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Abstract

Atypical visual attention in individuals with autism spectrum disorders (ASD) has been uti-

lised as a unique diagnosis criterion in previous research. This paper presents a novel

approach to the automatic and quantitative screening of ASD as well as symptom severity

prediction in preschool children. We develop a novel computational pipeline that extracts

learned features from a dynamic visual stimulus to classify ASD children and predict the

level of ASD-related symptoms. Experimental results demonstrate promising performance

that is superior to using handcrafted features and machine learning algorithms, in terms of

evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation

approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47%

and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classifi-

cation. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity

of 100% and an AUC of 99% for ASD symptom severity prediction.

Introduction

Autism spectrum disorders (ASD) are currently being diagnosed through visual observation

and analysis of children’s natural behaviours. While a gold standard observational tool is avail-

able, early screening of ASD in children still remains a complex problem. It is often expensive

and time-consuming [1] to conduct interpretative coding of child observations, parent inter-

views and manual testing [2]. In addition, differences in professional training, resources and

cultural context may affect the reliability and validity of the results obtained from a clinician’s

observations [3]. Furthermore, the behaviours of children in their natural environments (e.g.,

home) cannot be typically captured by clinical observation ratings. To reduce waiting periods

for access to interventions, it is important to develop new methods of ASD diagnosis without

compromising accuracy and clinical relevance. This is critical because early diagnosis and
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intervention can provide long-term improvements for the child and even have a greater effect

on clinical outcomes [4].

Recent advances in technology have allowed for the quantification of different biological

and behavioural markers that are useful in ASD research (see [5,6] for reviews). Eye-tracking

technology has shown promise in providing a non-invasive and objective tool for ASD

research [7,8]. Several eye-tracking studies have identified unique visual attention patterns in

ASD individuals. Gaze abnormalities in toddlers (<3-year-olds) include reduced attention to

eye and head regions, reduced preference for biological motion, difficulties in response to

joint attention behaviours [9] and scene monitoring challenges during explicit dyadic cues

[10]. Pierce, et al. [11], Pierce, et al. [12] and Moore, et al. [13] developed a geometric prefer-

ence (“GeoPref”) test that contains both geometric and social videos. It was found that a subset

of ASD participants exhibited a visual preference for geometric motion. This finding has

already been leveraged by a growing number of studies that aim to leverage atypical visual

attention to identify individuals with ASD [14,15] and predict symptom severity [16].

Computational models that predict visual attention (i.e., saliency) have seen tremendous

progress, starting from handcrafted features dating back to 1998 [17] to a resurgence of deep

neural networks (DNNs) [18,19]. This breakthrough has generated great interest in utilising

saliency prediction as a diagnostic paradigm for ASD. For example, there is a growing collec-

tion of eye movements of ASD children recorded during image-[20–22] and video-[22] view-

ing tasks. Although the use of saliency detection models on image datasets has resulted in

remarkable diagnostic performance, there is still a lack of diagnostic paradigms that utilise

dynamic saliency detection. In fact, the most common approach of studies that utilise dynamic

stimuli is to convert the eye-tracking data into an image and perform image classification to

identify individuals with ASD. In this work, we present a novel pipeline that leverages the

dynamic visual attention of humans for ASD diagnosis, as well as symptom severity

prediction.

This paper makes three major contributions to the field. First, we implement a data-driven

approach to learn the dynamic visual attention of humans on videos and extract spatiotempo-

ral features for downstream tasks (e.g., ASD classification and symptom severity prediction).

Second, we develop a novel computational pipeline to diagnose ASD based on the learned fea-

tures from dynamic visual stimuli. Finally, we use a similar method to predict the level of

ASD-related symptoms from eye-tracking data of children obtained during a free-viewing

task. In the next section, we discuss published works that are related to ours. Despite the grow-

ing literature, it is evident that the comparison of results is challenging due to the lack of pub-

licly available datasets and open-source code repositories. This is even further complicated by

the differences in the participants, age group and stimuli used in the experiments, making fair

and straightforward performance comparisons more difficult. Nevertheless, we compare our

work with a simple thresholding technique [11–13] and a machine learning (ML) classification

approach using handcrafted features [23,24].

Related works

Over the last decade, different behavioural and biological markers have already been quanti-

fied, to some extent, using computer vision methods (a comprehensive review [5] is available).

Various data modalities, such as magnetic resonance imaging (MRI)/functional MRI [25–30],

eye-gaze data [14,31–36], stereotyped behaviours [37–42] and multimodal data [43] have been

utilised in autism diagnosis. We first provide a review of publicly available datasets that utilise

the eye-tracking paradigm. Afterwards, related works that utilise eye-tracking data for the fol-

lowing purposes are reviewed: (i) saliency prediction in ASD, (ii) ASD diagnosis using static
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stimuli, (iii) ASD diagnosis using dynamic stimuli and (iv) ASD risk and symptom severity

prediction. Each purpose has a corresponding table that includes the following information

about the published research: mean age of the participants, gender distribution, stimuli and

input used, methodology and conclusion. While not as exhaustive and rigorous in inclusion

criteria as a systematic review, we hope that our discussion below will help the readers navigate

the research landscape and better situate our work in the literature. Readers are also encour-

aged to read systematic reviews [8,44] for additional reference.

Publicly available datasets

There is a growing number of publicly available datasets that capture the eye-tracking data of

ASD participants. In Table 1, we provide a summary of these datasets by providing descrip-

tions of their target application area, the mean age of the participants, sample size, stimuli used

and data format provided by the authors. There are two datasets for saliency estimation

[20,21] and two datasets for ASD classification [22,45].

Saliency prediction in ASD

Accurately predicting the visual attention (i.e., saliency maps) of ASD individuals can boost

prediction performance because classification models can better leverage the distinction

between the visual attention of ASD and typically developing (TD) individuals. Table 2 shows

the published research that aims to model the visual attention of ASD participants by develop-

ing different saliency models.

Duan, et al. [46] compared the performance of five state-of-the-art (SOTA) saliency predic-

tion networks based on a deep neural network (DNN) architecture with pre-trained and fine-

tuned weights on their dataset. Experimental results revealed that transfer learning provides a

useful approach to modelling visual attention on images for individuals with ASD. Duan, et al.

[47] combined high-level features (e.g., face size, facial features, face pose and facial expres-

sions) and feature maps extracted from the SOTA saliency models to quantify visual attention

on human faces in ASD. Their proposed approach reported higher performance when com-

pared to other saliency models.

The remaining works used the Saliency4ASD dataset [20,21] for saliency estimation. For

example, Fang, et al. [48] used U-net trained on a novel loss function for semantic feature

Table 1. List of publicly available datasets and their corresponding application area, mean age, sample size, stimuli and data format provided by the authors.

Authors Application

area

Mean age (SD)

in years

Sample

size

Stimuli Data format

Duan, et al. [20] and

Gutiérrez, et al. [21]

(Saliency4ASD dataset)

Saliency

estimation

ASD

classification

All participants:

8.00 (NR)

ASD: 14

TD: 14

300 images that depict diverse

naturalistic scenes and may contain

humans, animals, buildings or objects.

Image with the associated eye-tracking data of

the participants

Le Meur, et al. [22]

(MIE Fo and MIE No)

Saliency

estimation

MIE Fo:

ASD: 16.00

(2.00)

MIE No: 29.00

(7.00)

MIE Fo:

ASD: 17

MIE No:

ASD: 12

25 images with low semantic meaning

and a low emotional arousal

Image with the associated eye-tracking data of

the participants

Carette, et al. [45] ASD

classification

All participants:

7.88 (NR)

ASD: 29

TD: 30

Combination of static and dynamic

stimuli that depict naturalistic scenes,

initiate joint attention and static face or

objects

Scanpath image that visualises the eye-tracking

data of the participants. The visualised scanpath

images are then converted to grayscale and

rescaled for further processing.

ASD: Autism Spectrum Disorder, NR: Not reported, SD: Standard deviation, TD: Typically Developing

https://doi.org/10.1371/journal.pone.0282818.t001
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Table 2. Saliency prediction in ASD.

Authors Mean age (SD)

in years

Sample size Stimuli Input

used

Method Conclusions

Duan,

et al. [46]

7.8 (NR) 13 500 images Image They compared the performance of

five different SOTA saliency models.

Transfer learning provides a useful

approach to model the visual

attention on images in individuals

with ASD.

Duan,

et al. [47]

ASD: 7.80

(2.10)

TD: 8.00 (2.00)

ASD: 13

TD: 15

VAFA dataset:

300 images from open-source

dataset [53] that depict various

emotions and then classified into

six expressions: (generally positive,

very positive, neutral, generally

negative, very negative and

complex expressions)

Image They computed fixation

distributions on different pre-

defined AOIs. Afterwards, statistical

analyses were performed to identify

differences in visual attention of

ASD and TD participants while

looking at effects of face pose and

facial expressions. Afterwards, they

compared six different SOTA deep

learning-based saliency models on

the VAFA dataset.

CASNet achieved the best

performance in terms of the

prediction of atypical visual

attention of ASD individuals.

