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Abstract

Patients with Parkinson’s disease undergo a loss of melanized neurons in substantia nigra
pars compacta and locus coeruleus. Very few studies have assessed substantia nigra pars
compacta and locus coeruleus pathology in Parkinson’s disease simultaneously with mag-
netic resonance imaging (MRI). Neuromelanin-sensitive MRl measures of substantia nigra
pars compacta and locus coeruleus volume based on explicit magnetization transfer con-
trast have been shown to have high scan-rescan reproducibility in controls, but no study has
replicated detection of Parkinson’s disease-associated volume loss in substantia nigra pars
compacta and locus coeruleus in multiple cohorts with the same methodology. Two sepa-
rate cohorts of Parkinson’s disease patients and controls were recruited from the Emory
Movement Disorders Clinic and scanned on two different MRI scanners. In cohort 1, imaging
data from 19 controls and 22 Parkinson’s disease patients were acquired with a Siemens
Trio 3 Tesla scanner using a 2D gradient echo sequence with magnetization transfer prepa-
ration pulse. Cohort 2 consisted of 33 controls and 39 Parkinson’s disease patients who
were scanned on a Siemens Prisma 3 Tesla scanner with a similar imaging protocol. Locus
coeruleus and substantia nigra pars compacta volumes were segmented in both cohorts.
Substantia nigra pars compacta volume (Cohort 1: p=0.0148; Cohort 2: p=0.0011) and
locus coeruleus volume (Cohort 1: p=0.0412; Cohort 2: p = 0.0056) were significantly
reduced in the Parkinson’s disease group as compared to controls in both cohorts. This
imaging approach robustly detects Parkinson’s disease effects on these structures, indicat-
ing that it is a promising marker for neurodegenerative neuromelanin loss.
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Introduction

Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder with a variety of
motor and non-motor symptoms that can be clinically challenging to diagnose and manage,
and there are currently no effective interventions to stop PD neurodegeneration. Postmortem
studies have yielded some insights into PD biology, and by the time of symptom onset and
clinical diagnosis, there is an estimated 40-60% loss of pigmented dopamine neurons in the
substantia nigra compacta (SNc) [1-3]. Neuromelanin loss in both the SNc and the locus coe-
ruleus (LC) are hallmark pathologies in PD [3-5]. However, the role of neuromelanin in PD
pathogenesis has been challenging to study due to a lack of tools to investigate neuromelanin
biology in living patients. Studies in rodents suggest that extracellular neuromelanin triggers a
neuroinflammatory cascade that accelerates neurodegeneration [6,7]. Emerging evidence from
a new transgenic rodent model that expresses neuromelanin in SNc indicates that neuromela-
nin dynamics may play a key role in neurodegeneration, and neuromelanin modulating thera-
pies for PD have been proposed [8-10]. Neuroprotection trial designs could be improved with
brain imaging markers of neurodegeneration, including markers of change in tissue neurome-
lanin. These imaging markers might assist participant selection and serve as surrogate out-
come measures for neuroprotection trials. Therefore, robust and reproducible neuroimaging
measures are needed to detect and quantify PD-associated neuromelanin changes in vivo.

Melanized neurons in LC and SNc can be visualized in vivo with neuromelanin-sensitive
MRI (NM-MRI) sequences using either incidental magnetization transfer effects from an
interleaved multi-slice turbo spin echo acquisition [11] or explicit magnetization transfer
effects generated by magnetization transfer preparation pulses [12-14]. Magnetization transfer
contrast (MTC) colocalizes with melanized neurons in LC and SNc¢ [15,16]. NM-MRI
approaches using incidental [17] or explicit [18-20] magnetization transfer effects have been
found to exhibit high scan-rescan reproducibility in controls, and gradient echo-based
approaches with explicit magnetization transfer effects exhibit the highest reproducibility [20].

