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Abstract

Background

Pulmonary thromboembolism is a serious disease that often occurs in disaster victims

evacuated to shelters. Deep vein thrombosis is the most common reason for pulmonary

thromboembolism, and early prevention is important. Medical technicians often perform

ultrasonography as part of mobile medical screenings of disaster victims but reaching all

isolated and scattered shelters is difficult. Therefore, deep vein thrombosis medical

screening methods that can be easily performed by anyone are needed. The purpose of

this study was to develop a method to automatically identify cross-sectional images suit-

able for deep vein thrombosis diagnosis so disaster victims can self-assess their risk of

deep vein thrombosis.

Methods

Ultrasonographic images of the popliteal vein were acquired in 20 subjects using stationary

and portable ultrasound diagnostic equipment. Images were obtained by frame split from

video. Images were classified as “Satisfactory,” “Moderately satisfactory,” and “Unsatisfac-

tory” according to the level of popliteal vein visualization. Fine-tuning and classification were

performed using ResNet101, a deep learning model.

Results

Acquiring images with portable ultrasound diagnostic equipment resulted in a classifica-

tion accuracy of 0.76 and an area under the receiver operating characteristic curve of

0.89. Acquiring images with stationary ultrasound diagnostic equipment resulted in a clas-

sification accuracy of 0.73 and an area under the receiver operating characteristic curve of

0.88.
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Conclusion

A method for automatically identifying appropriate diagnostic cross-sectional ultrasono-

graphic images of the popliteal vein was developed. This elemental technology is sufficiently

accurate to automatically self-assess the risk of deep vein thrombosis by disaster victims.

Introduction

Deep venous thrombosis (DVT) is characterized by the development of a thrombus in a deep

vein that interrupts venous flow. Generally, the popliteal vein is a common site for DVT [1].

Typical symptoms include pain, swelling, redness, and edema [2]. Particularly, ultrasonogra-

phy is recommended within 24 hours of suspected DVT [3]. Untreated DVT may induce pul-

monary embolism (PE) [4]. The combination of DVT and PE is called venous

thromboembolism (VTE). The estimated annual incidence of VTE in the United States is 1–2

per 1000 persons [5]. According to a systematic review of Sweden or the United States, 5.04

per 10,000 people develop DVT each year [6]. Therefore, VTE is a serious public health issue,

and the early detection and treatment of VTE are important.

In recent years, VTEs have been reported in many post-earthquake victims. The incidence

of DVT after the Great East Japan Earthquake in Ishinomaki in 2011 was 30.4% [7]. The inci-

dence of DVT after the Kumamoto earthquake in 2016 was 10.6% [8]. Outside Japan, Tauqir

et al. reported 3 cases of DVT (1 died of PE) in the Pakistan earthquake [9], and Groves et al

reported 7 cases of DVT in the Nepal earthquake [10]. Thus, the incidence of DVT and PE

after earthquakes is a worldwide concern. Therefore, mobile medical examinations in earth-

quake-affected areas of Japan include venous ultrasonography of the lower extremities [11].

However, quickly reaching all of the isolated and scattered shelters is difficult, although early

detection is important. We hypothesized that a tool that allows non-medical victims to per-

form venous ultrasonography of the lower extremity and automatically measure their risk of

developing DVT would be useful for early detection.

To enable victims to perform venous ultrasound examinations themselves, the following

four elemental technologies are required: (1) assisted probe guidance, (2) automatic acquisi-

tion of cross-sectional images of veins, (3) automated evaluation of extracted vein regions, and

(4) automated prediction of DVT risk based on the evaluation. First, the victim must operate

the probe to properly visualize the popliteal vein. Therefore, a guiding function must be devel-

oped to inform the victim when the popliteal vein is clearly visualized in the image. The probe

must be appropriately placed on the lower extremity to clearly display the popliteal vein. Sub-

sequently, the popliteal vein image must be saved. A cross-sectional image of the vein must be

acquired. Images are automatically updated in real-time during ultrasonography. Thus, once

the popliteal vein is clearly visualized, the probe must not be moved before the image is saved.

