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Abstract

Breast cancer is the second leading cause of cancer-related deaths in women and triple-

negative breast cancer (TNBC), in particular, is an aggressive and highly metastatic type of

breast cancer that does not respond to established targeted therapies and is associated

with poor prognosis and worse survival. Previous studies identified a subgroup of triple-neg-

ative breast cancer patients with high expression of estrogen related receptor alpha (ERRα)

that has better prognosis when treated with tamoxifen. We therefore set out to identify com-

mon targets of tamoxifen and ERRα in the context of TNBC using phosphoproteomic analy-

sis. In this study, we discovered that phosphorylation of mitogen-activated protein kinase 1

(MAPK1) is regulated by tamoxifen as well as ERRα. Additionally, we showed that inhibition

of MAPK signaling together with the use of a selective ERRα inverse agonist, XCT-790,

leads to a significant upregulation of apoptosis and paves way for the therapeutic use of

MAPK inhibitors for treatment of ERRα expressing TNBC.

Introduction

Breast cancer is one of the most common cancers in women and is the second leading cause of

cancer-related deaths in women [1, 2]. The rate at which breast cancer is diagnosed is astonish-

ing, with about a quarter of a million women diagnosed with invasive breast cancer in the

United States annually and 1 in 8 women diagnosed within their lifetime [3]. Risk factors such

as age, body-mass-index, and ethnicity are confounding factors for developing breast cancer

[3–6]. Certain ethnic groups are disproportionately affected by breast cancer with a higher

mortality despite a lower incidence, indicating that there remains a lot about this disease that

we still do not know [3–5].

Further subclassification of breast cancer based on molecular status of the tumor reveals a

correlation between prognosis and receptor expression. Tumors are classified based on

expression of the following known molecular markers: estrogen receptor alpha (ERα), pro-

gesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) [5, 7]. ERα
expressing tumors account for 70% of breast cancers [8] and carry a better prognosis than

triple negative breast cancer (TNBC), classified as tumors that do not express ERα, PR and
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no amplification of HER2, which account for 15–20% of breast cancers [5, 9–12]. Unlike

ERα expressing tumors, TNBCs tend to affect younger, premenopausal women, have a

higher mortality rates of 40% within the first 5 years after diagnosis, and disproportionately

affect African Americans [3, 5]. A combination of the poor prognosis in TNBC and predomi-

nance in African Americans might be driving the racial disparity of breast cancer survival.

Therefore, the difference in prognosis and receptor expression between ERα expressing

tumors and TNBCs requires diverging therapeutic approaches in the treatment of the two

cancers.

Approaches to treating ERα expressing tumors focus on inhibiting ERα function with

endocrine therapies by either antagonizing the binding of estrogen to ERα (selective estrogen

receptor modulators), promoting ERα degradation (selective estrogen receptor degraders),

or by blocking estrogen synthesis (aromatase inhibitors) [13, 14]. An example of one of the

earlier used selective estrogen receptor modulators (SERM) is tamoxifen. Approved by the

FDA in 1977, it was found to be most beneficial in tumors with high expression of ERα and

continues to be used therapeutically today [14, 15]. Patients respond very well to tamoxifen

treatment with 40–50% reduction in both distant and local recurrence with 5 years of treat-

ment [8]. However, new or acquired resistance develops in approximately 30% of cases and

tumors can spontaneously convert to hormone-independent proliferation or can lose ERα
expression altogether, creating a greater need for understanding molecular mechanisms of

hormone receptor negative breast cancer [15–18]. Therefore, further research has focused on

identifying alternative molecular pathways responsible for tumor progression as druggable

targets [9, 10, 12, 19], and such research overlaps with the search for targeted treatments for

TNBCs.

Since TNBC tumors do not express any known markers, treatment options for TNBC

patients are extremely limited and currently no targeted therapies exist for such patients [12].

This leaves chemotherapy as the only treatment option for TNBC [11, 12, 20–22] with a three-

year overall survival of 74% compared to 89% in non-TNBC tumors, indicating that chemo-

therapy is not very effective [20]. Besides for leading to a significantly lower survival in ERα
negative tumors as compared to ERα expressing tumors, this treatment option burdens

patients with the adverse effects of chemo-toxicity such as alopecia, myelosuppression, gastro-

intestinal disturbances, nephrotoxicity, neurotoxicity, cardiotoxicity, and infertility, calling

into question any benefit from chemotherapy at the cost of a reduced quality of life [23]. Cur-

rent scientific work aims to offer insights into molecular drivers that may be leveraged in the

treatment of TNBC by further classifying tumor microenvironment, identifying tumor cellular

signatures and mRNA expression profiles [9, 10, 12, 19]. One such molecular driver that is cur-

rently explored is estrogen related receptor α (ERRα) [24, 25].