Fang,

et al. [48]

Saliency4ASD Saliency4ASD Saliency4ASD Image They developed a saliency model

based on the U-Net architecture.

They also designed a new loss

function called Positive and

Negative Equilibrium Mean Square-

Error that is used to determine

model convergence.

Their model achieved higher

performance on some metrics

when compared to general saliency

models.

Wei, et al.

[49]

Saliency4ASD Saliency4ASD Saliency4ASD Image They first extracted multi-level

features and combined these features

using a fusion layer to output a

saliency map. Deep supervision on

the predicted saliency map was

implemented to train the deeper

layers of the network. They also

utilised a single-side clipping

approach to highlight regions that

are mostly viewed by the

participants.

Their model achieved the best

performance on different metrics

when compared to general saliency

models.

Nebout,

et al. [50]

Saliency4ASD Saliency4ASD Saliency4ASD Image They developed a two-stream

network that extracts fine-scale and

contextual information from the

input image and the downscaled

input image, respectively.

Afterwards, a series of convolutional

operations and concatenation is

implemented to generate the

saliency map.

Their model achieved the best

performance on most metrics

when compared to general saliency

models.

Fang,

et al. [51]

Saliency4ASD Saliency4ASD Saliency4ASD Image They modelled the dynamic nature

of human visual attention using a

two-stream model that consists of a

CNNs and a series of convolutional

LSTM layers.

Their model achieved the best

performance on most metrics

when compared to general saliency

models and ASD-specific saliency

models [48–50].

Wei, et al.

[52]

Saliency4ASD Saliency4ASD Saliency4ASD Image They first extracted multi-level

features from the input image.

Afterwards, they passed it to a scale-

adaptive coarse-and-fine inception

module for a richer representation.

These features are then combined

using a feature fusion module and

passed to a refinement and

integration module. To better learn

the atypical visual attention of ASD

individuals, they developed a

discriminative region enhancement

loss.

Their approach achieved the best

performance on different metrics

when compared to general saliency

models and ASD-specific saliency

models [48–50]. Their experiments

showed that their novel loss

function improved the

performance of other models in

predicting atypical visual attention

of ASD participants.

(Continued)
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learning, resulting in improved performance on some metrics. Wei, et al. [49] proposed a

novel saliency prediction model for children with ASD. The fusion of multi-level features,

deep supervision on attention maps and the single-side clipping operated on ground truths

provided a boost in saliency prediction. Nebout, et al. [50] proposed a Convolutional Neural

Network (CNN) with a coarse-to-fine architecture and trained using a novel loss function,

achieving the best performance on most metrics when compared to general saliency models.

Fang, et al. [51] proposed a model consisting of a spatial feature module and a pseudo-sequen-

tial feature module to generate an ASD-specific saliency map. Their model achieved the best

performance on most metrics when compared to general saliency models and ASD-specific

saliency models [48–50]. Finally, Wei, et al. [52] proposed a DNN architecture that enhances

multi-level side-out feature maps using a scale-adaptive coarse-and-fine inception module. In

addition, they designed a novel loss function to fit the atypical pattern of visual attention,

resulting in SOTA performance.

This growing evidence suggests that researchers are starting to develop computational

models that mimic the atypical visual attention on images of ASD individuals. However, there

is still a huge gap in prediction performance as saliency prediction models trained on TD indi-

viduals do not generalise well on ASD individuals, as highlighted by Le Meur, et al. [22]. They

revealed that current models trained on a TD dataset and fine-tuned on an ASD dataset per-

form well only on a small part of the ASD spectrum. To this end, they proposed two new eye-

tracking datasets that cover a large part of the ASD spectrum.

Eye-tracking on static stimuli for ASD diagnosis

As discussed in the previous section, it has been found that ASD participants exhibit atypical

visual attention. As shown in Table 3, researchers explored the possibility of using the eye-

tracking paradigm during image-viewing tasks to identify individuals with ASD. The earliest

works explored different handcrafted features and ML models for ASD diagnosis. For exam-

ple, Wang, et al. [54] used features extracted from images followed by a Support Vector

Machine (SVM), while Yaneva, et al. [55] explored logistic-regression classification algorithms

for detecting high-functioning ASD in adults. Liu, et al. [34] proposed a ML framework based

on the frequency distribution of eye movements recorded during a face recognition task to

identify individuals with ASD. The recent advances in deep learning (DL) also helped

researchers better extract discriminative features from images. For example, Jiang and Zhao

[33] used a DL approach followed by an SVM to distinguish individuals with ASD.

The succeeding works used the Saliency4ASD dataset [20,21]. Startsev and Dorr [56] and

Arru, et al. [57] extracted features from the eye-tracking data and the input image and trained

Table 2. (Continued)

Authors Mean age (SD)

in years

Sample size Stimuli Input

used

Method Conclusions

Le Meur,

et al. [22]

Saliency4ASD

MIE Fo and

MIE No

Saliency4ASD

MIE Fo and

MIE No

Saliency4ASD

MIE Fo and MIE No

Image They compared six different saliency

prediction models and analyse their

saliency prediction performance in

Saliency4ASD, MIE Fo and MIE No

datasets.

Their results showed that current

saliency models do not generalise

well on ASD-specific dataset,

hoping to raise awareness that

researchers need different

approaches to model the atypical

visual attention of ASD people.

AOI: Area Of Interest, ASD: Autism Spectrum Disorder, LSTM: Long Short-Term Memory, NR: Not reported, SD: Standard deviation, SOTA: State-of-the-art, TD:

Typically Developing

https://doi.org/10.1371/journal.pone.0282818.t002

PLOS ONE Using visual attention estimation on videos for automated prediction of autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0282818 February 12, 2024 5 / 33

https://doi.org/10.1371/journal.pone.0282818.t002
https://doi.org/10.1371/journal.pone.0282818


Table 3. Eye tracking on static stimuli for ASD diagnosis.

Authors Mean age (SD) in

years

Sample size Stimuli Input used Method Conclusions

Wang, et al.

[54]

ASD: 30.80 (11.1)

TD: 32.30 (10.40)

ASD: 20

TD: 13

700 images from the OSIE

dataset

Pixel-, object-, and sematic-

level features extracted

from the image. In

addition, the image centre

and background, as well as

the ground-truth fixation

maps were used.

Using the extracted

features, they

implemented an SVM to

generate feature weights

that were then

combined to predict

human fixation maps.

They also conducted

statistical analysis to

investigate the atypical

visual attention of ASD

participants.

Their approach

reported high

performance in

predicting the visual

attention of both ASD

and TD group. Their

results showed that

ASD group had

increased biased

towards the image

centre, background and

pixel-level, but reduced

biased towards objects

and semantic content

of the image.

Yaneva,

et al. [55]

Study 1:

ASD: 37.00 (9.14)

TD: 33.60 (8.60)

Study 2:

ASD: 41.00 (14.00)

TD: 32.20 (9.90)

Study 1:

ASD: 15

TD: 15

Study 2:

ASD: 19

TD: 19

Study 1:

6 webpages with increasing

visual complexity (e.g., low,

medium, high) and 2

webpages in each category.

Study 2:

8 randomly selected

webpages from a list of top

100 websites, ensuring that

there are 4 low visual

complexity and 4 high

visual complexity content.

Different computed eye-

tracking variables (e.g.,

number of fixations, time

to first look at an AOI) and

non eye-tracking data-

related variables (e.g.,

gender, visual complexity)

They computed eye-

tracking related

variables on different

pre-defined AOIs.

Afterwards, they trained

several logistic

regression classifiers

using different

combinations of the

feature set for ASD

classification.

Their results suggest

that atypical visual

attention of ASD

individuals can be used

as a biomarker for

classification. They

found differences in the

information processing

of ASD participants,

regardless of specific

information-location

instructions across

different time

conditions.

They also found that

stimuli content and

granularity have an

impact on classification

accuracy, while the

stimuli complexity and

gender do not exhibit

the same effect.

Liu, et al.

[34]

ASD: 7.90 (1.45)

TD-Age Matched:

7.86 (1.38)

TD-IQ Matched:

5.74 (1.01)

ASD: 29

TD-Age Matched:

29

TD-IQ Matched:

29

12 photos of adult Chinese

female faces and 12

Caucasian female faces. 6

were used for

memorisation task and 18

were used for a recognition

task of the 6 memorised

faces.

Frequency distribution of

the visual attention of

participants were

computed.

They first quantised the

fixation distribution of

all participants using the

k-means algorithm to

generate cluster

centroids. Afterwards,

given a sequence of

fixation locations, they

assigned the cluster

centroid closest to a

participant’s fixation

location and counted the

frequency of cluster

assignments. This

process was repeated on

all the images and an

SVM classifier was used

for classification.

Their results showed a

promising performance

in classifying ASD

participants based on

visual attention on

human faces.

(Continued)
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Table 3. (Continued)

Authors Mean age (SD) in

years

Sample size Stimuli Input used Method Conclusions

Jiang and

Zhao [33]

Same as Wang,

et al. [54]

Same as Wang,

et al. [54]

Same as Wang, et al. [54] Images (and corresponding

rescaled images) with the

associated eye-tracking

data of the participant

First, image selection

using Fisher score

ranking was

implemented to reduce

the number of input

images from 700 to 100.

