


## STUDY PROTOCOL

# Comparative efficacy and acceptability of interventions for insomnia in breast cancer patients: A protocol for systematic review and network meta-analysis

Zhifan Li<sup>1</sup>, Qian Wang<sup>1</sup>, Junxia Xu<sup>1</sup>, Qihua Song<sup>1</sup>, Xiaoling Ling<sup>2</sup>, Ya Gao<sup>3,4</sup>, Junqiang Lei<sup>1,5\*</sup>

**1** The First Clinical Medical College of Lanzhou University, Lanzhou, China, **2** Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China, **3** Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada, **4** Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China, **5** Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China

\* [leijq2011@126.com](mailto:leijq2011@126.com)



## OPEN ACCESS

**Citation:** Li Z, Wang Q, Xu J, Song Q, Ling X, Gao Y, et al. (2023) Comparative efficacy and acceptability of interventions for insomnia in breast cancer patients: A protocol for systematic review and network meta-analysis. PLoS ONE 18(3): e0282614. <https://doi.org/10.1371/journal.pone.0282614>

**Editor:** Andrea Giannini, Sapienza University of Rome: Università degli Studi di Roma La Sapienza, ITALY

**Received:** September 2, 2022

**Accepted:** February 18, 2023

**Published:** March 7, 2023

**Peer Review History:** PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: <https://doi.org/10.1371/journal.pone.0282614>

**Copyright:** © 2023 Li et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Data Availability Statement:** No datasets were generated or analysed during the current study.

## Abstract

### Background

Symptoms of insomnia are highly prevalent in patients with breast cancer. There are a large number of pharmacological and non-pharmacological interventions that can be used for the management of insomnia in breast cancer patients; however, their comparative effectiveness and acceptability remain uncertain. This review aims to evaluate the efficacy and acceptability of different interventions for insomnia in breast cancer patients using a Bayesian network meta-analysis (NMA).

### Methods

We will perform a comprehensive literature search in PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, and PsycINFO from inception to November 2022. We will include randomized controlled trials (RCTs) that compared the effects of different interventions on the management of insomnia in breast cancer patients. We will assess the risk of bias assessment using a modified Cochrane instrument. We will conduct a Bayesian random-effects framework NMA to estimate relative effects of interventional procedures. We will use Grading of Recommendations Assessment, Development and Evaluation to rate the certainty of evidence.

### Discussion

To our knowledge, this will be the first systematic review and network meta-analysis to compare the effectiveness and acceptability of all currently available interventions for insomnia in patients with breast cancer. The results of our review will help provide more evidence for the treatment of insomnia in breast cancer patients.

**Funding:** The authors received no specific funding for this work.

**Competing interests:** The authors have declared that no competing interests exist.

**Abbreviations:** CBT-I, cognitive-behavioral therapy for insomnia; NMA, network meta-analysis; RCTs, randomized controlled trials; SE, sleep efficiency; TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset; ISI, insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index.

## Systematic review registration

PROSPERO registration number [CRD42021282211](#).

## Introduction

Insomnia is the most common sleep-wake disorder in cancer patients [1], especially in patients with breast cancer, lung cancer, head, and neck cancer [2, 3]. The prevalence of insomnia in cancer patients can reach 30% to 60%, which is almost 2 to 3 times that of the general population [4–7]. Factors contributing to the high incidence of insomnia in cancer populations include the psychological response to various stressors (such as cancer diagnosis) experienced, the direct impact of cancer treatment, and its side effects [8]. Compared with other cancer sites (such as prostate, gynecology, head and neck, or urinary), patients with breast cancer have the highest prevalence of insomnia (40%–70%) [5, 9, 10]. For breast cancer patients, in addition to the stress caused by the cancer diagnosis, some treatment-related factors are often related to insomnia. Vasomotor symptoms, including hot flashes and night sweats, are common with chemotherapy-induced amenorrhea and endocrine therapies and can cause insomnia episodes or aggravate pre-existing conditions [11–14]. Insomnia not only harms physical and social functions, but may also cause depression and anxiety [8], and may even increase the fatality rate of breast cancer patients [15–17].

Treatment options for insomnia include pharmacological and non-pharmacological interventions. The current international guidelines [18, 19] only recommend drugs for short-term treatment of insomnia ( $\leq 4$  weeks), because although the drug is effective in the short term, it has negative side effects and major risks, and long-term high-dose treatment is not recommended [20]. Cognitive-behavioral therapy for insomnia (CBT-I) is considered the gold standard non-pharmacological treatment for insomnia [21]. However, despite the evidence that CBT-I is effective, CBT-I has not been widely used due to limited access to well-trained providers and poor adherence to the recommended treatment [22]. In addition to CBT-I, other non-pharmacological treatment options are increasingly used in the treatment of insomnia. As a relatively safe intervention, acupuncture is now widely accepted and used, and may be a promising treatment option. Some systematic reviews revealed that symptoms of insomnia in patients treated with acupuncture may be significantly improved compared with pharmacological treatments [23–26]. Some studies have also shown that mindfulness meditation can significantly reduce the severity of insomnia, prolong the total sleep time, and improve the sleep efficiency and quality of patients with chronic insomnia [27–30]. Yoga is a novel and effective intervention to improve the symptoms of insomnia and may become a new addition to the insomnia management program [31–33]. In addition, music therapy [34] and Tai Chi [35, 36] have also been shown to help improve patients' sleep quality.