NM-MRI can be used to assess PD-related reductions in tissue neuromelanin content in LC
and SNc. Application of NM-MRI approaches based on incidental magnetization transfer
effects to image depigmentation has revealed PD-related reductions in NM-MRI contrast
ratios in SNc or LC [11,21,22], nigral volume [23,24], or the area of SNc in a single slice
[25,26]. Similar reductions have been observed in nigral volume [12] and contrast using gradi-
ent echo NM-MRI sequences that measure explicit magnetization transfer effects [27]. Nigral
regions of interest, derived from NM-MRI images, have also been used to examine PD-related
microstructural changes [28-30] or iron deposition [31,32] in SNc.

Replication of imaging markers in multiple cohorts is a crucial step in the development of
translationally useful methods. Demonstrating reliable detection of neuromelanin loss in LC
and SNc would help better establish NM-MRI measures as informative to the study of PD, par-
ticularly for investigation of the role of neuromelanin in its pathogenesis. Candidate markers
with established reproducibility would warrant further study in larger longitudinal studies,
and they may ultimately be applied in clinical trials for neuromelanin modulating therapies in
PD and related conditions. Reliable imaging of LC is particularly important for prodromal
detection strategies, because LC may be involved earlier in the disease course than SNc¢ [33].

Reductions in nigral volume have been replicated in separate cohorts using explicit magne-
tization transfer effect-based NM-MRI approaches [34]. However, that study did not include
LC volume measurement, and PD-related reductions in LC volume have not been replicated
separately either. This deficiency may be due to the size and stature of LC, a small rod-shaped
structure approximately 2 mm in diameter and 15 mm long [35]. Here we aim to remedy this
deficiency by applying a NM-MRI approach based on explicit magnetization transfer effects to
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measure LC and SNc volumes in PD patients and controls in two separate cohorts acquired on
different MRI scanner models.

Methods
Research participants

All research participants were recruited from the Emory University Movement Disorders
Clinic under an institutional review board approved protocol with informed written consent
and in accordance with the Declaration of Helsinki. Two cohorts were studied in this research,
and the cohorts were scanned on two different MRI scanners as described below. Cohort 1
data was collected from 2012-2014 and included 19 controls and 22 PD patients. Cohort 2
consisted of 33 healthy controls (HC) and 39 PD patients with data collected from 2015-2016.
Controls were recruited from the community and the Emory Alzheimer’s Disease Research
Center control population. PD patients fulfilled the Movement Disorders Society clinical diag-
nostic criteria [36], and diagnosis was established by a fellowship-trained movement disorders
neurologist at the Emory Movement Disorders Clinic. Specific exclusion criteria included the
following: 1) PD patients showing symptoms or signs of secondary or atypical parkinsonism
[37], 2) controls were excluded if they scored <26 on the Montreal Cognitive Assessment
(MOCA) indicating cognitive impairment, 3) any history of vascular territorial stroke, epi-
lepsy, multiple sclerosis, neurodegenerative disease (aside from PD), peripheral neuropathy
with motor deficits, parenchymal brain tumor, hydrocephalus, or schizophrenia, 4) treatment
with an antipsychotic drug (other than quetiapine at a dose less than 200mg daily), or 5) if
there were any contraindications to MRI imaging.

PD participants had early to moderate disease with Unified Parkinson’s Disease Rating
Scale Part ITI (UPDRS-III) motor score <25 in the practically defined ON state. Disease dura-
tion (in years) was defined as scan date subtracted from the date of disease onset and levodopa
equivalent daily dose (LEDD) was also determined for PD participants. Cognition was assessed
using the Montreal Cognitive Assessment (MoCA) [38]. The Non-motor Symptoms Question-
naire (NMSQ) [39] was used to assess non-motor symptoms. Symptoms of rapid eye move-
ment (REM) behavior disorder were assessed using the REM Sleep Behavior Disorder
Screening Questionnaire (RBD-SQ) [40]. Participants were evaluated on the same day as the
MRI scan.

