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Abstract

Twitter location inference methods are developed with the purpose of increasing the per-

centage of geotagged tweets by inferring locations on a non-geotagged dataset. For valida-

tion of proposed approaches, these location inference methods are developed on a fully

geotagged dataset on which the attached Global Navigation Satellite System coordinates

are used as ground truth data. Whilst a substantial number of location inference methods

have been developed to date, questions arise pertaining the generalizability of the devel-

oped location inference models on a non-geotagged dataset. This paper proposes a high

precision location inference method for inferring tweets’ point of origin based on location

mentions within the tweet text. We investigate the influence of data selection by comparing

the model performance on two datasets. For the first dataset, we use a proportionate sam-

ple of tweet sources of a geotagged dataset. For the second dataset, we use a modelled dis-

tribution of tweet sources following a non-geotagged dataset. Our results showed that the

distribution of tweet sources influences the performance of location inference models. Using

the first dataset we outweighed state-of-the-art location extraction models by inferring

61.9%, 86.1% and 92.1% of the extracted locations within 1 km, 10 km and 50 km radius val-

ues, respectively. However, using the second dataset our precision values dropped to

45.3%, 73.1% and 81.0% for the same radius values.

1. Introduction

Twitter is one of the most popular social media platforms. With over 500 million tweets gener-

ated every day, the platform contains a huge amount of data voluntarily generated across a

diverse range of topics. Researchers have capitalised on the large, near real time and diverse

nature of Twitter data to address fields such as urban planning [1], emergence response [2, 3],

damage assessments [4], movement patterns [5–7] and other related fields. Through these sub-

stantiated research, Twitter data has proven to be a reliable and valuable data source, evi-

denced by the results of the respective studies.
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One major drawback to the use of Twitter data is the rather small percentage of geotagged

posts. Of the millions of tweets generated, researchers have found the percentage of geotagged

posts to range between 0.35% and 3% of the total tweets generated [8–10]. These rather low

percentages of geotagged tweets limit the sample size used for spatial analysis [3] thereby

impacting the representativeness of the results.

To alleviate the challenges brought by having lower percentages of geotagged posts,

researchers have developed various methods to infer the tweets’ location. Depending on the

desired precision, researchers have inferred either Twitter user’s place of residence [11–13],

message location [14, 15], or the user’s position at the time of sending the tweet also known as

the tweets’ point of origin [8, 16, 17].

Location inference methods are often developed and tested on a geotagged dataset where the

attached latitude and longitude pairs are used as ground truth data. The current location inference

methods are able to infer at most 83% of the tweet’s point of origin within a 50 km radius of the

ground truth position [9, 16]. Whilst there appears to be progress in accurately inferring Twitter

locations, questions still arise as to the possibility to use the developed location inference models

on a non-geotagged dataset, which is the ultimate goal of location inference methods. Questions

of location inference model transferability essentially emanates from the differences in tweet

source distribution between geotagged and non-geotagged datasets, among other factors.

Tweet source refers to the application, through which the tweet was generated. A tweet can

either be generated from a native Twitter application such as Twitter for iPad, Twitter for Win-

dows, Twitter for Android etc. or from a third party application such as Instagram, Foursquare

swarm, Facebook etc. Geotagged datasets generally contain a higher percentage of tweets gen-

erated from third party applications whilst non-geotagged datasets contain a higher percentage

of tweets generated from native Twitter applications [10, 18, 19]. The study of [10] found that

whilst posts sent via third party applications such as Instagram contain a higher percentage of

geotagged tweets, posts sent via native Twitter applications contained approximately 56 times

more non-geotagged posts than third party applications. This finding highlights an overrepre-

sentation of third party applications in developed location inference methods and questions

the generalizability of developed location inference models to a non-geotagged dataset.

We have two objectives in this paper. First we aim to enhance the geocoding precision of

location inference methods using available approaches. Second we aim to investigate the

influence of tweet source distribution when developing location inference models. We

answer the stated questions by developing a location inference method and evaluating the per-

formance of the proposed approach on two sample datasets. The first dataset (Dataset A) con-

tains a proportionate sample of tweet source distribution of a geotagged dataset. Given the

absence of ground truth data in a non-geotagged dataset, the second dataset (Dataset B) con-

tains geotagged tweets with the tweet source distribution modelled to suit the distribution of

tweet sources in a non-geotagged dataset.

2. Previous work on location inference methods

The need to increase the percentage of geotagged tweets is not a new topic but one that

received a large amount of attention over the last decades. Review work done by [20–22]

showed that substantial advancements have been made to infer either the user’s place of resi-

dence, message location, or the tweet’s point of origin (tweet location).

2.1 User’s home residence

Studies of [13, 23] were amongst the early works of user home location prediction. After the

deployment of Twitter in 2006, in 2010 [13] proposed an approach that uses language models
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on tweet text to predict a user’s home location. In the proposed approach, the authors identi-

fied local keywords within the tweet and used the identified keywords to predict the user’s

home city. They obtained an accuracy of 51% within a 100-mile radius (161 km) of the actual

user’s profiled home location. In 2011, [23] inferred user home location at a city level using

location indicative words within the tweet content. A similar technique was applied in [24]

where the authors used language models and machine learning algorithms to infer a user’s

home country. By evaluating present tweet nouns and google word trends for a set of tweets

from each user, the authors were able to geolocate 83% of the users within their home country.

A more advanced approach was conducted by [12]. In their research, the authors used all pub-

licly available tweet metadata fields to predict a users’ residence at varying levels of granularity.

The authors obtained accuracy levels of 61%, 70%, and 80% for city, state and time zone,

respectively.

