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Abstract

Problem

Low-quality fundus images with complex degredation can cause costly re-examinations of

patients or inaccurate clinical diagnosis.

Aim

This study aims to create an automatic fundus macular image enhancement framework to

improve low-quality fundus images and remove complex image degradation.

Method

We propose a new deep learning-based model that automatically enhances low-quality reti-

nal fundus images that suffer from complex degradation. We collected a dataset, comprising

1068 pairs of high-quality (HQ) and low-quality (LQ) fundus images from the Kangbuk Sam-

sung Hospital’s health screening program and ophthalmology department from 2017 to

2019. Then, we used these dataset to develop data augmentation methods to simulate

major aspects of retinal image degradation and to propose a customized convolutional neu-

ral network (CNN) architecture to enhance LQ images, depending on the nature of the deg-

radation. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), r-

value (linear index of fuzziness), and proportion of ungradable fundus photographs before

and after the enhancement process are calculated to assess the performance of proposed

model. A comparative evaluation is conducted on an external database and four different

open-source databases.

Results

The results of the evaluation on the external test dataset showed an significant increase in

PSNR and SSIM compared with the original LQ images. Moreover, PSNR and SSIM

increased by over 4 dB and 0.04, respectively compared with the previous state-of-the-art
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methods (P < 0.05). The proportion of ungradable fundus photographs decreased from

42.6% to 26.4% (P = 0.012).

Conclusion

Our enhancement process improves LQ fundus images that suffer from complex degrada-

tion significantly. Moreover our customized CNN achieved improved performance over the

existing state-of-the-art methods. Overall, our framework can have a clinical impact on

reducing re-examinations and improving the accuracy of diagnosis.

Introduction

Retinal fundus photography is an invaluable examination tool in ophthalmology for diagnos-

ing and monitoring retinal disease. It is important because of its reliability, non-invasiveness,

low maintenance, and inexpensiveness. It enables clinicians to observe the retina in detail

through high-quality and high-resolution images. Retinal fundus photography is one of the

most basic imaging modalities, and it is used to diagnose major retinal diseases, such as age-

related macular degeneration and diabetic retinopathy.

An increase in life expectancy globally [1] is likely to increase chronic age-related eye dis-

eases. Thus, the demand for high-quality fundus photography is expected to rise accordingly.

In the Republic of Korea, regular systemic health screening is mandatory for adults 40 years

and above. In 2015, 76.1% of adults in this age category received an annual health examination

(National Health Screening Statistical Yearbook, National Health Insurance Corporation,

2016) [2], and fundus photography was one of the optional screening tools.

Despite that the retinal cameras used for eye screening achieve state-of-the-art technology

for fundus images, the quality of each fundus image may vary depending on the environment,

the operator, or the patient. For instance, motion blur can occur if the patient moves, or the

image may contain occlusions or have insufficient illumination if the patient blinks. Thus, the

clinician may face challenges in conducting an effective diagnosis, and the issue may make

these fundus images ungradable. In this case, the patients must be re-examined to acquire

accurate fundus photography results, leading to unnecessary costs and time delay.

Recently, deep learning models have had a huge impact on image classification [3, 4], image

segmentation [5, 6], and successful application to retinal fundus images [7–10]. Many deep-

learning models have also been proposed to improve degraded images. Convolutional neural

networks (CNN) for image and video deblurring [11–13] and super-resolution [14–16] have

achieved state-of-the-art performance. CNNs are trained in a supervised learning framework,

depending on the training images and their corresponding ground truth (GT) images. Train-

ing pairs of low-quality (LQ) and high-quality (HQ) images are vital to developing a CNN

model for fundus image enhancement.

However, it is very difficult to physically construct a dataset of corresponding training

images because it is difficult to control or reproduce complex image degradation. Several data-

sets for image enhancement have been collected manually [17] or by synthesizing a particular

image degradation [18, 19]. Previous studies that synthesized training images tended to model

only a single aspect of image degradation [20, 21]. However, simulating the compounded fac-

tors into complex degradation is challenging.

Thus, we developed a new deep learning-based model to enhance LQ retinal fundus images

that suffer from complex degradation. Specifically, we developed a new supervised learning
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framework, comprising new processes for dataset construction, data augmentation, and a new

model for supervised learning. To this end, we established a process to construct a dataset of

LQ and HQ image pairs.

LQ images contain various degradation, such as blur, haze, low illumination, and artifacts

such as eyelashes or tears. Moreover, we include various abnormal images with diseases and

normal images without disease within the LQ and HQ image pairs so that the framework is

unbiased toward normal images. Based on this dataset, we propose a framework for data aug-

mentation and a novel CNN structure that can enhance images depending on the degradation.