Afterwards, each image

and it corresponding

rescaled image were

passed to a two branch

VGG-16 network. The

extracted features were

then concatenated and

used to predict the

difference of fixation

maps. Afterwards, a

latent representation in

the model was used for

classification using

SVM.

There was no direct

comparison with other

models since their

model was one of the

first to use eye-tracking

for ASD classification.

Nevertheless, the

authors compared their

approach with similar

work that used different

group of subjects and

input data and received

the highest

performance across

different metrics.

Startsev and

Dorr [56]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant, including

fixation durations.

First, they computed

features extracted from

the eye-tracking data

and the input image.

Afterwards, they trained

a random forest for

classification.

Their analysis revealed

that images that contain

multiple faces provide

significant differences

in visual attention

between ASD and TD

individuals.

Wu, et al.

[58]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant, including

fixation durations.

They developed two

networks:

Synthetic saccade

approach: a synthetic

data generated by a

scanpath model is

aligned with the real

eye-tracking data.

Distance measures were

then computed on these

two data. Afterwards,

different eye-tracking

statistics were

concatenated and used

as features for MLP

classification.

Image-based approach:

the real eye-tracking

data were converted into

an image. Afterwards,

features were extracted

from the input stimulus

and the converted image

and used as features for

classification.

Their experiments

showed that both

approaches resulted in

similar classification

performance in terms

of accuracy and AUC.

Arru, et al.

[57]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant, including

fixation durations.

First, they extracted

features extracted from

the image, eye-tracking

data and bias towards

the image centre.

Afterwards, they trained

a random forest that

uses a bagging algorithm

for classification.

Their results suggested

that scene analysis, such

as determining the

objects attended by

participants, could

provide better results.

(Continued)
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Table 3. (Continued)

Authors Mean age (SD) in

years

Sample size Stimuli Input used Method Conclusions

Tao and

Shyu [59]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant, including

fixation durations.

First, they used a

saliency model to

generate a saliency map

for a given image.

Afterwards, square

patches centred around

the participant’s

fixations were extracted

from the predicted

saliency map. These

patches were then

passed to a CNN for

feature extraction. The

gaze duration associated

with a patch location is

concatenated with the

extracted patch features

and sequentially passed

to an LSTM network

followed by an FCL for

classification.

Their results achieved

an accuracy of 74.22%

on the validation set

and 57.90% on the test

set.

Chen and

Zhao [43]

Photo-taking task:

NR

Image-viewing

task: NR

Saliency4ASD

Photo-taking task:

ASD: 22

TD: 23

Image-viewing

task:

ASD: 20

TD: 19

Saliency4ASD

Photo-taking task: First-

person photo taken by the

participant

Image-viewing task:

700 images from the OSIE

dataset

Saliency4ASD

Photo-taking task: First-

person photo taken by the

participant

Image-viewing task:

Images with the associated

eye-tracking data of the

participant.

Saliency4ASD

Photo-taking task: Given

a sequence of photos

taken by the participant,

features are extracted

using a CNN network

and passed into a global

average pooling layer.

The sequence of image

features is passed into an

LSTM network and an

FCL for classification.

Image-viewing task:

Given an image, features

are extracted using a

CNN network.

Afterwards, using the

associated eye-tracking

data, features are

extracted around the

fixation location. The

sequence of extracted

features is then passed

into an LSTM network

and a FCL for

classification.

The authors also used

multi-modal distillation

to train both models.

Their results had the

highest accuracy

performance when

compared to other

models [33,34].

(Continued)
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Table 3. (Continued)

Authors Mean age (SD) in

years

Sample size Stimuli Input used Method Conclusions

Fang, et al.

[60]

Saliency4ASD

GazeFollow4ASD:

ASD: 9.60 (NR)

TD: 8.90 (NR)

Saliency4ASD

GazeFollow4ASD:

ASD: 8

TD: 10

Saliency4ASD

GazeFollow4ASD: Images

that contain people looking

at other people/objects in

the scene

Saliency4ASD

GazeFollow4ASD: Images

with the gaze-following

prior map indicating the

eye locations of the people

in the image and their gaze

locations

First, they used a dilated

CNN to extract coarse

feature maps from the

input image. Afterwards,

these feature maps are

passed to a

convolutional LSTM

network to generate

enhanced features. A

fusion layer is used to

add the gaze-following

prior map and a series of

CNN layers is used to

generate a difference of

fixation maps. A latent

representation in the

model is passed to two

FCLs for classification.

Their results had the

highest accuracy

performance when

compared to a model

[33] submitted to

Saliency4ASD.

Rahman,

et al. [61]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant.

First, they used seven

different saliency

prediction models on a

given image and

computed evaluation

metrics between the

predicted saliency and

the recorded eye

tracking data of the

participant. This process

is repeated for all the

viewed images. The

evaluation results for

each saliency prediction

model were

concatenated. This

feature representation

was passed to an SVM

and XGBoost for

comparison of

classification

performance.

Their model reported a

higher performance

compared to a previous

SOTA model [43] for

ASD classification.

Xu, et al.

[62]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant.

Using structural

similarity, they selected

a subset of images that

resulted into significant

differences in visual

attention of ASD and

TD participants.

Afterwards, they

developed a bio-inspired

metric that classifies

ASD using the eye-

tracking data.

Their results suggest

that screening the

photos to be viewed by

participants and

eventually used for

classification is

necessary to increase

the model accuracy.

(Continued)
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Table 3. (Continued)

Authors Mean age (SD) in

years

Sample size Stimuli Input used Method Conclusions

Wei, et al.

[63]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant.

First, an image encoder

was used to extract

visual features.

Afterwards, the

associated eye-tracking

data of the participant

was used as an input to

three branches: (1)

embedding layer to

extract features (2) field

of view maps generator

layer that is composed of

a spatial attention

mechanism and LSTM

network to extract

spatiotemporal features

(3) dynamic filters

generator layer that uses

CNNs. A final two FCLs

were used for

classification.

Their results had the

highest accuracy and

similar specificity and

AUC scores when

compared to models

[56–59] submitted to

Saliency4ASD.

Liaqat, et al.

[64]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant

They developed two

networks:

Branched MLP

approach: it consists of a

three-branch network

that processes three

different kinds of

features: (1) a synthetic

saccade is generated

using a scanpath model,

(2) a real scanpath and

(3) statistical features.

These features are

passed to a series of

MLPs for classification.

Image-based approach:

it consists of a two-

branch network that

extracts features from

the input image and the

eye tracking data and

uses a final classification

layer.

The image-based

approach resulted in

slightly better results

than the branched MLP

approach.

Mazumdar,

et al. [65]

Saliency4ASD Saliency4ASD Saliency4ASD Images with the associated

eye-tracking data of the

participant.

They computed features

extracted from the

image, eye-tracking data

and centre bias of

participants. Afterwards,

they trained 23 different

classifiers, such as

decision trees, naïve

bayes classifier, SVM,

nearest neighbour

classifier, and ensemble-

based classifiers.

Their results were

among the top 4

performing models

across different metrics

when compared to

models [56,59,64]

submitted to

Saliency4ASD.

AOI: Area of Interest, ASD: Autism Spectrum Disorder, AUC: Area Under the Curve, CNN: Convolutional Neural Network, FCL: Fully-Connected Layer, IQ:

Intelligence Quotient, LSTM: Long Short-Term Memory, MLP: Multi-Layer Perceptron, NR: Not reported, SD: Standard deviation, SOTA: State-Of-The-Art, SVM:

Support Vector Machine, TD: Typically Developing

https://doi.org/10.1371/journal.pone.0282818.t003
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a random forest for ASD classification. Their analysis revealed that images that contain multi-

ple faces provide significant differences in visual attention between ASD and TD individuals.

Wu, et al. [58] proposed two machine learning approaches based on synthetic saccade genera-

tion and image classification with similar performance in terms of accuracy and AUC. Tao

and Shyu [59] proposed a combination of CNN and long short-term memory (LSTM) net-

works to classify ASD and TD individuals. Exploiting a similar architecture, Chen and Zhao

[43] proposed a multimodal approach to utilise information from behavioural modalities cap-

tured during photo-taking and image-viewing tasks, resulting in higher performance in both

modalities. Using an additional dataset that contains people looking at other people/objects in

the scene, Fang, et al. [60] proposed a DNN that achieved a higher accuracy when compared to

a previous model [33]. Rahman, et al. [61] used several saliency prediction models and com-

pared the performance of SVM and XGBoost. Observing that not all images highlight signifi-

cant differences in visual attention between ASD and TD participants, Xu, et al. [62] used

structural similarity between ASD and TD saliency maps to identify a subset of images in

which a new bio-inspired metric was applied to identify ASD participants. Wei, et al. [63] pro-

posed a dynamic filter and spatiotemporal feature extraction for ASD diagnosis, achieving the

highest accuracy and similar specificity and AUC scores when compared to previous models

[56–59]. Liaqat, et al. [64] proposed two ML approaches that include a branched MLP

approach and an image-based approach for ASD classification and found that the latter

approach resulted in slightly better performance. Mazumdar, et al. [65] extracted different

handcrafted and DL features and compared 23 ML algorithms to identify individuals with

ASD. Their results were among the top 4 performing models across different metrics when

compared to previous models [56,59,64].

