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Abstract

Chronic low-grade inflammation is regarded to an important signature of atherosclerosis

(AS). Macrophage (Mψ) and related polarization have been demonstrated to play a crucial

role in the occurrence and development of AS inflammation. Butyrate, a bioactive molecule

produced by the intestinal flora, has been increasingly demonstrated to exhibit a vital role for

regulating the inflammation in chronic metabolic diseases. However, the effectiveness and

multiple anti-inflammation mechanisms of butyrate on AS still need to be further understood.

ApoE−/− mice fed with high-fat diet as AS model were administered with sodium butyrate

(NaB) for 14 weeks of treatment. Our results showed that the atherosclerotic lesion in the

AS group was dramatically reduced after NaB intervention. Moreover, deteriorated routine

parameters of AS including body weights (BWs), low-density lipoprotein (LDL-C), triglycer-

ide (TG), total cholesterol (TC) were significantly reversed by NaB administration. Abnormal

elevated plasma and aorta pro-inflammatory indicators including interleukin (IL)-1β, IL-6, IL-

17A, tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS), as well as reduced anti-

inflammatory IL-10 in plasma were respectively rectified after NaB administration. Consis-

tently, accumulated Mψ and associated imbalance of polarization in the arota were attenu-

ated with NaB treatment. Importantly, we demonstrated that the suppression of Mψ and

associated polarization of NaB was dependent on binding G-protein coupled receptor

(GPR) and inhibiting histone deacetylase HDAC3. Moreover, we found that intestinal buty-

rate-producing bacteria, anti-inflammatory bacteria and intestinal tight junction protein

zonula occludens-1 (ZO)-1 may contribute to this effectiveness. Intriguingly, according to

transcriptome sequencing of atherosclerotic aorta, 29 elevated and 24 reduced miRNAs

were found after NaB treatment, especially miR-7a-5p, suggesting that non-coding RNA

may possess a potential role in the protection of NaB against AS. Correlation analysis
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showed that there were close complicated interactions among gut microbiota, inflammation

and differential miRNAs. Collectively, this study revealed that dietary NaB may ameliorate

atherosclerotic inflammation by regulating Mψ polarization via GPR43/HDAC-miRNAs axis

in ApoE−/− mice.

Introduction

Atherosclerosis (AS) represents a basis of cardiovascular diseases with the highest morbidity

and mortality worldwide [1], of which the pathological features are mainly described as

inflammation and lipid metabolism disturbance [2]. Vascular intimal macrophages (Mψs) are

thought to be responsible for the maintenance of atherosclerotic inflammation in the develop-

ment of AS [3].

Numerous studies have shown that Mψs and associated polarization play a vital role in the

initiation and development of AS inflammation [4–6]. M1 Mψ is mainly involved in the pro-

motion of inflammatory response. In contrast, M2 Mψ shows anti-inflammation effect and

promotes tissue repair by producing anti-inflammatory factors such as interleukin (IL)-10. In

the pathological conditions, accumulating Mψs along with subsequently polarization to M1,

are responsible for aggravating AS inflammation [7]. Conversely, M2 Mψ are thought to secret

anti-inflammatory IL-10 and collagen, contributing to the stability of AS plaques [8]. Thus, the

regulation of Mψ and associated M1/M2 polarization may be a potential therapeutic strategy

for AS.

Accumulating evidence suggests that gut dysbiosis is closely associated with exacerbation of

AS progression [9, 10]. The formation and rupture of atherosclerotic plaque are related to the

high levels of gut microbiota-derived lipopolysaccharide (LPS) and inflammatory cytokines in

the circulation [11]. Short-chain fatty acids (SCFAs), mainly acetate, propionate and butyrate,

are the main end-products of the bacterial fermentation of nondigestible dietary fibers within

the lumen of the mammalian colon [12]. Compared to other SCFAs, emerging studies have

demonstrated that butyrate presents an anti-inflammatory effect in chronic metabolic diseases

[13, 14]. Butyrate and related butyrate-producing bacteria are inversely correlated with athero-

sclerotic lesion [15–17].

Butyrate exerts an anti-inflammatory effect mainly by both binding to G protein-coupled

receptors (GPRs) and inhibiting histone deacetylases (HDACs) [12]. Butyrate-binding

receptors, GPRs, which mainly include GPR41, GPR43, and GPR109a, can suppress the

recruitment of inflammatory cells and the production of pro-inflammatory cytokines. As a

major butyrate receptor, GPR43 highly expressed in Mψ may mediate anti-inflammatory

response [16]. Studies from animal models have confirmed that sodium butyrate could sup-

press the activation of nuclear factor-κB (NF-κB) pathway via GPR43 and β-arrestin-2 to

inhibit inflammation [15, 18, 19]. Peroxisome proliferator-activated receptors (PPARs) are

ligand-activated transcription factors that exert significant impacts on metabolism-related

pathways [20]. The elevation of PPARγ by butyrate was involved in the inhibition of NF-κB

pathway, resulting in the improvement of inflammation [21]. Butyrate also affects the rate

of neointima formation by reducing the activation of Nod-like receptor pyrin domain 3

(NLRP3) inflammasome [22]. Transcription factor specificity protein 1 (Sp1) is often com-

pounded with histone deacetylases (HDACs) to regulate acetylation of target genes. Nota-

bly, butyrate as an inhibitor of HDACs influence the formation of the Sp1/HDAC complex

[23].
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MicroRNAs (miRNAs) play an critical role in the regulation of the development of AS [24].

MiRNAs are well-known for regulating gene expression at the post-transcriptional level by

pairing with target sequences in the 30 untranslated region of mRNAs. The endogenously

expressed miRNAs play important roles in many physiological and pathological processes

[25]. MiR-205 was epigenetically regulated by HDAC2 through an Sp1-mediated pathway

[25]. MiR-7a/b protected against cardiac remodeling and hypoxia-induced injury in H9c2 car-

diomyoblasts involving Sp1 and PARP-1 [26]. The bulk of evidence has demonstrated the cen-

tral role of epigenetic machinery in Mψ polarization [27].

In the present study, we examined the effects of orally administered butyrate on AS pro-

gression and associated mechanisms including Mψ polarization in inflammation, gut micro-

biota, and the role of miRNAs in HFD-induced atherosclerotic Apolipoprotein E deficiency

(ApoE−/−) mice.