Although there is one systematic review [37] that evaluated the relative efficacy and safety of pharmacological and non-pharmacological interventions, this study only focused on elderly patients with insomnia rather than breast cancer patients. Therefore, we propose to conduct a systematic review and network meta-analysis (NMA) of randomized controlled trials (RCTs) to evaluate the relative effectiveness and acceptability of existing interventions in the treatment of insomnia in breast cancer patients.

## Methods

Our protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols (PRISMA-P) guideline [38]. We have registered the protocol on the international prospective register of systematic review (PROSPERO) (CRD42021282211).

### Information sources and search strategy

We will search PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, and PsycINFO from inception to November 2022. Search terms will include controlled vocabulary and free text synonyms comprising randomized controlled trials, breast neoplasm, and insomnia. There will be no restriction on the language of publication. For publications that are not in English and Chinese, we will seek translation assistance. The search strategy for each database is provided in detail in [S1 Appendix](#). The reference lists of relevant systematic reviews/meta-analyses and included RCTs will be checked to identify additional potentially eligible studies.

### Eligibility criteria

#### Types of studies

Randomized controlled trials comparing the effects of different interventions on the management of insomnia in breast cancer patients will be included. RCTs should report at least one measure outcome of sleep and provide enough detail to calculate effect sizes. We will exclude cluster or crossover RCTs.

#### Population

Individuals with a breast cancer diagnosis who had clinically relevant levels of insomnia as defined by a standardized diagnostic system such as the Diagnostic and Statistical Manual of Mental Disorders (DSM) [39], International Classification of Sleep Disorders (ICSD) [40], Tenth revision of the International Statistical Classification of Diseases and Health-Related Problems (ICD-10) [41], and other well-recognized classifications. We will put no restrictions on the subtype, histology, stage, and treatment of breast cancer, age and comorbidities of patients, and duration of insomnia.

#### Intervention

Any pharmacological and non-pharmacological interventions used for the management of insomnia in breast cancer patients. The eligible interventions are listed in [Table 1](#).

#### Comparator

The controls will include waiting list, treatment/care as usual, placebo, or a different pharmacological or non-pharmacological intervention. We will investigate the potential clinical and statistical heterogeneity of non-interventional controls (waiting list, treatment/care as usual, placebo) to determine whether to treat them as a single node.

#### Outcome

Outcomes of interest will include sleep efficiency (SE, %), total sleep time (TST), sleep onset latency (SOL), wake after sleep onset (WASO), and acceptability. SE, SOL, WASO, and TST are typically defined as a ratio of time asleep to time in bed, the length of time after lights out until sleep onset, the length of waking time after the onset of persistent sleep, and total

**Table 1. Eligible interventions.**

| Intervention                        |                                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>Pharmacotherapy</b>              | Benzodiazepines: short, medium, and long-acting substances e.g. triazolam, lorazepam, flurazepam    |
|                                     | Benzodiazepine-receptor-agonists (“Z Drugs”): zopiclone, eszopiclone, zolpidem, zaleplon            |
|                                     | Sedating antidepressants: e.g. trimipramine, doxepine, amitriptyline, opipramol                     |
|                                     | Sedating antipsychotics: e.g. promethazine, chlorprothixene, quetiapine, olanzapine or risperidone  |
|                                     | Melatonin or melatonin- receptor-agonists: ramelteon, agomelatonin, tasimelteon                     |
|                                     | Herbal preparations: e.g. valerian, chamomile, hops, kava-kava, passionflower, St. John’s wort, oat |
|                                     | Nutrients: e.g. L-tryptophan, magnesium                                                             |
|                                     | Traditional Chinese medicine                                                                        |
|                                     | Others                                                                                              |
| <b>CBT-I and related approaches</b> | Psychoeducation                                                                                     |
|                                     | Sleep hygiene methods                                                                               |
|                                     | Stimulus control                                                                                    |
|                                     | Sleep restriction or compression                                                                    |
|                                     | Cognitive therapy                                                                                   |
|                                     | Problem-solving strategies                                                                          |
|                                     | Paradoxical intention                                                                               |
|                                     | Relaxation methods                                                                                  |
|                                     | Others                                                                                              |
| <b>Other approaches</b>             | Bright-light therapy                                                                                |
|                                     | Exercise intervention                                                                               |
|                                     | Electric stimulation techniques                                                                     |
|                                     | Transcranial magnetic stimulation techniques                                                        |
|                                     | Hypnosis                                                                                            |
|                                     | Music-therapy                                                                                       |
|                                     | Yoga                                                                                                |
|                                     | Tai Chi                                                                                             |
|                                     | Acupuncture                                                                                         |
|                                     | Others                                                                                              |

<https://doi.org/10.1371/journal.pone.0282614.t001>

nighttime sleep, respectively. In addition, the scores from the Insomnia Severity Index (ISI) or the Pittsburgh Sleep Quality Index (PSQI) are also the outcomes that we are interested in. For both questionnaires, a higher score indicates more severe insomnia (ISI) or worse sleep quality (PSQI). To measure the acceptability of treatments, we will use the proportion of patients who stopped treatment for any reason (all-cause discontinuation) [42]. Acceptability reflects how well the intervention was accepted by patients and whether they continued to use the intervention because it was effective.