MRI acquisition

MRI data for Cohort 1 were acquired with a Siemens Trio 3 Tesla scanner (Siemens Medical
Solutions, Malvern, PA, USA) at Emory University with a 12-channel receive-only head coil.
NM-MRI data was acquired using a 2D magnetization transfer (MT) prepared gradient echo
(GRE) sequence [13,14]: echo time (TE) / repetition time (TR) = 2.68 ms / 337 ms, slice thick-
ness 3 mm, in plane resolution 0.39x0.39 mm?, field of view (FOV) = 162 mm x 200 mm, flip
angle (FA) = 40°, 470 Hz/pixel bandwidth, 15 contiguous slices, and magnetization transfer
preparation pulse (300°, 1.2 kHz off resonance, 10 ms duration), 7 measurements, scan time
16 minutes 17 seconds. For registration from subject space to common space, a T; magnetiza-
tion-prepared rapid gradient echo (MP-RAGE) sequence was acquired with the following
parameters: TE/TR = 3.02 ms/2600 ms, inversion time = 800 ms, FA = 8°, voxel

size = 1.0 x 1.0 x 1.0 mm”.

Cohort 2 was scanned with a Siemens Prisma 3 Tesla scanner using a 64-channel receive-
only coil. NM-MRI data were acquired using a 2D GRE sequence with a MT preparation
pulse: TE/TR = 3.10 ms /354 ms, 15 contiguous slices, FOV = 162x200 mm?, in plane resolu-
tion = 0.39 x 0.39 mm?), slice thickness = 3mm, 7 measurements, FA = 40°, 470 Hz/pixel
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receiver bandwidth, and MT pulse (300°, 1.2 kHz off resonance, 10 ms duration), scan time 17
minutes 12 seconds. For registration, structural images were acquired with an MP-RAGE
sequence: TE/TR = 2.46 ms/1900 ms, inversion time = 900 ms, FA = 9°, voxel

size = 0.8 x 0.8 x 0.8 mm”.

On the sagittal T images for both cohorts, the NM-MRI scan slices were positioned per-
pendicular to the dorsal edge of the brainstem at midline along the fourth ventricle, starting
from the lower pons (below the most caudal extent of LC), with slices extending through the
upper midbrain to cover both SNc and LC.

Image processing

MRI data was processed using the FMRIB Software Library (FSL). A transformation was
derived between each individual’s T;-weighted image and 2 mm Montreal Neurological Insti-
tute (MNI) T;-space using FMRIB’s Linear Image Registration Tool (FLIRT) and FMRIB’s
Nonlinear Image Registration Tool (FNIRT) in the FSL software package [41,42]. Each partici-
pant’s T;-weighted image was brain extracted using the brain extraction tool (BET) in FSL.
Next, an affine transform was used to align each participant’s brain extracted T,-weighted
images with the MNI brain extracted image. Finally, a nonlinear transformation was used to
generate a transformation from each participant’s T;-weighted images to T,-weighted MNI
T1-space.

For each participant, individual NM-MRI measurements were corrected for motion by reg-
istering the seven measurements to the first image using a rigid-body transform in FLIRT and
then averaged. Next, a transform was derived between each individual’s T;-weighted image
and the averaged NM-MRI image with a boundary-based registration cost function.

SNc and LC volumes were segmented in native space using an automated thresholding
method. To ensure consistent placement of reference regions of interest (ROIs), a reference
ROl in the cerebral peduncle was created using the MNI template and the location of these ref-
erence ROIs are shown in blue in Fig 1. For each subject, the cerebral peduncle ROI was trans-
formed to individual NM-MRI images using the MNI-T; and T,-NM transforms described in
previous paragraphs. The transform was done in a single step to reduce interpolation. The use
of standard space ROIs ensured that the reference ROI was placed in similar locations for each
subject. The mean (denoted ,.f), and standard deviation (o) of the signal intensities were
measured in the reference ROI. Next, standard space SNc and LC atlases, shown in Fig 1, were
used to localize regions surrounding SNc and LC for thresholding [43]. These atlases were
transformed from standard space to individual NM-MRI images, thresholded at a level of 5%,
and dilated. The ROIs for thresholding were dilated to ensure that the entire SNc or LC were
included for thresholding. The resulting ROIs in native space are shown in red in the middle
column of Fig 1. Voxels in the resulting ROIs with intensity >er+3.90,efand > er+2.80 ¢
were considered to be part of LC and SN, respectively. A higher threshold was chosen for LC
to compensate for susceptibility effects from the 4™ ventricle.