In [25], user social graphs alongside the tweets content were used to infer the user home

locations. Their highest F-measure reported from their study was 37.71%. Again using social

graphs, [26], analysed user home locations and managed to infer about 80% users within the

home city of Dublin. Recently, [11], used the time of opening of a twitter account together

with the tweet language to infer the users home location. The authors we able to geolocate

71% of tweets within a country level and 51% within a city level. Although the precision val-

ues were measured on a large scale (state, country, time zone), these studies showed the pos-

sibilities of inferring a user’s residence location using various metadata fields and

approaches.

2.2 Tweet message location

The message location refers to the location that a user makes reference to. The message loca-

tion may not necessarily reflect the user’s in situ location. In instances such as traffic monitor-

ing or sentiment analysis, researchers are more interested in topics related to specific locations

and the user’s actual location is not essential. Earlier studies such as those of [27–29] focused

on geolocating message locations so as to detect event specific tweets. In 2011, [27] used syn-

tactical information to classify traffic information. Whilst using prepositions the authors were

able to determine the start and end location of traffic incidents with an average accuracy of

over 90%. In the same year [28] geotagged the points of interests using language and time

models whilst [29] inferred message locations from disaster related tweets using a named

entity recognition and geocoding. These studies already showed the high possibility of infer-

ring location mentions within tweets.

More recently, [14] used tweet context to identify and classify tweets related to a flooding

event. The authors used historically geotagged tweets along with inferred user locations to geo-

locate the radius of high priority flood victims. Their proposed approach returned a classifica-

tion accuracy of 81% and a location prediction accuracy of 87%. By utilizing location

information contained within a tweet message, [30] analysed user subjectivity and polarity

during the 2016 USA elections. They found that extracting inferred location variables signifi-

cantly increases the accuracy of sentiment and behavioural analysis. In [31], the authors cre-

ated a hybrid approach that uses Twitter content and user network information to geocode a

message location. Their designed method was able to pinpoint the location of event related

tweets within a median error of 19 km, 50% of the time. To increase the knowledge of traffic

flows, [15], developed a framework to extract the locations of traffic events from tweet text in

Greater Mumbai. Their results showed that Twitter users in Greater Mumbai often share traf-

fic information along with location mentions. Assuming that this is the case for other emer-

gencies on a global scale, the need for inferring locations from Twitter data becomes evident.
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2.3 Tweet’s point of origin

In addition to the above discussed location inference methods, the studies of [8, 9, 17, 32–34]

predicted users’ locations at the time of sending a post (tweet’s point of origin). In 2011, [32]

used language models to predict a tweet’s point of origin from a zip code to Country level. Sim-

ilarly, [33] used rule generation and identified locations through noun and verb combinations.

With this approach, the authors were able to geolocate 79% of the tweets within a country level

and 66% within the users’ current location.

Using present associations between a location and its relevant keywords, [17] analysed the

textual content of a tweet to predict the tweet’s point of origin. Using this approach, the

authors managed to geolocate 45% of tweets within a radius of 10 km to the tweets’ Global

Navigation Satellite System (GNSS) position. Additionally, [34] implemented a city level geo-

location system to infer the uses’ location based on tweet text and user-declared metadata fields

using a staking approach. Their approach was able to geolocate 66.5% within a 100 mile (161

km) radius.

Similarly [9] predicted the tweets’ point of origin by using a multi-elemental location infer-

ence method. They conducted their study on 2,409 flood related English posts generated

between Sydney, Australia and surrounding areas. Their approach exploited three location-

related elements in the form of the tweet’s textual content, profile location and the place label-

ling. They assigned the finest granular location of the three elements as the inferred tweet loca-

tion and checked the accuracy by comparing with geotagged tweet coordinates. Their

approach resulted in an accuracy of 60% and 83% of tweets within 10 km and 50 km radius,

respectively.

There is no doubt that past studies have done a substantial amount of work in improving

location inference models. In this paper, we adopt most of the already existing approaches and

construct a methodological structure to enhance the precision of content based location infer-

ence models.

2.4 Incorporating non-geotagged datasets

The primary aim of location inference models is to identify locations in datasets which are not

geotagged. A number of studies have incorporated non-geotagged datasets in order to evaluate

the efficacy of these models. The research of [35] employed a multi indicator method to inves-

tigate the tweets’ point of origin. In their method the authors used 1.03 million worldwide geo-

tagged posts and reported an inference accuracy of 22%, 37% and 54% on 1 km, 10km and

50km radius values, respectively. The authors acknowledged the possible bias in using only a

geotagged dataset and evaluated their approach on a random selection of 10,000 tweets con-

taining both geotagged and non-geotagged posts. Although no quality assessment could be

performed, the authors found similarities in spatial indicators between the two datasets (geo-

tagged and non-geotagged) which suggested that their proposed approach would also perform

well on a non-geotagged dataset. Whilst their evaluation was done on a small dataset, their

findings suggest possible relatedness between location mentions in a geotagged and a non-geo-

tagged dataset.

While using the user’s previously geotagged posts, [17] developed a method that identifies a

user’s location on a non-geotagged dataset. Their method identifies user locations from previ-

ously geotagged posts and learns the associations between each location and its relevant key-

words to predict a tweet’s point of origin on a non-geotagged dataset. Using this approach, the

authors managed to geolocate 45% of tweets within a radius 10 km to the tweets’ GNSS posi-

tion. Their results show the possibility of inferring user locations from a non-geotagged dataset
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by associating locations with keywords. However, their approach was limited to inferring loca-

tions sent from location related services specifically Foursquare and Japans’ Loctouch.

Using a multi-source and multi-model based inference framework, [8] proposed a system-

atic approach to infer the tweets’ origin on a non-geocoded dataset by using Foursquare check

in data for Manhattan, New York City, USA. From the Twitter dataset, the authors used

72,601 non-geotagged tweets generated from Facebook and Instagram sources. By geocoding

only the extracted locations that coincided with Foursquare points of interests, they geocoded

34% and 44.28% of all tweets within a 250-meter and a 1 km radius, respectively, of a tweet’s

attached GNSS coordinate. Although their approach returned high accuracy, their results are

limited to Foursquare points of interest and do not represent other locations.