## Study selection and screening

We will import the retrieved records into EndNote X9 (Thomson Reuters (Scientific) LLC Philadelphia, PA, US) software for management. Pairs of reviewers will screen out the potentially relevant studies by reading the titles and abstracts of all articles. The full-text review will be performed independently by the same review authors according to the inclusion and

exclusion criteria. Disagreements will be resolved by discussion. If the dispute cannot be resolved by discussion, we will consult a third review author.

### Data extraction

Pairs of reviewers will independently extract the data using a standardized form, which covers the following items: (1) basic characteristics, including first author, publication year, country, funding, and study design; (2) patient characteristics, including grouping and sample size, age and sex of patients, cancer stage and type, diagnostic methods of insomnia, insomnia duration; (3) intervention characteristics, including experimental and control methods, treatment duration, and length of follow-up; (4) outcomes of interest. We will solve disagreements through discussion with the third reviewer.

### Risk of bias assessment

We will assess the risk of bias of included randomized controlled trials using a revised version of the Cochrane tool for assessing the risk of bias in randomized trials (RoB 2.0) [43, 44]. The assessment list includes the following domains: bias arising from the randomization process, bias due to deviations from intended interventions, bias due to missing outcome data, bias in the measurement of the outcome, and bias in the selection of the reported result. We will rate each domain as either: low risk of bias, some concerns—probably low risk of bias, some concerns—probably high risk of bias, or high risk of bias. We will rate trials at high risk of bias overall if one or more domains are rated as some concerns—probably high risk of bias, or as high risk of bias and as low risk of bias overall if all domains are rated as some concerns—probably low risk of bias or low risk of bias. In our study, one reviewer will rate the risk of bias of each study according to the scale and another will review it. Reviewers will resolve discrepancies by discussion and, when not possible, with adjudication by a third party.

### Data synthesis

We will conduct pairwise meta-analyses using a Bayesian framework with the random-effects model. We will use odds ratio (OR) with 95% credible intervals for the dichotomous variable (ie. acceptability). For continuous variables, we will use standardized mean differences or mean differences with 95% credible intervals. The heterogeneity between head-to-head trials will be estimated using  $I^2$  statistics and  $P$ -value. The values of 25%, 50%, and 75% for the  $I^2$  as indicative of low, moderate, and high statistical heterogeneity, respectively. We will evaluate the publication bias with the Egger test and funnel plots if the number of studies exceeded 10 [45]. A 2-tailed  $P$  value  $< 0.05$  is considered statistically significant.

For network meta-analysis, we will create a network plot to present the geometry of the network of comparisons across trials using Stata version 15.1 (StataCorp, College Station, TX). The NMA will be conducted on both direct evidence and indirect evidence in a Bayesian random-effects framework using gemtc R package in R version 3.6.3 (RStudio, Boston, MA) [43]. For all analyses, we will use three chains with 100 000 iterations after an initial burn-in of 10 000 and a thinning of 10. We will use the deviance information criterion (DIC) to compare model fit and parsimony. The convergence will be assessed using the Brooks-Gelman-Rubin (BGR) plots method [46]. We will assess the global heterogeneity for all comparisons from the network meta-analysis models using the  $I^2$  statistic with the gemtc R package. We will use the node-splitting method to examine the inconsistency between direct and indirect estimates [47]. We will evaluate, according to the surface under the cumulative ranking curve, the rank probabilities for interventions [48]. We will generate comparison-adjusted funnel plots to explore the presence of small sample effects among the networks [49].

## Subgroup analysis and sensitivity analysis

Where sufficient data are available, we will conduct subgroup analyses or meta-regression analyses based on country and mean age of patients; subtype, histology, stage, and treatment (eg, surgery, chemotherapy, endocrine therapy) of breast cancer; comorbid disorders, and duration of interventions and insomnia. We will also conduct sensitivity analyses to explore the influence of variables on the outcomes. Planned sensitivity analyses will exclude trials with a high risk of bias or significant levels of missing data.

## Grading the strength of evidence

We will assess the certainty of the direct, indirect, and network estimate for all outcomes according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, considering the risk of bias, inconsistency, indirectness, publication bias, intransitivity, incoherence (difference between direct and indirect effects), and imprecision [50, 51]. We will rate the certainty for each comparison and outcome as high, moderate, low, or very low. Two reviewers with experience in using GRADE will rate each domain for each comparison and outcome separately, and resolve differences through discussion.

