practitioners must be aware of the limitations of com-

partmental-based modeling (SIR, SEIR, etc.). This approach generally assumes that the

community under infection is homogeneous: each human host infects and undergoes infec-

tion in the same manner. A comparison of our analysis with agent-based models [57] and

other modelling techniques accounting heterogeneity can reveal additional factors that can

refine epidemic dynamics and projections. Since our model assumed data prior to the vaccine

rollout in Davao City, a suitable refinement of our model should incorporate community-wide

inoculation dynamics. Other possible extensions account for risk groups [58], particularly age

groups [59], and untraced and undetected infectious individuals in the context of testing and

contact tracing [54, 60].
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