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Abstract

BK polyomavirus-associated nephropathy occurs in kidney transplant recipients under

immunosuppressive treatment. BK polyomavirus is implicated in cancer development and

invasion, and case reports of renal cell carcinoma and urothelial carcinoma possibly associ-

ated with BK polyomavirus has been reported. Further, it has been suggested that the

immune responses of KT-related diseases could play a role in the pathogenesis and pro-

gression of renal cell carcinoma. Thus, we thought to examine the relationship between BK

polyomavirus-associated nephropathy and renal cell carcinoma in terms of gene expres-

sion. To identify the common and specific immune responses involved in kidney transplanta-

tion-related diseases with a specific focus on BK polyomavirus-associated nephropathy, we

performed consensus weighted gene co-expression network analysis on gene profile data-

sets of renal biopsy samples from different institutions. After the identification of gene mod-

ules and validation of the obtained network by immunohistochemistry of the marker across

kidney transplantation-related diseases, the relationship between prognosis of renal cell

carcinoma and modules was assessed. We included the data from 248 patients and identi-

fied the 14 gene clusters across the datasets. We revealed that one cluster related to the

translation regulating process and DNA damage response was specifically upregulated in

BK polyomavirus-associated nephropathy. There was a significant association between the

expression value of hub genes of the identified cluster including those related to cGAS-

STING pathway and DNA damage response, and the prognosis of renal cell carcinoma.

The study suggested the potential link between kidney transplantation-related diseases,

especially specific transcriptomic signature of BK polyomavirus associated nephropathy

and renal cell carcinoma.
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Introduction

BK polyomavirus (BKPyV) is a double-stranded DNA virus that was first isolated from a kid-

ney transplant (KT) recipient’s urine sample. BK polyomavirus nephropathy (BKPyVAN)

occurs in 8% of KT recipients [1], and one study reported that about 50% of BKPyVAN

patients lost their allografts six months post-diagnosis on average [2]. BKPyVAN is treated by

reducing immunosuppression, and definitive treatments are being discussed [3, 4]. Recent

studies reported that BKPyV successfully replicates themselves by inducing DNA damage

response (DDR) when the genome of the infected cell is damaged [5, 6]. Investigating the

molecular backgrounds behind BKPyV infection is crucial for understanding the pathogenesis

in detail.

Transcriptomic studies have been performed for KT-related diseases including BKPyVAN

and T-cell mediated rejection (TCMR), which is one of the major problems after KT. One

recent study concluded that it is not feasible to distinguish BKPyVAN and concurrent TCMR

using microarray datasets, highlighting that two conditions have similar immune responses

and the importance of comparing these conditions by taking the similarity and dissimilarity

into account [7]. However, few studies have examined transcriptomic differences of these con-

ditions across multiple datasets.

Further, it has been reported that renal cell carcinoma (RCC) is an immunogenic tumor,

and the immune responses of these KT-related diseases could play a critical role in its patho-

genesis and progression [8, 9]. The BKPyV infection has been reported to be related to cancer

through several mechanisms including viral integration and sustained proliferative signaling

[10]. However, whether there is a relationship between the identified transcriptomic signature

of KT-related diseases, especially BKPyVAN, and RCC in terms of the prognosis of the patients

remained unclear.

In this study, to assess the relationship between KT-related diseases and RCC, we first per-

formed the consensus weighted gene co-expression network analysis (WGCNA) to elucidate

the specific and common features of KT-related clinical conditions across different datasets

and institutions, with a specific focus on BKPyVAN [11]. After the validation by immunohis-

tochemistry (IHC), we assessed the relationship between identified clusters and RCC progno-

sis, thus exploring the potential link between KT-related diseases and RCC.

Materials and methods

Weighted gene co-expression network analysis

We first searched for molecular studies investigating BKPyVAN and summarized the result.

Among them, we gathered and recategorized publicly available microarray and RNA-seq data-

sets related to BKPyVAN, and the details are summarized in S1 Text. We performed WGCNA

to construct gene co-expression networks to identify consensus modules and hub genes play-

ing important roles in KT-related diseases using microarray datasets. The detail of the analysis

was summarized in S2 Text. Based on the calculated modules, we performed linear regression

analysis with the module eigengenes (MEs) as the outcome variable, and disease status as the

predictor variable, to identify which eigengene differed across the disease status for each data-

set. The relationship between ME is depicted by the R library pvclust [12].