Materials and methods

Animal experiments

All animal protocols used in this study were approved by the Ethics Committee of Ningxia

Medical University (No. 2020–527). Thirty male Jackson (C57BL/6J) mice aged 8 weeks and

weighing 18–22 g were purchased from Ningxia Medical Laboratory Animal Center. Thirty

male ApoE−/− mice (8-week-old) were obtained from Vital River Laboratory Animal Technol-

ogy Co., Ltd., Beijing, China. All the mice were maintained under standard, specific, and

pathogen-free conditions in individual cages in a temperature-controlled room (ambient tem-

perature 22 ± 1˚C, air humidity 40–70%) with a 12 h light/dark cycle in Ningxia Medical Labo-

ratory Animal Center. A high-fat diet (HFD) with 0.5% cholesterol (No. TP28520) was

purchased from TROPHIC Animal Feed High-tech Co., Ltd., Nantong, China. The exact

product description of HFD and normal diet were supported in S1 Table. Sodium butyrate

(NaB, purity>98, No. V900464) was obtained from Sigma (St Louis, MO, USA).

Experimental design

As shown in Fig 1A, after one week of adaption the mice were randomly assigned to 4 groups

(n = 15/each group): control group (CON), CON treated with NaB group (CON+NaB), ath-

erosclerosis group (AS) and AS treated with NaB group (AS+NaB). C57BL/6J mice in the

CON or ApoE−/− mice in AS were respectively fed normal or HFD diet. Meanwhile, mice

in CON and AS groups were administered normal saline, as well as mice in CON+NaB and

AS+NaB groups were fed with NaB (200mg/kg, dissolved by normal saline) by gavage once

daily. During the experiment, body weights (BWs) were monitored weekly and food intake

was recorded every 2 days. After 14 weeks of feeding, stool samples were freshly obtained and

immediately frozen at −80˚C for the subsequent analysis. All mice were euthanized with 4%

sodium pentobarbital and associated indications were investigated. Blood samples were

rapidly collected by orbital bleeding and centrifuged at 4˚C (1,200 × g for 15 min) to obtain

plasma samples, which were stored at −80˚C for further study.

Histology and morphometry evaluations of atherosclerotic lesions

The pathological changes in AS were measured with en face oil red O staining, HE staining,

and Masson’s trichrome staining. Images captured with Canon EOS 70D camera were ana-

lyzed using Image J 8.0 software (National Institutes of Health, United States). The lesion area

index was calculated as the percentage of aortic lumen area covered by atherosclerotic lesions.

The necrotic core was measured by Image-Pro plus software, and the ratio of the positive area

PLOS ONE Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0282685 March 8, 2023 3 / 23

https://doi.org/10.1371/journal.pone.0282685


to the total plaque area was calculated for statistical analysis as previously described [28].

Observers were blinded to the experimental groups.

Flow cytometry

Mψs, the significant aortic inflammatory cells, were isolated from aortic tissues. Briefly, 1 g of

aortic tissues was minced and suspended in 5 ml of Hanks balanced salt solution (HBSS) con-

taining 0.1% (w/v) collagenase type IV (Sigma, United States) for 20 min at 37˚C. Next, the

specimen was washed with RPMI1640 containing 2% of fetal bovine serum (FBS) and then fil-

tered through a 200-mesh nylon membrane. After centrifugation at 70 × g for 3 min at 4˚C,

the supernatants were discarded, and the pellets were resuspended in 3 ml HBSS. After the

erythrocyte lysis, samples were centrifuged for 5 min at 500 × g, 4˚C, and then washed 2 times.

The final concentration was adjusted to 1 × 107 cells/ml. To stain Mψs, 1 μl of PE-anti-F4/80

antibody, APC-anti-iNOS antibody, BP450-anti-CD206 antibody, and FITC-anti-TLR4 anti-

body (Biolegend, United States) were simultaneously added in 100 μl of cell suspension and

Fig 1. NaB alleviated physiological parameters and serum lipids in diverse groups. (A) Schematic time diagram of the experimental design. (B) Body

weights (BWs) of 4 groups. (C) Food intake. (D) Triglyceride (TG). (E) Total cholesterol (TC). (F) High-density lipoprotein (HDL-C). (G) Low-density

lipoprotein (LDL-C). Data were expressed as mean ± SEM. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant difference. CON: control group; CON

+NaB: sodium butyrate (NaB)-fed control group; AS: model group; AS+NaB: NaB-fed model group.

https://doi.org/10.1371/journal.pone.0282685.g001
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incubated on the ice in the dark for 30 min. The prepared samples were measured and ana-

lyzed using the Beckman Cyto FLEX flow cytometer (Beckman Bioscience, United States).

Plasma LPS assay

The plasma LPS level in each group was examined using a Limulus amebocyte lysate kit (Xia-

men Bioendo Technology Co., Ltd., Xiamen, China) according to the manufacturer’s instruc-

tion. Briefly, the plasma was diluted with endotoxin-free water (1:4). Then 50 μl of diluted

plasma was put into each well in a 96-well plate. At the initial time point, 50 μl of the Limulus

amebocyte lysate reagent was added to each well. The plate was incubated at 37˚C for 30 min.

Then, 100 μl of chromogenic substrate warmed to 37˚C was added to each well, and the incu-

bation was extended for an additional 6 min at 37˚C. Finally, the reaction was stopped by add-

ing 100 μl of 25% solution of glacial acetic acid. Optical density at 545 nm was measured with a

microplate reader (Thermo Scientific, United States).

Inflammatory cytokines

Tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-1β, IL-17A, and IL-10 were

respectively determined by RayBiotech (QAM-INT-1-1) chips (Quantibody1Mouse Interleu-

kin Array) according to the manufacturer’s instructions.

Measurements of plasma lipid profiles

Plasma levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL-C)

and low-density lipoprotein (LDL-C) were measured by an automatic biochemical analyzer

(AU400 Olympus, Japan).