Statistical analysis

All statistical analyses were performed using IBM SPSS Statistics software version 24 (IBM
Corporation, Somers, NY, USA) and results are reported as mean * standard error. A p value
of 0.05 was considered significant for all statistical tests performed in this work. Normality of
SNc and LC volumes was assessed using the Shapiro-Wilk test for each group and all data was
found to be normal.

For demographic data, independent samples t-test was used to assess differences in age and
years of education and Chi square was used to examine differences in sex and race between
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Fig 1. A pictorial representation of the segmentation procedure for SNc and LC. The first column shows the
reference ROI in blue and the SNc atlas (top) or LC atlas (bottom) in red-yellow in MNI space. These ROIs were
transformed to native space, and the atlases were threshold at a level of 5% and dilated (shown in red in the middle
column). Voxels in the dilated region above the threshold were considered to be part of the SNc and LC (third
column), respectively.

https://doi.org/10.1371/journal.pone.0282684.9001

controls and PD in each cohort. Group means for UPDRS-III score, disease duration, levo-
dopa equivalents, MoCA, NMSQ, and RBD-SQ were compared using a two-tailed Welch’s ¢-
test in each cohort.

In cohort 1, the effect of group (PD, control) was tested with separate analysis of covariance
(ANCOVA) for SNc and LC volume controlling for age and education. In cohort 2, differences
in SNc volume and LC volume between control and PD groups were compared using a two-
tailed Welch’s t-test. Pearson’s correlation was used to assess the relationship between SNc vol-
ume with UPDRS-III, LEDD, MoCA and LC volume in PD for cohort 1, cohort 2, and both
cohorts combined. Pearson’s correlation was used to assess the relationship between LC vol-
ume and 1) UPDRS-III, and 2) MoCA for cohort 1, cohort 2, and both cohorts combined. Age
was treated as a covariate in all correlations.

Results
Sample demographics

In cohort 1, significant differences were in age (p< 107) and education (p = 0.015) with con-
trols being older and having higher levels of education than the PD group. No differences were
seen between groups in sex (p = 0.453) or in MoCA score (p = 0.556). The PD group had sig-
nificantly higher UPDRS-III (p<10_3), RBD-SQ (p = 0.002), and NMSQ (p<10_3) scores com-
pared to the control group. In cohort 2, no difference was seen between PD and control
groups in age (p = 0.894), race (p = 0.402), sex (p = 0.500), education (p = 0.661), RBD-SQ
score (p = 0.087), or MoCA score (p = 0.621). A significant difference was seen in NMSQ

(p = 0.0006) and UPDRS-III (p<10~°) scores between the two groups. Demographic informa-
tion is summarized in Table 1.

PLOS ONE | https://doi.org/10.1371/journal.pone.0282684  April 13, 2023 5/15


https://doi.org/10.1371/journal.pone.0282684.g001
https://doi.org/10.1371/journal.pone.0282684

PLOS ONE

PD-related changes in locus coeruleus

Table 1. Demographic information for the groups used in this analysis.

