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Abstract

Importance

Sleep is critical to a person’s physical and mental health, but there are few studies systemat-

ically assessing risk factors for sleep disorders.

Objective

The objective of this study was to identify risk factors for a sleep disorder through machine-

learning and assess this methodology.

Design, setting, and participants

A retrospective, cross-sectional cohort study using the publicly available National Health

and Nutrition Examination Survey (NHANES) was conducted in patients who completed the

demographic, dietary, exercise, and mental health questionnaire and had laboratory and

physical exam data.

Methods

A physician diagnosis of insomnia was the outcome of this study. Univariate logistic models,

with insomnia as the outcome, were used to identify covariates that were associated with

insomnia. Covariates that had a p<0.0001 on univariate analysis were included within the

final machine-learning model. The machine learning model XGBoost was used due to its

prevalence within the literature as well as its increased predictive accuracy in healthcare

prediction. Model covariates were ranked according to the cover statistic to identify risk fac-

tors for insomnia. Shapely Additive Explanations (SHAP) were utilized to visualize the rela-

tionship between these potential risk factors and insomnia.

Results

Of the 7,929 patients that met the inclusion criteria in this study, 4,055 (51% were female,

3,874 (49%) were male. The mean age was 49.2 (SD = 18.4), with 2,885 (36%) White

patients, 2,144 (27%) Black patients, 1,639 (21%) Hispanic patients, and 1,261 (16%)

patients of another race. The machine learning model had 64 out of a total of 684 features
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that were found to be significant on univariate analysis (P<0.0001 used). These were fitted

into the XGBoost model and an AUROC = 0.87, Sensitivity = 0.77, Specificity = 0.77 were

observed. The top four highest ranked features by cover, a measure of the percentage con-

tribution of the covariate to the overall model prediction, were the Patient Health Question-

naire depression survey (PHQ-9) (Cover = 31.1%), age (Cover = 7.54%), physician

recommendation of exercise (Cover = 3.86%), weight (Cover = 2.99%), and waist circumfer-

ence (Cover = 2.70%).

Conclusion

Machine learning models can effectively predict risk for a sleep disorder using demographic,

laboratory, physical exam, and lifestyle covariates and identify key risk factors.

Introduction

Sleep is critical to a person’s physical and mental health [1–6]. However, the prevalence of

diagnosed sleep disorders among American patients has significantly increased over the past

decade [1, 5, 7–10]. Sleep disorders are a broad categorization of disorders that encompass

conditions that lead to difficulty falling asleep, poor sleep quality, early waking, circadian

rhythm disorders, parasomnias, sleep-related movement disorders, and sleep-related breathing

disorders [11–13]. This is particularly important as sleep disorders are a significant risk factor

for diabetes, heart disease, obesity, and depression, leading to decreased quality of life and

increased healthcare usage [14, 15]. Additionally, poor quality of sleep has been associated

with decreased productivity at work and at school, increased stress, and decreased quality of

life [16–19]. To combat the debilitating consequences of sleep disorders, a plethora of pharma-

cologic treatments have been introduced to the market and prescribed by physicians [20–26].

While medications have shown efficacy in decreasing sleep latency, significant side effects

have been associated with these medications [27–32]. These include addiction, respiratory

depression, decreased quality of sleep, and significant withdrawal symptoms when these medi-

cations are discontinued [21, 33–35]. Furthermore, due to the increasing prevalence of

obstructive sleep apnea, continuous positive airway pressure (CPAP) machines are more regu-

larly prescribed [27].

Despite recognition of sleep disorders as a strong contributor to increasing mortality and

morbidity, little is known regarding specific risk factors that are strongly linked with increased

probability of having sleep disorders. Given these limitations in the literature, we will leverage

transparent machine-learning methods (Shapely Additive Explanations (SHAP) model expla-

nations and model gain statistics) to identify pertinent risk-factors for sleep disorders and

compute their relative contribution to model prediction of risk for sleep disorder; the

NHANES 2017–2020 cohort, a large, nationally representative sample of US adults, will be

used within this study.