Whilst these methods have produced comparative performances, the methods have been

limited to either a representation of a geotagged dataset or a selection of tweets from location

related services such as Foursquare. Given that the ultimate goal of developing location infer-

ence methods is to geotag a non-geotagged dataset, we investigate how differences in source

distribution would influence the performances of location inference methods.

3. Methods

Fig 1 shows our overall workflow. We start by selecting two data samples. The first dataset

(Dataset A) consists of 1% sample of each tweet source strata. The second dataset (Dataset B)

contains geotagged tweets which were strategically selected to model the distribution of a non-

geocoded Twitter dataset according to the findings of [10].

We perform similar steps for the two datasets. We start by pre-processing the sample

tweets. Next, we use a pretrained spaCy model to extract the inferred location entities from the

pre-processed tweets. As a third step we geocode the extracted location entities. Owing to the

pros and cons of different geocoders, we use and compare the geocoding capabilities of Open-

StreetMap’s Nominatim geocoder and Google Maps geocoding API. We check the accuracy of

the geocoded locations by computing displacement values between the tweets’ coordinate

tagged point (GNSS position) and the inferred coordinates. Finally, we generate statistical

results by combining location entities into groups.

Fig 1. Overall workflow of the proposed approach.

https://doi.org/10.1371/journal.pone.0282942.g001
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In section 3.1 we provide a descriptive overview of the spaCy model used for named entity

extraction. In section 3.2. We describe the contents of the two datasets used in the analysis.

From section 3.3 to section 3.8 we provide, in a chronological order, a detailed outline of each

step of the workflow presented in Fig 1.

3.1 spaCy

spaCy is a free, open-source library for advanced Natural Language Processing (NLP) in

Python [36, 37]. spaCy supports over 64 language models trained on either newspaper articles,

media, blogs, comments etc. spaCy’s pretrained English model has four pretrained models;

small (sm), medium (md), large (lg) and transformer (trf). The models are distinguished by

the size of the training dataset with training data size increasing from the sm to the trf model.

For this study, we used spaCy version 3.0 trf pretrained high accuracy English model formally

abbreviated as en_core_web_trf. This model was trained on 30K web pages, making it a decent

fit when applied to a non-structured dataset such as tweets.

The Named Entity Recognition (NER) tool within spaCy extracts entities by entity predic-

tion. This means that, instead of matching place names against a gazetteer, the model uses the

text’s syntax to predict the probability of a word being a named entity. For example, in the sen-

tence “I have to Google why Google has a lot of employees”, the model would correctly recognize

the first Google as a verb and the latter as an organisation entity, despite being constructed in a

similar manner. Because of the models’ reliance on sentence syntax for entity extraction [37],

it is able to extract entities regardless of spelling errors or presence of noisy elements within

the entity. In our previous study [16] we showed that the syntax reliance of spaCy gives it a

much higher recall as compared to the gazetteer based DBpedia tool. However, factors such as

incorrect punctuation or syntax errors affects the model’s performance.

3.2 Dataset

For ground truthing, we restricted our analysis to tweets with an attached GNSS position (geo-

tagged tweets). Our dataset contained 16,347,823 geotagged tweets sent between August 2019

and April 2020. The tweets had a GNSS position falling within a bounding box that enclosed

the United States of America excluding the states of Hawaii, Alaska and USA island states. The

tweets were sent by 492,874 unique users and generated from 739 Twitter sources.

3.3 Sample selection

We selected eight tweet sources for the analysis. Our selection was based on the popularity of

the tweet source field amongst users. That is, by counting the number of distinct users per

Twitter source, we eliminated all twitter sources with less than 1,000 distinct users.

The ‘Total tweets’ column in Table 1 shows the number of tweets within our dataset per

tweet source. Overall, tweets generated from third party applications (Instagram, Foursquare,

Untapped) represented a larger percentage (>97%) of tweets in our dataset. This is in line with

the findings of [10, 18, 19, 38], who found larger percentages of geotagged tweets to be gener-

ated from third-party applications (Instagram, Foursquare) than from native Twitter applica-

tions (Twitter for Android, Twitter for Windows). Dataset A consists of a 1% sample selection

of each tweet source. Dataset B consists of a strategically selected dataset that models the tweet

source distribution of a non-geotagged dataset following the findings of [10].

In Fig 2 we show the geographical distribution of the two sample datasets. Overall, our two

datasets were similarly distributed across the study area which suggests similar usage of tweet

sources across the USA.
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3.4 Preprocessing

3.4.1 Text cleaning. Social media posts are short, unstructured and prone to noise and

redundancy [2]. We performed the following preprocessing steps in order to increase model

performance by reducing the noise in generated posts. First, we dropped web addresses and

emoji characters as the adopted spaCy model could not extract any location information from

these characters. We then trimmed off all occurring white spaces (leading, trailing or within

the text) and new lines. Next we discarded all posts with less than three words as such short

posts cannot be disambiguated in location extraction. Finally we dropped duplicate tweet text

so as to avoid any bias due to overrepresentation of tweet. Overall, we tried to maintain sen-

tence syntaxes so as to avoid ambiguity and thus allowing for improved accuracy when extract-

ing named entities.

3.4.2 Remote location filtering. Locations inferred within tweet text may either refer to

the user’s position at the time of sending the post (tweet’s point of origin) or to a location out-

side of the user’s current position (remote location). Since our aim was to evaluate the perfor-

mance of location inference models by computing displacement values from the tweets’ GNSS

position, we needed only tweets inferring the tweet’s point of origin. Thus, we had to filter out

all tweets with plausible remote location mentions. Previous studies have filtered remote loca-

tions using either textual pattern matching [17] or a combination of local keywords and parts

of speech tagging [8]. We performed our location filtering process in two stages. First, using a

list of predictive keyword phrases. Second, using temporal Information matching.