Eye-tracking on dynamic stimuli for ASD diagnosis

Prior research explored the possibility of using the eye-tracking paradigm during video-view-

ing tasks to identify specific neurological disorders. For example, Tseng, et al. [66] extracted

low-level features from eye movement recorded from 15 minutes of videos and used an ML

model to identify participants with attention deficit hyperactivity disorder, fetal alcohol spec-

trum disorder and Parkinson’s disease. Although this work did not include ASD classification,

it accentuates the efficacy of using eye-tracking on dynamic stimuli to identify the mental

states of participants.

As shown in Table 4, there are recent works that utilise dynamic stimuli to differentiate

ASD from TD subjects. Wan, et al. [67] investigated the difference in fixation times between

ASD and TD children watching a 10-second video of a female speaking. Their results revealed

that fixation times at the mouth and body could significantly discriminate ASD from TD with

a classification accuracy of 85.1%. Jiang, et al. [68] collected eye-tracking data during a

dynamic affect recognition evaluation task, extracted handcrafted features and used a random

forest classifier to identify ASD individuals. Zhao, et al. [69] collected eye-tracking data during

a live interaction with an interviewer, extracted handcrafted features and employed four ML

classifiers to identify individuals with ASD. These prior studies rely on handcrafted features

that may provide less discriminative information between TD and ASD individuals.

Numerous studies employed an image classification approach based on a published dataset

that contains the visualisation of eye-tracking data (i.e., scanpath images) of the participants

during the experiment [45]. For example, Carette, et al. [45,70] used the raw pixel values as fea-

tures and compared ML and DL algorithms for ASD classification. Their results revealed that

DL algorithms achieved the highest performance when compared to ML models. Elbattah,

et al. [71] trained a deep autoencoder and used a k-means clustering approach on the learned
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Table 4. Eye tracking on dynamic stimuli for ASD diagnosis.

Authors Mean age

(SD) in years

Sample

size

Stimuli Input used Method Conclusions

Wan, et al. [67] ASD: 4.60

(0.70)

TD: 4.80

(0.40)

ASD: 37

TD: 37

Dynamic, 10-second

video of a female actor

speaking

Eye-tracking data of the

participant

They defined ten AOIs and

computed different fixation

time ratio. Afterwards, they

used SVM to determine

which AOI can be used for

classification.

They found that using

fixation times at the mouth

and body results in an ASD

classification accuracy of

85.1%, sensitivity of 86.5%

and specificity of 83.8%.

Jiang, et al. [68] ASD: 12.74

(2.45)

TD: 14.11

(5.09)

ASD: 23

TD: 35

Combination of static

and dynamic stimuli

Dynamic stimuli with the

associated eye-tracking

data of the participant

They computed eye-tracking

variables (e.g., response time,

fixation locations, length,

frequency, duration, saccadic

amplitude) and extracted

face features using a DL

model. They then used RF

for classification.

The combination of all the

handcrafted and extracted

features resulted in a

classification accuracy of

72.5%. Using a soft voting

approach, the classification

accuracy increased to 86.2%

in identifying ASD

participants.

Zhao, et al. [69] ASD: 8.30

(2.09)

TD: 9.07

(2.25)

ASD: 19

TD: 20

Dynamic, structured

face-to-face

conversation with a

female interviewer

Dynamic stimuli with the

associated eye-tracking

data of the participant

They computed visual

fixation ratios in four pre-

defined AOIs across four

sessions and added five

features on session length,

resulting in 21 features.

Afterwards, they compared

combinations of these

features using different ML

classifiers (e.g., SVM, LDA,

DT and RF).

Their model that used the

total session length,

percentage of visual fixation

time on the mouth AOI and

the percentage of visual

fixation time on the body as

features achieved the highest

classification accuracy.

Looking at a single feature,

the total session length was

an effective discriminative

feature.

Carette, et al. [45] All

participants:

7.88 (NR)

ASD: 29

TD: 30

Combination of static

and dynamic stimuli

that depict naturalistic

scenes, initiate joint

attention and static face

or objects.

They visualised the eye-

tracking data of a

participant as a scanpath

image. Using the scanpath

images, they converted it

to a grayscale image and

rescaled for further

processing.

They defined the ASD

classification as an image

classification problem using

a logistic regression model.

Their result achieved an AUC

of 0.819 based on 10-fold

cross validation.

Carette, et al. [70] Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Same as Carette, et al. [45] They defined the ASD

classification as an image

classification problem using

several ML and ANN

models.

Their MLP achieved the best

performance when compared

to ML models. They noted

that there was no

performance increase as the

complexity is increased.

Elbattah, et al. [71] Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Same as Carette, et al. [45] They trained an autoencoder

for feature extraction.

Afterwards, they

implemented a k-means

clustering algorithm and

analysed the cluster qualities

in terms of ASD

classification.

They showed that by using a

clustering technique on the

latent space representation in

the autoencoder bottleneck,

they could get a cluster that

contains a high percentage of

ASD participants, suggesting

that the algorithm can be

used for ASD classification.

Akter, et al. [72] Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Same as Carette, et al. [45] Using the scanpath images,

they implemented a k-means

clustering algorithm to

divide the data into four

groups. They trained

different ML models in each

cluster for classification.

Their results showed that the

MLP achieved the best

performance on different

metrics when compared to

ML models.

(Continued)
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Table 4. (Continued)

Authors Mean age

(SD) in years

Sample

size

Stimuli Input used Method Conclusions

Cilia, et al. [73] ASD: 7.58

(2.50)

TD: 8.00

(2.67)

ASD: 29

TD: 30

Same as Carette, et al.

[45]

Scanpath images They developed a four-layer

CNN interspersed with

pooling layers and a final

FCLs for classification.

Their model achieved an

accuracy of around 90%,

sensitivity of around 83% and

a precision of around 80%.

Kanhirakadavath

and Chandran [74]

Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Same as Carette, et al. [45] They compared two

frameworks: (1) PCA for

feature extraction and

different ML techniques for

classification. (2) CNN for

feature extraction and

different numbers of FCLs

for classification.

Their results showed that the

deep learning approach

achieved higher performance

across different metrics when

compared to the different ML

approaches.

Gaspar, et al. [75] Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Scanpath images Their approach is a kernel

extreme learning machine

that uses giza pyramids

construction metaheuristic

algorithm for kernel

parameters optimisation.

They compared this

technique to other

optimisation algorithms, as

well as ML algorithms, in

terms of classification

accuracy.

Their proposed pipeline

achieved the highest

performance on different

metrics when compared to

other optimisation

algorithms. In addition, their

model achieved the highest

performance on difference

metrics when compared to

other ML algorithms.

Ahmed, et al. [76] Same as

Carette, et al.

[45]

Same as

Carette,

et al. [45]

Same as Carette, et al.

[45]

Scanpath images They developed three

models that are based on

ML, DL and hybrid

techniques for classification.

The highest performing

model was the ANN that uses

the features extracted from

the snake algorithm trained

for image segmentation.

de Belen, et al. [14] All

participants:

4.60 (0.50)

ASD: 17

TD: 17

Same as Pierce, et al.

[11], Pierce, et al. [12]

and Moore, et al. [13]

Dynamic stimuli with the

associated eye-tracking

data of the participant

They trained a VAM and

used SVM for classification.

Using different number of

fixations, their model

achieved an accuracy of 68%-

100%, sensitivity of 57%-

100% and specificity of 65%-

100%.

Oliveira, et al. [15] Range: 3 to 18 ASD: 76

TD: 30

Dynamic, similar to

GeoPref that contains

biological and

geometric movements

Dynamic stimuli with the

associated eye-tracking

data of the participant

For the entire video

duration, they created two

sets (one for each group)

that contain the aggregated

fixation locations on each

frame. They created a group-

specific fixation map which

was then used to train

VAMs. Afterwards, an

individual classification was

performed based on the

VAMs.

Their model achieved an

average precision of 90%,

average recall of 69% and

average specificity of 93%.

Fan, et al. [77] All

participants:

Range: 3 to 13

ASD: 21

TD: 47

Point-light biological

motion animation with

upright/inverted

persons that perform

different actions.

They defined 5 ‘zones’

where the visual attention

of the participant is

allocated. Afterwards, they

computed data

distribution within these

zones.

They used the fixation

distribution in different

zones to identify zones

helpful for classification.

They trained an SVM for

classification.

Their method achieved an

AUC of 0.95.

(Continued)
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latent representation to identify clusters of participants. Their analysis revealed that an identi-

fied cluster contained a high percentage of ASD participants, suggesting that the algorithm can

be used for ASD classification. Using a similar unsupervised learning approach, Akter, et al.

[72] performed k-means clustering to divide the dataset into 4 groups and compared different

ML models to identify participants with ASD. Cilia, et al. [73] used CNN and a fully-connected

layer to predict ASD participants. Similarly, Kanhirakadavath and Chandran [74] compared

Principal Component Analysis (PCA) and CNN for feature extraction and different ML and

DL models for ASD classification. Gaspar, et al. [75] performed additional image augmenta-

tion to generate more training data. Afterwards, they used a kernel extreme learning machine

optimised using the Giza Pyramids Construction metaheuristic algorithm to identify ASD

individuals. Their approach achieved higher performance when compared to ML approaches.