ERRα is an orphan nuclear receptor that is part of the superfamily of transcription factors,

which include ERRα, ERRβ, ERRγ [26]. ERRα is structurally most similar to ERα and there is

an overlap in ERα and ERRα binding to response elements in promoters of genes whose

expression they regulate [27]. Despite their homology, ligands, such as estrogen, that bind to

ERα do not bind to ERRα, therefore signaling between the two molecules is quite divergent

[27]. Though its function in metabolic processes in the muscle heart and liver has been

described, its role in tumorigenesis is not fully understood [28–32]. Metabolic functions that

are regulated or that are thought to influence ERRα include glycolysis, cholesterol metabolism,

fatty acid oxidation, and oxidative metabolism [28, 31]. In breast cancer, ERRα expression is

mutually exclusive with ERα expression and is corelated with a more aggressive and metastatic

disease [27]. Previous studies have shown that although ERRα was a negative predictive

marker for progression free survival and disease recurrence, in TNBC-basal-like tumors, when

treated with tamoxifen, ERRα expression was associated with a slightly prolonged distal
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metastasis-free survival, while those treated with chemotherapy alone, had significantly shorter

interval to metastasis. Additionally, patients with elevated nuclear expression of ERRα who

were treated with tamoxifen had a better prognosis than patients with elevated nuclear ERRα
who were not treated with tamoxifen, indicating that there is a therapeutic benefit to treating

ERRα-expressing TNBC patients with tamoxifen and that the action of tamoxifen in TNBCs is

ERRα dependent [25]. These findings indicated that a subgroup of ERα-negative patients

respond to tamoxifen and this effect is dependent on ERRα expression. This evidence

prompted our current study, whose aim was to investigate the relationship between ERRα and

tamoxifen in the context of TNBC. To investigate this relationship, phosphoproteomic analysis

was performed in TNBC cells to identify common pathways that are regulated by both tamoxi-

fen as well as XCT-790, an inverse agonist of ERRα [33] and to identify therapeutic targets.

Our findings identify MAPK1 (also known as ERK2) as a common target for tamoxifen and

ERRα and show that treatment of TNBC cells with a MEK1/2 inhibitor together with XCT-

790 leads to activation of apoptosis and inhibition of cell migration and invasion, suggesting

that ERK is a potential novel therapeutic target that should be considered for TNBC treatment.

Materials and methods

Cell culture and treatments

MDA-MB-231, MDA-MB-436, MDA-MB-157, Hs 578T, BT-549 sh-control and sh-ERRα
cells were grown in Dulbecco’s modified Eagle’s medium (Gibco) with 10% fetal bovine serum

(R&D, a Bio-Techne Brand) and 1% penicillin–streptomycin (Gibco). Cells were cultured in a

37˚C incubator with a humidified 5% CO2 atmosphere. MDA-MB-231, MDA-MB-436,

MDA-MB-157, Hs 578T, BT-549 cells were purchased from ATCC. sh-ERRα and sh-control

cells were a kind gift from Dr. Marina Holz.

Cells were treated with either 100 nM tamoxifen in ethanol (Millipore), 10 μM U0126 in

DMSO (Tocris, a Bio-Techne Brand), or 10 μM XCT-790 in DMSO (Tocris, a Bio-Techne

Brand), alone or in combination.

Immunoblotting

Following treatment, cells were lysed in ice cold lysis buffer (RIPA buffer with Triton1X-

100, Halt™ Protease & Phosphatase Single-Use Inhibitor Cocktail (100X), ThermoScientific).

Insoluble materials were centrifuged out at 14,000 rpm and 4˚C for 10 min. Using the Brad-

ford assay (Coomassie Protein Assay Reagent, ThermoScientific) and the Eppendorf Bio-

Photometer, cell protein concentrations were measured and normalized. 4X LDS Sample

Buffer (Invitrogen B0008) and Bolt™ 10x Sample Reducing Agent (Invitrogen) were added to

the samples followed by denaturation for 10 minutes at 70˚C. Samples were resolved through

electrophoresis using NuPage™ 4–12% Bis-Tris Gels (Invitrogen) and then transferred onto a

nitrocellulose membrane (ThermoScientific) for staining. Immunoblots were detected using

the following primary antibodies: ERRα #13826, Phospho-p44/42 MAPK (ERK1) (Tyr204)/

(ERK2) (Tyr187) #5726, Phospho-p90RSK1 (Ser380) #12032, RSK1 #8408, p44/42 MAPK

(ERK1/2) #4695, Phospho-MAPK Substrates Motif [PXpTP] MultiMab™ #14378, Phospho-

mTOR (Ser2448) #5536, PARP #9532, and β-Actin #4970. All primary antibodies were

ordered from Cell Signaling Technology. After staining with primary antibodies, nitrocellu-

lose membranes were treated with IRDye conjugated secondary antibodies (IRDye1 680RD

Donkey anti-Mouse IgG Secondary Antibody, IRDye1 800CW Goat anti-Rabbit IgG Sec-

ondary Antibody, Li-COR), and then imaged using the Odyssey-Clx Li-COR infrared detec-

tion instrument. Quantification of immunoblots was performed using Image Studio 5.2 (Li-

COR).
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Immunoprecipitation assay

Cells were lysed in ice cold IP lysis buffer (Pierce™ IP Lysis Buffer, Halt™ Protease & Phospha-

tase Single-Use Inhibitor Cocktail (100X), Thermo Scientific). Lysates were subjected to

immunoprecipitation with either Sepharose1Bead Conjugated p44/42 MAPK (Erk1/2) anti-

body #5736 (Cell Signaling Technology) or Protein A Agarose beads, 50% slurry (EMD Milli-

pore) overnight at 4˚C. Beads were pelleted from solution, washed twice with IP buffer and

once with PBS and boiled using Invitrogen’s LDS Sample Buffer and Reducing Agent accord-

ing to manufacturer’s instructions.