Quantitative real-time PCR

Transcriptional mRNA levels of genes were performed by quantitative real-time PCR

(qRT-PCR). After RNA was isolated from the aorta tissue, cDNA was synthesized using

M-ML V reverse transcriptase (Invitrogen; Thermo Fisher Scientific, Inc.) according to the

manufacturer’s instructions. qPCR (ABI VII7 PCR System, Applied Biosystems; Thermo

Fisher Scientific, Inc.) was conducted in a 20 μl reaction volume (10 μl SYBR Green Master

Mix, 0.8 μl PCR Forward Primer (10 μM), 0.8 μl PCR Reverse Primer (10 μM), 0.4 μl ROX,

2 μl cDNA, and 6 μl nuclease-free water) with the following protocol: initiation at 95˚C for 5

min, followed by 40 cycles of 95˚C (5 sec) and 60˚C (34 sec). GAPDH was used as a reference.

The assay was performed in three replicate wells, and three parallel experiments for each sam-

ple were conducted. The 2-ΔΔCt methods were used to calculate relative RNA expression levels.

Primers sequences were presented in S2 Table.

Gut microbiota analysis

The mice in each group were transferred to fresh and sterilized cages after 14 weeks of treat-

ment. The fresh feces of each group were individually collected and immediately frozen into

liquid nitrogen, finally stored at −80˚C until the DNA extraction. Cetyltrimethylammonium

bromide (CTAB) method [29] was used to extract the genomic DNA of samples, and then the

purity and concentration of the DNA were detected by agarose gel electrophoresis and Nano-

drop one (Thermo Fisher, USA). Briefly, 16S rRNA genes were amplified by using V3-V4

regions bacterial primers (341F 5’- CCTAYGGGRBGCASCAG-3’ and 806R 5’- GG
ACTACNNGGGTATCTAAT-3’). All PCR reactions were carried out with Phusion1 High-

Fidelity PCR Master Mix (New England Biolabs, USA). Sequencing libraries were generated
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using the Ion Plus Fragment Library Kit 48 rxns (Thermo Scientific, USA). The library quality

was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific, USA). The library was

sequenced on an Illumina HiSeq 2500 platform (Illumina, USA) by Beijing Nuo He Zhi Yuan

Technology Co., Ltd., China.

Transcriptome sequencing and analysis

Whole aorta transcriptome library preparation and deep sequencing were conducted by Bio-

marker Technologies Co, Ltd. The purity was determined using an ultra-microspectropho-

tometer (optical density 260 nm, NanoDrop; Thermo Fisher Scientific, Inc.), n = 3/group.

DESeq R package was used to identify the significantly dysregulated miRNAs with cut-off cri-

teria: P<0.05 and |log2 fold change|>1.

GO and KEGG pathway analysis

To better understand the biological functions and potential mechanisms of miRNAs in the

effectiveness of NaB on AS, GO enrichment and KEGG pathway analyses were employed on

these predicted target genes of differentially expressed miRNAs. Briefly, GO analyses (www.

geneontology.org) consisted of three components: biological process (BP), cellular component

(CC), and molecular function (MF). KEGG analyses were carried out to investigate the poten-

tial significant pathways (http://www.genome.jp/kegg/).

Statistical analysis

The data shown as the mean ± SEM were conducted with Prism 8.01 (GraphPad Software Inc.,

CA, United States). Two-way analysis of variance (ANOVA) followed by the Turkey multiple-

comparison test was used to determine statistical difference between experimental groups.

Correlation analysis was performed using the Spearman method. P<0.05 was considered sta-

tistically significant.

Results

NaB alleviated physiological parameters and serum lipids

To assess whether the difference in diet intake contributes to the effects of NaB treatment,

food consumption and body weights were monitored. The body weights in AS group showed a

steady weight gain and subsequently increased after 14 weeks, compared to the CON group

(Fig 1B). NaB treatment showed no effect on weight gain compared to AS group. In terms of

food intake, the average intake of mice in each group was decreased during the intervention

period, but without a significant difference (Fig 1C), suggesting that NaB administration

showed no influence in energy intake.

After 14 weeks of treatment, the serum biochemical parameters of mice were respectively

determined. Compared to the CON group, plasma levels of TG (P<0.05; Fig 1D), TC

(P<0.001; Fig 1E), and LDL-C (P<0.001; Fig 1G) in AS group were notably increased. After

NaB administration, plasma TC, TG and LDL-C levels were significantly rectified (Fig 1D, 1E

and 1G). A decrease trend of HDL-C (Fig 1F) in plasma was observed in AS group without sig-

nificant difference compared with CON group. It also showed no significant difference in

HDL-C level in supplementary NaB group during HFD. Moreover, there was no significant

difference in serum lipids between CON and CON+NaB groups. Collectively, these data

demonstrated that NaB could protect against dyslipidemia in atherosclerotic ApoE−/− mice.
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NaB consumption ameliorated atherosclerosis

To further elucidate the involvement of NaB in the amelioration of atherosclerosis, both en
face analyses of the aorta and the cross-sectional analyses of the aortic sinus area were evalu-

ated. Histopathologic staining including en face oil red O staining, oil red O staining, Masson’s

trichrome staining and HE staining were used to measure atherosclerotic plaque, fibrosis, and

pathological damage in the aortic root of the heart, respectively. As shown in Fig 2A, lesion

area and necrotic core size in the aortic sinus were remarkably exacerbated in AS mice. The

percentage of en face oil red O staining in the AS group was notably higher than that in the

CON group (P<0.001; Fig 2B). Similar aggregated results of oil red O staining (P<0.01) and

Masson’s trichrome staining (P<0.001) were separately observed in AS model, compared

to the CON group (Fig 2C and 2D). In addition, H&E staining of the aortic sinus revealed a

Fig 2. NaB consumption reduced aorta atherosclerosis. (A) Representative sections of the valve area of the aortic root of the heart were stained with

en face oil red O staining, oil red O staining, Masson’s trichrome staining and hematoxylin&eosin staining, respectively, Quantitative analysis as lesion

area/total area (%). (B) face oil red O staining. (C) oil red O staining. (D) Masson’s trichrome staining and (E) Relative necrotic core area expressed as

percentage of the total plaque area. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant difference. The bar of 500 μm was presented in the right corner

of (A).

https://doi.org/10.1371/journal.pone.0282685.g002
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significant increase in necrotic core size in the AS group (Fig 2E). After intervention with NaB,

the necrotic core size was decreased significantly. Intriguingly, these pathological lesions in

AS were attenuated with NaB administration (P<0.05; Fig 2E). In addition, no lesion was

found between the CON group and CON+NaB group (Fig 2B, 2C and 2D). Taken together,

these results demonstrated that NaB intervention could ameliorate the atherosclerotic lesions.