Ahmed, et al. [76] compared ML, DL and a combination of both approaches for ASD diagno-

sis. The results in these prior studies suggest that DL models for feature extraction and ASD

classification perform better when compared to traditional ML approaches.

There are also prior studies that explored the use of dynamic stimuli that are effective in

evoking significant differences in visual attention of ASD and TD participants. For example,

de Belen, et al. [14] used the GeoPref Test [11,12] in EyeXplain Autism, a system for eye-track-

ing data analysis, automated ASD prediction and interpretation of deep learning network pre-

dictions. Recently, Oliveira, et al. [15] used similar video stimuli, trained a visual attention

model and utilised an ML model to identify individuals with ASD. Fan, et al. [77] and Fang,

et al. [78] used biological motion stimuli and different ML classifiers for ASD diagnosis. Using

a stimulus for initiating joint attention, Carette, et al. [79] extracted features related to saccadic

movement (e.g., amplitude, velocity, acceleration) and trained an LSTM network to predict

three diagnostic groups (i.e., ASD, TD, unclassified). Putra, et al. [80] collected eye-tracking

data during Go/No-Go tasks, identified spatial and auto-regressive temporal gaze-related fea-

tures that differ significantly between ASD and TD participants and applied an AdaBoost

meta-learning algorithm to identify participants with ASD.

Table 4. (Continued)

Authors Mean age

(SD) in years

Sample

size

Stimuli Input used Method Conclusions

Fang, et al. [78] Age range:

ASD: 4 to 10

TD: 2 to 15

ASD: 33

TD: 50

Same as Fan, et al. [77] Same as Fan, et al. [77] Using the extracted features,

they compared kNN,

Gaussian Naïve Bayes and

Nonlinear SVM for ASD

classification.

Their results showed that the

nonlinear SVM achieved

higher performance than the

other MLP approaches.

Carette, et al. [79] All

participants: 8

to 10

ASD: 17

TD: 15

Dynamic, an actor

initiating bids of joint

attention

Eye-tracking data of the

participants

Different saccadic

movement variables were

calculated as input to a two-

layer LSTM network for

classification.

Their model was able to

identify ASD participants

from TD participants with an

accuracy of 83%.

Putra, et al. [80] ASD: 5.00

(0.60)

TD: 4.60

(0.40)

ASD: 21

TD: 31

Dynamic, CatChicken

game

Eye-tracking data of the

participants

They extracted different

features and used the

AdaBoost metalearning

algorithm.

Their approach achieved an

accuracy of 88.6%.

ANN: Artificial Neural Network, AOI: Area Of Interest, ASD: Autism Spectrum Disorder, AUC: Area Under the Curve, CNN: Convolutional Neural Networks, DL:

Deep Learning, DT: Decision Tree, FCL: Fully-Connected Layer, kNN: k-Nearest Neighbour, LDA: Linear Discriminant Analysis, LSTM: Long Short-Term Memory,

ML: Machine Learning, MLP: Multi-Layer Perceptron, NR: Not reported, PCA: Principal Component Analysis, RF: Random Forest, SD: Standard deviation, SVM:

Support Vector Machine, TD: Typically Developing, VAM: Visual Attention Model

https://doi.org/10.1371/journal.pone.0282818.t004
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Although previous studies utilised dynamic stimuli, the most common approach was to

convert the participant’s eye-tracking data into an image, potentially losing spatiotemporal

information that can be leveraged for classification. In addition, this approach disregards the

pixel information around the fixation, a crucial insight into what part of the stimuli attracts

human attention. In this paper, we propose a DNN approach that utilises dynamic saliency

prediction to identify individuals with ASD.

While previous works have investigated the feasibility of leveraging visual attention in iden-

tifying individuals with ASD, limited research has been conducted to explore the effectiveness

of exploiting the dynamic visual attention of the participant in ASD classification. Our

approach utilises eye-tracking data captured during a dynamic stimulus viewing task. Our

approach follows a similar deep learning framework reported in the literature [33], however it

provides an extension from static stimuli, widening the diagnostic paradigm to include

dynamic stimuli.

Eye-tracking in ASD risk and symptom severity prediction

Although there has been a great deal of research on the use of eye-tracking in ASD diagnosis,

relatively little research focus on other applications, such as automatically predicting the risk

of ASD (e.g., low, medium and high) and symptom severity, as shown in Table 5. Nevertheless,

previous studies provide insights into the potential use of eye tracking in symptom severity

prediction. For example, Kou, et al. [81] found that a reduction in visual preference for social

Table 5. Eye tracking in ASD risk and symptom severity prediction.

Authors Mean age (SD)

in years

Sample size Stimuli Input used Method Conclusions

Canavan,

et al. [23] and

Fabiano, et al.

[24]

Two

experiments:

Experiment 1:

Range:

between 2 and

60 years old

Experiment 2:

Range:

between 2 and

40 years old

Two experiments:

Experiment 1:

257 with different

risk types (low,

medium, high and

confirmed ASD)

Experiment 2:

237 (subset of the

first experiment)

Image and

Video

They used the raw eye-

tracking data (x and y

locations), handcrafted

features (e.g., average

fixation duration, velocity),

age and gender

They compared different

ML and DL algorithms for

ASD risk prediction.

Their approach achieved a

maximum classification rate of

93.45%.

Revers, et al.

[16]

Range: between

3 and 16 years

old.

NSG: 49

SG: 39

Same as Pierce,

et al. [11],

Pierce, et al.

[12] and

Moore, et al.

[13]

They used the stimulus and

the associated eye-tracking

data of the participant.

They trained two

computational models

[83] to generate saliency

maps of SG and NSG.

Afterwards,

they used RELIEFF

algorithm to select

features for classification

[84].

Their model achieved an average

accuracy of 88%, precision of

70%, sensitivity of 87% and

specificity of 60% for ASD

symptom severity prediction.

Carette, et al.

[70]

Same as

Carette, et al.

[45]

Same as Carette,

et al. [45]

Same as

Carette, et al.

[45]

Same as Carette, et al. [45] They defined the

symptom severity

prediction as an image

classification problem

using ANN models.

Their model achieved an average

accuracy of around 83%. Their

model was able to better identify

TD participants compared to

other ASD symptom severity.

The prediction accuracy of

symptom severity labels was 20%

lower and worse for severe ASD

participants.

ANN: Artificial Neural Network, ASD: Autism Spectrum Disorder, ML: Machine Learning, NSG: Non-Severe Group, SD: Standard Deviation, SG: Severe Group, TD:

Typically Developing

https://doi.org/10.1371/journal.pone.0282818.t005
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scenes is significantly correlated with the ADOS social affect score, which may be useful in

severity prediction. On the other hand, Bacon, et al. [82] found that a higher visual preference

of toddlers for geometric scenes is significantly correlated with later symptom severity at

school age, further suggesting the clinical utility of eye tracking for ASD symptom severity

prediction.

Recently, Revers, et al. [16] trained two computational models [83] to generate saliency

maps of severe and non-severe groups and used the RELIEFF algorithm [84] to select the most

important features for classification. Afterwards, a neural network was trained to identify

symptom severity for each fixation made by the participant. The final prediction is considered

to be severe if more than 20 fixations were classified as severe by the trained neural network.

Their approach obtained an average accuracy of 88%, precision of 70%, sensitivity of 87% and

specificity of 60% in predicting symptom severity.

In a slightly different problem, Canavan, et al. [23] and Fabiano, et al. [24] proposed a

method for predicting ASD risk using eye gaze and demographic feature descriptors (e.g., age

and gender). Handcrafted features, such as average fixation duration and average velocity,

were tested on four different classifiers, namely random forests, decision trees, partial decision

trees and a deep forward neural network. Although their results with a maximum classification

rate of 93.45% are promising, it is crucial to compare their handcrafted features to features

learned by modern deep learning models and determine if the latter improves the risk predic-

tion accuracy. In this paper, we present the same DNN approach we used in ASD classification

to predict the level of ASD-related symptoms.

Materials and methods

In this work, we used a data-driven approach to extract rich features learned from a dynamic

stimulus to identify participants with autism and predict the level of ASD-related symptoms.

In Fig 1, an overview of the proposed approach is provided. The method is divided into differ-

ent stages, including eye-tracking data collection, dynamic saliency detection trained on the

Fig 1. Overview of the proposed feature learning/extraction, classification and symptom severity prediction approach. (a) Given a video input, per-frame

features are learned using an end-to-end approach to predict the difference of fixation (DoF) maps. (b) Extracted features at fixated pixels from each fixation

stage are cascaded and passed on to an SVM to identify individuals with ASD and predict the level of ASD-related symptoms.

https://doi.org/10.1371/journal.pone.0282818.g001

PLOS ONE Using visual attention estimation on videos for automated prediction of autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0282818 February 12, 2024 16 / 33

https://doi.org/10.1371/journal.pone.0282818.g001
https://doi.org/10.1371/journal.pone.0282818


difference of fixations between ASD and TD individuals, and SVM-based classification and

severity prediction. This study was approved by the Human Research Ethics Committee of the

University of New South Wales. Written informed consent was obtained from the parents/

legally authorised representatives of the participants. All methods were carried out in accor-

dance with relevant guidelines and regulations.