## Discussion

Insomnia has become a prevalent and significant public health problem [52]. It is common both in the general population and in all cancer patients, but has been shown to be particularly prevalent among breast cancer patients [53, 54]. Approximately 30%-50% of breast cancer survivors have insomnia persisting years after treatment [53]. Stress, anxiety, discomfort after surgery such as chronic pain after breast surgery, and side effects of treatment such as hot flashes and night sweats, which are common after chemotherapy and endocrine therapy, can all contribute to insomnia in breast cancer patients [12, 14, 53, 55, 56]. Insomnia may be related to the occurrence of some adverse health outcomes, such as poor physical health, poor mental health, including symptoms of anxiety and depression, and decreased quality of life [57, 58]. Therefore, there is an urgent need to explore a safe, efficient, and easily available treatment method for insomnia in breast cancer patients. So far, many studies have been conducted on insomnia in breast cancer patients. The therapeutic effects of CBT-I, acupuncture, Tai Chi, and mindfulness-based interventions on insomnia in breast cancer patients have been proven by multiple randomized controlled trials [59–64]. There is also a systematic review that evaluated the therapeutic effect of CBT-I [65]. However, there is still a lack of high-quality review of evidence summarizing the effectiveness and harm of different interventions for insomnia in breast cancer patients.

Our research will explore the comparative effectiveness and acceptability of all currently available interventions for insomnia in patients with breast cancer, and we will use the GRADE approach to assess the certainty of the evidence supporting the effect of treatment. The state-of-the-art methodology will also be used to summarize the relative effectiveness of competing interventions. The results of our review will help provide more evidence for the treatment of insomnia in breast cancer patients.

## Supporting information

**S1 Appendix. Search strategy for each database.**  
(DOCX)

**S1 Checklist. PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: Recommended items to address in a systematic review**

protocol\*.

(DOC)

## Author Contributions

**Conceptualization:** Zhifan Li, Qian Wang, Junxia Xu, Qihua Song, Xiaoling Ling.

**Investigation:** Zhifan Li, Qian Wang.

**Methodology:** Zhifan Li, Xiaoling Ling, Ya Gao, Junqiang Lei.

**Project administration:** Junqiang Lei.

**Resources:** Zhifan Li, Qian Wang, Junxia Xu, Xiaoling Ling.

**Supervision:** Junqiang Lei.

**Visualization:** Zhifan Li, Qian Wang, Junxia Xu, Qihua Song.

**Writing – original draft:** Zhifan Li.

**Writing – review & editing:** Zhifan Li, Ya Gao, Junqiang Lei.

## References

1. Sateia MJ, Lang BJ. Sleep and cancer: recent developments. *Curr Oncol Rep.* 2008; 10(4):309–18. Epub 2008/09/10. <https://doi.org/10.1007/s11912-008-0049-0> PMID: 18778557.
2. Induru RR, Walsh D. Cancer-related insomnia. *Am J Hosp Palliat Care.* 2014; 31(7):777–85. Epub 2013/10/22. <https://doi.org/10.1177/1049909113508302> PMID: 24142594.
3. Dozeman E, Verdonck-de Leeuw IM, Savard J, van Straten A. Guided web-based intervention for insomnia targeting breast cancer patients: Feasibility and effect. *Internet Interv.* 2017; 9:1–6. Epub 2017/04/19. <https://doi.org/10.1016/j.invent.2017.03.005> PMID: 30135831; PubMed Central PMCID: PMC6096207.
4. Howell D, Oliver TK, Keller-Olaman S, Davidson JR, Garland S, Samuels C, et al. Sleep disturbance in adults with cancer: a systematic review of evidence for best practices in assessment and management for clinical practice. *Ann Oncol.* 2014; 25(4):791–800. Epub 2013/11/30. <https://doi.org/10.1093/annonc/mdt506> PMID: 24287882.
5. Savard J, Ivers H, Villa J, Caplette-Gingras A, Morin CM. Natural course of insomnia comorbid with cancer: an 18-month longitudinal study. *J Clin Oncol.* 2011; 29(26):3580–6. Epub 2011/08/10. <https://doi.org/10.1200/JCO.2010.33.2247> PMID: 21825267.
6. Palesh OG, Roscoe JA, Mustian KM, Roth T, Savard J, Ancoli-Israel S, et al. Prevalence, demographics, and psychological associations of sleep disruption in patients with cancer: University of Rochester Cancer Center-Community Clinical Oncology Program. *J Clin Oncol.* 2010; 28(2):292–8. Epub 2009/11/26. <https://doi.org/10.1200/JCO.2009.22.5011> PMID: 19933917; PubMed Central PMCID: PMC2815717 found at the end of this article.
7. Gao Y, Liu M, Yao L, Yang Z, Chen Y, Niu M, et al. Cognitive behavior therapy for insomnia in cancer patients: a systematic review and network meta-analysis. *J Evid Based Med.* 2022; 15(3):216–29. Epub 2022/08/24. <https://doi.org/10.1111/jebm.12485> PMID: 35996803.
8. Savard J, Morin CM. Insomnia in the context of cancer: a review of a neglected problem. *J Clin Oncol.* 2001; 19(3):895–908. Epub 2001/02/07. <https://doi.org/10.1200/JCO.2001.19.3.895> PMID: 11157043.
9. Haidinger R, Bauerfeind I. Long-Term Side Effects of Adjuvant Therapy in Primary Breast Cancer Patients: Results of a Web-Based Survey. *Breast Care (Basel).* 2019; 14(2):111–6. Epub 2019/12/05. <https://doi.org/10.1159/000497233> PMID: 31798383; PubMed Central PMCID: PMC6886114.
10. Schmidt ME, Wiskemann J, Steindorf K. Quality of life, problems, and needs of disease-free breast cancer survivors 5 years after diagnosis. *Qual Life Res.* 2018; 27(8):2077–86. Epub 2018/05/10. <https://doi.org/10.1007/s11136-018-1866-8> PMID: 29740782.
11. Savard J, Davidson JR, Ivers H, Quesnel C, Rioux D, Dupré V, et al. The association between nocturnal hot flashes and sleep in breast cancer survivors. *J Pain Symptom Manag.* 2004; 27(6):513–22. Epub 2004/05/29. <https://doi.org/10.1016/j.jpainsymman.2003.10.013> PMID: 15165649.
12. Desai K, Mao JJ, Su I, Demichele A, Li Q, Xie SX, et al. Prevalence and risk factors for insomnia among breast cancer patients on aromatase inhibitors. *Support Care Cancer.* 2013; 21(1):43–51. Epub 2012/