Dietary NaB significantly reduced chronic inflammation in AS

Mounting scientific proofs over decades have suggested that atherosclerosis represents a

chronic inflammatory disorder [30]. Accumulating evidences support that NaB possesses the

ability to reduce the expressions of pro-inflammatory cytokines [31]. We further examined

concentrations of pro-inflammatory cytokines including IL-1β, IL-6, IL-17A, TNF-α, IFN-γ,

as well as anti-inflammatory IL-10 (Fig 3A), respectively. The results showed that plasma levels

of pro-inflammatory IL-1β, IL-6, IL-17A and IFN-γ in the AS group were significantly

increased compared to the CON group, but the anti-inflammatory IL-10 was notably

decreased. After the dietary NaB intervention, the concentrations of IL-1β, IL-6, IL-17A and

IFN-γ in plasma were decreased and anti-inflammatory IL-10 was increased compared with

those in the AS group.

In parallel, mRNA levels of in situ aortic inflammatory TNF-α, IL-1β, IL-6 IL-17A, IFN-γ,

and IL-10 were determined to evaluate the effects of dietary NaB on plaque inflammation in

atherosclerotic mice (Fig 3B). Similar to the above plasma levels of inflammation, aggravated

TNF-α, IL-1β, IL-6, IFN-γ (all P<0.05) in aortic tissues were remarkably decreased after die-

tary NaB intervention. Moreover, a decrease trend of anti-inflammatory IL-10 in aorta was

observed in AS group without significant difference compared to CON group, which also

showed no significant difference after NaB treatment. These results suggested that dietary NaB

treatment ameliorated the inflammation in atherosclerotic ApoE−/− mice.

Dietary NaB reduced plasma LPS levels

LPS-mediated inflammation based on gut-heart axis has been thought to contribute to the

AS aggravation (29). Thus, we further tested the plasma LPS in AS. Plasma LPS levels in AS

group were higher than those in the CON group (P<0.001; Fig 3C), which was significantly

decreased after NaB intervention (P<0.05; Fig 3C), demonstrating that dietary NaB may ame-

liorate LPS-induced intestinal barrier dysfunction and subsequent translocated circulating

endotoxemia.

NaB regulated atherosclerotic Mψs and M1/M2 polarization in mice

Mψs and associated polarization play a vital role in the formation and progression of athero-

sclerotic lesions [32]. To further analyze the effects of NaB on aortic Mψs, aortic F4/80+TLR4+

Mψs were measured by flow cytometry (Fig 4A). The ratios of aortic F4/80+ cells and F4/

80+TLR4+ cells were increased in AS group compared to CON group (P<0.01; Fig 4B and 4C).

However, the proportions of F4/80+ TLR4+ cells and F4/80+ cells were respectively lower after

NaB treatment (P<0.05; Fig 4B and 4C). As shown in Fig 4D, iNOS, M1 Mψs-associated

marker, in aortic plaques of model group was increased significantly (P<0.05; Fig 4E) com-

pared with control group, and exhibited an obvious decrease with NaB treatment. Conversely,

the expression of M2 Mψs marker CD206 in aorta of model group after dietary NaB interven-

tion was elevated (Fig 4F and 4G), suggesting that NaB may alleviate AS via regulating total

Mψs and polarization by suppressing M1 polarization and enhancing M2 activation.

PLOS ONE Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0282685 March 8, 2023 8 / 23

https://doi.org/10.1371/journal.pone.0282685


Fig 3. Dietary NaB significantly reduced chronic inflammation in AS. (A) Plasma of mice from 4 groups were respectively collected for the

determination of interleukin (IL)-1β, IL-6, IL-17A, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ by RayBiotech chip detection. (B) RT-PCR

was used to determine relative mRNA levels of IL-1β, IL-6, IL-17A, IL-10, TNF-a, and IFN-γ in aorta tissues. (C) Plasma lipopolysaccharide (LPS) levels

in diverse groups were measured using a Limulus amebocyte lysate kit. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant difference.

https://doi.org/10.1371/journal.pone.0282685.g003
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NaB inhibited inflammation via GPR43 and HDAC mediated pathways

NaB exerts pleiotropic biological effects mainly by activating G protein-coupled receptors

(GPRs) and inhibiting histone deacetylases (HDACs) [33]. As shown in Fig 5, compared with

HFD-fed mice, NaB treatment elevated the transcriptional levels of GPR43, PPAR-γ, and β-

arrestin-2, as well as down-regulated HDAC3, Sp1, NF-κB, and NLRP3. These results indi-

cated that GPR43 and HDAC signaling pathway may probably involve in NaB-mediated regu-

lation of inflammation in the atherosclerotic ApoE−/− mice.

NaB consumption enriched intestinal butyrate-producing and anti-

inflammatory bacteria

Growing evidence has demonstrated that gut dysbiosis is closely associated with the develop-

ment of AS [29, 34–37]. To further confirm the effects of NaB on gut microbiota in diverse

groups, bacterial community were investigated by 16S rRNA sequencing and analysis.

At the phylum level, microbial composition of all mice was dominated with Firmicutes
(CON 44%, CON+NaB 45%, AS 73%, AS+NaB 43%) and Bacteroidetes (CON 35%, CON

+NaB 42%, AS 0.05%, AS+NaB 15%) (Fig 6A). We found an obviously decreased abundance

of Firmicutes (P< 0.001) and an increase trend of Bacteroidetes (P = 0.06) in AS+NaB group

compared to the AS group (Fig 6C and 6D). The ratio of Firmicutes/Bacteroidetes (F/B)

was increased (P<0.05; Fig 6E) in the AS group, which was reversely decreased after the inter-

vention of dietary NaB (P<0.05; Fig 6E). Thus, the NaB had a major influence on the F/B

ratio under the HFD feeding in the atherosclerotic mice. In addition, NaB also restored the

increased abundance of Verrucomicrobiota in AS (P<0.01; Fig 6F).