Group characteristics Cohort 1 Cohort 2

Control PD p Control PD p
Participants 19 22 33 39
Age 713+ 1.2 60.4+ 1.8 <107 635+ 1.6 63.8+ 1.6 0.894
Sex (M:F) 9:10 13:9 0.453 11:22 22:17 0.50
Education [years] 18.2+ 0.5 16.3+£0.5 0.015 16.7 £ 0.4 17.0 £ 0.6 0.661
Race [% Caucasian] 78.9% 100% 0.023 90.6% 87.2% 0.402
Disease Duration [years] - 6.8 0.7 - 3.5%0.6 -
UPDRS-III 32+06 18.7+23 <107? 1.8+1.9 189+1.1 <107
Levodopa Equivalents - 768.8 + 90.4 - 623.3+£70.8
MoCA 27.5+0.5 27.1+0.6 0.566 28.0£0.3 27.8+0.3 0.621
RBD-SQ 23+04 4.7 £0.6 0.002 2.7+04 3.7+£04 0.087
NMSQ 3.4+0.7 10.5+0.9 <1073 32+05 6.6 0.7 0.0006

Data is presented as mean + standard error unless noted otherwise. Two-tailed ¢-tests were used for group comparisons of age, education, MoCA, RBD-SQ, and NMSQ
from which p values are shown. UPDRS-III was measured in the ON state. UPDRS-III—Unified Parkinson’s Disease Rating Scale Part ITII; MoCA—Montreal Cognitive
Assessment; RBD-SQ—REM Sleep Behavior Disorder Screening Questionnaire; NMSQ—Non-motor Symptoms Questionnaire.

https://doi.org/10.1371/journal.pone.0282684.t001

SNc and LC volume comparisons

Figs 2 and 3 show LC and SNc¢ in mean MTC images of both cohorts. In cohort 1, the effect of
group on volume was assessed with separate ANCOV As for each ROI (SN¢, LC) with age and
education as covariates. In SN, results revealed a significantly smaller volume in the PD
group relative to the control group (Control: 474 mm® + 31 mm?’; PD: 340 mm” + 28 mm?;
F=8.031; p = 0.007). Similarly, a reduction in LC volume was seen in the PD group relative to
the control group (Control: 6.9 mm?’ + 0.7 mm?; PD: 4.4 mm® + 0.7 mm’; F = 3.247;

p =0.049). Age was not a significant variable in the ANCOVA model for LC volume (p =
0.238) or SNc volume (p = 0.08). Removal of non-Caucasian subjects did not change results,
and reductions in LC volume (p = 0.048) and SNc volume (p = 0.005) were seen in the PD
group relative to controls. In cohort 2, Welch’s ¢-test was used to examine group differences in
SNc volume and LC volume. SNc (Control: 429 mm? + 20 mm?; PD: 329 mm? + 17 mm?; t =
3.370; p = 0.0002) and LC (Control: 8.0 mm”® + 0.6 mm’; PD: 5.2 mm® + 0.6 mm’; ¢ = 3.306;

p = 0.0008) volumes were significantly lower in the PD group compared to the control group
in cohort 2. These comparisons are shown in Fig 4.

Clinical correlations

In the PD group, MoCA showed a significant positive association with SN¢ volume in cohort 1
(p =0.012, r = 0.478) and both cohorts (p = 0.040, r = 0.228) but not in cohort 2 (p = 0.319,
r=0.079). SNc volume showed no significant associations with UPDRS-III or disease duration
in the PD group in cohort 1, cohort 2 or both cohorts (ps>0.436). There were no significant
correlations between MoCA, UPDRS-III and disease duration with LC volume in cohort 1,
cohort 2, or both cohorts combined for the PD group (ps>0.272). SNc volume showed a signif-
icant positive association with LC volume in PD in both cohorts (p = 0.012, r = 0.296) but no
significance in HC (p = 0.434, r = -0.025). In the PD group, SNc and LC volumes had a signifi-
cant positive correlation in cohort 2 (p = 0.024, r = 0.333) but not in cohort 1 (p = 0.138,
r=0.243).
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Fig 2. A comparison of mean LC contrast in control (top row) and PD (bottom row) groups for both cohorts. Mean
MTC images from cohort 1 are shown in the left column while mean MTC images from cohort 2 are shown in the
right column. For each group, the mean MTC image was created by transforming MTC images from individual
participants to MNI space and then averaging. In each image, yellow arrows indicate the location of LC.