05/16. <https://doi.org/10.1007/s00520-012-1490-z> PMID: 22584732; PubMed Central PMCID: PMC3600410.

13. Couzi RJ, Helzlsouer KJ, Fetting JH. Prevalence of menopausal symptoms among women with a history of breast cancer and attitudes toward estrogen replacement therapy. *J Clin Oncol*. 1995; 13 (11):2737–44. Epub 1995/11/01. <https://doi.org/10.1200/JCO.1995.13.11.2737> PMID: 7595732.
14. Cho NY, Kim S, Nowakowski S, Shin C, Suh S. Sleep disturbance in women who undergo surgical menopause compared with women who experience natural menopause. *Menopause*. 2019; 26(4):357–64. Epub 2018/11/14. <https://doi.org/10.1097/GME.0000000000001257> PMID: 30422933.
15. Trudel-Fitzgerald C, Zhou ES, Poole EM, Zhang X, Michels KB, Eliassen AH, et al. Sleep and survival among women with breast cancer: 30 years of follow-up within the Nurses' Health Study. *Br J Cancer*. 2017; 116(9):1239–46. Epub 2017/03/31. <https://doi.org/10.1038/bjc.2017.85> PMID: 28359077; PubMed Central PMCID: PMC5418457 data.
16. Bach L, Kalder M, Kostev K. Depression and sleep disorders are associated with early mortality in women with breast cancer in the United Kingdom. *J Psychiatr Res*. 2021; 143:481–4. Epub 2020/12/03. <https://doi.org/10.1016/j.jpsychires.2020.11.036> PMID: 33261819.
17. Gao Y, Ge L, Liu M, Niu M, Chen Y, Sun Y, et al. Comparative efficacy and acceptability of cognitive behavioral therapy delivery formats for insomnia in adults: A systematic review and network meta-analysis. *Sleep Med Rev*. 2022; 64:101648. Epub 2022/06/28. <https://doi.org/10.1016/j.smrv.2022.101648> PMID: 35759820.
18. Mysliwiec V, Martin JL, Ulmer CS, Chowdhuri S, Brock MS, Spevak C, et al. The Management of Chronic Insomnia Disorder and Obstructive Sleep Apnea: Synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines. *Ann Intern Med*. 2020; 172 (5):325–36. Epub 2020/02/18. <https://doi.org/10.7326/M19-3575> PMID: 32066145.
19. Riemann D, Baglioni C, Bassetti C, Bjorvatn B, Dolenc Groselj L, Ellis JG, et al. European guideline for the diagnosis and treatment of insomnia. *J Sleep Res*. 2017; 26(6):675–700. Epub 2017/09/07. <https://doi.org/10.1111/jsr.12594> PMID: 28875581.
20. Buscemi N, Vandermeer B, Friesen C, Bialy L, Tubman M, Ospina M, et al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs. *J Gen Intern Med*. 2007; 22 (9):1335–50. Epub 2007/07/11. <https://doi.org/10.1007/s11606-007-0251-z> PMID: 17619935; PubMed Central PMCID: PMC2219774.
21. National Institutes of Health State of the Science Conference statement on Manifestations and Management of Chronic Insomnia in Adults, June 13–15, 2005. *Sleep*. 2005; 28(9):1049–57. Epub 2005/11/05. <https://doi.org/10.1093/sleep/28.9.1049> PMID: 16268373.