Methods

A retrospective, cross-sectional cohort study using the publicly available National Health and

Nutrition Examination Survey (NHANES) was conducted in patients who completed the

demographic, dietary, exercise, and mental health questionnaire and had laboratory and physi-

cal exam data. The acquisition and analysis of the data within this study was approved by the
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National Center for Health Statistics Ethics Review Board. Within this retrospective cohort, all

data (medical records, survey information, demographic information) was fully anonymized

before data analysis was carried out and all patients consented to their data being publicly

available.

Dataset and cohort selection

The National Health and Nutrition Examination Survey (NHANES 2017–2020) is a program

designed by the National Center for Health Statistics (NCHS), which has been leveraged to

assess the health and nutritional status of the United States population. The NHANES dataset

is a series of cross-sectional, complex, multi-stage surveys conducted by the Centers for Dis-

ease Control and Prevention (CDC) on a nationally representative cohort of the United States

population to provide health, nutritional, and physical activity data. In the present study, we

analyzed adult (�18 years old) patients in the NHANES dataset who completed the demo-

graphic, dietary, exercise, and mental health questionnaire and had laboratory and physical

exam data.

Assessment of sleep disorder

The medical conditions file was used to identify patients with a sleep disorder. Participants

were asked: “Have you ever told a doctor or other healthcare professional that you have trouble

sleeping?” Participants who answered “Yes” to this question were considered to have a sleep

disorder within this study.

Independent variable

Potential model covariates were identified within the demographics, dietary, physical exami-

nation, laboratory, and medical questionnaire datasets in NHANES. A total of 783 covariates

were identified from the NHANES dataset. All covariates were extracted and merged with the

sleep disorder indicator.

Model construction and statistical analysis

Univariate logistic models, with a sleep disorder as the outcome, were used to identify covari-

ates that were associated with a sleep disorder. Covariates that had a p<0.0001 on univariate

analysis were included within the final machine-learning model. Utilizing univariable logistic

models to do an initial filter of the 700+ covariates that were within the dataset was used to

ensure that all covariates used within the machine learning models were strong independent

covariates. Furthermore, this initial filtering allowed for physician review of risk factors that

were clinically relevant. After initial filtering, model importance statistics from machine-learn-

ing models were used to identify pertinent risk factors.

Four machine-learning methods were carried out: XGBoost, Random Forest (RF), Adaptive

Boost (ADABoost), and Artificial Neural Network (ANN). All machine-learning models were

constructed using 10-fold cross validation. Cross validation was applied to only the training

set. A train:test (80:20) was used to compute the final set of model fit parameters. The model

fit parameters used in this study were accuracy, F1, sensitivity, specificity, positive predictive

value, negative predictive value, and AUROC (Area under the receiver operator characteristic

curve).

A grid search of hyperparameters for the XGBoost, Random Forest, and Adaptive Boost

methods was conducted. Trees were searched between 200 and 2000 at 100 tree increments,

with the optimal number being 600 trees for all models. The artificial neural network was
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comprised of an input layer with hidden layers and a scalar output layer. Additionally, the

ReLu function at each hidden layer and a Sigmoid function at the output layer was used. The

hyperparameters were determined by optimal accuracy across a grid search of 2–10 hidden

layers, 128–1024 for hidden layer dimensions, and 64–512 for batch size. The hyperparameters

that were most optimal were 4 hidden layers, 256 hidden layer dimensions, and 64 for the

batch size.

The machine learning model XGBoost was used due to its prevalence within the

literature as well as its increased predictive accuracy in healthcare prediction. Furthermore,

XGBoost was chosen as the most optimal model based upon the mean AUROC:

ðAUROCXGBoost ¼ 0:87 > AUROCADABoost ¼ 0:84 > AUROCANN ¼ 0:83 > AUROCRF ¼ 0:82, p<0.01).