https://doi.org/10.1371/journal.pone.0282684.g002

ROC analysis

In cohort 1 SNc volume outperformed LC volume as a diagnostic imaging marker of PD. The
area under the receiver operating characteristic (ROC) curve (AUC) for SNc volume was 0.756
[standard error (SE): 0.078, 95% confidence interval (CI): 0.603-0.909, p = 0.005] while the
AUC for LC volume was 0.644 [SE: 0.088, 95% CI: 0.471-0.816, p = 0.117]. For cohort 1, com-
bining SN¢ volume and LC volume yielded an AUC of 0.763 [SE: 0.074, 95% CI: 0.617-0.090,
p = 0.004]. NM-MRI measures of SNc volume and LC volume performed similarly in cohort 2
to differentiate PD from controls. LC volume had an AUC of 0.752 [SE: 0.063, 95% CI: 0.629-
0.876, p = 0.001] and SNc¢ volume had an AUC of 0.749 [SE: 0.062, 95% CI: 0.627-0.871,

p = 0.001]. For cohort 2, combining SN¢ volume and LC volume yielded an AUC of 0.775 [SE:
0.057, 95% CI: 0.664-0.886]. ROC curves for both cohorts are shown in Fig 5.
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Fig 3. A comparison of mean SNc contrast in control (top row) and PD (bottom row) groups for both cohorts. Mean
MTC images from cohort 1 are shown in the left column while mean MTC images from cohort 2 are shown in the
right column. For each group, the mean MTC image was created by transforming MTC images from individual
participants to MNI space and then averaging. Regions experiencing PD-related neuronal loss are indicated by yellow
arrows in the bottom row.

https://doi.org/10.1371/journal.pone.0282684.g003

Discussion

This study examined PD-related loss of NM-MRI contrast in LC and SNc in two separate
cohorts, using two different scanner models. We observed significant volume loss in both LC
and SNc in the PD groups as compared to controls in both cohorts. In cohort 2, SNc¢ volume
and LC volume performed similarly as diagnostic imaging markers of PD. This is the first
report, to our knowledge, of reproducible detection of PD-associated LC volume loss using the
same NM-MRI approach in multiple cohorts. It is also the first report of simultaneous imaging
of LC and SNc detecting PD effects in both structures in discovery and validation cohorts. The
NM-MRI pulse sequence and image processing methods that were used in this study have pre-
viously established high scan-rescan reproducibility [18,20]. To increase reproducibility and
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ensure consistent placement of ROIs, reference regions and regions within which to threshold
voxels for volume measurement were defined using standard space ROIs and transformed to
each individual’s NM-MRI image. These ROIs were then used to define thresholded and refer-
ence regions in the SNc and LC segmentation procedure. The results of this study, therefore,
support the utility of these NM-MRI methods as a robust and reproducible approach to mea-
sure PD neuropathology in vivo.

The two Parkinsonian cohorts used in this study had similar motor impairment, but differ-
ent disease durations. The mean and standard error of nigral volume was strikingly consistent
across both cohorts. The consistency in SNc¢ volume loss may be due to similarity of NM-MRI
protocols used in this study. A previous study assessed LC volume measurements using multi-
ple types of scanners [34], but used different implementations of NM-MRI protocols to image
LC. The authors found differences in NM-MRI measures of LC between scanners, but it was
not clear whether these differences resulted from the variability in scanning protocols or the
scanners themselves. Here, we observed a non-significant trend toward an LC volume
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Fig 5. ROC analysis assessing performance of SNc and LC volumes to differentiate PD from controls. ROC curves
for Cohort 1 and Cohort 2 are shown in (A) and (B), respectively.

https://doi.org/10.1371/journal.pone.0282684.g005
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difference between the two cohorts in the control groups (p = 0.081). Because the NM-MRI
protocols were very similar, this result suggests that differences between the Prisma and Trio
scanner types (the former having higher signal to noise ratio due to signal digitization at the
receiver coil) may enable the Prisma to detect NM-MRI contrast in LC more readily than the
Trio scanner. This result should be interpreted cautiously though, because an alternative expla-
nation is that the older control group in cohort 1 may have had lower LC volume than cohort
2 due to aging effects.