Therefore, elemental technique (2) is necessary. In addition, venous regions must be extracted

from the obtained images and automatically measured (3). The results of this measurement

can be used to automatically predict the risk of developing DVT (4).

In this study, deep learning was used to develop these elemental technologies. Recently,

deep learning has been effectively applied to the analysis of ultrasonographic images [12, 13].

Furthermore, assessment of the risk of incident DVT by automated ultrasonography based on

vein compressibility has been investigated [14]. Combined with these technologies, the system

designed in this study to enable victims to assess their own risk of incident DVT is feasible.

The purpose of this study is to develop and evaluate the elemental technologies necessary for

the self-assessment of DVT risk, including (1) assisted guidance for the probe and (2)
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automatic acquisition of cross-sectional images of veins. The assisted guidance allows disaster

victims to visually understand whether the probe is correctly put on the lower extremity, even

if the victim has no experience in performing ultrasonography.

Material and methods

Overview of this study

The overall scheme of this study is shown in Fig 1. Venous ultrasonography of the lower

extremities was performed. Subsequently, the acquired video was divided into frames, and the

obtained images were used to generate the training data. The image size was adjusted to match

the input size of the deep learning training data, and the Deep Convolution Neural Network

(DCNN) was used for training and classification. The accuracy of the classification model was

evaluated. Finally, a heatmap was created to confirm the focus of the DCNN as a basis for

image classification. The details of each step are described below.

Acquisition of the popliteal vein sonographic images

SNIMAGE HS1 (Konica Minolta Corp., Osaka, Japan) was employed as the stationary ultra-

sound diagnostic equipment, and Miruco (Nippon Sigmax Co., Ltd., Tokyo, Japan) was

employed as the portable ultrasound diagnostic equipment. Short- and long-axis images were

acquired using a linear probe in 20 subjects (11 males and 9 females) with healthy popliteal

veins on both sides. The short-axis images were scanned vertically, shifted horizontally, and

scanned in three lines. The long-axis images were scanned horizontally, shifted vertically, and

Fig 1. Overall scheme of the pre-processing and deep learning and its evaluation procedure.

https://doi.org/10.1371/journal.pone.0282747.g001
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scanned in two lines. Videos of venous compression were also acquired for both axes. Subjects

were in the sitting position during imaging. Acquisition time was 3 to 4 minutes per person.

All data were acquired by an experimental contributor who had no experience with ultrasound

diagnostic equipment. The parameter settings for each device are shown in Table 1. The fol-

lowing parameters were used for the stationary ultrasonography equipment: Mode: venous;

Frequency: 9 MHz; Gain: BG28; Depth of Field: 4 cm. For the portable ultrasonography, the

following parameters were used: Mode: peripheral vascular; Frequency: 10 MHz; Gain: G48;

Depth of Field: 4 cm. All procedures involving human participants were conducted in accor-

dance with the ethical standards of the institutional and/or national research committee and

the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

This study was accepted by research ethics committee in Niigata University (Acceptance num-

ber: 2020–0472). Informed consent was obtained from all subjects for the acquisition of lower

extremity images using the ultrasound diagnostic equipment by written and verbal. However,

the acquired images themselves were not authorized for release on the Internet.

Images used for deep learning and classification

The ultrasonographic videos were divided into frames. The frame rate for the stationary ultra-

sound diagnostic equipment was 30 and 128,494 images were obtained from the ultrasono-

graphic video. The frame rate of the portable ultrasound diagnostic equipment was 11 and

46,338 images were obtained from the ultrasonographic video.