Eye-tracking

Participants. There were 57 children (9 females) in the ASD group and 17 children (9

females) in the TD group. Participants were matched by their age at the time of the study. 24

children in the ASD group were recruited from an Autism Specific Early Learning and Care

Centre (ASELCC) and 33 children were recruited from the Child Development Unit (CDU) of

a Children’s Hospital. The TD children were recruited from a children’s services preschool. All

participants in the ASD group met the criteria for ASD based on the Diagnostic and Statistical

Manual of Mental Disorders (DSM-5) [85] criteria and the diagnosis of ASD was confirmed

using the Autism Diagnostic Observation Schedule (ADOS), Second Edition [86]. Of the 57

ASD children, there were 24 who showed high ASD-related symptoms and 33 had moderate

symptoms. There are no specific exclusion criteria for the ASD group in this study. The TD

group’s exclusion criteria included known neurodevelopmental disorders, significant develop-

mental delays and known visual/hearing impairments. No child had any visual acuity

problems.

Dynamic stimulus. We used the GeoPref Test [11,12] dynamic stimulus, which has been

shown to be an effective stimulus for detecting ASD subgroups. This stimulus consists of

dynamic geometric images (DGIs) on one side and dynamic social images (DSIs) on the other.

The DGIs were constructed from recordings of animated screen-saver programs. The DSIs

were produced from a series of short sequences of children performing yoga exercises. It

included images of children performing a wide range of movements (e.g., waving arms and

appearing as if dancing). The stimulus contained a total of 28 different scenes and was pre-

sented in order, based on the originally published stimulus [11,12]. It has a resolution of 1281

x 720 pixels and contains a total of 1,488 frames, which is equivalent to 61 seconds of video

playback.

Eye-tracking apparatus and procedure. Participants were tested using the Tobii X2-60

eye tracker and eye-tracking data was processed using Tobii Studio software to identify fixa-

tions and saccades. Eye movements were recorded at 60 Hz (with an accuracy of 0.5˚) during

the dynamic stimuli viewing. Each participant was seated approximately 60 cm in front of a

22” monitor with a video resolution of 1680 x 1050 pixels in a quiet room and shown dynamic

visual stimuli in full-screen. A built-in five-point calibration in Tobii studio was completed

before administering the task for accurate eye gaze tracking. The calibration procedure

required gaze following on an image of an animal paired with auditory cues, starting with the

centre of the screen, and moving across the four corners of the screen. The eye-tracking proce-

dure was conducted during a clinical assessment or the intake assessment for entry to an early

intervention program. Multiple attempts were made to ensure that the eye tracker had been

calibrated properly for accurate data collection. Multiple attempts were also made to ensure

that the participants were engaged during the experiment. As a result, depending on the capac-

ity of the child, the procedure was conducted over 2 to 3 sittings or with smaller breaks in

between. The overall clinical assessment and eye-tracking procedure were completed in

approximately 2.5h per participant.

Data processing and statistical analysis. Tobii Studio’s I-VT filter [87] was used to pro-

cess the raw eye-tracking data, exclude random noise and define fixations for further analysis.
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More specifically, short fixations (<100ms) were discarded and adjacent fixations (75ms, 0.5˚)

were merged. Trials were excluded if the total fixation duration was less than 15 seconds. That

is, to be included, the participant should be looking at the stimulus for approximately 25% of

the entire video duration. Once included, the eye-tracking data captured during the entire

length of the stimulus are used for training and evaluation.

A calibration quality assessment was performed to rule out the possibility of eye-tracking

data quality as a confounding factor. In this assessment, a toy accompanied by a sound was

used to attract the participants’ gaze to the calibration point in the middle of the screen. The

mean distance between the detected fixation locations and the calibration point was calculated

as a measure of accuracy. A t-test showed no significant difference between the groups, sug-

gesting that data quality did not differ between the two groups: t(64) = -0.445, p = .658, ASD:

45.89 pixels (22.67), TD: 48.76 pixels (19.00).

An additional data quality assessment was performed to determine the overall nature of the

visual attention of the participants to the stimuli. A t-test showed no significant difference in

visual attention between groups: t(72) = 0.011, p = .991, ASD: 37.13 seconds (12.03), TD: 37.10

seconds (8.07). These analyses of quality suggest that it is unlikely that differences in data qual-

ity and general visual attention influenced the results.

An independent-samples t-test was used to investigate differences in visual attention across

two groups for diagnosis (ASD vs. TD) and severity prediction (moderate vs. severe). All statis-

tical analysis was performed in IBM SPSS Statistics Version 26.

Computation of per-frame saliency maps

Saliency detection models are typically optimised to detect salient features in a scene. They are

trained on a probability distribution of eye fixations, called the fixation map. The per-frame

fixation maps of each participant group were generated from the eye movement data collected

in the study. For a given frame, all fixation points of the children in each group were overlaid

in a binary map, in which the fixation points were set to 1 on a black background (value set to

0). The resulting per-frame fixation maps were smoothed with a Gaussian kernel (band-

width = 1˚) and normalised by the sum to generate per-frame visual attention heatmaps

(labelled ASD and TD heatmaps in Fig 2).

Computation of per-frame difference of fixation (DoF) maps

Similar to Jiang and Zhao [33], our network was optimised on the difference of fixation (DoF)

maps, highlighting the difference in visual attention between TD and ASD individuals. Since

our approach uses a dynamic stimulus, we predict DoF maps on each frame. In particular, let

I+ and I− be the fixation maps for the ASD and TD groups, respectively. The DoF map of a

frame is computed as:

D ¼
1

1þ e� I=sI

where I = −I+ is a pixel-wise subtraction of fixation maps and σI represents the standard devia-

tion of I.

The resulting DoF maps highlight the difference in visual attention between ASD and TD

individuals (refer to Fig 2). The white regions of the DoF map illustrate the visual attention of

TD individuals while the black regions are for ASD individuals. Note that this is the opposite

of the DoF computation elsewhere [33]. This also resulted in better training performance com-

pared to DoF maps that highlight more fixations of the ASD group.
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Per-frame prediction of difference of fixation maps

As shown in Fig 3, ACLNet [88], one of the best models available for dynamic saliency detec-

tion, is used for feature extraction. It consists of a CNN-LSTM network with an attention

mechanism to enable fast, end-to-end saliency prediction. Since ACLNet already contains an

attention network trained on TD individuals, we trained and fine-tuned our model with DoF

maps that highlight more fixations of the TD group.

Our model was optimised using the following loss function [89] which considers three dif-

ferent saliency evaluation metrics instead of the binary-cross entropy loss used before [33]. We

denote the predicted difference of fixation map as Y2[0,1]28×28 and the ground truth saliency

map as Q2[0,1]28×28. Our loss function combines Kullblack-Leibler (KL) divergence, the Lin-

ear Correlation Coefficient (LCC) and the Normalised Scanpath Saliency (NSS) similar to

prior work [88]:

L ¼ LKL þ 0:1LLCC þ 0:1LNSS

LKL is widely used for training saliency models and is computed by:

LKL Y;Qð Þ ¼
X

x

QðxÞlog
QðxÞ
YðxÞ

Fig 2. Overview of the computation of difference of fixation (DoF) maps. On the left, the dynamic stimulus is analysed per frame. In the middle, the eye-

tracking data in each participant group are aggregated and the difference is computed for each frame. On the right, the TD heatmaps are in white, while the

ASD heatmaps are in black.

https://doi.org/10.1371/journal.pone.0282818.g002
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LLCC measures the linear relationship between Y and Q:

LLCC Y;Qð Þ ¼ �
covðY;QÞ
sðYÞsðQÞ

where cov(Y, Q) is the covariance of Y and Q while σ is the standard deviation.

LNSS is defined as:

LNSS Y;Qð Þ ¼ �
1

N

X

x

�Y ðxÞ � QðxÞ

where �Y ¼ Y� mðYÞ
sðYÞ and N = ∑xQ(x). It computes the mean of scores from the normalised

saliency map �Y at the predicted DoF maps Y.

Training protocol

Our classification and severity prediction models are iteratively trained with sequential DoF

maps and image data. We train the model by using a loss defined over the predicted dynamic

saliency maps from convLSTM. Let fYd
t g

T
t¼1

and fQd
t g

T
t¼1

denote the predicted dynamic

Fig 3. Overview of the approach for learning the difference of fixation (DoF) maps.

https://doi.org/10.1371/journal.pone.0282818.g003
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saliency maps and continuous difference of fixation maps. We minimise the following loss:

Ld ¼
XT

t¼1

LðYd
t ;Q

d
t Þ

The parameters of ACLNet are initialised to the pre-trained parameters [88]. The network

is then fine-tuned on the current dataset.