The relative abundance of microbiota at the genus level was shown in Fig 6B. The relative

abundance of Akkermansia and Faecalibaculum in the AS+NaB group were significantly

Fig 4. Effects of NaB on Mψ and associated polarization in ApoE−/− mice with AS by flow cytometry. (A) Flow cytometry analysis of aorta F4/

80+TLR4+ Mψs in diverse groups. (B) The proportion of aorta F4/80+ Mψs. (C) The proportion of aorta F4/80+ TLR4+ Mψs. (D) Flow cytometry

analysis of aorta F4/80+ iNOS+ M1 Mψs in diverse groups. (E) The proportion of aorta F4/80+ iNOS+ M1 Mψs. (F) Flow cytometry analysis of aorta F4/

80+ CD206+ M2 Mψs in diverse groups. (G) The proportion of aorta F4/80+ CD206+ M2 Mψs. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant

difference. All experiments were performed in triplicate. Mψ: macrophage; TLR4: Toll-like receptor 4.

https://doi.org/10.1371/journal.pone.0282685.g004
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increased compared to the AS group (all P<0.01, Fig 6G and 6I). Additionally, Bifidobacterium
in the CON+ NaB group was higher than those in the CON group (P<0.01; Fig 6H). In brief,

the data summarized here clearly indicated that exogenous butyrate altered the composition of

the microbiota in AS. Importantly, butyrate-producing bacteria Faecalibaculum was increased

in the AS+ NaB group compared to the AS group (Fig 6I). The above-mentioned results indi-

cated that butyrate reduced atherosclerosis development by regulating butyrate-producing

bacteria of gut microbiota.

To further assess the integrity of gut mucosal barrier after the above rectification of gut

dysbiosis with NaB treatment, tight junction protein ZO-1 expression in diverse groups was

determined (Fig 6J). Compared to the CON group, intestinal ZO-1 expression in AS group

was significantly reduced, indicating that the integrity of gut mucosa was impaired in AS.

However, gut mucosal ZO-1 level of AS mice showed a notable elevation after the supplemen-

tation with NaB, demonstrating that NaB administration may contribute to enhancing the

integrity of the gut barrier (P<0.001; Fig 6J).

Fig 5. NaB inhibited inflammation via GPR43 and HDAC mediated pathway. RT-PCR was used to determine relative mRNA levels of HDAC1 (A);

HDAC2 (B); HADC3 (C); Sp1 (D); PPAR-γ (E); GPR43 (F); β-arrestin-2 G); NF-κB (H) and NLRP3 (I) in aorta tissues. �P<0.05, ��P<0.01,
���P<0.001. ns, no significant difference.

https://doi.org/10.1371/journal.pone.0282685.g005
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Correlation analysis among gut microbiota, inflammation and serum lipids

For the assessment of interactions among the differential bacteria microbiota, inflammatory

indicators, serum lipids in AS, correlation analysis was performed in AS and AS treated with

NaB (Fig 7). In brief, the abundance of Firmicutes was found to be positively associated with

the levels of pro-inflammatory indicators (TNF-α, IL-1β, IL-6, IL-17A, IFN-γ, LPS) and serum

lipids (TG, TC, LDL-C), but negatively correlated with IL-10 and HDL-C. However, the bene-

ficial bacteria Bacteroidetes were negatively correlated with metabolic and pro-inflammatory

indicators (TG, TC, LDL-C, LPS, IL-1β, IL-17A, TNF-α, IFN-γ). The abundance of butyrate-

producing bacteria Faecalibaculum exhibited a positive correlation with IL-10, whereas nega-

tively correlated with TC and LDL-C. Taken together, there were close and complicated inter-

actions among gut bacteria, inflammation, and serum lipids in AS and AS treated with NaB.

NaB consumption notably modulated the aorta miRNAs

MicroRNAs (miRNAs) play an essential role in the regulation of atherosclerosis [24]. The

cDNA and sRNA libraries of aortic tissue samples were sequenced. Moreover, counts of clean

reads and mapped ratio of sequencing data were shown in Table 1. Under the NaB treatment,

53 miRNAs were identified to express differentially with the significance (P<0.05; Table 2).

Compared with the AS group, up-regulated 29 miRNAs and down-regulated 24 miRNAs in

the AS+NaB group were shown in the cluster heatmap (Fig 8A) and volcano diagram (Fig 8B).

The most significantly enriched KEGG pathways were shown in Fig 8C. For the miRNAs,

Fig 6. NaB consumption modulated the composition of gut microbiota. (A-I) The phylum and the genus levels. (J) The mRNA expression level of

ZO-1 in different groups. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant difference.

https://doi.org/10.1371/journal.pone.0282685.g006
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endocytosis was the most significantly enriched pathway. GO analysis contained the biological

process (BP), cellular component (CC), and molecular function (MF) for host linear tran-

scripts. Based on the GO enrichment analysis of the trans targeted genes of miRNA, the most

significantly enriched BP, CC, and MF were signal transduction, nucleus, and ATP binding

Fig 7. Altered gut microbiota in AS mice and their association with inflammatory indicators and serum lipids. The heat map showing the

correlation of different microbial abundance with inflammatory indicators and serum lipids. The intensity of the color indicates the degree of

correlation between the corresponding factor and each microbial species, which is obtained by Spearman’s correlation analysis. �P<0.05, ��P<0.01,
���P<0.001.

https://doi.org/10.1371/journal.pone.0282685.g007
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(Fig 8D–8F), respectively. It was indicated that atherosclerotic miRNAs were different with or

without NaB treatment, suggesting that NaB may play an important role in atherosclerosis-

related GO terms such as transcription factor activity. As shown in Fig 8G, compared with the

AS group, a total of 25 inflammation-associated miRNAs were found. MiR-7a-5p was up-regu-

lated after the supplementation with NaB in comparison with the AS group (P<0.05; Table 2).