Phosphoproteomics sample processing and data analysis

Cells were lysed in RIPA lysis buffer, the supernatant was collected following centrifugation at

21000xg for 10 min, and an acetone precipitation was performed overnight at -20˚C. The sam-

ples were re-suspended in 7 M urea, reduced with 5 mM DTT (dithiothreitol) and alkylated

with 15 mM CAA (chloroacetamide). A standard tryptic digest was performed overnight at

37˚C. Solid Phase Extraction (SPE) was then performed using C18 Prep Sep™ cartridges

(Waters, WAT054960), followed by reconstitution in 0.5% TFA (trifluoroacetic acid). The SPE

cartridge was washed with conditioning solution (90% methanol with 0.1% TFA), and equili-

brated with 0.1% TFA. The sample was passed (1 drop/sec) through the equilibrated cartridge,

then desalted. The sample was then eluted (1 drop/sec) with an elution solution (50% ACN

(acetonitrile) with 0.1% TFA. The sample was then TMT labeled according to kit specifications

(ThermoFisher Scientific, 90110), with the exception that labeling was performed for 6hrs

instead of 1 hr. Following labeling, another SPE was performed, as stated above. Phosphopep-

tide enrichment using Titansphere Phos-TiO Kit (GL Sciences, 5010–21312) was then per-

formed. Briefly, samples were reconstituted in 100 μL of Buffer B (75% ACN, 1% TFA, 20%

lactic acid–solution B in the kit). The tip was conditioned by centrifugation with 100 μL of

Buffer A (80% ACN, 1% TFA), followed by conditioning with Buffer B (3000xg, 2min). The

samples were then loaded onto the tip and centrifuged twice (1000xg, 5min). The tip was then

washed with 50 μL of Buffer B, followed by 2 washes with 50 μL of Buffer A (1000xg, 2min).

The samples were eluted with 100 μL of elution 1 (20% ACN, 5% NH4OH) then 100 μL of elu-

tion 2 (20% ACN, 10% NH4OH) (1000xg, 5min). A final clean-up step was performed using

C18 Spin Columns (Pierce, 89870).

Mass spectrometry, data filtering, and bioinformatics

Mass spectrometry analysis was carried out as follows: to separate peptides, reverse-phase

nano-HPLC was performed by a nanoACQUITY UPLC system (Waters Corporation). Pep-

tides were trapped on a 2 cm column (Pepmap 100, 3 μM particle size, 100 Å pore size), and

separated on a 25cm EASYspray analytical column (75 μM ID, 2.0 μm C18 particle size, 100 Å
pore size) at 45˚C. The mobile phases were 0.1% formic acid in water (Buffer A) and 0.1% for-

mic acid in acetonitrile (Buffer B). A 180-minute gradient of 2–30% buffer B was used with a

flow rate of 300 nl/min. Mass spectral analysis was performed by an Orbitrap Fusion Lumos

mass spectrometer (ThermoFisher Scientific). The ion source was operated at 2.4kV and the

ion transfer tube was set to 275oC. Full MS scans (350–2000 m/z) were analyzed in the Orbi-

trap at a resolution of 120,000 and 4e5 AGC target. The MS2 spectra were collected using a 0.7

m/z isolation width and analyzed by the linear ion trap using 1e4 AGC target after HCD frag-

mentation at 30% collision energy with 50ms maximum injection time. The MS3 scans (100–

500 m/z) were acquired in the Orbitrap at 50,000 resolution, with a 1e5 AGC, 2 m/z MS2 isola-

tion window, at 105ms maximum injection time after HCD fragmentation with a normalized
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energy of 65%. Precursor ions were selected in 400–2000 m/z mass range with mass exclusion

width of 5–18 m/z. Polysiloxane 371.10124 m/z was used as the lock mass.

The raw mass spectrometry data was searched with MaxQuant (1.6.6.0). Search parameters

were as follows: specific tryptic digestion, up to 2 missed cleavages, a static carbamidomethyl

cysteine modification, variable protein N-term acetylation, and variable phospho(STY) as well

as methionine oxidation using the human UniProtKB/Swiss-Prot sequence database (Down-

loaded Feb 1, 2017). MaxQuant data was deposited to PRIDE/Proteome Xchange.

Fractionation

Following treatment, MDA-MB-231 cells were harvested, and using NE-PER™ Nuclear and

Cytoplasmic Extraction Reagents (ThermoScientific), nuclear fractionation was performed

according to manufacturer’s instructions.