Training data were visually labeled as "Satisfactory," "Moderately Satisfactory," or "Unsatis-

factory" according to the degree that the popliteal vein was visualized on each image. An image

was considered “Satisfactory” if the popliteal vein was clearly visualized. Satisfactory short-axis

images were defined as images showing more than one-third of the popliteal vein. Satisfactory

long-axis images were defined as images in which the popliteal vein could be visualized in at

least half the length of the image. “Moderately Satisfactory” was defined as an image that could

not be classified as “Satisfactory” or “Unsatisfactory.” Images were classified as “Unsatisfac-

tory” if the popliteal veins could not be visualized. Image classification criteria are shown in

Fig 2. For stationary ultrasonography, 42,837, 41,784, and 43,873 images were classified as

“Satisfactory,” “Moderately Satisfactory,” and “Unsatisfactory,” respectively. For the portable

ultrasonography, 13,540, 12,770, and 20,028 images were classified as "Satisfactory," "Moder-

ately Satisfactory," and "Unsatisfactory,” respectively. These images were split into a Training

dataset and a Test dataset; the Training dataset and the Test dataset used data from different

cases. In other words, data from the same person were not split into a Training dataset and a

Test dataset; similar images in the Training dataset were not included in the Test dataset. The

images were classified by the first author, and the sonographer (sixth author) verified the clas-

sification. All images were visually verified.

The sonographic image matrix sizes were 648 × 864 pixels for the stationary ultrasound

diagnostic equipment and 300 × 300 pixels for the portable ultrasound diagnostic equipment.

Images were resized to 224 × 224 pixels to fit the input size of the deep learning model. Bicubic

interpolation was used to interpolate the pixels.

Table 1. Description of ultrasound diagnosis equipment used in this study.

Setting Stationary Portable

Mode Venous Peripheral vascular

Frequency 9 MHz 10 MHz

Gain BG28 G48

Depth of Field 4 4

https://doi.org/10.1371/journal.pone.0282747.t001
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Deep learning and classification using fine-tuned ResNet

The runtime environment for DCNN training and classification was as follows: OS: Microsoft

Windows 10; CPU: Intel Core i7-1070; GPU: NVIDIA Quadro RTX6000; Memory: 64 GB.

The MathWorks MATLAB 2021a, an integrated development environment, was used for each

process [15]. For DCNN, a pre-trained ResNet101 [16] was used for fine-tuning. The fully con-

nected layer and the classification layer were re-layered to correspond to the classification of

this study. ResNet101, which had already been trained by ImageNet, was used in this study

[17]. The best performance for region extraction and object detection in medical images using

DCNN is expected when all layers are re-trained [18, 19]. In this study, all layers were re-

trained during fine-tuning. In addition, the best accuracy among other architecture selections

and parameter setting were applied in this study. The parameters were set to a learning rate of

0.001, a batch size of 64, and 10 epochs. Stochastic gradient descent with momentum as an

optimization algorithm was employed. In this study, the learning curve was observed to con-

firm that overfitting did not occur and that were learned adequately.

Evaluation of the developed learning model

The classification accuracy of the DCNN was evaluated with 5-fold cross validation and a

receiver operating characteristic curve (ROC) analysis. In this study, the probe scanning

Fig 2. Image classification criteria defined in this study. In a schematic diagram of a blood vessel, black indicates the visualized condition, and white

indicates the invisible condition.

https://doi.org/10.1371/journal.pone.0282747.g002
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method was unified. Therefore, there were not representative for the task. In addition, all

data were visually verified. Generalizability is ensured regardless which data is used. In this

study, a 5-fold cross validation was performed. A description of the dataset is shown in

Table 2. MathWorks MATLAB 2021a was the runtime environment for the ROC analysis.

Using DCNN to classify the image, Grad-CAM [20] shows the heatmap output image of the

points of interest.