The annotation of the modules and identifying the hub genes

Statistically significant modules were annotated using reactome using over-representation

analysis by ReactomePA [13, 14]. The hub genes of the specific consensus modules were

defined by kME (eigengene-based connectivity), which assessed intramodular connectivity,
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calculated by the function consensusKME. We defined those genes with the consensus kME

values of 0.75 or above as hub genes in the module.

The immunohistochemistry staining in renal biopsy samples

To validate the inferred network, we performed the IHC of a phosphorylated form of H2A his-

tone family member X (γH2AX), which is one of the components of histone H2A. After DNA

double-stranded breaks, H2AX is phosphorylated specifically at serine 139 and referred to as

γH2AX [15]. We specifically examined γH2AX among the identified hub genes as it has been

broadly used as a sensitive molecular marker to detect DNA damage and repair [16]. We per-

formed IHC of γH2AX on paraffin-embedded needle renal biopsy specimens from two, one,

and two patients with pathologists-diagnosed BKPyVAN, BKPyVAN with the suspected con-

current acute rejection (AR), and AR respectively. Additionally, as the negative and positive

control, normal biopsy specimens obtained from the protocol biopsy of kidney transplanta-

tion, and a specimen of RCC were stained. For BKPyVAN specimens, SV40 staining was addi-

tionally performed on the serial section. IHC was performed on 4 μm deparaffinized tissue

slices after antigen retrieval in the citrate buffer (pH 6.8) of 120˚C for 15 minutes. The primary

antibody used was γH2AX (Cell Signaling Technology, #9718) and SV40 (Sigma-Aldrich,

PAb416). For indirect staining, Histofine Simple Stain MAX PO (Nichirei Biochemicals,

Japan) and DAB Substrate Kit (Vector Labs, CA) were used. The slides were examined by

BZ-X710 microscopy (Keyence, Japan). The study protocol was approved by the Ethics Com-

mittee on Human Research of the Graduate School of Medicine, Kyoto University (No. G0562

and R0254), and the study adhered to the Declaration of Helsinki. The written informed con-

sent was obtained from the patients of KT biopsy samples. For RCC samples, written consent

has been obtained for the study protocol No. R0097, and we provide opt-out information on

the homepage of our department for research use of the study protocol No. R0254.

Validation in RNA-seq dataset

We performed module preservation analysis using RNA-seq data investigating transplant kid-

ney biopsies, and defining housekeeping genes for KT-related diseases [17, 18]. The dataset

contains RNA-seq data of 30 kidney biopsies of 5 clinical conditions. We used DESeq-normal-

ized count data as input. The modules discovered in consensus network analysis in the micro-

array network were tested for its preservation in RNA-seq dataset by comparing each

microarray dataset and RNA-seq dataset. Additionally, module eigengene of the specific mod-

ule was calculated in RNA-seq dataset, and compared between clinical conditions.

The survival analysis

The log2 transformed, RSEM normalized transcript data and metadata of The Cancer Genome

Atlas Kidney Renal Clear Cell Carcinoma was downloaded from UCSC Xena browser [19].

Kaplan-Meier plots were drawn to visualize the overall survival across the group divided by

the first principal component of expression values of the gene signatures. The Cox propor-

tional hazard models were deployed to derive hazard ratios for an association between gene

signatures and overall survival. The genes with top-5 kME were used as the signatures for each

module. Age, gender, tumor grade, and stratified pathologic stage were included as covariates.

The pathologic stage and tumor grade are known to be prognostic factors of RCC [20]. The

model fitting including the calculation of hazard ratio (HR) and its 95% confidence interval

(CI), as well as the visualization, were performed by the R package survival and survminer [21,

22]. As reported in the literature [23], we performed the comparison with random gene
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signatures of the same number for the significant modules to assess the uniqueness of the sig-

nature on assessing the prognosis, using the function from SigCheck [24].