Increasing evidence supports that miR-7a-5p plays an important role in regulating the inflam-

matory process in inflammatory diseases [38]. MiR-7a-5p was identified as a protector of car-

diac remodeling and hypoxia-induced injury in H9c2 cardiomyoblasts [26]. Subsequently,

qRT-PCR of miR-7a-5p was identified in consistent with the RNA-sequencing results

(P<0.01; Fig 8H). Moreover, we found that miR-7a-5p was negatively correlated with meta-

bolic and pro-inflammatory indicators (TG, TC, LDL-C, TNF-α, IL-1β, IL-6, IL-17A, IFN-γ,

LPS) and positively associated with HDL-C and IL-10 (Fig 8I). Taken together, the attenuation

of dietary NaB on AS may be probably dependent on miRNAs regulation.

Discussion

In the present study, we investigated the efficacy of dietary NaB intervention on chronic AS.

At the end of this experiment, we demonstrated that NaB could ameliorate the AS, as well

as further revealed that the effectiveness was mainly attributed to the suppression of athero-

sclerotic inflammation by regulating Mψs polarization via GPR43/ HDAC-miRNAs axis in

ApoE−/− mice.

ApoE-/- mice fed with HFD, a classical mouse model of AS, were used to test the hypothesis

that NaB protect against AS. Since ApoE-/- mice have a C57BL/6J genetic background, C57BL/

6J mice were used as a CON group. Moreover, in parallel with previous studies, our results

demonstrated that long-term NaB administration could ameliorate AS in mice [39, 40].

Dyslipidemias including hypercholesterolemia and hyperlipidemia, can further enhance

the risk for atherosclerotic CVDs [41]. NaB has been thought to show a beneficial effect on the

lipid metabolism in diverse chronic diseases [1]. Consistently, in this study, decreases of TG,

LDL-C, TC levels, but an increase of HDL-C in AS with dietary NaB treatment demonstrated

that NaB could attenuate lipid disturbance in AS development.

Mψs exerts a predominant inflammatory role in AS lesion formation as well as plaque rup-

ture [42]. In the present study, the proportions of F4/80+ cells and F4/80+ TLR4+ cells were all

significantly decreased with the dietary NaB administration, suggesting that the anti-inflam-

mation effect of NaB was ascribed to the inhibition of inflammatory Mψs. Decreased levels

of M1 iNOS, and elevated M2 CD206 indicated that NaB possessed the ability to ameliorate

inflammation of AS via regulating Mψ M1/M2 polarization.

Table 1. Statistics on miRNAs sequencing data.

Sample ID Raw_reads Length<18 Length>30 Low_quality Containing’N’reads Clean_reads Q30(%)

AS AS-1 23,121,429 168,621 1,826,584 37 0 21,126,187 97.59

AS-2 21,708,601 265,802 2,123,678 32 0 19,319,089 96.56

AS-3 21,911,061 338,998 2,011,504 73 0 19,560,486 97.48

AS+NaB AS+NaB-1 24,680,177 159,205 3,544,540 37 0 20,976,395 95.19

AS+NaB-2 25,284,292 160,510 2,324,112 42 0 22,799,628 95.13

AS+NaB-3 25,319,479 114,848 3,448,266 32 0 21,756,333 97.05

AS (AS-1, AS-2, AS-3): model group. AS+NaB (AS+NaB-1, AS+NaB-2, AS+NaB-3): NaB-fed model group.

https://doi.org/10.1371/journal.pone.0282685.t001
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Table 2. Differential miRNAs.

Name AS-1 AS-2 AS-3 AS+NaB-1 AS+NaB-2 AS+NaB-3 P value FDR log2FC Regulated

mmu-miR-375-3p 1.951506 2.380196 2.869506 6.50502612 5.739427628 4.47025643 0.000419 0.537216 1.375188 up

mmu-miR-153-3p 0.111515 0.250547 0.136643 0.23871655 1.947305802 0.71524103 0.001926 0.841813 2.683955 up

mmu-miR-217-5p 4.5721 2.067012 6.012297 6.92278009 11.68383481 7.98685816 0.002853 0.841813 1.281354 up

mmu-miR-488-3p 0.446059 0.876914 0.88818 1.19358277 3.689632047 1.43048206 0.003551 0.841813 1.726872 up

mmu-miR-7a-5p 168.5544 178.64 220.747 231.674416 445.2156003 310.235796 0.003749 0.841813 0.966961 up

mmu-miR-137-3p 0.223029 1.252735 0.409929 0.47743311 9.377814786 1.5496889 0.00394 0.841813 2.770577 up

mmu-miR-329-5p 6.85815 11.83834 14.82578 18.918287 16.75707888 20.9804035 0.005227 0.918867 0.927049 up

mmu-miR-449a-5p 0.390301 0.563731 0.956502 2.08876985 1.229877349 1.13246496 0.005734 0.918867 1.408897 up

mmu-miR-6948-5p 0 0 0 0.23871655 0.102489779 0.17881026 0.007472 1 4.655223 up

mmu-miR-7b-5p 1.505447 23.23823 3.962651 5.96791387 119.6055722 26.165901 0.010441 1 2.526312 up

mmu-miR-431-3p 0.223029 0.751641 0.819859 0.7758288 2.306020029 1.31127522 0.014992 1 1.518448 up

mmu-miR-138-2-3p 0.334544 0.125273 0.546572 0.35807483 1.537346686 0.83444787 0.017337 1 1.670665 up

mmu-miR-873a-5p 0.167272 0.18791 0 0.29839569 1.588591576 0.17881026 0.018343 1 2.578392 up

mmu-miR-215-5p 7.973296 6.827404 57.52675 14.3826724 148.9688939 22.8281095 0.018574 1 1.880817 up

mmu-miR-200a-5p 0.780602 2.129649 2.049647 7.93732545 2.613489367 1.37087864 0.021648 1 1.428764 up

mmu-miR-381-3p 276.8351 438.7703 463.8351 500.111182 615.9635723 585.067162 0.022945 1 0.683887 up

mmu-miR-6540-5p 0 0.313184 0.546572 0.17903742 2.152285361 0.59603419 0.02452 1 2.116643 up

novel_miR_79 0.111515 0.062637 0.068322 0.11935828 0.409959116 0.47682735 0.029691 1 2.071131 up

mmu-miR-130a-5p 0.83636 1.064825 0.819859 1.96941158 0.922408012 2.74175728 0.03015 1 1.109216 up

mmu-miR-218-5p 156.6223 357.4679 295.2175 266.407675 739.0537969 363.46165 0.030634 1 0.942004 up