3.4.2.1 Keyword filtering. Keywords are used on various accounts to retrieve relevant data

[39, 40]. Oftentimes, researchers generate a list of keywords matching specific topics of

Table 1. Number of geotagged tweets per tweet source for the full dataset (Total tweets) and the two selected datasets, Dataset A and Dataset B. The table is ordered

by descending order of the Total tweets column.

Twitter Source Total tweets Dataset A Dataset B
Instagram 11,556,500 (86.5%) 115,565 (86.5%) 1,207 (0.90%)

Foursquare 891,834 (6.68%) 8,918 (6.68%) 1,000 (0.75%)

Untapped 472,396 (3.54%) 4,724 (3.54%) 1,000 (0.75%)

Tweetbot for IOS 132,663 (1.00%) 1,327 (1.00%) 4,231 (3.17%)

Hootsuite 102,197 (0.77%) 1,022 (0.77%) 1,000 (0.75%)

Foursquare Swarm 77,969 (0.58%) 780 (0.58%) 1,000 (0.75%)

Twitter for IPhone 71,028 (0.53%) 710 (0.53%) 71,028 (53.17%)

Twitter for Android 53,121 (0.40%) 531 (0.40%) 53,121 (39.77%)

Total 13,357,708 (100%) 133,577 (100%) 133,587 (100%)

https://doi.org/10.1371/journal.pone.0282942.t001

Fig 2. Distribution of posts within Dataset A (left) and Dataset B (right). Visually, the posts have a comparatively similar

distribution across the study area.

https://doi.org/10.1371/journal.pone.0282942.g002
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interest. In our case, however, we could not create a list of keywords that return posts with the

current user’s position. This is because there are numerous ways in which users can refer to

their current location. For example; ‘standing right in front of the Eiffel Tower’; ‘chilling at
McDonalds in Fourth Street,Manchester’; ‘taking a break at Laz Café. ‘ etc. Hence, instead of

using keywords to extract current user locations, we used keywords to eliminate posts that

most likely contained mentions of a users’ remote location. We generated, to the best of our

ability, an unambiguous list of keyword phrases such as “relocating to”, “flying from”, “origi-

nally from”, etc. to filter out posts with possible remote location mentions (see. the S1 Appen-

dix for the full list of keyword phrases). Because not all remote locations could be filtered by

keywords, we used temporal information matching as an additional filtering approach.

3.4.2.2 Temporal information matching. Temporal information matching is the process of

matching temporal expressions to date-time entities [41]. Temporal expressions can be given

either explicitly (19 May 2021), implicitly (next Christmas) or relatively (on Tuesday). We

extracted spaCy’s date entities as temporal expressions. spaCy is able to extract date entities

written in a variety of natural language formats, for example, 01-01-2019, Tomorrow, Valen-

tine’s day, Tuesday the 1st of Jan, last Monday etc.

To filter out tweets with remote location mentions, we formulated an assumption that a

post with a temporal expression that does not coincide or overlap with the date the post was

sent, will likely refer to a remote location. Examples of temporal expressions present in dis-

carded tweets include; next week, yesterday, in two days, last Thursday etc.

3.5 Location extraction

A distinctive feature of the adopted spaCy pre-trained model is its split location entities. spaCy

has location entities split into four classes. (1) Geopolitical Entities (GPE), (2) Facilities (FAC),

(3) Organisations (ORG) and, (4) Locations (LOC). GPE entities represent administrative

units such as countries, states and cities. FAC contains buildings, airports, highways and brid-

ges. ORG includes companies, agencies and institutions. LOC defines street names, moun-

tains, lakes and water bodies [36]. We extracted these four location entities separately.

Since spaCy extracts entities based on entity predictions [37], it is able to distinguish geo-

graphical from non-geographical entities, for instance, disambiguating the word ‘Turkey’ as

either, a country, animal, food or a person’s name based on sentence syntax. However, since

most geocoding services do not take into account a tweet’s context, geographical location

ambiguities remain a challenge [42–44]. For example, Georgia could refer to Georgia a country

in Europe or Georgia a state in the USA.

To reduce ambiguity when geocoding location entities, additional location information has

to be attached to each entity. An ORG entity for instance “McDonald’s” has to be combined

with a GPE, FAC and or a LOC entity to the highest level of detail to achieve a “high probabil-

ity” of being correctly geocoded. We use the term “high probability” to clarify the mere fact

that more than one location entity, in this case “McDonald’s”, may as well be present in several

cities, neighbourhoods or streets with similar geopolitical names.

To ensure high probability in the geocoded locations, we paired combinations of location

entities within each post. The single location entities together with the combined location enti-

ties (Dual, Triple and Quad) resulted in fifteen location entity classes shown in Table 2.

3.6 Geocoding

Geocoding is a process of transforming human readable locations into latitude and longitude

value pairs. We geocoded the extracted location entities using Nominatim and Google Maps

geocoding API (Google Maps). Although several geocoders exist such as Esri Geocoding,
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GeoNames, Bing, HERE Maps, TomTom, etc. we restricted our analysis to Nominatim and

Google Maps geocoders due to their worldwide popularity.

Nominatim uses crowdsourced data from OpenStreetMap (OSM) to match exact location

names and return the associated coordinates for the input string [3]. Due to its crowdsourced

nature, Nominatim contains place name aliases that allow for geocoding of often-used infor-

mal place names in tweets. However, a drawback of Nominatim is that it does not handle spell-

ing errors well [15, 45]. For short and unstructured posts where spelling errors, noisy

elements, and shorthand syntax are common, such as is the case with tweets, Nominatim fails

to geocode a significant number of locations.