Statistical analysis

All statistical tests were two-sided, and p-values, or p-values correctedby the Bonferroni proce-

dure where appropriate, of less than 0.05 were considered statistically significant. The plots

were generated using R libraries firatheme, ComplexHeatmap, and ggplot2 [25–27]. The net-

work construction was performed by R library WGCNA and igraph [11, 28]. The visualization

and the network export were performed by R package ggraph and Cytoscape [29, 30].

Data availability

The microarray and RNA-seq datasets used in the study are available on the NCBI GEO data-

base under the accession numbers GSE47199, GSE72925, GSE75693, and GSE120495 [31].

The sub-networks of the investigated modules are deposited in The Network Data Exchange

and can be explored for the specific gene of interest. (https://www.ndexbio.org/#/networkset/

9be9f058-4f49-11ed-ae36-0ac135e8bacf) [32].

Results

The weighted gene co-expression network analysis

The molecular studies investigating BKPyVAN are summarized in Table 1. For consensus net-

work analysis, we included the data of 17084 gene expression profiles of 154 patients in

GSE72925, 77 patients in GSE75693, and 17 patients in GSE47199, after the preprocessing and

filtering. The results of the principal component analysis for each dataset before merging the

datasets were shown in Fig 1. For WGCNA, the relationship between soft threshold, scale-free

topology fit index, and mean connectivity for each dataset are presented in S1 Fig. We detected

14 consensus modules in total by the power of 12. The dendrogram which shows the hierarchi-

cal clustering result of MEs for each dataset is presented in S2 Fig.

The relationship between module eigengenes and clinical conditions

We performed the linear regression analysis to assess the relationship between ME and clinical

conditions. The overall result is shown in the heatmap depicting coefficients and statistical sig-

nificance, along with the number of genes in the modules (Fig 2a).

Table 1. The description of molecular studies analyzing clinically diagnosed BK polyomavirus nephropathy.

Authors Number and type of samples Background of kidney biopsy samples Availability of dataset Reference

Wang et al. 30 kidney allograft biopsies 5 ATI, BKVN, IFTA, ISN, STA, and TCMR GSE120495 [17]

Adam et al. 110 kidney biopsies BKVN and TCMR Not available [7]

Halloran et al. 102 kidney biopsies 50 BKPyVAN and 52 controls Not available [33]

Mannon et al. 42 kidney biopsies 15 normal kidney, 10 BKPyVAN, and 17 AR Not available [34]

Lubetzky

et al.
17 kidney biopsies and 40 blood samples 3 BKVN, 3 BK viremia, and 13 stable graft function GSE47199 [35]

Sigdel et al. 168 kidney biopsies 10 BKPyVAN, 26 TCMR, 59 IFTA, and 73 stable grafts GSE72925 [36]

Sigdel et al. 79 kidney biopsies (compared with urine

proteomics)

30 Standard, 15 AR, 15 BKPyVAN, 12 CAN, and 7 no

CAN

GSE75693 [37]

AR, acute rejection; ATI, acute tubular injury; BKPyVAN, BK polyomavirus-associated nephropathy; BKVN, BK polyomavirus-associated nephropathy; CAN, chronic

allograft nephropathy; IFTA, interstitial fibrosis and tubular atrophy; ISN, interstitial nephritis; STA, Standard; TCMR, T-cell mediated rejection.

https://doi.org/10.1371/journal.pone.0282534.t001
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We divided the significant modules into two categories. One category contained those

modules that significantly differed in the same direction in AR or TCMR and BKPyVAN cate-

gory in all datasets (common group), and the other contained significantly differed in the

same direction only in BKPyVAN category in all datasets (specific group). The upregulated

common group included ME4 (size 605), and interstitial fibrosis and tubular atrophy had also

upregulated ME4. The ME17 (size 758) was downregulated in both conditions. The specific

group included only ME22 (size 1841). We included these three modules for the downstream

analysis.