Model feature importance statistics and SHAP visualization

Model covariates were ranked according to the Gain, Cover, and Frequency to identify risk

factors for a sleep disorder. The Gain is the relative contribution of the feature within the

model. The Cover is the number of observations related to this feature that were present. The

Frequency is the percentage of times the feature occurs in the trees of the machine-learning

model. The Gain statistic was chosen as the method to rank features based upon feature impor-

tance due to its ease of interpretation: the proportion the covariate contributed to the final

prediction.

SHAP explanations were utilized to visualize the continuous covariates with the strongest

relationship between the potential risk factors and a sleep disorder.

Results

Fig 1 shows of the 7,929 patients that met the inclusion criteria in this study, 4,055 (51% were

female, 3,874 (49%) were male. The mean age was 49.2 (SD = 18.4), with 2,885 (36%) White

patients, 2,144 (27%) Black patients, 1,639 (21%) Hispanic patients, and 1,261 (16%) patients

of another race. A total of 2,302 (29%) of patients had a sleep disorder.

Fig 2 shows the comparison of different machine learning models that led to XGBoost

being chosen for having the highest mean AUROC: ðAUROCXGBoost ¼ 0:87 > AUROCADABoost ¼

0:84 > AUROCANN ¼ 0:83 > AUROCRF ¼ 0:82, p<0.01). The machine learning model had 64 out

of a total of 684 features that were found to be significant on univariate analysis (P<0.0001

used). These were fitted into the XGBoost model and an AUROC = 0.87, Sensitivity = 0.77,

Specificity = 0.78 were observed in Fig 3.

Fig 4 shows the top four highest ranked features by cover, a measure of the percentage con-

tribution of the covariate to the overall model prediction, were the Patient Health Question-

naire depression survey (PHQ-9) (Cover = 31.1%), age (Cover = 7.54%), physician

recommendation of exercise (Cover = 3.86%), weight (Cover = 2.99%), and waist circumfer-

ence (Cover = 2.70%). Fig 5 shows the overall SHAP explanations for the covariates showing

the PHQ-9, age, physician recommendation of exercise, weight, and waist circumference have

the highest contribution to the model.

SHAP visualizations were conducted for the top four continuous covariates by model cover

(Fig 6). We observed that increased PHQ-9 scores were strongly linked to the odds of a sleep

disorder. Each increase in PHQ-9 score is associated with increased odds of a sleep disorder

up to around a PHQ-9 score of 11, at which the odds of sleep disorder no longer increase with

increased PHQ-9 score. Additionally, we observed a curvilinear relationship between weight

and odds of a sleep disorder. There is no significant increase in odds of a sleep disorder with

increasing weight for patients weighing under 80 kg, but after 80 kg, increased weight is associ-

ated with significantly increased odds of a sleep disorder. Furthermore, age was found to be a
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significant risk factor for a sleep disorder, with odds of a sleep disorder increasing between age

20 until age 60, at which point there does not appear to be an increase in sleep disorder with

increasing age. Lastly, there is a strong relationship between waist circumference and a sleep

disorder. There is no significant increase in odds of a sleep disorder with increasing waist cir-

cumference until after 100cm, at which there is a significant increase in odds of a sleep disor-

der with increasing waist circumference.

Fig 1. Demographic information and disease characteristics. Descriptive statistics for demographic characteristics and all covariates

within the machine learning model, stratified by whether patients had a sleep disorder. Covariates with SMQ or MCQ labeled in front of

it were asked the question written; responses were numeric (integer number) for SMQ and binary (yes, no) for MCQ. Abbreviations:

DR = Doctor.

https://doi.org/10.1371/journal.pone.0282622.g001
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Fig 7A show SHAP explanations for the XGBoost model and show a positive relationship

between each gm of alcohol use and odds of a sleep disorder. Likewise Fig 7B show a positive

relationship between each mg of caffeine and odds of a sleep disorder.