The performance of cohort 1 LC volume as a diagnostic marker of PD was similar to the
AUC reported in a previous study, and cohort 2 LC volume outperformed that observed in the
prior study [34]. Improved performance of LC volume in cohort 2 may be due to several fac-
tors. First, the Siemens Trio MRI scanner used in cohort 1 has a higher noise profile than the
Siemens Prisma MRI scanner used in cohort 2, and elevated noise likely reduced efficacy of LC
volume as a diagnostic marker in cohort 1. Second the control group was significantly older
than the PD group in cohort 1. Neuromelanin peaks in LC between age 50-60 and declines
after age 60 [44-46]. Thus, this age difference may have reduced the effect size by reducing the
mean LC volume in the control group.

The ROC analysis found AUC of nigral volume in both cohorts to have AUCs comparable
to previously published nigral diagnostic imaging markers of PD [27,34,47-50]. However,
these AUCs are below thresholds typically used for individual clinical diagnosis (AUC > 0.9).
Combining LC and nigral volume increased the AUC in both cohorts (AUC = 0.763 and
AUC = 0.775 for cohorts 1 and 2, respectively) and these values are approaching levels that are
clinically useful. Diagnostic accuracy may be improved by combining nigral markers from
other MRI contrasts, such as those from iron [28,31,32,51] or diffusion [29,52] contrasts.

Nigrosome-1 is the subregion of SNc that experiences the greatest reductions in melanized
neurons and is found in the lateral-ventral portion of SNc¢ [53,54]. This region can be visual-
ized in T,- or T,*-weighted images as a relatively hyperintense region in the substantia nigra,
and loss of this hyperintensity in PD patients has shown promise as a diagnostic imaging
marker [55]. In NM-MRI images, nigrosome-1 has been localized to the lateral-ventral portion
of SNc, which is consistent with its localization in postmortem neuropathology studies
[3,53,56]. We observed reductions in NM-sensitive contrast in the lateral-ventral regions of
SNc (see Fig 3) in both cohorts. This is in agreement with earlier studies that found volume
loss or reductions in neuromelanin-sensitive contrast in the posterior portion of SN¢ [57] or
in the lateral-ventral tier of SNc [27]. Studies examining PD-related changes using other MRI
contrasts have found increases in free water [58,59], which may be associated with neurode-
generation [60], in posterior nigral ROIs as well as elevated iron levels in the lateral-ventral tier
[61,62]. Taken together, these changes may manifest from neurodegeneration in nigrosome-1.

There are several caveats to this study. First, UPDRS-III was measured in the on-medica-
tion state. Earlier studies found a significant relationship between nigral volume and UPDRS
score [34] and lack of correlation between nigral volume and UPDRS-III score may be due to
measurement in the on-medication state. This may also have been due to the inclusion of PD
patients with similar early to moderate disease stage, and a lack of PD patients with more
severe motor symptoms. Second, the control group in cohort 1 was significantly older and
more educated than the PD group. This may have reduced the effect size for LC volume.
Finally, we elected to use 3 mm slices in the acquisition to ensure sufficient signal to noise
ratio (SNR) for SNc and LC segmentation, which may increase partial volume effects.

NM-MRI approaches based on explicit magnetization transfer effects have already demon-
strated high scan-rescan reproducibility [18-20]. The current findings provide additional evi-
dence that NM-MRI robustly and reproducibly detects PD-related reductions in volume in
both LC and SNc. In the context of emerging evidence for a mechanistic role for neuromelanin
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in PD [8-10], these findings may inform strategies to study disease pathophysiology and ulti-
mately assist therapeutics development. Therefore, investigation of these NM-MRI measures
as candidate biomarkers in larger, longitudinal studies is warranted. They have potential for
development both as individual markers and as part of multivariate profiles incorporating
iron-sensitive and diffusion-sensitive MRI modalities.
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