Contrasting to Nominatim, which returns locations based on exact name matches, Google

Maps performs location cleaning and fuzzy matches on an input string and geocodes the

resulting formatted address (see.Table 3). The advantage of this approach is that a higher num-

ber of locations are geocoded as spelling discrepancies and noisy elements are filtered out.

However, the disadvantage is that some locations may be incorrectly formatted, which results

in incorrect coordinates.

In the example input strings in Table 3, “arizona, glendale, glendalearizona” is correctly

formatted to “W Glendale Ave, Glendale, AZ 85301, USA” despite the errors present in the

input string. On the contrary ‘chicagos’ was wrongly formatted and geocoded to an address in

Georgia (GA), USA. Because each geocoder has its own pros and cons, we used both Nomina-

tim and Google Maps API to geocode the fifteen categories of location entities defined in

Table 2.

Table 2. Location entity classes with corresponding examples. The examples are given as extracted within the tweet

text hence the presence of spelling errors and incorrect punctuation in some of the examples. The table is sorted by

alphabetical order in each category.

Category Location entity Examples
Single location

entities

1 FAC Millennium Skate World

2 GPE Atlanta, Georgia

3 LOC Hyde Park

4 ORG Lincoln Trail College

Dual location

entities

5 FAC, GPE Millennium Skate World, Elmwood

6 FAC, LOC Revelation Beer Garden, Hudson Fields

7 LOC, GPE Hyde Park, Chicago, IL, USA

8 ORG, FAC LA Fitness, Indianapolis West

9 ORG, GPE Roundhouse Depot Brewing Co., Cleveland

10 ORG, LOC The Thayer Hotel, West Point

Triple location

entities

11 FAC, LOC, GPE Vizcaya Museumand Gardens, Biscayne Bay, miami

12 FAC, ORG, GPE Texas Familia; Liberty Plaza; annarbor

13 ORG, FAC, LOC Nam Knights Motorcycle Club, LLWF; Ground Zero; Lower

Manhattan

14 ORG, LOC, GPE Courtyardby Marriott, Sumatra Mountain, Cranbury South

Brunswick

Quad 15 ORG, FAC, LOC,

GPE
Timbers; Providence Park; Cascadia; Vancouver

https://doi.org/10.1371/journal.pone.0282942.t002

Table 3. Examples of Google Maps geocoding API formatted and geocoded address from provided input string.

Input string Formatted address Judgement
arizona, glendale, glendalearizona W Glendale Ave, Glendale, AZ 85301, USA Correct

Chicagos 4401 Shallowford Rd, Roswell, GA 30075, USA Incorrect

https://doi.org/10.1371/journal.pone.0282942.t003
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3.7 Displacement computations

As a validation, we computed the geodesic displacement between the inferred coordinates and

the tweets’ attached GNSS coordinate. For comparison with measurements from related stud-

ies [8, 9, 17, 35], we computed displacement values within 1 km, 10 km and 50 km radius

values.

3.8 Generating statistical results

The displacement computations returned individual precision values for each location entity

and displacement class. To compare performance of each dataset, we grouped location entities

per category. We generated four mutually exclusive groups by combing corresponding loca-

tion entities in each category. Our groups are defined as follows,

Group 1 = Quad location entities

Group 2 = Triple location entities

Group 3 = Dual location entities

Group 4 = Single location entities

Based on our justification of combining location entities (s. 3.5), we expect to obtain an

inverse relationship between the precision and recall values, with Group 1 having a high preci-

sion and low recall and Group 4 having a low precision and high recall. We define our preci-

sion and recall evaluation matrix as follows:

Precision ¼
Number of geocoded locations within a k displacement value

Total number of geocoded posts

Recall ¼
Number of successfully geocoded location entities

Total number of extracted locations

4. Results

The aim of our paper was to enhance the geocoding precision of location inference models

and investigate the influence of tweet source distribution when developing location inference

models. In this section, we present the results of our proposed location inference model on

Dataset A (proportionate sample of a geotagged dataset) and Dataset B (modelled tweet source

distribution of a non-geotagged dataset).

Our first interaction with the data after tweet sample selection, was to pre-process the

selected tweets (section 3.4). In Fig 3 we show the number of tweets that remained after each

preprocessing step. From the figure it is apparent that Dataset A remained with a higher per-

centage of pre-processed tweets as compared to Dataset B. Dataset A remained with 94.8%

Fig 3. Number of remaining tweets for each stage of the text preprocessing. Sample tweets shows the original count

of tweets in each dataset. Temporal information filtered tweets shows the remaining number of tweets after the last

preprocessing step.

https://doi.org/10.1371/journal.pone.0282942.g003
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(126,638/133,577) pre-processed tweets, whilst, Dataset B remained with only 64% (85,531/

133,587) tweets.

We ran our location extraction model on the pre-processed tweets for each dataset. In

Table 4 we show the number and percentage of tweets where a corresponding location entity

was extracted. Overall, Dataset A had a higher percentage of tweets with at least a single loca-

tion entity extracted, 62.39%, as compared to Dataset B, 20.74%.

When we focus on individual location entities, we observe a general agreement on the

ordering of tweets count per location entity. With an exception of the LOC entity, both data-

sets showed overall higher percentages of tweets with single location entities in comparison to

combined location entities.

Following location extraction, we geocoded the extracted location entities using Nomina-

tim and Goggle Maps (section 3.6). In Table 5 we show the percentage of geocoded posts for

each location entity in each dataset. Primarily we note that higher percentages of location enti-

ties were geocoded for Dataset A compared to Dataset B for both geocoders. The difference in

percentage of geocoded locations for the two datasets is more pronounced on Google Maps

geocoded locations compared to Nominatim geocoded locations. With Google Maps, Dataset

A had an average recall of 86.03% whilst the average recall was only 69.81% for Dataset B.