Discussion

In this retrospective, cross sectional cohort of United States adults, a machine learning model

utilizing demographic, laboratory, physical examination, and lifestyle questionnaire data had

strong predictive accuracy (AUROC = 0.87). The greatest predictors for a sleep disorder

included depression (PHQ-9), weight, age, and waist circumference.

Prior studies have accurately predicted the presence of sleep disorders using machine-learn-

ing methods from a variety of datasets using numerous machine-learning methods [36–38].

Short-term insomnia detection was conducted using a single-channel sleep Electrooculogra-

phy. Furthermore, natural language processing on 18,901 tweets was conducted to find corre-

lations between words related to insomnia and negative health information [38–40].

Furthermore, a comparative study of 15 machine learning algorithms identified 14 main fac-

tors for the prediction of insomnia, identifying that vision problems, mobility problems, and

sleep disorders were significantly related to insomnia [38, 39]. These studies highlight the util-

ity of machine learning models in identifying patients at risk for sleep disorders. What our

study adds to the literature is a large dataset (N = 7,929) and a diverse wealth of potential

covariates (700+ covariates) to study how lifestyle, diet, demographic, and medical covariates

are able to predict insomnia.

Fig 2. Comparison of different machine learning models. Comparison of four machine learning models (XGBoost, Random Forest,

Artificial Neural Network, Adaptive Boosting) using the model statistics computed from the 20% test set: Accuracy, F1, Sensitivity,

Specificity, Positive Predictive Value, Negative Predictive Value, and AUROC.

https://doi.org/10.1371/journal.pone.0282622.g002
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The visualizations completed for the top four continuous covariates were concordant with

current literature: there is strong epidemiological evidence that sleep problems are heavily

linked with depression. Multiple papers have found difficulty falling asleep and decreased

hours of sleep with increased depression [41–53]. Additionally, depression has bene linked to

lower quality sleep and increased day time exhaustion [31, 34, 46, 54, 55]. There is also strong

literature evidence for the link between weight and sleep disorders [4]. There is epidemiologi-

cal evidence for the relationship between increased age and increased sleep disorders, older

age has been associated with increased sleep latency, decreased time spent in rapid eye move-

ment (REM) sleep and stage-3 sleep, and increased frequency of waking up during the night

Fig 3. Receiver operator characteristic curve and model statistics. The Receiver operating characteristic curve for the

machine-learning model predicting a sleep disorder. AUROC = 0.87.

https://doi.org/10.1371/journal.pone.0282622.g003
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Fig 4. Model gain statistics. The Gain, Cover, and Frequency of all covariates within the XGBoost model. The Gain

represents the relative contribution of the feature to the model and is the most important metric of model importance

within this study. Covariates ordered according to the Gain statistic.

https://doi.org/10.1371/journal.pone.0282622.g004
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[56–62]. Furthermore, increased caffeine usage has been found to be linked with difficulty fall-

ing asleep, decreased time falling asleep, and decreased quality of sleep [63]. Additionally,

increased alcohol is associated with sleep disorders, leading to decreased sleep latency and

potential physiologic need for alcohol as a depressant to allow for sleep in multiple patients

[64–66].

Since visualizations for risk factors match literature relationships, we have increased confi-

dence that the machine learning model is able to capture the actual physiological relationships

of these covariates. These transparent machine-learning tools allow for increased confidence

that these algorithms are picking up true signal within these covariates to predict the presence

of a sleep disorder rather than just replicating potential biases stemming from systemic data-

quality errors that are present within the dataset. Additionally, these SHAP visualizations

allow us to interpret that the increase predictive power of these machine-learning methods is

Fig 5. Overall SHAP explanations. SHAP explanations, purple color representing higher values of the covariate while yellow

representing lower values of the covariate. X-axis is the change in log-odds for a sleep disorder. Covariates ordered according to the Gain

statistic. Covariates with SMQ or MCQ labeled in front of it were asked the question written; responses were numeric (integer number)

for SMQ and binary (yes, no) for MCQ. Abbreviations: DR = Doctor.

https://doi.org/10.1371/journal.pone.0282622.g005
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associated with the ability for these non-parametric methods to more accurately capture the

non-linear interactive relationship between the covariates, rather than just over-fitting the

model to get increased accuracy.