Results

The ROC curves are shown in Fig 3a and 3b. The total area under the ROC (AUC) was 0.88

for stationary ultrasonography and 0.89 for portable ultrasonography. For the stationary ultra-

sonography, the AUCs for Satisfactory, Moderately Satisfactory, and Unsatisfactory were 0.91,

0.80, and 0.93, respectively. For the portable ultrasonography, the AUCs for Satisfactory, Mod-

erately Satisfactory, and Unsatisfactory were 0.93, 0.83, and 0.96, respectively. Tables 3 and 4

show the confusion matrixes for the stationary and portable types, respectively. The classifica-

tion accuracies, calculated from the confusion matrixes, are shown in Table 5. Using the

images acquired from the stationary ultrasound diagnostic equipment, the classification accu-

racy was 0.73 (93,241/128,494). Using the images acquired from the portable ultrasound diag-

nostic equipment, the classification accuracy was 0.76 (35,444/46,338). Correctly classified

images for each label are shown in Figs 4, 6 and 8. The images with a heatmap of the area rep-

resenting the basis of the classification are shown in Figs 5, 7 and 9.

Table 2. Description of the dataset.

Ultrasound diagnosis equipment Satisfactory Moderately Satisfactory Unsatisfactory Total

Stationary 42,837 41,784 43,873 128,494

Portable 13,540 12,770 20,028 46,338

https://doi.org/10.1371/journal.pone.0282747.t002

Fig 3. Receiver operating characteristic curves for the learned model developed in this study. (a: Stationary type, b: Portable type).

https://doi.org/10.1371/journal.pone.0282747.g003
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Discussion

DVT is a public health problem and the risk of DVT increases after disasters. The early preven-

tion of DVT can be achieved by various approaches. Tanno et al. [14] developed an automated

ultrasonography system for the accurate detection of DVT consisting of a method to automati-

cally detect vein regions using deep learning and a method to automatically determine whether

the veins are properly visualized. Smistad et al. [13] proposed a method to automatically detect

blood vessels in an image using a geometric mathematical blood vessel model and deep learning.

The objective of the current study was to develop a DVT risk assessment for disaster victims by

automating venous ultrasonography of the lower extremity. For the development of this system,

a method that enables the victim to use the ultrasound diagnostic equipment and acquire images

visualizing popliteal veins was necessary before applying the automatic vascular information

acquisition system of Tanno et al. and Smistad et al. We developed a method that can automati-

cally classify cross-sectional images suitable for diagnosis during venous ultrasonography of the

lower extremities, even for disaster victims who have no experience in ultrasonography.

The AUCs for this method were 0.87 and 0.89 using stationary and portable diagnostic

ultrasound equipment, respectively. Classification accuracies of 0.72 and 0.76 were achieved

for the stationary and portable diagnostic ultrasound equipment, respectively. Both the sta-

tionary and portable equipment showed the highest AUCs for Unsatisfactory classifications

and the lowest AUCs for Moderately Satisfactory classifications. Fig 4 shows an example of a

correctly classified “Unsatisfactory” image. The images classified as "Unsatisfactory" showed

Table 4. Normalized confusion matrix for portable ultrasonography.

Predict

True Satisfactory Moderately Satisfactory Unsatisfactory

Satisfactory 0.73 (9,883/13,540) 0.23 (3,175/13,540) 0.04 (482/13,540)

Moderately Satisfactory 0.20 (2,553/12,770) 0.60 (7,723/12,770) 0.20 (2,494/12,770)

Unsatisfactory 0.01 (193/20,028) 0.10 (1,997/20,028) 0.89 (17,838/20,028)

Normalized number of classified are as follows; Total number of correctly classified images in 5-fold cross validation / Total number of images in the class.

https://doi.org/10.1371/journal.pone.0282747.t004

Table 5. Classification accuracy using the learned model.

Ultrasound diagnosis equipment Satisfactory Moderately Satisfactory Unsatisfactory Total

Stationary 0.74 (31,702/42,837) 0.61 (25,616/41,784) 0.82 (35,923/43,873) 0.73 (93,241/128,494)

Portable 0.73 (9,883/13,540) 0.60 (7,723/12,770) 0.89 (17,838/20,028) 0.76 (35,444/46,338)

Normalized number of classified are as follows; Total number of correctly classified images in 5-fold cross validation / Total number of images in the class.

https://doi.org/10.1371/journal.pone.0282747.t005

Table 3. Normalized confusion matrix for stationary ultrasonography.