With Nominatim, 69.42% of Dataset A locations were geocoded whilst 68.22% were geocoded

for Dataset B.

Taking a closer look on Nominatim, we observe overall higher recall for single location

entities compared to the combined location entities. With an exception of the FAC, LOC entity

which had a recall of 70.24% and 55.88% for Dataset A and Dataset B, respectively, the recall

for the combined location entities were below 50% for both datasets. The recall further reduced

to less than 14.09% and less than 3.7%, for Dataset A and Dataset B, respectively, for triple and

quad location entities.

After geocoding location entities, we computed the precision values within a 1 km, 10 km

and 50 km radius of the tweets’ GNSS position (section 3.7). In Table 6 we present the preci-

sion values of each location entity. Our first observation is that precision values are generally

Table 4. Mutually exclusive count of tweets with a location entity extracted in Dataset A and Dataset B. The percentages of each location entity are computed as a frac-

tion of the total tweets whilst the percentage of the total tweets is computed as a fraction of the remaining pre-processed posts, for each dataset. The table is sorted by

descending order of number of extracted locations in Dataset A.

Location Entity Dataset A Dataset B
GPE 31,442 (39.79%) 6,373 (35.92%)

ORG 13,783 (17.44%) 5,654 (31.87%)

FAC 13,509 (17.10%) 1,688 (9.52%)

ORG, GPE 7,872 (9.96%) 1,651 (9.31%)

FAC, GPE 5,503 (6.96%) 909 (5.12%)

ORG; FAC 1,898 (2.40%) 298 (1.68%)

LOC 1,897 (2.40%) 691 (3.90%)

LOC, GPE 1,427 (1.81%) 149 (0.84%)

FAC, ORG, GPE 695 (0.88%) 145 (0.82%)

FAC; LOC 371 (0.47%) 54 (0.30%)

ORG; LOC 266 (0.34%) 60 (0.34%)

FAC, LOC, GPE 143 (0.18%) 28 (0.16%)

ORG, LOC, GPE 135 (0.17%) 24 (0.14%)

ORG; FAC; LOC 50 (0.06%) 13 (0.07%)

ORG; FAC; LOC; GPE 21 (0.03%) 3 (0.02%)
Total tweets 79,012 (62.39%) 17,740 (20.74%)

https://doi.org/10.1371/journal.pone.0282942.t004
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higher in Dataset A as compared to Dataset B, in both geocoders. Taking the Google Maps 50

km radius for example, whilst Dataset A reported 72.5% as the least precision value across all

location entities, Dataset B reported 48.0% as the least precision value for the same geocoder

and radius value.

We also observe differences in precision values between the two geocoders with Google

Maps showing overall higher precision values compared to Nominatim. The differences

Table 5. Percentage of geocoded locations for each dataset when using either the Nominatim or Google Maps geocoder. The table is arranged by alphabetical order

of the location entity and category.

Category Nominatim Google Maps
Location Entity Dataset A Dataset B Dataset A Dataset B

Single location entities FAC 68.31% 63.13% 81.41% 65.49%

GPE 97.25% 95.55% 98.52% 94.09%

LOC 87.58% 79.16% 85.32% 72.80%

ORG 50.77% 59.73% 51.52% 32.07%

Dual location entities FAC, GPE 48.91% 43.13% 97.99% 96.68%

FAC, LOC 17.25% 25.93% 88.41% 66.67%

LOC, GPE 70.24% 55.88% 97.91% 95.10%

ORG, FAC 4.79% 7.05% 82.61% 68.46%

ORG, GPE 31.24% 30.39% 93.85% 88.92%

ORG, LOC 9.77% 8.33% 80.08% 71.67%

Triple location entities FAC, LOC, GPE 14.09% 3.23% 97.32% 93.55%

FAC, ORG, GPE 3.77% 3.38% 94.97% 92.57%

ORG, FAC, LOC 0.00% 0.00% 86.00% 76.92%

ORG, LOC, GPE 4.29% 3.70% 96.43% 88.89%

Quad location entities ORG, FAC, LOC, GPE 0.00% 0.00% 95.24% 100%

Total tweets geocoded 69.42% 68.22% 86.03% 69.81%

https://doi.org/10.1371/journal.pone.0282942.t005

Table 6. Precision values of each geocoded location entity geocoded with Nominatim for Dataset A and Dataset B. The precision values are given for the 1 km, 10 km

and 50 km displacement classes. Missing values indicate zero geocoded locations. The table is sorted alphabetically by location entities per each category.