Cell proliferation assays

Cells were seeded in replicates of 6, at a density of 2,500 cells/well in 96 well plates and allowed

to attach overnight. Next day, media were changed to assay media, supplemented with or with-

out agents as indicated. Cell proliferation was assayed after 6 days using the supravital dye neu-

tral red (NR) incorporation. The medium was removed, 0.2 ml of medium containing 0.04

mg/ml NR was added per well, and incubation was continued for 30 min at 37˚C. Cells were

then rapidly washed and fixed with a 0.2-ml solution of 0.5% formalin, 1% CaCl2 (v/v), and the

NR incorporated into the viable cells was released into the supernatant with a 0.2-ml solution

of 1% acetic acid, 50% ethanol. Absorbance was recorded at 540 nm with a microtiter plate

spectrophotometer. Experiments were performed a minimum of three times. Cytotoxicity

graphic data were presented as the mean percentages of control ± standard deviation

(STDEV).

Wound healing assay

Cells were seeded in 6-well plates in complete DMEM media, supplemented with 10% FBS

and grown to confluency in monolayer overnight. Wound/scratch was created along the diam-

eter of each well using a 200μl pipette tip. Cell debris were removed by washing once with PBS,

followed by addition of fresh DMEM media supplemented with 1% FBS, with or without

agents as indicated. Cell imaging and migration were measured using Keyence BZX-800

microscope. Data was analyzed and plotted using Excel. Experiments were performed a mini-

mum of three times.

Boyden chamber assay

Cells were cultured in media without serum and treated with either XCT-790, tamoxifen and/

or U0126, as indicated. Nineteen hours later, 1 × 105 cells per well were plated on tissue culture

inserts with 8.0-μm pores. The inserts were incubated with serum-free media containing

10 μM XCT-790, 100 nM tamoxifen or 10 μM U0126, alone or in combination. Complete

media were added to the lower chamber and cells allowed to migrate for 15 hours. After 15

hours, cells remaining on the upper side of the membrane were scraped off, and the cells that

had migrated to the lower side of the membrane were fixed in 4% paraformaldehyde. The

insert membranes were removed, stained, and mounted on coverslips using DAPI Fluoro-

mount. Images were collected at 10× magnification using Keyence BZX-800 microscope.

Nuclei were counted manually, and data were analyzed using two-tailed Student’s t test and

plotted using Excel. Experiments were performed a minimum of three times.
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Microscopy

Cells were imaged under phase contrast lens using the Keyence BZX-800 microscope with a

20x objective.

Statistical analysis

All experiments were repeated at least thrice. Data was analyzed using Excel and significance

of data was determined using t-tests, where * represents P values <0.05, ** represents P values

<0.01, and *** represents P values <0.001.

Results

To identify common targets that are regulated by both tamoxifen as well as ERRα inverse ago-

nist XCT-790 in TNBC, phosphoproteomic analysis was performed on MDA-MB-231 cells

(Fig 1A, S1 Fig and S1 Table). Bioinformatic analysis identified 307 unique targets with statisti-

cally significant phosphorylation (P<0.05) changes (Fig 1B and S2 Table). Further analysis of

the data identified 19 unique phosphosites that were changed in both tamoxifen and XCT-790

treated cells (Table 1). A specific direct target which was of particular interest to us was

MAPK1, whose phosphorylation was upregulated on tyrosine 187 (also known as p-ERK

Y204/187) upon treatment with tamoxifen as well as with XCT-790. MAPK1 is a member of

the Ras/Raf/MEK/ERK signaling pathway that regulates cell cycle progression as well as apo-

ptosis and warrants further study as an important player in TNBC progression.

To validate phosphoproteomic findings, MDA-MB-231 cells were grown in serum-free

media for 24 hrs and treated with 100 nM tamoxifen and 10 μM XCT-790, alone or in combi-

nation as indicated and probed with an antibody that recognizes proteins that are phosphory-

lated at the threonine within the PXpTP motif, also known as the phospho-MAPK substrate

motif (Fig 2). As compared to the untreated control, phosphorylation changes in phospho-

MAPK substrate motif [PXpTP] are readily seen and are indicated by asterisks. In tamoxifen

or XCT-790 treated samples, phospho-MAPK substrate changes are seen by 15–30 min post

treatment (Fig 2A) and in samples treated with combination of tamoxifen and XCT-790, phos-

pho-MAPK substrate changes are pronounced as early as 5 min post treatment (Fig 2B). Coun-

terstaining of the membrane with an antibody specific for the phosphorylation of MAPK1 on

tyrosine 187 (p-ERK Y204/187) showed upregulation in phosphorylation upon treatment with

XCT-790 and tamoxifen, alone or in combination. Therefore, western blot analysis validated

the phosphoproteomic findings and further showed that XCT-790 and tamoxifen treatments

regulate MAPK signaling pathway globally in TNBC. To further validate phosphoproteomic

findings and explore the relationship between ERRα, tamoxifen, and ERK in the context of

TNBC, MDA-MB-231 cells were grown in serum-free media for 24 hrs and treated with

tamoxifen and XCT-790, alone or in combination over a time course of 5, 15, 30 and 60 min

(Fig 3). Immunoblotting verified that ERRα inhibition by XCT-790 caused statistically signifi-

cant upregulation of p-ERK Y204/187 as early as 5, 15 and 30 min post treatment (Fig 3A and

3B). Likewise, tamoxifen treatment caused statistically significant upregulation of p-ERK