The module annotation

Three modules were first annotated by reactome using ReactomePA. Overall, 35, 3, and 76

reactome pathways were annotated for modules 4, 17, and 22 respectively. Module 22, which

only belonged to the specific group, included the pathway of translation regulating process,

cell cycle regulation, DNA replication, and DDR. The bar plot depicting the number of genes

in the significant pathways in Module 22 is shown in Fig 2b.

Module 4, which belonged to the common group and upregulated, contained genes that

were related to interferon signaling, T-cell receptor signaling, chemokine receptors bind che-

mokines, and the other ontologies like interleukin-family signaling. Module 17 was annotated

for pathways like metabolism of vitamins and cofactors. All the statistical results are presented

in S1 Table.

The hub genes of each module

We identified the hub genes of the modules by the threshold of kME. Module 22 contained 76

hub genes, and Module 4 and 17 contained 27 and 39 respectively. We listed all the hub genes

identified in S2 Table.

The hub genes of Module 22 contained those involved in the DDR pathway: DNA sensor

DEAD-Box Helicase 41 (DDX41), H2AX, minichromosome maintenance complex compo-

nents 5 and 7, poly-nucleotide kinase phosphatase (PNKP), and PAXX. Eukaryotic initiation

factors, as well as the other genes involved in transcription regulation including elongation

Fig 1. The results of the principal component analysis. The results of the principal component analysis of the samples for each dataset are presented.

The x and y-axis represent the principal component one and two respectively. The color indicates the disease category, and the 95% confidence ellipses

are drawn for each category. IFTA, interstitial fibrosis and tubular atrophy; Normal, normal biopsy; BKPyVAN, BK polyomavirus-associated

nephropathy; BKPyVB, normal biopsy findings with BKPyV DNAemia; AR, acute rejection; TCMR, T-cell mediated rejection; CAN, chronic allograft

nephropathy.

https://doi.org/10.1371/journal.pone.0282534.g001
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factor 1 are also included. We visualized the sub-network centered to the top-5 scored hub

gene in module 22 (Fig 3).

The hub genes of module 4 included Lymphocyte Cytosolic Protein 2, Rac Family Small

GTPase 2 and CD52. The hub genes of module 17 included eIF4E binding protein 2, solute

carrier families of SLC22A5, and SLC25A44.

Fig 2. The relationship between module eigengenes and clinical conditions. (a) The relationship between clinical conditions and the module

eigengenes is depicted for each dataset. The value and color of the cell of the heatmap represent coefficients of the linear models, and the asterisk mark

indicates significance. Note that the range of the color value is specific to each dataset. The modules are sorted according to the number of contained

genes. The color column represents the module color assigned by WGCNA. (b) The subset of significantly enriched pathways in specifically

upregulated module in BK polyomavirus-associated nephropathy. The x-axis represents the number of genes that belong to the pathway. The color

represents the values of the raw p-value.

https://doi.org/10.1371/journal.pone.0282534.g002
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As the genes of Module 22 were annotated to DDR-related reactomes and contained DDR-

related genes, we obtained the list of DDR-related genes [38], listed the subpathways of DDR

for the genes, and plotted the proportion of DDR-related genes in the modules in S3 Table and

S3 Fig. The result indicated that the genes involved in base excision repair and ribonucleotide

excision repair were mainly in Module 22.

Fig 3. The visualization of sub-network of the module related to BKPyVAN. The sub-network of the top-5 scored hub gene and genes with the

order of one from the gene within the corresponding module are visualized. The edges with the weight below the 99.9th percentile and the nodes with

zero degree were discarded beforehand. Additionally, only the edges with the weight above the 90th percentile are included in the visualization. The

color represents the consensus kME value. The edge width represents the strength of the connection between nodes. The node size represents the

average normalized expression values of BK polyomavirus-associated nephropathy patients in GSE72925.

https://doi.org/10.1371/journal.pone.0282534.g003
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Immunohistochemistry of renal biopsy samples

To examine the validity of the resulting network, we performed IHC of γH2AX, one of the

identified hub genes, for the renal biopsy specimens obtained from patients with BKPyVAN,

BKPyVAN with the suspected concurrent AR, AR, and normal findings, as well as RCC, which

was used as a positive control. The demographic information and the detailed pathological

diagnosis of the patients are shown in S4 Table.