22. Matthews EE, Arnedt JT, McCarthy MS, Cuddihy LJ, Aloia MS. Adherence to cognitive behavioral therapy for insomnia: a systematic review. *Sleep Med Rev*. 2013; 17(6):453–64. Epub 2013/04/23. <https://doi.org/10.1016/j.smrv.2013.01.001> PMID: 23602124; PubMed Central PMCID: PMC3720832.
23. Kim SA, Lee SH, Kim JH, van den Noort M, Bosch P, Won T, et al. Efficacy of Acupuncture for Insomnia: A Systematic Review and Meta-Analysis. *Am J Chin Med*. 2021; 49(5):1135–50. Epub 2021/05/30. <https://doi.org/10.1142/S0192415X21500543> PMID: 34049475.
24. Jing R, Feng K. Efficacy of intradermal acupuncture for insomnia: a meta-analysis. *Sleep Med*. 2021; 85:66–74. Epub 2021/07/19. <https://doi.org/10.1016/j.sleep.2021.06.034> PMID: 34274814.
25. Choi TY, Kim JI, Lim HJ, Lee MS. Acupuncture for Managing Cancer-Related Insomnia: A Systematic Review of Randomized Clinical Trials. *Integr Cancer Ther*. 2017; 16(2):135–46. Epub 2016/08/18. <https://doi.org/10.1177/1534735416664172> PMID: 27531549; PubMed Central PMCID: PMC5739128.
26. Tan JY, Molassiotis A, Wang T, Suen LK. Adverse events of auricular therapy: a systematic review. *Evid Based Complement Alternat Med*. 2014; 2014:506758. Epub 2014/12/02. <https://doi.org/10.1155/2014/506758> PMID: 25435890; PubMed Central PMCID: PMC4241563.
27. Kennett L, Bei B, Jackson ML. A Randomized Controlled Trial to Examine the Feasibility and Preliminary Efficacy of a Digital Mindfulness-Based Therapy for Improving Insomnia Symptoms. *Mindfulness (N Y)*. 2021;1–13. Epub 2021/08/12. <https://doi.org/10.1007/s12671-021-01714-5> PMID: 34377217; PubMed Central PMCID: PMC8342656.
28. Kim HG. Effects and mechanisms of a mindfulness-based intervention on insomnia. *Yeungnam Univ J Med*. 2021; 38(4):282–8. Epub 2021/01/15. <https://doi.org/10.12701/yujm.2020.00850> PMID: 33440465.
29. Ong JC, Manber R, Segal Z, Xia Y, Shapiro S, Wyatt JK. A randomized controlled trial of mindfulness meditation for chronic insomnia. *Sleep*. 2014; 37(9):1553–63. Epub 2014/08/22. <https://doi.org/10.5665/sleep.4010> PMID: 25142566; PubMed Central PMCID: PMC4153063.
30. Gross CR, Kreitzer MJ, Reilly-Spong M, Wall M, Winbush NY, Patterson R, et al. Mindfulness-based stress reduction versus pharmacotherapy for chronic primary insomnia: a randomized controlled clinical

trial. *Explore (NY)*. 2011; 7(2):76–87. Epub 2011/03/15. <https://doi.org/10.1016/j.explore.2010.12.003> PMID: 21397868; PubMed Central PMCID: PMC3077056.