Y204/187 as early as 5, 15 and 30 min post treatment and similar results were observed in the

combination of XCT-790 and tamoxifen treated samples (Fig 3D and 3E). Importantly, statisti-

cally significant upregulation of p-RSK1 S380, a direct downstream target of ERK, was

observed in XCT-790 and tamoxifen treated samples, alone or in combination (Fig 3A and

3C). This finding validates phosphoproteomic’s findings and indicates that MEK/ERK/RSK

signaling pathway is regulated by ERRα and tamoxifen in TNBC. Additionally, this effect is

specific to the MAPK signaling pathway, as XCT-790 or tamoxifen treatment had no impact

on activation of mTOR on S2448 (Fig 3A and 3D). Mammalian target of rapamycin (mTOR)
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is a parallel signaling pathway that is activated by growth factors and is often hyperactivated in

cancer, including breast cancer [34]. These results indicate that ERRα and tamoxifen regulate

p-ERK and that this effect is direct and specific to the MAPK signaling pathway.

In an effort to define the relationship between ERRα levels and tamoxifen response, as well as

to explore the role of ERRα in the phosphorylation of ERK, MDA-MB-231 cells with stable

Fig 1. Phosphoproteomic analysis of XCT-790 and tamoxifen treated MDA-MB-231 cells. (A) Steps of the work flow chart of samples

treated for the phosphroproteomic analysis. (B) Outcome of number of identified unique phosphorylated proteins in each group.

https://doi.org/10.1371/journal.pone.0283047.g001
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Table 1. Significant phosphoproteomic changes inXCT-790 as well as tamoxifen treated samples. A table of statistically significant hits from phosphoproteomic analy-

sis of cells treated with XCT-790 as well as tamoxifen.

Protein Protein names Gene names Position

Q03252 Lamin-B2 LMNB2 420

Q9Y2U5 Mitogen-activated protein kinase kinase kinase 2 MAP3K2 239

Q08170 Serine/arginine-rich splicing factor 4 SRSF4 431

Q9Y2D5 A-kinase anchor protein 2 AKAP2 720

Q3KQU3-2 MAP7 domain-containing protein 1 MAP7D1 796

Q9BWF3-3 RNA-binding protein 4 RBM4 86

Q9UKV3-5 Apoptotic chromatin condensation inducer in the nucleus ACIN1 408

Q8WZ73-3 E3 ubiquitin-protein ligase rififylin RFFL 212

Q5JSH3-2 WD repeat-containing protein 44 WDR44 163

Q13547 Histone deacetylase 1 HDAC1 421

Q96RT1-7 Protein LAP2 ERBB2IP 1015

P42858 Huntingtin HTT 432

Q13158 FAS-associated death domain protein FADD 194

Q9NXH8 Torsin-4A TOR4A 63

Q8IYB3-2 Serine/arginine repetitive matrix protein 1 SRRM1 595

Q9UQ35 Serine/arginine repetitive matrix protein 2 SRRM2 1014

Q8NCF5 NFATC2-interacting protein NFATC2IP 204

Q15366-7 Poly(rC)-binding protein 2 PCBP2 317

P28482-2 Mitogen-activated protein kinase 1 MAPK1 187

https://doi.org/10.1371/journal.pone.0283047.t001

Fig 2. XCT-790 and tamoxifen treatments regulate signaling of MAPK pathway. (A) MDA-MB-231 cells were grown in starvation media for

24 hrs and treated with either 10 μM XCT-790 or 100 nM tamoxifen for 5, 15, 30 or 60 minutes. Cells were lysed as described in “Materials and
Methods” and indicated proteins were detected by immunoblot. (B) MDA-MB-231 cells were grown in starvation media for 24 hrs and treated

with 10 μM XCT-790 and 100 nM tamoxifen for 5, 15, 30 or 60 minutes. Cells were lysed as described in “Materials and Methods” and indicated

proteins were detected by immunoblot. * indicates phosphorylation changes in [PXpTP] motif as compared to control. ‘C’ is untreated control.

https://doi.org/10.1371/journal.pone.0283047.g002
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Fig 3. XCT-790 and tamoxifen treatments upregulate phosphorylation of p-ERK on Y204/187. (A) MDA-MB-231 cells were grown in starvation

media for 24 hrs and treated with either 10 μM XCT-790 or 100 nM tamoxifen for 5, 15, 30 or 60 minutes. Cells were lysed as described in “Materials
and Methods” and indicated proteins were detected by immunoblot. (B) Quantification of p-ERK Y204/187 protein levels normalized to total ERK

signal from ‘A’. (C) Quantification of p-RSK1 S380 protein levels normalized to actin signal from ‘A’. (D) MDA-MB-231 cells were grown in

starvation media for 24 hrs and treated with 10 μM XCT-790 and 100nM tamoxifen for 5, 15, 30 or 60 minutes. Cells were lysed as described in
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knockdown of ERRα (shERRα), were grown in serum-free media for 24 hrs and treated with

tamoxifen for 5, 15, 30 and 60 min (Fig 4). As compared to control, MDA-MB-231 cells with

reduced ERRα expression showed 2-fold upregulation of phosphorylation of p-ERK on Y204/

187 (Fig 4A and 4B). This validates our previous findings and indicates that the effect of XCT-