Predict

True Satisfactory Moderately Satisfactory Unsatisfactory

Satisfactory 0.74 (31,702/42,837) 0.23 (9,681/42,837) 0.03 (1,454/42,837)

Moderately Satisfactory 0.22 (9,228/41,784) 0.61 (25,616/41,784) 0.17 (6,940/41,784)

Unsatisfactory 0.03 (1,185/43,873) 0.15 (6,765/43,873) 0.82 (35,923/43,873)

Normalized number of classified are as follows; Total number of correctly classified images in 5-fold cross validation / Total number of images in the class.

https://doi.org/10.1371/journal.pone.0282747.t003
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no popliteal veins and no parallel lines or circles characteristic of popliteal veins. We believe

that the wide area of the image is the basis for classification and the popliteal vein is judged to

be non-existent in the image. Furthermore, although superficial veins are present in the upper

part of the images in Fig 5a and 5c, they do not provide a basis for classification. Therefore, we

believe that the learned model developed in this study is based on the presence or absence of

popliteal vein visualization. Fig 6 shows an example of an image that was correctly classified as

"Satisfactory" with a high ACC, and Fig 7 shows the heatmap for this image. The image classi-

fied as "Satisfactory" clearly shows popliteal veins.

The learned model developed in this study focuses on the popliteal vein for classification, as

shown in Fig 7. The ability to correctly classify "Satisfactory" images is important because the

popliteal vein must first be properly visualized to assess the risk of incidental DVT. Our newly

developed method allows the victim to confirm the "Satisfactory" indication and acquire the

Fig 4. Examples of correctly classified unsatisfactory images. (a) Short axis acquired by stationary ultrasonography

equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis acquired by portable

ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g004
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image. The high ACC for "Satisfactory" images indicates the effectiveness of the learned model

in automatically identifying images with popliteal veins. Furthermore, Table 3 shows that the

most frequently misclassified label in the Satisfactory data set was Moderately Satisfactory.

Furthermore, the most frequently misclassified label in the Unsatisfactory data set was Moder-

ately Satisfactory. The catastrophic misclassification in this guide system is the misclassifica-

tion of Unsatisfactory images as Satisfactory. Because most misclassifications in this study

were Moderately Satisfactory, catastrophic misclassifications tended to be small.

Figs 8 and 9 show examples of correctly classified “Moderately Satisfactory” images, which

showed the lowest AUC, and the corresponding heatmap images. “Moderately Satisfactory”

indicates an image that cannot be judged as either “Satisfactory” or “Unsatisfactory.” There-

fore, visually classifying an image as “Moderately Satisfactory” is difficult relative to classifying

“Satisfactory” images, which exhibit clearly visible popliteal veins, or “Unsatisfactory” images

Fig 5. Examples of heatmaps for correctly classified unsatisfactory images. (a) Short axis acquired by stationary

ultrasonography equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis acquired

by portable ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g005
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in which the popliteal vein is not visible. The basis for judging “Moderately Satisfactory” was

more difficult to learn than the basis for the other labels. For this reason, “Moderately Satisfac-

tory” had the lowest AUC. However, the low classification accuracy of “Moderately Satisfac-

tory” is not a problem for this method of DVT risk assessment. For this method, the operator

scans the probe from “Unsatisfactory” to “Moderately Satisfactory” and then to “Satisfactory”

to obtain images that are optimal for diagnosis. In actual use, the victims first put the probe on

the lower extremity. Then, the labels “Satisfactory,” “Moderately Satisfactory,” or “Unsatisfac-

tory” appears on the screen. If the victim is not experienced in ultrasonography, the probe can-

not hit the appropriate vein, and “Unsatisfactory” will be displayed. “Moderately Satisfactory”

is indicated during the process of scanning various parts of the lower extremity. The “Moder-

ately Satisfactory” display indicates that there is a location near the scanning site where the

Fig 6. Examples of correctly classified satisfactory images. (a) Short axis acquired by stationary ultrasonography

equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis acquired by portable

ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g006
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popliteal vein can be clearly visualized. A detailed scan around the "Moderately Satisfactory"

area eventually results in clear visualization of the popliteal vein and "Satisfactory" is indicated.