31. Halpern J, Cohen M, Kennedy G, Reece J, Cahan C, Baharav A. Yoga for improving sleep quality and quality of life for older adults. *Altern Ther Health Med*. 2014; 20(3):37–46. Epub 2014/04/24. PMID: 24755569.
32. Tunuguntla R, Tunuguntla H, Kathuria H, Verma S. Effectiveness of App-Based Yoga of Immortals (YOI) Intervention for Insomnia in Asian Population during Pandemic Restrictions. *Int J Environ Res Public Health*. 2021; 18(11):5706. Epub 2021/06/03. <https://doi.org/10.3390/ijerph18115706> PMID: 34073407; PubMed Central PMCID: PMC8199123.
33. Afonso RF, Hachul H, Kozasa EH, Oliveira Dde S, Goto V, Rodrigues D, et al. Yoga decreases insomnia in postmenopausal women: a randomized clinical trial. *Menopause*. 2012; 19(2):186–93. Epub 2011/11/04. <https://doi.org/10.1097/gme.0b013e318228225f> PMID: 22048261.
34. Hausenblas H, Hooper S, Hooper D, Coyle K, Lynch T. Efficacy of Wholetones® 2Sleep and classical music on sleep and health behaviors of adults with insomnia symptoms: A single blind, randomized, controlled, crossover pilot trial. *Sleep Sci*. 2019; 12(4):302–6. Epub 2020/04/23. <https://doi.org/10.5935/1984-0063.20190091> PMID: 32318252; PubMed Central PMCID: PMC7159072.
35. Li F, Fisher KJ, Harmer P, Irbe D, Tearse RG, Weimer C. Tai chi and self-rated quality of sleep and daytime sleepiness in older adults: a randomized controlled trial. *J Am Geriatr Soc*. 2004; 52(6):892–900. Epub 2004/05/27. <https://doi.org/10.1111/j.1532-5415.2004.52255.x> PMID: 15161452.
36. Irwin MR, Olmstead R, Carrillo C, Sadeghi N, Breen EC, Witarama T, et al. Cognitive behavioral therapy vs. Tai Chi for late life insomnia and inflammatory risk: a randomized controlled comparative efficacy trial. *Sleep*. 2014; 37(9):1543–52. Epub 2014/08/22. <https://doi.org/10.5665/sleep.4008> PMID: 25142571; PubMed Central PMCID: PMC4153053.
37. Samara MT, Huhn M, Chiocchia V, Schneider-Thoma J, Wiegand M, Salanti G, et al. Efficacy, acceptability, and tolerability of all available treatments for insomnia in the elderly: a systematic review and network meta-analysis. *Acta Psychiatr Scand*. 2020; 142(1):6–17. Epub 2020/06/11. <https://doi.org/10.1111/acps.13201> PMID: 32521042.
38. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev*. 2015; 4(1):1. Epub 2015/01/03. <https://doi.org/10.1186/2046-4053-4-1> PMID: 25554246; PubMed Central PMCID: PMC4320440.
39. Savard J, Ivers H, Savard MH. Are there patients who benefit less from a self-administered cognitive-behavioral therapy for cancer-related insomnia? *Psycho-oncology*. 2015; 24:88–9. PubMed PMID: CN-01091949.
40. Palesh O, Innominate P, Mustian K, Janelsins M, Neri E, Koopman C, et al. Brief behavioral therapy for insomnia (BBT-I) in breast cancer (BC) during chemotherapy: A randomized pilot study. *Supportive Care in Cancer*. 2013; 21:S279. PubMed PMID: rayyan-4449949.
41. Garland SN, Gehrman P, Barg FK, Xie SX, Mao JJ. CHOosing Options for Insomnia in Cancer Effectively (CHOICE): Design of a patient centered comparative effectiveness trial of acupuncture and cognitive behavior therapy for insomnia. *Contemp Clin Trials*. 2016; 47:349–55. <https://doi.org/10.1016/j.cct.2016.02.010> PMID: 26956541.
42. De Crescenzo F D'Alo GL, Ostinelli EG, Ciabattini M, Di Franco V, Watanabe N, et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: a systematic review and network meta-analysis. *Lancet*. 2022; 400(10347):170–84. Epub 2022/07/18. [https://doi.org/10.1016/S0140-6736\(22\)00878-9](https://doi.org/10.1016/S0140-6736(22)00878-9) PMID: 35843245.
43. Siemieniuk RA, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A, Kum E, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. *BMJ (Clinical research ed)*. 2020; 370:m2980. Epub 2020/08/01. <https://doi.org/10.1136/bmj.m2980> PMID: 32732190.
44. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019; 366:i4898. Epub 2019/08/30. <https://doi.org/10.1136/bmj.i4898> PMID: 31462531.
45. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed)*. 1997; 315(7109):629–34. Epub 1997/10/06. <https://doi.org/10.1136/bmj.315.7109.629> PMID: 9310563; PubMed Central PMCID: PMC2127453.
46. Zhou X, Zhang Y, Furukawa TA, Cuijpers P, Pu J, Weisz JR, et al. Different Types and Acceptability of Psychotherapies for Acute Anxiety Disorders in Children and Adolescents: A Network Meta-analysis. *JAMA psychiatry*. 2019; 76(1):41–50. Epub 2018/11/02. <https://doi.org/10.1001/jamapsychiatry.2018.3070> PMID: 30383099.
47. Brooks SP GA. General methods for monitoring convergence of iterative simulations. *Journal of Computational and Graphical Statistics* 1998; 7(4):434–455.

48. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. *Ann Intern Med.* 2015; 162(11):777–84. Epub 2015/06/02. <https://doi.org/10.7326/M14-2385> PMID: 26030634.
49. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. *Journal of clinical epidemiology.* 2011; 64(2):163–71. Epub 2010/08/07. <https://doi.org/10.1016/j.jclinepi.2010.03.016> PMID: 20688472.
50. Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. *BMJ.* 2014; 349:g5630. Epub 2014/09/26. <https://doi.org/10.1136/bmj.g5630> PMID: 25252733.
51. Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. *J Clin Epidemiol.* 2018; 93:36–44. Epub 2017/10/21. <https://doi.org/10.1016/j.jclinepi.2017.10.005> PMID: 29051107.
52. Morin CM, Benca R. Chronic insomnia. *Lancet.* 2012; 379(9821):1129–41. Epub 2012/01/24. [https://doi.org/10.1016/S0140-6736\(11\)60750-2](https://doi.org/10.1016/S0140-6736(11)60750-2) PMID: 22265700.
53. Savard J, Simard S, Blanchet J, Ivers H, Morin CM. Prevalence, clinical characteristics, and risk factors for insomnia in the context of breast cancer. *Sleep.* 2001; 24(5):583–90. Epub 2001/08/02. <https://doi.org/10.1093/sleep/24.5.583> PMID: 11480655.
54. Davidson JR, MacLean AW, Brundage MD, Schulze K. Sleep disturbance in cancer patients. *Soc Sci Med.* 2002; 54(9):1309–21. Epub 2002/06/13. [https://doi.org/10.1016/s0277-9536\(01\)00043-0](https://doi.org/10.1016/s0277-9536(01)00043-0) PMID: 12058848.
55. Van Onselen C, Aouizerat BE, Dunn LB, Paul SM, West C, Hamolsky D, et al. Differences in sleep disturbance, fatigue and energy levels between women with and without breast pain prior to breast cancer surgery. *Breast.* 2013; 22(3):273–6. Epub 2012/08/04. <https://doi.org/10.1016/j.breast.2012.07.007> PMID: 22858121; PubMed Central PMCID: PMC3524341.
56. Kwak A, Jacobs J, Haggett D, Jimenez R, Peppercorn J. Evaluation and management of insomnia in women with breast cancer. *Breast Cancer Res Treat.* 2020; 181(2):269–77. Epub 2020/04/22. <https://doi.org/10.1007/s10549-020-05635-0> PMID: 32314110.
57. Kyle SD, Morgan K, Espie CA. Insomnia and health-related quality of life. *Sleep Med Rev.* 2010; 14(1):69–82. Epub 2009/12/08. <https://doi.org/10.1016/j.smrv.2009.07.004> PMID: 19962922.
58. Scott GW, Scott HM, O'Keeffe KM, Gander PH. Insomnia—treatment pathways, costs and quality of life. *Cost Eff Resour Alloc.* 2011; 9:10. Epub 2011/06/23. <https://doi.org/10.1186/1478-7547-9-10> PMID: 21693060; PubMed Central PMCID: PMC3152521.
59. Savard J, Simard S, Ivers H, Morin CM. Randomized study on the efficacy of cognitive-behavioral therapy for insomnia secondary to breast cancer, part I: Sleep and psychological effects. *J Clin Oncol.* 2005; 23(25):6083–96. Epub 2005/09/02. <https://doi.org/10.1200/JCO.2005.09.548> PMID: 16135475.
60. Epstein DR, Dirksen SR. Randomized trial of a cognitive-behavioral intervention for insomnia in breast cancer survivors. *Oncol Nurs Forum.* 2007; 34(5):E51–9. Epub 2007/09/20. <https://doi.org/10.1188/07.ONF.E51-E59> PMID: 17878117.
61. Matthews EE, Berger AM, Schmiege SJ, Cook PF, McCarthy MS, Moore CM, et al. Cognitive behavioral therapy for insomnia outcomes in women after primary breast cancer treatment: a randomized, controlled trial. *Oncol Nurs Forum.* 2014; 41(3):241–53. Epub 2014/03/22. <https://doi.org/10.1188/14.ONF.41-03AP> PMID: 24650832.
62. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Tai chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: a randomized controlled trial. *J Natl Cancer Inst Monogr.* 2014; 2014(50):295–301. Epub 2015/03/10. <https://doi.org/10.1093/jncimonographs/lgu028> PMID: 25749595; PubMed Central PMCID: PMC4411534.
63. Irwin MR, Olmstead R, Carrillo C, Sadeghi N, Nicassio P, Ganz PA, et al. Tai Chi Chih Compared With Cognitive Behavioral Therapy for the Treatment of Insomnia in Survivors of Breast Cancer: A Randomized, Partially Blinded, Noninferiority Trial. *J Clin Oncol.* 2017; 35(23):2656–65. Epub 2017/05/11. <https://doi.org/10.1200/JCO.2016.71.0285> PMID: 28489508; PubMed Central PMCID: PMC5549450.
64. Höxtermann MD, Buner K, Haller H, Kohl W, Dobos G, Reinisch M, et al. Efficacy and Safety of Auricular Acupuncture for the Treatment of Insomnia in Breast Cancer Survivors: A Randomized Controlled Trial. *Cancers (Basel).* 2021; 13(16):4082. Epub 2021/08/28. <https://doi.org/10.3390/cancers13164082> PMID: 34439234; PubMed Central PMCID: PMC8394534.
65. Ma Y, Hall DL, Ngo LH, Liu Q, Bain PA, Yeh GY. Efficacy of cognitive behavioral therapy for insomnia in breast cancer: A meta-analysis. *Sleep Med Rev.* 2021; 55:101376. Epub 2020/09/29. <https://doi.org/10.1016/j.smrv.2020.101376> PMID: 32987319; PubMed Central PMCID: PMC8210529.