ASD classification and symptom severity prediction

Once the model has been trained to predict DoF maps of ASD and TD individuals from a

given dynamic stimulus, feature extraction and classification are performed, with Fig 4 illus-

trating the process [14]. Based on the eye-tracking data, we determined the fixation positions

and the corresponding frames in which they were recorded. Each saccade-fixation pair was

considered a fixation stage. For each fixation stage, features were extracted from the corre-

sponding fixation position on the feature map obtained from the convLSTM output (note that

the convLSTM output is upsampled 4 times before extracting the feature map). More specifi-

cally, given a frame where a fixation has been identified, the feature map at the corresponding

fixation is extracted, which results in a 256-dimensional feature vector at each fixation. For a

corresponding number of fixation stages, feature vectors for all fixations are concatenated in

their temporal order starting from the first fixation to the last fixation stage. This serves as the

feature space in which classification is performed. If there were fewer identified fixations,

zeros are appended at the end. We explored the number of fixation stages that provided the

best performance.

Fig 4. Overview of the approach for feature extraction and classification.

https://doi.org/10.1371/journal.pone.0282818.g004
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A linear decision boundary between ASD and TD individuals was determined by training

an SVM on the extracted features. In addition, another SVM model was trained on the DoF

maps of moderate and high ASD individuals to predict autism severity. We used the ADOS-2

calibrated severity scores (CSS) as ground truth to determine the ASD severity. Participants

with ADOS CSS of 5–7 are considered to have moderate symptoms, while those with ADOS

CSS of 8–10 are considered to have more severe (high) symptoms.

Experimental setup

Training and testing protocols. We report the model’s performance on ASD classifica-

tion and symptom severity prediction using leave-one-out cross-validation (LOOCV). Given

the unbalanced nature and the limited number of samples in the dataset, LOOCV is used to

provide an almost unbiased estimate of the probability of error [90]. In addition, it allows us to

maximise the number of training samples per fold unlike in a k-fold validation approach.

While a stratified k-fold cross-validation strategy may account for the group imbalance that is

present in our dataset, it results in smaller training samples per fold. However, removing a sin-

gle sample from the training set done in LOOCV also does not drastically change the class dis-

tribution. The combination of being able to use as much training data as possible while also

maintaining similar class distribution was the reason why we used LOOCV. The same evalua-

tion approach has been employed in prior studies [14,33,34,43,68,69] in this application area.

Implementation details. We implemented our model in Tensorflow with Keras and Sci-

kit-learn libraries. During the training phase, we fine-tuned the network with Adam optimizer

and a batch size of one image for a total of 20 epochs. The learning rate was set to 0.0001. We

did not perform any dropout and data augmentation. L2 regularisation with the penalty

parameter C = 1 was used for SVM classification.

Evaluation metrics. We report on the performance of our model in terms of accuracy,

sensitivity (i.e., true positive rate) and specificity (i.e., true negative rate) recorded at different

numbers of fixations. Once the best number of fixations to be included in the classification

was identified, the area under the receiver operating characteristic (ROC) curve and the confu-

sion matrix were also computed. To obtain a meaningful area under the ROC curve (AUC) in

an LOOCV, the output probability of the SVM for each fold (each consisting of just one sub-

ject) was saved and the AUC was computed on the set of these probability estimates. The com-

putation of the confusion matrix was performed similarly using the predicted class to compare

with the ground truth label.

Computational load. The entire training procedure for each video stimulus takes about 1

hour with two NVIDIA 2080 Super and a 3.5GHz Intel processor (i7-7800X CPU). Once the

model has been trained, feature extraction and SVM classification can be performed in less

than 1 minute.

Results

Datasets

Children with ASD had a mean age of 4.63(standard deviation (SD) = 0.80) years and TD par-

ticipants also had a mean age of 4.61 (SD = 0.47) years. There was no significant difference in

age between the ASD and TD groups, t(72) = 0.009, p = 0.993.

Eye-tracking data analysis

ASD classification. It was previously shown that ASD individuals with severe symptoms

tend to fixate more on the geometric stimuli than the social stimuli [11,12]. Shown in Fig 5 are
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the %Geo values, the percentage of time spent looking at the dynamic geometric stimuli. %

Geo values are computed by dividing the total fixation duration on the geometric stimuli by

the total fixation duration on both geometric and social stimuli. Independent-samples t-test

was used to compare %Geo for each diagnostic group. Similar to published results elsewhere

[11–13], ASD participants in our study were significantly more attracted to dynamic geometric

images when compared to TD participants (t = 2.11, p< .0386). On average, the ASD group

spent 49.37% (standard deviation (SD) = 24.14%) of their attention looking at the dynamic

geometric images, while the TD group spent 35.97% (SD = 18.58%) of their attention.

ASD symptom severity prediction. Shown in Fig 6 are the %Geo values, the percentage

of time spent on looking at the dynamic geometric stimuli. There was no significant difference

in the %Geo values between the moderate and severe ASD participants (t = 0.424, p< .6729).

On average, ASD participants with moderate symptoms fixated around 48.21% (SD = 23.82%)

of their attention on the geometric stimuli. On the other hand, ASD participants with severe

symptoms spent 50.98% (SD = 25.00%) of their attention looking at the geometric stimuli. We

also performed pair-wise comparisons between the TD participants and the two ASD partici-

pant groups (i.e., moderate and severe). There was a significant difference in the %Geo values

between ASD participants with severe symptoms and TD participants (t = 2.096, p< .0426).

On the other hand, there was only a trend toward a significant difference in the %Geo values

between ASD participants with mild symptoms and TD participants (t = 1.846, p< .0710).

In recent years, it has been shown that stimuli that have both dynamic geometric and social

images can reliably separate the visual attention of ASD and TD individuals. We contribute to

the literature by showing that a DNN-based approach using dynamic stimuli can result in

highly accurate ASD classification and even predict the level of ASD-related symptoms with

promising performance.

Fig 5. Comparison of the percentage of time spent looking at the dynamic geometric stimuli (%geo) between TD and ASD

participants. Each box plot contains the interquartile range, the x marker corresponds to the mean value and the horizontal line

inside corresponds to the median. Each sample is also visualised using dot points.

https://doi.org/10.1371/journal.pone.0282818.g005
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ASD classification performance. In Fig 7, different performance metrics for ASD predic-

tion on the GeoPref Test dynamic stimulus are shown. In Fig 7A, the accuracy, sensitivity and

specificity of the model as the number of fixations (i.e., fixation length) increases are displayed.

It can be observed that all measures generally increase as the number of fixations increases. In

Fig 7B and 7C, the receiver operating characteristics (ROC) curve and the confusion matrix of

the model that reported the highest accuracy (i.e., using the optimal fixation length) in Fig 7A

are shown. The area under the ROC curve (AUC) of our model is 0.96, significantly higher

than chance-level performance (AUC = 0.5). Our model achieved the highest accuracy of

Fig 6. Comparison of the percentage of time spent looking at the dynamic geometric stimuli (%geo) ASD participants with

moderate and severe symptoms. Each box plot contains the interquartile range, the x marker corresponds to the mean value

and the horizontal line inside corresponds to the median. Each sample is also visualised using dot points.

https://doi.org/10.1371/journal.pone.0282818.g006

Fig 7. Different performance metrics for ASD prediction. (a) the plot of the model’s sensitivity, specificity and accuracy as the number of fixations (i.e.,

fixation length) increases. (b) the plot of the area under the receiving operating curve of the best-performing model. (c) the confusion matrix of the best-

performing model.

https://doi.org/10.1371/journal.pone.0282818.g007
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94.59% when 64 fixations were included in the analysis. The high sensitivity of our model

(highest value = 100%) suggests that it can reliably identify ASD children. On the other hand,

the specificity of our model (highest value = 76.47%) suggests that it can reliably identify chil-

dren without the disorder. Overall, four (4) children were mistakenly flagged as having the dis-

order despite not having it.

ASD severity prediction performance. Similar to the results of the diagnosis prediction,

it can be observed in Fig 8A that all performance measures for ASD severity prediction gener-

ally increase as the number of fixations (i.e., fixation length) increases. In Fig 8B and 8C, the

ROC curve and the confusion matrix of the model that reported the highest accuracy in Fig 8A

are shown. Our model achieved the highest accuracy of 94.74% when 44 fixations were

included in the analysis. The area under the ROC curve (AUC) of our model is 0.99, signifi-

cantly higher than chance-level performance (AUC = 0.5). The high specificity of our model

(highest value = 100%) suggests that it can reliably identify children with mild ASD. On the

other hand, the high sensitivity of our model (highest value = 87.50%) suggests that it can reli-

ably identify children with severe symptoms. Overall, three (3) children were mistakenly

flagged as having severe diagnoses despite having milder symptoms.

Comparison with other approaches

As outlined in the related work section, a straightforward comparison with previous

approaches that utilise dynamic stimuli is not possible because the published dataset contains

a visualisation of eye-tracking participants (i.e., scanpath images) rather than the stimuli used

and the associated eye-tracking data that our model requires. Nevertheless, we compared our

proposed approach with a simple thresholding method [11–13] and ML algorithms using

handcrafted features [23,24].