Therefore, the "Moderately Satisfactory" classification functions to make the operator aware of

the vicinity of the popliteal vein in the image and is not directly involved in the acquisition of

the best cross-sectional image for diagnosis. Thus, the accuracy of "Moderately Satisfactory" is

not considered important.

As mentioned above, in this study, a guide system was developed to enable the victims

themselves to use the ultrasound diagnostic equipment. The system indicates the level of clar-

ity of the current vein visualization, allowing victims with no ultrasound experience to be easily

guided to a fully visualized vein. The two-class classification of Unsatisfactory and Satisfactory

labels takes extra time to display the Satisfactory image because it is not possible to determine

whether the probe is close to a position where the vessel can be clearly visualized or whether

Fig 7. Examples of heatmaps for correctly classified satisfactory images. (a) Short axis acquired by stationary

ultrasonography equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis acquired

by portable ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g007
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the probe is in a completely misplaced position. In this study, the Moderately Satisfactory label

was defined, which intermediate between the two labels. With this approach, we believe that it

is possible to ensure the allowance until the veins are fully visualized.

Examples of misclassified images and their heat maps are shown in Fig 10. Some of the

long-axis images were judged as short-axis images because we trained a mixed dataset of

short-axis and long-axis images. The accuracy could be improved by increasing the number of

cases to be trained in the future. We focused on the popliteal vein in this study. Further valida-

tion is required to confirm similar accuracy in the soleal and iliac veins [1], which are the pre-

ferred sites for DVT in venous ultrasonography in addition to the popliteal.

We developed a deep learning model that classifies popliteal veins based on their visual clar-

ity. By attaching color frames based on the classification results, the victim can intuitively rec-

ognize the appearance of veins on the image through visual information, which will assist the

Fig 8. Examples of correctly classified Moderately Satisfactory images. (a) Short axis acquired by stationary

ultrasonography equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis acquired

by portable ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g008
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victim in scanning. Although the AUC for "Moderately Satisfactory" was low, the overall AUC

and the AUC for "Satisfactory,” which is directly related to the automatic diagnosis, were high.

Our results indicate that this method can be used to automatically acquire cross-sectional

images suitable for diagnosis by venous ultrasonography of the lower extremities without

depending on the victim’s experience with ultrasonography.

In this study, all training and validation data were acquired from healthy persons. Further

investigation is needed to determine whether the deep learning model developed in this study

can be performed with almost same level of accuracy in cases using images with DVT.

Conclusions

A method for automatic identification of appropriate cross-sectional images for diagnosis from

ultrasonographic images of the popliteal vein was developed using fine-tuned ResNet-101.

Ultrasonographic images of the popliteal veins of 20 subjects acquired from both stationary and

Fig 9. Examples of heatmaps for correctly classified Moderately Satisfactory images. (a) Short axis acquired by

stationary ultrasonography equipment, (b) Long axis acquired by stationary ultrasonography equipment, (c) Short axis

acquired by portable ultrasonography equipment, and (d) Long axis acquired by portable ultrasonography equipment.

https://doi.org/10.1371/journal.pone.0282747.g009
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portable ultrasound diagnostic equipment were automatically classified into three categories

according to the level of vein visibility. As a result, 73% classification accuracy was achieved

using stationary ultrasound diagnostic equipment, and 76% classification accuracy was achieved

using portable ultrasound diagnostic equipment. Although more improvement is needed, the

total AUC and the AUC for “Satisfactory” images, which are linked to the automatic diagnosis

of DVT, were high. Our results indicate that this method can be used to automatically identify

the appropriate ultrasonographic cross-sectional image for the diagnosis of DVT using venous

ultrasonography of the lower extremity, without relying on the victim’s ultrasonography skills.
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