Nominatim Google Maps
Dataset A Dataset B Dataset A Dataset B

1 km 10 km 50km 1km 10km 50km 1km 10km 50km 1km 10km 50km

FAC 45.6 53.3 55.9 20.8 28.3 31.6 72.0 81.6 84.3 45.9 60.2 65.9

GPE 42.7 79.9 87.8 12.0 46.7 58.6 45.1 83.3 90.7 14.5 52.0 66.1

LOC 28.6 44.1 50.3 8.8 20.9 24.7 40.5 63.6 72.5 16.0 38.7 48.0

ORG 17.8 21.2 24.5 4.6 7.2 10.2 61.9 71.3 77.0 33.3 47.5 56.4

FAC, GPE 68.8 88.5 94.1 58.6 82.3 89.3 69.3 90.3 95.1 60.2 83.4 91.0

FAC, LOC 51.6 70.3 76.6 14.3 21.4 28.6 56.3 73.3 79.8 33.3 61.1 77.8

LOC, GPE 60.1 80.0 91.8 43.9 64.6 76.9 60.1 84.3 93.0 44.7 71.0 82.2

ORG, FAC 46.2 57.1 62.6 38.1 47.6 52.4 74.9 83.4 88.8 46.6 65.2 76.5

ORG, GPE 53.0 82.4 89.7 36.8 68.4 78.1 54.6 85.0 91.4 37.1 69.1 75.8

ORG, LOC 53.9 61.5 69.2 40.0 60.0 60.0 52.6 70.9 77.5 27.9 55.8 72.1

FAC, LOC, GPE 70.8 91.7 95.8 0.0 80.0 100 65.1 84.9 90.1 57.7 81.0 92.0

FAC, ORG, GPE 83.3 100 100 0.0 0.0 0.0 51.9 77.0 85.2 45.8 58.3 66.7

ORG, FAC, LOC - - - - - - 69.8 82.7 93.0 20.0 40.0 50.0

ORG, LOC, GPE 57.1 100 100 0.0 100 100 57.9 84.1 91.0 55.2 82.8 89.7

ORG, FAC, LOC, GPE - - - - - - 50.0 80.0 85.0 33.3 66.7 100

https://doi.org/10.1371/journal.pone.0282942.t006
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between the precision values of the two geocoders is more pronounced on the single location

entities than on combined location entities. Taking the ORG entity as an example, whilst

Nominatim geocoded less than 25% of the ORG entities within a 50km radius for both data-

sets, Google Maps geocoded more than 33% of the ORG entity within 1 km radius and ~56%

within a 50 km radius.

If we take a closer look at the precision values, we observe higher precision values in com-

bined location entities compared to single location entities. However, for the Nominatim geo-

coded locations, combinations with three or four location entities returned either 0% or 100%

precisions.

We generated statistical results by grouping our location entities into four groups (section

3.8). In Table 7 we show the precision and recall values for Dataset A and Dataset B after geo-

coding with Nominatim and Google Maps, respectively. On overall, we observed higher preci-

sion and recall values in Dataset A as compared to Dataset B for both Nominatim and Google

Maps.

In Dataset A, the highest precision values resulted from the Nominatim geocoder Group 2

(Triple location entities) combination. This combination resulted in 75.5%, 96.8% and 98.4%

of tweets geocoded within a 1 km, 10 km and 50 km radius of the tweets’ GNSS position. How-

ever the recall value, computed as a fraction of extracted locations, is only 0.07% for this com-

bination. Dataset A, Google Maps, Group 4 (single location entities) resulted in the overall

highest recall value of 64.16%. However the precision values for this combination reduced to

53.1%, 80.6% and 86.8% within a 1 km, 10 km and 50 km radius of the tweets’ GNSS position,

respectively. A somewhat balance between precision and recall value for Dataset A resulted

from Google Maps Group 3 (dual location entities), where we achieved precision values of

61.9%, 86.1% and 92.1% within a 1 km, 10 km and 50 km radius respectively for a recall of

20.61%.

In Dataset B, the highest precision values tied between the Nominatim geocoder, Group 3

and the Google Maps geocoder, Group 3. Nominatim returned a slightly higher precision

value in the 1 km radius (45.5%) compared to Google Maps (45.3%). However in the 10 km

radius, Nominatim returned a lower precision value (72.3%) compared to Google Maps

(73.1%). In the 50 km radius, both geocoders returned a precision value of 81.0%. Considering

the recall values, however, we observed that Nominatim returned lower recall (5.73%) com-

pared to Google Maps (15.63%).

The highest overall recall in Dataset B (62.45%) resulted from Nominatim, Group 4. How-

ever the precision values for this combination was much lower with only 39.6% of locations

geocoded to within 50 km of the tweet’s GNSS position. Google Maps Group 4 retuned higher

precision values, 21.9%, 51.4% and 63.2% within a 1 km, 10 km and 50 km, respectively,

Table 7. Precision and recall values per group for Datasets A and B derived from precision values returned by Nominatim and Google Maps.

Nominatim Google Maps

Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4

Dataset A 1 km - 75.5 60.7 39.2 50.0 55.4 61.9 53.1

10 km - 96.8 84.0 65.1 80.0 79.3 86.1 80.6

50 km - 98.4 91.3 71.3 85.0 87.0 92.1 86.8

Recall 0 0.07 8.02 61.34 0.03 1.23 20.61 64.16
Dataset B 1 km - 0.0 45.5 10.4 33.3 47.1 45.3 21.9

10 km - 25.7 72.3 31.6 66.7 63.1 73.1 51.4

50 km - 28.6 81.0 39.6 100.0 71.8 81.0 63.2

Recall 0 0.04 5.73 62.45 0.02 1.08 15.63 53.08

https://doi.org/10.1371/journal.pone.0282942.t007
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though from a slightly lower recall 53.08% compared to combination with the highest recall

(Nominatim, Group 4).

5. Discussion

The objective of this paper was to enhance the geocoding precision for location inference of

tweet text, and to investigate the influence of tweet source distribution when developing loca-

tion inference models. In section 5.1, we provide interpretations of the obtained results. In sec-

tion 5.2, we discuss the robustness and limitations of our developed methods.

5.1 Result discussion

We found that the proportion of tweets from different sources impacts the performance of

the developed location inference model. Specifically, we found that we obtain higher model

performance values when we design our location inference model on a dataset with a higher

percentage of tweets emanating from third party applications compared to the native Twitter

application.

Our Dataset A, which contained a proportionate sample of a geocoded dataset, returned

overall higher precision and recall values compared to Dataset B, which contained a higher

percentage of posts generated in native Twitter applications. Assuming similarities in text con-

tent between the tweet sources of geotagged and non-geotagged, this result implies that loca-

tion inference models produce higher performance values than what would be obtained in a

non-geotagged dataset. However, this assumption needs to be checked before location infer-

ence models are developed and adopted to a non-geotagged dataset.