mmu-miR-493-5p 0.61333 1.565918 1.434753 1.55165761 3.945856495 1.60929232 0.033052 1 1.18708 up

mmu-miR-770-3p 0.167272 0.939551 0.956502 0.41775397 4.099591163 1.07286154 0.033289 1 1.719991 up

mmu-miR-664-5p 0.167272 0.062637 0.136643 0.23871655 0.307469337 0.65563761 0.035307 1 1.753326 up

mmu-miR-409-5p 7.47148 7.954865 8.74516 9.01154994 20.29297626 10.3113915 0.035785 1 0.884158 up

mmu-miR-148a-3p 36460.54 40748.08 39247.25 59454.029 38542.92126 71473.3208 0.040312 1 0.625901 up

mmu-miR-9-5p 31.6144 39.8996 54.04235 46.907803 74.30508983 51.3781473 0.040323 1 0.652683 up

mmu-miR-3068-5p 2.118778 1.628555 3.142792 3.93882315 2.408509808 4.70867011 0.040844 1 0.828242 up

mmu-miR-200a-3p 10.92843 13.65481 37.44022 73.166624 19.47305802 14.6624411 0.045263 1 1.058341 up

mmu-miR-325-5p 0.111515 0.501094 0.136643 0.05967914 2.152285361 0.59603419 0.047837 1 2.045298 up

mmu-miR-150-5p 47.33796 42.59298 245.8893 42.7302633 23.9826083 49.6496481 0.008825 1 -1.19898 down

mmu-miR-6978-3p 0.278787 0.250547 0.204965 0 0 0.05960342 0.011124 1 -3.18015 down

mmu-miR-674-3p 54.08459 56.74888 98.04144 44.1625626 29.36332171 39.4574635 0.011323 1 -0.70937 down

mmu-miR-191-3p 1.895749 2.818653 4.645866 1.0742245 0.819918233 1.90730941 0.01228 1 -1.12206 down

mmu-miR-6952-3p 0.334544 0.125273 0.273286 0 0.05124489 0 0.012539 1 -3.15618 down

mmu-miR-28a-5p 73.5439 106.9209 189.6607 54.9644867 67.18205019 66.4578123 0.013497 1 -0.74735 down

mmu-miR-22-5p 51.8543 67.5224 144.7051 39.7463064 46.37662503 47.2059079 0.016183 1 -0.74109 down

mmu-miR-28c 3.847255 5.136212 9.223411 2.68556124 2.562244477 3.39739489 0.019308 1 -0.86962 down

novel_miR_187 0.223029 0.313184 1.503074 0.17903742 0.153734669 0.05960342 0.019505 1 -1.97054 down

novel_miR_193 0.446059 0.501094 0.614894 0.05967914 0.05124489 0.2980171 0.020169 1 -1.78143 down

mmu-miR-5100 0.167272 0.501094 2.322933 0.11935828 0.204979558 0.2980171 0.024805 1 -1.86558 down

mmu-miR-22-3p 1299.034 1377.82 3666.682 982.139585 1124.159142 1186.46566 0.02912 1 -0.68474 down

novel_miR_70 1.003632 0.37582 5.055795 0.53711225 0.768673343 0.11920684 0.029614 1 -1.71659 down

mmu-miR-208a-3p 0.446059 3.006563 0.204965 0.17903742 0.05124489 0.59603419 0.030218 1 -2.21246 down

mmu-miR-615-5p 0.055757 0.876914 0.956502 0 0.05124489 0.2980171 0.033092 1 -2.20113 down

mmu-miR-3098-3p 0.167272 0.062637 0.751537 0 0 0.11920684 0.035911 1 -2.59294 down

mmu-miR-128-3p 16.00235 18.10202 35.45889 11.8164695 12.04254904 14.0068035 0.036328 1 -0.66551 down

mmu-miR-7653-5p 0.111515 0.125273 0.136643 0 0 0 0.037648 1 -4.08196 down

(Continued)
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Concomitant with the reduction of pro-inflammatory Mψs, NaB administration also

decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17A, IFN-γ), but

elevated anti-inflammatory IL-10. A similar study found that combination of pro-inflamma-

tory cytokines led to chronic inflammatory response in the arterial wall, which is thought to

promote disease progression characterized by atherosclerotic plaque buildup [43]. Further-

more, the dramatic changes in Mψ described above may be responsible for the release of pro-

inflammatory cytokines by LPS-TLR4-NF-κB/Nod 3-like receptor protein (NLRP3) inflam-

masome signaling [44]. However, whether other immune cells such as regulatory T cells

(Tregs), Th17 cells and myeloid suppressor cells (MDSCs) are involved in the anti-inflamma-

tory effects of the NaB treatment on AS still needs to be further explored.

After translocation into arteries, LPS links gut microbiota and pathogen-induced systemic

inflammation, subsequently binds to TLR4 of Mψs, leading to an inflammatory cascade that

ultimately aggravates AS [11]. Endotoxemia causes the activation of M1 Mψs, which promote

the formation of AS foam cells [45]. Elevated plasma LPS level in AS indicated impaired gut

barrier with abnormal integrity and permeability in consistent with previous reports [37, 46].

Importantly, this elevated plasma LPS of AS group was conversely changed by NaB interven-

tion, suggesting that the effectiveness of NaB on chronic inflammation in AS was partially due

to the reduction of LPS translocation.

Among the numerous pathogenesis in AS, gut dysbiosis is increasingly thought to be critical

in the inflammation of AS [47]. We found that NaB could notably change gut microbial com-

position by improving anti-inflammatory related bacteria (Bacteroidetes, Verrucomicrobiota,

Akkermansia, Bifidobacterium) and butyrate-producing bacteria (Faecalibaculum), but

decreasing Firmicutes and F/B ratio, suggesting that the protection of NaB against the inflam-

mation of AS may partially attribute to the rectification of gut dysbiosis. Akkermansia and Bifi-
dobacterium are conductive to the reduction of LPS leakage via protecting the gut mucosal

barrier function [48, 49]. Bifidobacterium plays a synergistic effect in the improvement of

inflammation to further alleviated the atherosclerosis [50]. Akkermansia is implicated in

declining aortic lesions and atherosclerosis [51]. Akkermansia can also stimulate goblet cells

to secret mucus and elevate the expression of gut junction proteins [52]. In addition to these

microbiota, butyrate-producing bacteria Faecalibaculum is also lack in atherosclerotic CVD

[53].