ASD classification. Following the cut-off of %Geo > 69% to determine ASD participants

in a similar study [11–13], we obtained a sensitivity of 22.80%, specificity of 88.23% and accu-

racy of 37.84%. The AUC obtained was 0.67. In comparison, our proposed model resulted in

77.2% higher sensitivity, 11.76% lower specificity and 56.75% higher accuracy when compared

to solely utilising the %Geo values. Handcrafted features that include raw eye gaze points (x

and y locations), average fixation duration, age and gender, were also used as input to a ran-

dom forest regressor and a decision tree classifier for ASD classification similar to a previous

study [23,24]. The random forest regressor achieved an accuracy of 72.97%, a sensitivity of

Fig 8. Different performance metrics for ASD symptom severity prediction. (a) the plot of the model’s sensitivity, specificity and accuracy as the number of

fixations (i.e., fixation length) increases. (b) the plot of the area under the receiving operating curve of the best-performing model. (c) the confusion matrix of

the best-performing model.

https://doi.org/10.1371/journal.pone.0282818.g008
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91.22% and a specificity of 0%. On the other hand, the decision tree classifier achieved an accu-

racy of 58.11%, a sensitivity of 70.18% and a specificity of 17.65%.

Overall, our proposed model achieved the highest accuracy of 94.59%, the highest sensitiv-

ity of 100% and the second-best specificity of 76.47%. The comparison results in ASD classifi-

cation suggest that our model better identified participants with ASD than the previous

approaches, as shown in Table 6.

ASD symptom severity prediction. We also used the same cut-off of %Geo > 69% [11–

13] to identify ASD participants with severe symptoms and obtained a sensitivity of 25.00%,

specificity of 78.79% and accuracy of 43.24%. The AUC obtained was 0.54. Again, our pro-

posed method showed promising results for severity prediction, resulting in a 62.50% increase

in sensitivity, a 21.21% increase in specificity and a 51.5% increase in accuracy when compared

to solely utilising the %Geo values. In comparison to our model, using handcrafted features

and ML classifiers resulted in the same accuracy of 94.74%, slightly higher sensitivity of

91.67% and slightly lower specificity of 96.97%. Overall, our proposed model achieved the

highest accuracy of 94.47%, the second-best sensitivity of 87.50% and the highest specificity of

100%. The comparison results in ASD symptom severity prediction suggest that our model

better identifies participants with moderate symptoms than the previous approaches, as shown

in Table 7.

Discussion

Over the past decade, eye-tracking studies have revealed significant differences in visual atten-

tion between ASD and TD individuals. This motivated researchers to leverage recent advances

in saliency prediction when designing a more quantitative approach to ASD diagnosis, as well

as risk and symptom severity prediction. In this context, researchers have explored the use of

static and dynamic stimuli during free-viewing tasks. The most common approach in the litera-

ture comprised of a traditional two-stage method that consists of a feature extraction stage fol-

lowed by a classification stage. Increasing evidence suggests that the DL-based approach

produced more discriminative features when compared to ML-based approaches. Classification

methods that utilise DL also resulted in better performance than ML models. The rapid

advances in DL approaches and the increasing number of publicly available datasets may help

further advance the literature and improve classification performance. In this paper, we utilised

a combination of DL and ML approaches for ASD diagnosis and symptom severity prediction.

Table 6. ASD classification results comparison with prior approaches.

Approach Accuracy Sensitivity Specificity

Thresholding approach [11–13] 37.84% 22.80% 88.23%

Random forest regressor 72.97% 91.22% 0.00%

Decision tree classifier 58.11% 70.18% 17.65%

Ours 94.59% 100% 76.47%

https://doi.org/10.1371/journal.pone.0282818.t006

Table 7. ASD symptom severity prediction results comparison with prior approaches.

Approach Accuracy Sensitivity Specificity

Thresholding approach [11–13] 43.24% 25.00% 78.79%

Random forest regressor 94.74% 91.67% 96.97%

Decision tree classifier 94.74% 91.67% 96.97%

Ours 94.74% 87.50% 100%

https://doi.org/10.1371/journal.pone.0282818.t007
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Unlike prior research that utilised dynamic stimuli and converted the participant’s eye-

tracking data into an image for classification, we propose a data-driven approach utilising a

dynamic saliency model to extract discriminative features from the stimuli and an ML

approach based on eye-tracking data to automatically identify individuals with ASD. In addi-

tion, we show that the same approach can predict the level of ASD-related symptoms in pre-

school children. Our approach to identifying children with ASD offers several advantages

when compared to existing eye-tracking research. Most notably, our method only takes one

minute of eye-tracking, a substantial decrease in recording time when compared to about 10

minutes required in previous studies [33,34]. While our method requires a substantially

shorter amount of time, it is not a replacement for standard clinical assessments. Extensive

experiments are necessary before the true clinical utility and usability of our proposed method

can be realised.

Our results support other studies [11–13] that found a significant difference in the overall

attention towards geometric stimuli between ASD and TD participants. This significant differ-

ence in visual attention was also found between ASD children with severe symptoms and TD

children in our study. Despite these differences, using the ratio of visual attention towards the

geometric stimuli and the total overall attention and implementing a thresholding technique

employed previously [11–13] resulted in lower classification performance than our proposed

model. Using an ML-based approach on handcrafted features [23,24] also resulted in lower

accuracy in ASD prediction and a similar accuracy in symptom severity prediction than our

proposed model. Overall, our results demonstrate the feasibility of using our approach in accu-

rately identifying ASD children and children with severe symptoms. Our model achieved

promising performance with high accuracy, sensitivity and specificity.

Finally, most published research reviewed in this paper attempted to identify adults with

ASD or older ASD children. In contrast, we investigated the possibility of diagnosing autism

and predicting the level of ASD-related symptoms in preschool children (around 4 years old),

an age range where diagnosis and assessment are typically performed. As a result, we provide

an alternative to augment (and not replace) existing clinical observation tools with a more

objective and efficient approach to ASD diagnosis. This takes us closer to an early ASD screen-

ing system and allows children to access intervention for better health outcomes. While our

results are promising, our proposed approach needs to be trained and tested on a much larger

dataset before it can be utilised in clinical settings.

From a clinical perspective, our findings suggest that eye-tracking technology could be used

as a biomarker of the presence of ASD and symptom severity in preschool children. Initial

findings already found significant correlations between changes in eye-tracking measures and

changes in clinical measures captured before and after interventions, suggesting that eye-track-

ing can be utilised to quantify treatment response [91]. Given the rapid advances in technology

supported by the promising performance of the classification models reviewed in this paper, it

is not hard to imagine that future research would explore the use of a similar eye-tracking par-

adigm in predicting other clinical phenotypes and treatment response outcomes in preschool

ASD children. This will have a tremendous impact on targeting interventions that maximise

health outcomes in patients.

Limitations

Despite the utility of the current study, there are several limitations to keep in mind. First,

there was a gender skew towards males in the ASD group, as would be clinically expected. Nev-

ertheless, further studies with more female participants are required to clarify our results, as

differences in autism presentation and diagnosis between males and females have been
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documented [92]. For example, studies have shown that girls on the spectrum behave similarly

to neurotypical boys and girls on certain socially orientated tasks, such as enhanced attention

to faces during scenes that do not have social interactions [93,94]. In addition, TD men with

high ASD traits exhibit worse accuracy of gaze shifts, while TD women have similar gaze-fol-

lowing behaviour regardless of ASD traits [95].

Further, the participant groups also differed in sample size, with the ASD group being three

times as large as the TD group. The ASD participants in this study were recruited from an

ASD-specific centre and there was good uptake to the study. Despite significant efforts of the

team to recruit control participants, there was less interest from the families of neurotypical

children to participate in the study, which is probably not surprising given the study is less

meaningful for children without a developmental diagnosis. We also acknowledge that the

dataset size is relatively small in comparison to the dataset required to train modern DL mod-

els. To aid our model training and leverage transfer learning, we utilised one of the best

dynamic saliency detection model [88] and finetuned its weights to our dataset. This allowed

our model to learn better and extract more robust and semantically meaningful features when

compared to a model trained from scratch on our dataset. We believe that using the leave-one-

out cross-validation approach to train and test the model addressed the class imbalance and

small sample size in our study. This validation approach has been used extensively in prior

research [14,33,34,43,68,69].

It is also useful to note that the participant groups were matched on chronological age but

not on developmental abilities. Further studies with larger sample sizes with a developmentally

age-matched group are suggested to confirm our findings. As reported in the Materials and

methods section, children with ASD were not excluded from the study if they had a comorbid

diagnosis. Although this has implications for any strict interpretation of the findings reported

here, the inclusion of comorbid conditions in ASD research is ecologically valid. Indeed, it is

rare in clinical practice to encounter a young person who has a ‘pure’ autism spectrum diagno-

sis with no other psychiatric or developmental comorbidities.

Finally, we cannot report on the performance of the stimuli-based classification approaches

and compare it with our dynamic stimuli-based classification approach since this study is part

of a larger study that aimed to find differences in eye-tracking data between ASD and TD par-

ticipants while watching dynamic stimuli. As such, no eye-tracking data from the same partici-

pants were collected while viewing static stimuli.
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