Apart from data selection, we were able to confirm the well-known fact that the choice of

the geocoder has an influence on the model performance. The model performance was overall

higher for Google Maps geocoded locations as compared to Nominatim. The main drawback

that we observed for Nominatim is that it struggles to resolve place names that have some mis-

matches within the OSM database which was evidenced by the low recall for combined loca-

tion entities (s. Table 5). This observation goes in line with the findings of [15, 16, 45] who

found the OSM Nominatim API to be unable to geocode a substantial percentage of location

names.

Owing to Nominatim’s struggle in resolving place names that did not have matches in the

OSM database, the geocoder outperformed Google Maps precision values for combined loca-

tion entities (s. Table 7). This finding can be attributed to Google Maps’ tendency to format

location mentions before geocoding which leads to an overall higher recall though at the cost

of precision. What this result implies, is that in cases where precision is of more important

than recall, it would be best to use Nominatim combined location entities than the Google

Maps geocoder.

Albeit the differences in geocoder performances, most importantly, we found that our

enhanced location inference model outweighs similar studies which have used sample tweets

extracted from a geotagged dataset [8, 9, 17, 35]. In Table 8 we compare precision values

returned from related studies with the precision values that resulted from our model combina-

tion with the highest precision, and model with a trade-off between precision and recall from

Dataset A and Dataset B. With an exception of [9] who outweighed our precision values for

Dataset B at a 50 km radius (83% vs 81%), our location inference approach outweighed the

precision values for existing literature sources for both Dataset A (higher percentage of tweets

generated from third party Twitter applications) and Dataset B (higher percentage of tweets

generated from native Twitter applications).
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5.2 Methods discussion

Considerably the most impactful decision for our analysis was the choice of the spaCy location

extraction model. Using spaCy gave us high control over the extracted entities allowing us to

test and combine precision values of various location combinations. The ability of spaCy to

split location entities presents higher advantage over location extraction models with a single

classification for location entities such as DBpedia, Geoparser.io, Stanford NLP, etc.

By combining geocoded tweets with a similar combination count of location entities (single

location entities, dual location entities etc.), we produced four statistical groups from the 15

location entities. Whilst these four groups were sufficient for comparisons, a higher number of

groups could have been formed by trying out various combinations of location entities. Whilst

we were able to obtain high precision values from the four combinations, we acknowledge that

prioritizing location entities based on precision values would have returned higher precision

values.

Although our proposed method returned higher precision values compared to other stud-

ies, the lack of robustness in filtering out remote location mentions, impacted the performance

of the location model. For instance, the post ‘Happy birthday to my brother in Sydney’ con-

tained neither keywords nor temporal information that could be used to filter out the remote

location mention. For future work, we suggest to use filtering approaches that take into

account the grammatical structure of the sentence in order to improve precision values.

The use of only tweets generated within a USA bounding box limits the generalizability of

our location inference model on world-wide dataset. Since the USA has a high density of

Table 8. Summary comparison of precision values between existing approaches which inferred a tweet’s point of

origin and our developed approaches. The table is arranged by ascending order of precision value within each error

distance.

Method Precision (%)
DISTANCE (km) 1 km Location keyword associations [17] 18

DBpedia staking approach [35] 22

Bayes model on foursquare [8] 44.38

Dataset B Google Maps Group 3 45.3

Dataset B Nominatim Group 3 45.5

Dataset A Google Maps Group 3 61.9

Dataset A Nominatim Group 2 75.5

10 km DBpedia staking approach [35] 37

Location keyword associations [17] 45

Probability model of local words [46] 56.7

Ranking algorithm [9] 60

Dataset B Nominatim Group 3 72.3

Dataset B Google Maps Group 3 73.1

Dataset A Google Maps Group 3 86.1

Dataset A Nominatim Group 2 96.8

50 km DBpedia staking approach [35] 54

Label propagation [47] 65

Dataset B Nominatim Group 3 81.0

Dataset B Google Maps Group 3 81.0

Ranking algorithm [9] 83

Dataset A Google Maps Group 3 92.1

Dataset A Nominatim Group 2 98.4

https://doi.org/10.1371/journal.pone.0282942.t008
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mapped locations, it is possible that our high precision values were a result of bias towards the

more popular USA cities. Since non-geocoded datasets are not constrained to specific coun-

tries or continents, there is a need to test the performance on our location inference on model

on a world-wide dataset.

Another impacting factor that is worth mentioning is that users may also share imprecise

or contradicting information about their location when sending the post. Since we compared

the inferred locations with the tweets’ GNSS position, the contradicting location mentions

may have negatively affected the precision of the results. Contradicting location mentions are

quite common in location sharing services where the user has the choice to tag a location of

their choice such as Instagram.

6. Conclusion

This paper adopted existing location inference methods and presented an enhanced precision

location inference method for inferring a tweet’s point of origin using mentioned location

entities within tweet text. Overall, we found that our proposed approach outweighs the perfor-

mances of other approaches as described in the literature of previous research. Our model

exhibits considerable higher precision values, which, in part, are resulting from an adopted

spaCy model that allowed for high control over location entities.

Owing to the differences in tweet source distribution between a geotagged dataset, where

location inference models are often trained on, and a non-geotagged dataset, where location

inference models are designed for, we investigating the model performance on two datasets

with different tweet source distributions. Our results confirm the well-known fact that the dis-

tribution of data from different tweet sources strongly influences the performance of location

inference methods. Having a higher percentage of tweets generated from third applications

showed an overall high performance as compared to having a higher percentage of tweets orig-

inating from native tweet applications. This finding thus question the applicability of location

inference models on a non-geotagged dataset.

As part of our future work, we plan to investigate location mentions between geotagged

and non-geotagged datasets at a tweet source level. By understanding location mentions

between the two datasets, location inference methods can be modelled to suit more a non-geo-

tagged dataset instead of a geotagged dataset. Additionally, owing to the geocoding limitations

in both speed and cost, we plan to investigate multiple geocoders to carter for scaling issues.
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