Positive correlations of increased Firmicutes with metabolic indicators (TG, TC, LDL-C)

demonstrated that these pathogenic bacteria were related to the lipid dysmetabolism of AS. In

contrast, Bacteroidetes were negatively correlated with these indicators. These findings indi-

cated that gut microbiota may play crucial role in etiology of dyslipidemia. However, the

underlying mechanisms of gut microbiota affects blood lipid levels remains unclear. It has

Table 2. (Continued)

Name AS-1 AS-2 AS-3 AS+NaB-1 AS+NaB-2 AS+NaB-3 P value FDR log2FC Regulated

mmu-miR-142a-5p 121.997 145.7557 433.6369 145.318703 109.8690432 86.9017851 0.040334 1 -0.74143 down

novel_miR_32 0.111515 0.062637 0.546572 0.05967914 0 0 0.042513 1 -2.94997 down

mmu-miR-126b-3p 0.167272 0.250547 0.273286 0 0.05124489 0.05960342 0.043583 1 -2.25026 down

novel_miR_99 0 0.313184 10.52152 0.05967914 0.358714227 0.89405129 0.04744 1 -2.53077 down

mmu-miR-1199-5p 0.167272 0.250547 0.273286 0 0 0.11920684 0.049041 1 -2.25542 down

mmu-miR-193a-5p 9.367229 6.451584 13.11774 4.29689799 5.175733843 6.25835901 0.04949 1 -0.70609 down

AS (AS-1, AS-2, AS-3): model group. AS+NaB (AS+NaB-1, AS+NaB-2, AS+NaB-3): NaB-fed model group.

https://doi.org/10.1371/journal.pone.0282685.t002
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been addressed that gut bacteria could generate SCFAs, modulating hepatic and/or systemic

lipid and glucose metabolism via the activation of nuclear or GPCRs [54, 55]. Meanwhile, gut

microbiota also modulate the metabolism of bile acids which is the main end-product of cho-

lesterol [56].

Fig 8. NaB altered the aorta transcriptome. (A) MiRNAs cluster heatmap with differential expression in AS and AS+NaB groups. (B) Differential-

expression volcano diagram. (C) KEGG enrichment plot of differential miRNA host genes between AS and AS+NaB. (D-F) GO analysis of miRNA host

genes between AS and AS+NaB. (G) Inflammation-related miRNAs. (H) The expression level of miR7a-5p was measured by real-time PCR. (I)

Correlation analyses between the relative abundance of miR7a-5p and other related indicators. �P<0.05, ��P<0.01, ���P<0.001. ns, no significant

difference.

https://doi.org/10.1371/journal.pone.0282685.g008
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Gut microbiota is closely associated with the integrity and permeability of gut barrier which

is indicated by the tight junction proteins [53, 57]. In our study, the improvement of tight

junction protein ZO-1 revealed that oral NaB intervention may contribute to the attenuation

of the integrity of gut barrier, thereby reducing LPS translocation and ultimately suppressing

atherosclerotic chronic inflammation.

Apart from the above restorement of NaB on gut dysbosis-related inflammation, NaB

also directly serve as a novel anti-inflammation approach by binding to the GPR43 [16, 58].

Thus, we speculated and proved that NaB regulated inflammatory Mψs and their polariza-

tion through GPR43-β-arrestin-2-mediated pathways by increasing the levels of M2

(CD206, IL-10 and PPARγ) and reducing M1 indicators (iNOS, TNF-α and NF-κB/

NLRP3).

As an inhibitor of HDACs, NaB can regulate the inflammation through the acetylation

regulation of inflammatory gene expression [59]. In the present study, LPS significantly

increased the accumulation of HDAC1-3/Sp1 and reduced PPARγ acetylation in Mψs.

However, dietary NaB restored PPARγ acetylation and expression, PPARγ further

repressed pro-inflammatory NF-κB /NLRP3 pathways. In parallel with our study, Sae-

mann et al. has demonstrated that butyrate could inhibit the secretion of TNF-α and the

activation of NF-κB and up-regulate the expression of anti-inflammatory factors IL-10 in

LPS-activated mononuclear cells and neutrophils via HDAC inhibition [60]. Moreover,

butyrate also increases the expression of PPARγ, which act as an E3 ubiquitin ligase of NF-

κB/p65 to promote its degradation [61]. Here, we demonstrated that NaB may prevent ath-

erosclerotic chronic inflammation through the HDAC/Sp1/PPARγ/NF-κB or NLRP3 s-

ignaling pathway, but the exact mechanism still needs to be further investigated in vitro

experiment.

MiRNAs have emerged as evolutionarily conserved, noncoding small RNAs that serve

as important regulators and fine-tuners of a range of pathophysiological cellular effects

and molecular signaling pathways involved in atherosclerosis [62]. In recent years, there

has been increased interesting in the role of miRNAs on macrophage polarization which

mainly rely on the regulation of vital signaling pathways [63, 64]. Inhibition of miRNA-

155 attenuates AS via reducing M1 Mψ polarization and inflammatory responses in mice

[64]. MiRNA-130a suppression can protect against atherosclerosis through inhibiting

inflammation by regulating the PPARγ/NF-κB expression [65]. In addition, miRNAs are

closely related to HDACs in different human chronic diseases and cancerogenic pathways

[66]. To date, many miRNAs have been found directly targeted by HDACs in chronic

metabolic diseases [67–69]. Intriguingly, in our study, 25 differential inflammation-

related miRNAs candidates were found by transcriptomic analysis after long-term dietary

NaB supplementation. Especially, miR-7a-5p was identified and proved to be closely inter-

acted with the inflammation. Due to the complex relationships about roles of above differ-

ential miRNAs in AS with NaB treatment, the underlying mechanisms need to be further

investigated.

Conclusion

Our study provides a new evidence that butyrate could ameliorate the progression of inflam-

mation in atherosclerosis through regulating macrophage polarization via GPR43-related and

HDAC/PPAR-γ/NF-κB/NLRP3/miRNAs signal pathways. Schematic mechanism is shown in

Fig 9.
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