The greatest strength of this algorithmic method for identification of the covariates is the

ability to search through hundreds of covariates systematically without relying upon judgment

form the researcher, which may be muddled by potential personal biases. This method also

allows for the ranking of the relative importance of each of these covariates through the cover

statistic, which allows us to obtain the relative contribution to the prediction each covariate

has and thus infer from there an estimate for the relative contribution to true risk for a sleep

disorder that each patient has. Another strength is that after these covariates are selected and

the model built, SHAP visualizations can be used to make sure that each of the covariate either

matches current literature understandings of the covariate’s association with a sleep disorder

or in the case of a discrepancy, allow researchers to validate the plausibility of this feature and

then evaluate for potential errors in data-quality.

Fig 6. SHAP explanations for the Top 4 continuous covariates. SHAP explanations, covariate value on the x-axis, change in log-odds

on the y-axis, red line represents the relationship between the covariate and log-odds for CAD, each black dot represents an observation.

Covariates: top left–PHQ-9, top right–Body weight, bottom left–patient age, bottom right–waist circumference.

https://doi.org/10.1371/journal.pone.0282622.g006
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A potential weakness to this machine-learning analysis is the necessity of the retrospective

nature of this cohort. The covariates that were selected within this study will be better at pre-

dicting risk for a sleep disorder for this cohort than for other cohorts. However, this was lim-

ited by the use of training: testing sets to be able to minimize the errors that come with

overfitting. Furthermore, visualizations of SHAP allow researchers to test for physiologic plau-

sibility of each of these covariates and allows for effective analysis by researchers of whether

these effects are due to true signal or if they are just noise that may be contributing to a type-1

error.

Given the analysis of the strengths and weaknesses of these methods, we argue that use of

machine-learning methods can be an effective first step in the identification of risk-factors that

can then be further selected by clinicians based upon the specific clinical presentation.

Limitations

This study has several strengths and weaknesses. We utilized the NHANES dataset, which is a

retrospective cohort, carrying the limitations of retrospective studies. However, this study

allows for the selection of a large cohort, evaluation of data quality, and due to the publicly

available nature of the cohort, allows for increased replication and follow-up studies based

upon the same cohort. Furthermore, the cohort relied on surveys to obtain the outcome of

interest (a sleep disorder requiring medical attention) as well as the dietary and lifestyle infor-

mation. More accurate measurements may have been achieved with prospective studies with

automated measurement of foods. However, self-reported survey information allows for the

volume of participants to be included within this study. Another weakness was the voluntary

nature of this cohort, with participants choosing to opt into the study instead of being

Fig 7. a: Covariates of interest to evaluate sensibility of the model. SHAP explanations for the relationship between

Alcohol and odds of a sleep disorder. Covariate value on the x-axis, change in log-odds on the y-axis, red line represents

the relationship between the covariate and log-odds for a sleep disorder, each black dot represents an observation. b:

SHAP explanations for the relationship between Caffeine intake and odds of a sleep disorder. Covariate value on the x-

axis, change in log-odds on the y-axis, red line represents the relationship between the covariate and log-odds for a sleep

disorder, each black dot represents an observation.

https://doi.org/10.1371/journal.pone.0282622.g007
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randomly selected. This may artificially select a different cohort that may significantly differ

from the population. However, our analysis found a demographically diverse population, so

these results may still be generalizable to other cohorts.

Conclusion

Machine learning models can effectively predict risk for a sleep disorder using demographic,

laboratory, physical exam, and lifestyle covariates and identify key risk factors. Depression,

age, weight, and waist circumference were the strongest predictors of sleep disorder.
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