For the BKPyVAN patient, most γH2AX-positive tubular cells were observed in the vicin-

ity of SV40-positive tubular cells (S4a–S4e Fig). There was no γH2AX signal found where

the SV40 signal was negative. On the patient with BKPyVAN with the suspected concurrent

AR, a few tubular γH2AX signals were detected, however, SV40 was not detected in this

specimen (S5a and S5b Fig). Unexpectedly, the sections cut out this time were negative for

SV40 regardless of positive at the time of the original biopsy in this patient. We speculated

loss of immunogenicity of SV40 or low specificity of γH2AX stains in long-term storage

samples (S5c Fig).

On two AR patients, one patient got a strong γH2AX signal on the infiltrating cells (S4f

Fig), however, only faint γH2AX signals in interstitial areas are observed with another patient

with AR (S4g Fig). No evident signal was detected in infiltrating cells of the interstitial areas on

the BKPyVAN patient. The specimen of RCC had a focal region of strong signal (positive con-

trol) and the control specimen (3 months protocol biopsy without any abnormality) showed

faint signals (negative control) (S4h and S4i Fig).

Validation in RNA-seq dataset

We next performed module preservation analysis comparing between each microarray dataset

and RNA-seq dataset. The results are summarized in S6A Fig. The results indicate that the

BKPyVAN-specific module is moderately to highly preserved in RNA-seq dataset. As we con-

firmed module preservation in RNA-seq dataset, we next calculated the consensus module

eigengenes in RNA-seq dataset. We compared the module eigengene of module 22 across five

disease conditions (S6B Fig), and found that BKPyVAN exhibits the highest mean value, while

TCMR exhibits lowest. This result is in concordant with the result that corresponding module

is upregulated in BKPyVAN, and not in TCMR, suggesting this module is pertinent to BKPy-

VAN across multiple datasets including microarray and RNA-seq.

Survival analysis of renal cell carcinoma

Finally, we performed the survival analysis of RCC using the expression values of identified

three modules. The tumor grade of “GX” was excluded, and “G1” was merged into “G2” cate-

gory as the number of samples was small. We included the data from 523 patients in total. The

background of the patients is summarized in S5 Table. The resulting Kaplan-Meier plots of

each module are depicted in Fig 4. The Cox proportional hazard model results indicated that

the representative expression value of module 22 using top-5 kME values was significantly

associated with the overall survival (HR = 2.06, 95% CI = 1.46–2.91, p< 0.001), while module

4 and 17 were not significantly associated (HR = 1.15, 95% CI = 0.84–1.57, p = 0.38 and

HR = 1.25, 95% CI = 0.89–1.76, p = 0.20, respectively). The genes with the top-5 kME value of

module 22 were Canopy FGF Signaling Regulator 3, interferon regulatory transcription factor

(IRF) 3, SH3KBP1 Binding Protein 1, exportin 6, and PNKP. This signature of module 22 was

significantly related to the outcome compared to the 1,000 randomly selected gene signatures

of the same length.
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Discussion

In this study, we conducted a consensus WGCNA on multiple datasets relating to KT-related

diseases. We observed similar module differences mainly consisting of immune-related path-

ways in both BKPyVAN and TCMR. These results concur with previous reports indicating

various immune response pathways plays important roles in BKPyVAN [39, 40]. However, the

same module was also upregulated in AR and TCMR, suggesting that the changes are not

BKPyVAN specific. Histologically, morphological overlapping exists between AR and BKPy-

VAN with the normal staining [41]. Additionally, a recent report using microarray data and

machine learning suggested that an immune-related gene set could not discriminate between

TCMR and BKPyVAN despite the fact that BKPyVAN specific gene expression like large T-

antigen could discriminate between TCMR and BKPyVAN [7]. We validated that these

immune responses are similar in BKPyVAN and TCMR.