790 on ERK phosphorylation is due to its inhibition of ERRα. Furthermore, treatment of either

MDA-MB-231 cells or cells with reduced expression of ERRα, showed that there is an inverse

“Materials and Methods” and indicated proteins were detected by immunoblot. (E) Quantification of p-ERK Y204/187 protein levels normalized to

actin signal from ‘D’. (F) Quantification of p-RSK1 S380 protein levels normalized to actin signal from ‘D’. * represents P<0.05, ** represents P<0.01

and *** represents P<0.001.

https://doi.org/10.1371/journal.pone.0283047.g003

Fig 4. Tamoxifen potentiates phosphorylation of ERK on Y204/187 in the absence of ERRα. (A) sh Control and sh ERRα cells were treated with 100 nM

of tamoxifen for 5, 15, 30, or 60 minutes. Cells were lysed as described in “Materials and Methods” and the indicated proteins were detected by

immunoblot. (B) Relative levels of p-ERK Y204/187 normalized to actin, ** represents P<0.01. (C) Relative levels of p-ERK Y204/187 and ERRα,

normalized to actin from ‘A’. (D) MDA-MB 231 cells were treated with 10 μM XCT-790 and/or 100 nM tamoxifen for 30 minutes followed by lysis with

NE-PER Nuclear Cytoplasmic extraction kit as described in ‘Materials and Methods’ and lysates from nuclear and cytoplasmic extractions were

immunoblotted with the indicated antibodies.

https://doi.org/10.1371/journal.pone.0283047.g004
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relationship between ERRα expression and phosphorylation of ERK on Y204/187, such that

high ERRα expression in MDA-MB-231 cells is correlated with low p-ERK Y204/187 expression

and reduced ERRα expression in sh-ERRα cells is correlated with increased phosphorylation of

p-ERK on Y204/187 (Fig 4A and 4C). This finding further validates phosphoproteomic data and

shows that inhibition of ERRα by XCT-790 as well as use of tamoxifen activate ERK signaling,

and this has tremendously important implications for TNBC patients as we have identified a sig-

naling pathway and a specific molecular target whose inhibition can be used therapeutically.

Since ERK is known to have both cytoplasmic as well nuclear functions, it is important to

determine subcellular localization of p-ERK and its function. MDA-MB-231 cells were grown

in serum-free media for 24 hrs, treated with tamoxifen and XCT-790, alone or in combination

for 30 min, followed by preparation of nuclear and cytoplasmic fractions. As seen in Fig 4D,

tamoxifen and XCT-790 treatment, alone or in combination, upregulated phosphorylation of

ERK on Y204/187 specifically in the cytoplasm, and no p-ERK expression was detected in the

nuclear fraction at this time point. Consistent with ERK’s cytoplasmic function, its down-

stream target RSK1 was also phosphorylated on S380 upon tamoxifen as well as XCT-790

treatment, alone or in combination, and this was observed only in the cytoplasmic fraction

and not in the nuclear fraction. The presence of histone H3 mainly in the nuclear fraction and

presence of actin mainly in the cytoplasmic fraction served as technical control (Fig 4D).

Since XCT-790 and tamoxifen treatments upregulate phosphorylation of ERK, this paves

the way for investigating the use of MAPK inhibitors as a therapeutic strategy for TNBC

patients. To that end, we investigated the effectiveness of U0126, a MEK1/2 inhibitor, in the

context of TNBC cells. MDA-MB 231 cells were grown in serum free media and treated with

10 μM XCT-790, 100 nM tamoxifen and 10 μM U0126, alone or in combination (Fig 5). Fol-

lowing 48 hrs of treatment, cells were imaged with Keyence BZX-800 microscope under phase

contrast (Fig 5A). Tamoxifen treatment alone did not have an effect on cell growth and den-

sity, however U0126 treatment and to a greater extent XCT-790 treatment showed a significant

reduction in cell growth and density. Additionally, combination of tamoxifen together with

XCT-790 as well as U0126 together with XCT-790 had a drastic and pronounced effect on cell

density with very few cells attached. The attached cells were not healthy and appeared spindle-

like or rounded up and majority of cells were floating dead cells. To quantify cell viability, rela-

tive uptake of neutral red dye by the lysosomes of live cells was measured. MDA-MB-231 cells

were seeded in a 96-well plate in full serum media, treated with 10 μM XCT-790, 100 nM

tamoxifen and 10 μM U0126, alone or in combination and neutral red assay was performed 6

days post treatment (Fig 5B). Consistent with previous observation, cells treated with XCT-790

had approximately 20% reduction in cell viability, while treatment of cells with U0126 alone or

in combination with tamoxifen or XCT-790 had greater than 50% reduction in cell viability.