Further, we revealed specific differences in BKPyVAN, which were related to the pathways

including DDR and translation initiation and regulation. BKPyV evades the cellular machin-

ery of hosts, preventing cell death from the stress caused by infection, by controlling multiple

signaling pathways to successfully replicate and survive [42, 43]. The potential mechanism of

the upregulation of the DDR pathway is to help repair the DNA damage caused by BKPyV

infection, as suggested by the previous experiment [44]. These suggested that in addition to the

cell culture experiments, renal biopsy samples from clinically diagnosed BKPyVAN had also

upregulated DDR-related genes. An et al. recently reported a single-cell transcriptome study of

BKPyV infected RPTECs [45]. They revealed that ribosomal protein (RP) genes related to

translation were downregulated in cells expressing high-level of viral transcripts while they are

upregulated in the condition with medium-level of viral transcripts at 2 days post infection.

The current study shows some similarities in that the specific module in the current manu-

script, which expression is upregulated in BKPyVAN, contains RP genes and related biological

pathways.

The result of IHC implies that the DDR pathway is upregulated during the pathogenesis of

BKPyVAN. The importance of phosphorylation of H2AX in BKPyVAN not only in the cell

culture but also in the clinical sample was confirmed. The DDR-related proteins were also sug-

gested to be important in the other studies [46, 47]. However, we cannot confirm the direct

interaction between BKPyV infection and phosphorylation of H2AX within the same cells

[44]. In this study, although the number of cases is small, the IHC results indicate that the

Fig 4. The summary of the survival analysis of the renal cell carcinoma. The Kaplan-Meier plots of the overall survival and the representative

expression value of each significant module using genes with the top-5 kME values. The p-values of log rank test are shown. The density plot represents

the distribution of p-values calculated by the same method using randomly selected genes with the same number. The solid red line indicates the p-

value of the gene signature, and the dashed line indicates p-value of 0.05.

https://doi.org/10.1371/journal.pone.0282534.g004
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staining of the DDR marker alone cannot differentiate AR from BKPyVAN clinically using the

histological images. One of the possible reasons is that some other studies reported staining of

γH2AX in other kidney diseases, and the severity of the disease could affect the result [48].

Several reports suggested that BKPyV infection is related to tumorgenesis of RCC and

urothelial carcinoma (UC). RCC occurs in both native kidneys and transplant kidneys after

KT [10, 49]. One study reported the presence of BKPyV DNA in RCC samples [50], and some

case reports showed SV40-positive RCC and collecting duct carcinoma [51, 52]. Some mecha-

nisms are proposed for the tumorgenesis by BKPyV. Recent reports indicate that BKPyV infec-

tion is a risk factor for UC through the mechanism of integration and APOBEC3-induced

genomic instability [53]. While we could not assess how gene expression contributes to the

tumorgenesis, we assessed prognostic information of transcriptomic signature specific to

BKPyV infection.

Among the top-5 hub genes related to the prognosis of RCC, PNKP is related to DDR, espe-

cially for base excision repair, IRF3 is related to the antiviral response by inducing the inter-

feron signaling, involving with the other hub gene in the same module shown in Fig 3,

DDX41, which is shown to be required for triggering the interferon signaling in cyclic

GMP-AMP synthase-stimulator of interferon genes-IRF3 cascade through DNA sensor [54,

55]. Exportin 6 is reported to be associated with some cancers [56]. The RCC has long been

studied and recognized to be an immunogenic tumor, suggested by the heavy immune infiltra-

tion [8]. These results suggested that the potential biological link between anti-tumor immu-

nologic responses of RCC and antiviral responses of BKPyVAN through DDR and stimulator

of interferon genes might exist, suggested by the result that higher expression of transcriptomic

signatures of BKPyVAN was related to poorer survival of RCC. Although the causal relation-

ship is unclear, we suspected that the worse the prognosis, the more compensatory these anti-

viral and anti-tumor signals are enhanced, but not fully compensated for. Module 4 which

contains mostly immune-related pathways did not show associations with the prognosis of

RCC.