To further investigate whether the effect on cell viability is due to cell death, rather than

inhibition of cell growth, expression level of cleaved-PARP fragment, a marker of apoptotic

cell death was investigated (Fig 5C and 5D). MDA-MB-231 cells were grown in serum free

media for 24 hrs and treated with 10 μM XCT-790, 100 nM tamoxifen and 10 μM U0126,

alone or in combination for 24 hrs. As expected, U0126 treatment blocked activation of ERK

signaling as seen via reduction of p-ERK Y204/187 and XCT-790 treatment reduced ERRα
protein levels. Additionally, p-ERK Y204/187 and p-RSK1 S380 levels were upregulated upon

treatment with XCT-790 and tamoxifen, validating previous data (Fig 5C). Most importantly,

we observed statistically significant upregulation in apoptosis as measured by quantification of

cleaved-PARP fragment (Fig 5D), indicated by the arrow (Fig 5C). The most notable increase

in cleaved PARP levels was observed in samples treated with a combination of U0126 and

XCT-790, which exhibited the greatest level of cleaved PARP when compared to cells treated

with either U0126 or XCT-790, alone. This finding is very exciting as it indicates that the use

PLOS ONE Inhibition of ERK signaling for treatment of ERRα positive TNBC

PLOS ONE | https://doi.org/10.1371/journal.pone.0283047 May 10, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0283047


Fig 5. Inhibition of ERRα potentiates apoptotic effects of U0126 in TNBC cells. (A) MDA-MB-231 cells were serum starved for 24 hrs

and treated with 10 μM XCT-790, 100 nM tamoxifen, or 10 μM U0126, alone or in combination for 48 hrs. Cells were imaged under 20x

magnification using BZX-800 microscope from Keyence. Scale bar represents 100 μm. (B) MDA-MB-231 cells were seeded in 96-well

plate in complete DMEM media, supplemented with 10% FBS and treated with 10 μM XCT-790, 100 nM tamoxifen, or 10 μM U0126,

alone or in combination for 6 days and cell viability was measured using Neutral Red cytotoxicity assay as described in “Materials and
Methods”. (C) MDA-MB-231 cells were serum starved for 24 hrs and treated with 10 μM XCT-790, 100 nM tamoxifen, or 10 μM U0126,
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of MEK inhibitors together with inhibition of ERRα is effective at inducing apoptosis in

TNBC cells and is a first indication of designing a targeted therapy for treatment of TNBC.

We subsequently wanted to examine whether such therapy is effective at inhibition migra-

tion and invasion of TNBC cells. To test the effect on cell motility, wound-healing assay was

performed and quantified using MDA-MB-231 cells (Fig 6A and 6C). Though tamoxifen treat-

ment alone did not have an effect on cell migration, treatment with either XCT-790 or U0126

had a statistically significant effect on inhibiting cell migration and this effect was also seen in

combination therapy of XCT-790 with either tamoxifen or U0126. To test the effect on cell

invasion, trans-well migration assay was performed and quantified using MDA-MB-231 cells

(Fig 6B and 6D). Similar trend was observed in the trans-well migration assay as in the

wound-healing assay. In particular, both XCT-790 and U0126 treatments had statistically sig-

nificant inhibition on cell migration and this effect was maintained in all three combinations

of treatments.

To verify that such therapy is beneficial to treatment of TNBC and is not unique to

MDA-MB-231 cells, expression levels of ERRα and active signaling of MEK/ERK/RSK path-

way were investigated in a panel of TNBC cells (Fig 7A). As expected, all of the tested TNBC

cells express ERRα, but they also show active MEK/ERK/RSK signaling as indicated by phos-

phorylation of ERK on Y204/187 and RSK on S380. To identify the mechanism of XCT-790

action on ERK signaling, we wanted to see whether ERRα and ERK interact using co-immuno-

precipitation assay using whole cell lysates. We confirmed that ERK and ERRα interact using

MDA-MB 231 (Fig 7B) as well as high- ERRα expressing MDA-MB 436 (Fig 7C) cell lines.

Discussion

Despite significant strides that have been made in the development of treatments for hormone

receptor positive breast cancer, progress in the treatment of TNBC has lagged behind, leaving

patients with few treatment options. Results from previous studies identified a subset of

patients with TNBC who have high ERRα expression and respond to tamoxifen treatment

[25]. This finding prompted us to further investigate the role of ERRα in conferring tamoxifen

sensitivity in TNBC tumors and to discover signaling pathways responsible for ERRα induced

tamoxifen sensitivity, with the aim of identifying specific druggable target for the treatment of

TNBC. In our study, we discovered that the MAPK signaling pathway is regulated by tamoxi-

fen as well as ERRα and that attenuation of this signaling pathway may be a promising thera-

peutic strategy for the treatment of TNBC. Though the mechanism of tamoxifen action in

TNBC cells is not clear, since ERRα and ERα can regulate a subset of common target genes,

specifically ones with high relevance to breast tumor biology [35], it is possible that tamoxifen

might have a similar mechanism of action on ERRα as it does on ERα. Of the targets we identi-

fied through phosphoproteomic analysis, MAPK1 phosphorylation at Y204/187 was particu-

larly interesting as the MAPK pathway has been implicated in many processes associated with

cancer progression including, tumor proliferation, invasion, metastasis, migration, and apo-

ptosis [36, 37]. MAPK1 is part of a kinase signaling cascade that begins extracellularly with the

EGFR receptor and cascades through a series of kinases including Ras, Raf, MEK, and ERK 1/2

consecutively [38]. ERK 2 is also known as MAPK1 and is a serine threonine kinase [39]. The

identification of ERK as a target of ERRα and tamoxifen identifies an important target whose

modulation should be further explored clinically as a therapy in TNBC.

alone or in combination for 24 hrs as indicated. Cells were lysed as described in “Materials and Methods” and immunoblotted for

indicated proteins. Arrow indicates cleaved PARP fragment. (D) Quantification of cleaved PARP fragment from “B” normalized to actin.