In summary, the gene cluster involved in the translation process and DDR pathway was

specifically upregulated in BKPyVAN in the clinical renal biopsy samples as shown by consen-

sus gene network analysis. Additionally, the identified module might be related to RCC prog-

nosis. These results could potentially explain the immune responses underlying KT-related

diseases and RCC.
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40. An P, Sáenz Robles MT, Duray AM, Cantalupo PG, Pipas JM. Human polyomavirus BKV infection of

endothelial cells results in interferon pathway induction and persistence. PLoS Pathog. 2019; 15:

e1007505. https://doi.org/10.1371/journal.ppat.1007505 PMID: 30620752

41. Drachenberg CB, Papadimitriou JC, Chaudhry MR, Ugarte R, Mavanur M, Thomas B, et al. Histologi-

cal Evolution of BK Virus-Associated Nephropathy: Importance of Integrating Clinical and Pathologi-

cal Findings. Am J Transplant. 2017; 17: 2078–2091. https://doi.org/10.1111/ajt.14314 PMID:

28422412

42. Caller LG, Davies CTR, Antrobus R, Lehner PJ, Weekes MP, Crump CM. Temporal Proteomic

Analysis of BK Polyomavirus Infection Reveals Virus-Induced G2 Arrest and Highly Effective Eva-

sion of Innate Immune Sensing. J Virol. 2019; 93. https://doi.org/10.1128/JVI.00595-19 PMID:

31142673

43. Harris KF, Christensen JB, Imperiale MJ. BK virus large T antigen: interactions with the retinoblastoma

family of tumor suppressor proteins and effects on cellular growth control. J Virol. 1996; 70: 2378–2386.

https://doi.org/10.1128/JVI.70.4.2378-2386.1996 PMID: 8642665

PLOS ONE Consensus gene network analysis of BK polyomavirus-associated nephropathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0282534 June 15, 2023 13 / 14

https://doi.org/10.1371/journal.pcbi.1002240
https://doi.org/10.1371/journal.pcbi.1002240
http://www.ncbi.nlm.nih.gov/pubmed/22028643
https://doi.org/10.1093/bioinformatics/btw313
http://www.ncbi.nlm.nih.gov/pubmed/27207943
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://CRAN.R-project.org/package=ggraph
https://doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295
https://doi.org/10.1016/j.cels.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26594663
https://doi.org/10.1097/TP.0000000000003884
https://doi.org/10.1097/TP.0000000000003884
http://www.ncbi.nlm.nih.gov/pubmed/34310102
https://doi.org/10.1111/j.1600-6143.2005.01096.x
https://doi.org/10.1111/j.1600-6143.2005.01096.x
http://www.ncbi.nlm.nih.gov/pubmed/16303001
https://doi.org/10.1097/01.TP.0000437432.35227.3e
https://doi.org/10.1097/01.TP.0000437432.35227.3e
http://www.ncbi.nlm.nih.gov/pubmed/24310299
https://doi.org/10.1097/TP.0000000000001214
http://www.ncbi.nlm.nih.gov/pubmed/27140517
https://doi.org/10.1016/j.kint.2015.12.049
https://doi.org/10.1016/j.kint.2015.12.049
http://www.ncbi.nlm.nih.gov/pubmed/27165815
https://doi.org/10.1016/j.cell.2020.05.040
https://doi.org/10.1016/j.cell.2020.05.040
http://www.ncbi.nlm.nih.gov/pubmed/32649862
https://doi.org/10.2215/CJN.01750218
http://www.ncbi.nlm.nih.gov/pubmed/29789350
https://doi.org/10.1371/journal.ppat.1007505
http://www.ncbi.nlm.nih.gov/pubmed/30620752
https://doi.org/10.1111/ajt.14314
http://www.ncbi.nlm.nih.gov/pubmed/28422412
https://doi.org/10.1128/JVI.00595-19
http://www.ncbi.nlm.nih.gov/pubmed/31142673
https://doi.org/10.1128/JVI.70.4.2378-2386.1996
http://www.ncbi.nlm.nih.gov/pubmed/8642665
https://doi.org/10.1371/journal.pone.0282534


44. Jiang M, Zhao L, Gamez M, Imperiale MJ. Roles of ATM and ATR-Mediated DNA Damage Responses

during Lytic BK Polyomavirus Infection. PLoS Pathog. 2012; 8: e1002898. https://doi.org/10.1371/

journal.ppat.1002898 PMID: 22952448
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