* represents P<0.05, ** represents P<0.01 and *** represents P<0.001.

https://doi.org/10.1371/journal.pone.0283047.g005
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Fig 6. Inhibition of ERRα together with U0126 prevents cell migration and invasion in TNBC cells. (A) MDA-MB-231 cells were seeded in

a 6-well plate in complete DMEM media and allowed to attach overnight. The following day cells were placed in reduced (1%) serum media

and following 8–10 hrs of pretreatment with 10rμM XCT-790, 100nM tamoxifen, or 10rμM U0126, alone or in combination and wound/

scratch was generated. Wound closure was measured 17 hrs post generation. (B) Cell migration/Boyden chamber assay was performed as

described in “Materials and Methods”. Representative images of MDA-MB-231 cells stained with 40,6-diamidino-2-phenylindole (DAPI)
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Further validation of the phosphoproteomic result with immunoblotting confirmed that

XCT-790 as well as tamoxifen treatment led to an increase in ERK phosphorylation on Y204/

187 as well as phosphorylation of the downstream kinase cascade. Our results show that ERRa

directly binds to MAPK1, and through this interaction leads to modulation of MAPK1 phos-

phorylation on Y204/187 as well as downstream signaling. Since MAPK activation is known to

support cellular survival, we hypothesized that this activation might be a compensatory cellular

signal in response to treatment. Such compensatory responses have been previously described

and have been implicated in the development of drug resistance [40]. Crosstalk from other path-

ways such as PI3K/Akt/mTOR or activation feedback loops within the Raf/MEK/ERK signaling

pathway have been previously implicated in pro-survival compensatory mechanisms and drug

resistance, thus encouraging further research into the use of drug combinations that act on mul-

tiple targets and disrupt the molecular compensatory mechanisms [37, 41, 42]. Though activa-

tion of Raf/MEK/ERK signaling is associated with tumor progression, it also identified an ERRα
dependent target whose inhibition can be explored clinically for treatment of TNBC tumors.

Strategies to curb tumor progression through the inhibition of the MAPK pathway have

been previously described and are currently used in the treatment of colon cancer and mela-

noma [43–53]. In breast cancer, preclinical studies described reduced tumor volume in xeno-

graft models, induced cell cycle arrest, and increased apoptosis with the attenuation of the

MAPK pathway [54, 55]. Though these results have yet to be validated in clinical trials, inhibi-

tion of EGFR in breast cancer was tested clinically due to evidence of EGFR overexpression in

nearly half of TNBCs [43, 44]. Results from those trials were limited showing benefit only in

certain subgroups of patients and clinical trials exploring the use of MEK inhibitors in breast

cancers are currently underway. In our work, we showed that a combination of ERRα inverse

agonist and MEK inhibition leads to statistically significant reduction in cell proliferation,

upregulation of apoptosis as well as inhibition of cell migration and invasion.

TNBC is a highly aggressive and metastatic form of breast cancer with a poor prognosis and

poor patient outcome. To date, we do not have a clear understanding of molecular pathways

following 15 hrs migration assay are shown. (C) Quantification of the Wound Healing assay from (A) was performed and graphed using paired

Student’s t-test. * represents P<0.05. ** represents P<0.01. (D) Histogram representing the number of cells migrated relative to untreated

control. * represents P<0.05, ** represents P<0.01 and *** represents P<0.001.

https://doi.org/10.1371/journal.pone.0283047.g006

Fig 7. ERRα directly binds to ERK. (A) The represented TNBC cell lines were lysed as described in “Materials and Methods” and immunoblotted for the

indicated proteins. (B) MDA-MB 231 cells were lysed and immunoprecipitated as described in “Materials and Methods” and proteins were detected by

immunoblot. (C) MDA-MB 436 cells were lysed and immunoprecipitated as described in “Materials and Methods” and proteins were detected by

immunoblot.

https://doi.org/10.1371/journal.pone.0283047.g007
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that modulate cancer progression and therefore no targeted treatment therapies exist for

TNBC patients. What is exciting and important is that we, for the first time, present data that

show a direct link between ERRα and ERK signaling pathway. ERRα is a transcription factor

that is highly expressed in TNBC and is associated with a more aggressive cancer and a poor

outcome. We have shown that ERRα directly binds to ERK and modulates its phosphorylation

on Y204/187 as well as downstream pathway activation, indicating that inhibitors of the MEK/

ERK signaling pathway should be considered therapeutically for treatment of TNBC. As a

proof of this concept, we showed that the use of MEK1/2 inhibitor alone or in combination

with XCT-790 induces apoptosis as well as inhibits migration and invasion in TNBC cells.

This is a highly exciting finding for TNBC patients and indicates that further investigation into

clinical use of MEK inhibitors should be done for treatment of TNBC.
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