We conducted comparative quantitative and qualitative evaluations using private and public

datasets to demonstrate the effectiveness of the proposed method.

Overall, our main contributions are as follows:

• We establish a unique training dataset that includes LQ and HQ image pairs, consisting of

various abnormal features for major eye diseases, which differs from that of other studies

that apply a single diagnosis (for example, diabetic retinopathy). We trained the framework

to preserve all the clinically important features during the enhancement process because

approximately 50% of our dataset has at least two or more diagnoses of diseases such as age-

related macular degeneration, diabetic retinopathy, and epiretinal membrane.

• We propose data augmentation methods to simulate major aspects of retinal image degrada-

tion, including blur, haze, and low illumination to reduce the limitations in the dataset

collection.

• We present a customized CNN architecture that incorporate attention layers into the U-net

structure, resulting in improved performance in quantitative and qualitative evaluations.

Related works

Deep learning-based methods for retinal fundus images

Recently, advanced deep learning-based systems have achieved significant performance in the

grading and classification of retinal fundus images and in detecting specific landmarks (mainly

vessels) or diseases, such as diabetic retinopathy.

Several works [22–25] have proposed automatic retinal fundus image grading systems

using a CNN as the backbone to generate feature vectors that are given as the input of a classi-

fier. These methods may be the basis of more automated clinical procedures compared to

existing traditional procedures for retinal diseases where doctors performed the jobs manually.

A study [26] has shown that the extracted retinal image feature can be used as an input for

recurrent neural networks to generate a detailed clinical description.

Many recent studies have stressed that using simple CNN architecture to extract features

from retinal fundus images can effectively improve the performance of the vessel segmentation

task [27–31]. Other studies [32, 33] proposed to apply dilated convolution to overcome the

limited information with a fixed-sized receptive field of conventional CNN architectures to

better estimate the vessels in the retinal fundus image. In the work of Jiang et al. [34], a multi-

scale information fusion module is added to the dilated CNN architecture to enlarge the recep-

tive field of the CNN.

Some studies have shown the effectiveness of using attention mechanisms with multiscale

operations or enlarged receptive fields. Zhang et al. [35] proposed an attention-guided filter to

recover spatial information and merge structural information from the various resolution lev-

els by filtering the low-resolution feature maps with high-resolution feature maps. Jiang et al.

[36] also proposed a residual attention module to highlight important areas in fundus images,
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filter noise from the background, and solve the problem of information loss caused by down-

sampling. In Mou et al. [37], both the 2-dimensional spatial attention and channel attention

modules were used to enrich contextual dependencies over local feature representations, and

exploit the interdependencies of channel maps, resulting in improved vessel segmentations.

Many other studies have particularly based on the U-Net [38] architecture. Gao et al. [39]

formulated the vessel segmentation task as a multi-label problem and combined the Gaussian

matched filter with U-Net to generate a blood vessel segmentation framework. Alom et al. [40]

proposed the Recurrent CNN (RUNet) and Recurrent Residual CNN model (R2U-Net) archi-

tectures for segmentation tasks. Kamran et al. [41] proposed a multiscale generative architec-

ture for accurate retinal vessel segmentation and to alleviate the inability of the decoder to

recover lost information from the encoder of the U-Net.

Enhancement of retinal fundus images

Several methods have been proposed that recover details of the vessels or the macula from

degraded LQ images by enhancing the brightness, contrast, or luminance of images. Zhou

et al. [42] and Palanisamy et al. [43] revealed that luminance and contrast were improved with

γ–correction and contrast-limited adaptive histogram equalization. Reddy et al. [44] used tex-

ture histogram equalization. Foracchia et al. [45] and Leahy et al. [46] proposed methods

based on the estimation of degradation features, such as luminance, contrast, or illumination

to achieve enhancement. Kubecka et al. [47] proposed the optimization of parameters of the B-

spline shading model using Shannon’s entropy. Mustafa et al. [48] proposed a normalization

of the background image using a low pass filter and a gaussian filter. These methods are based

on local pixel statistics, and applicable without prior learning from ground truth (GT) images.

However, this also leads to limited adaptability or generalizability, depending on the complex

degradation factors in the fundus image.

Many studies have also been proposed on fundus image enhancement using deep learning.

Savelli et al. [49] devised a structurally serialized CNN for correcting illumination. Even with a

simple CNN structure, information on degradation characteristics on the fundus image is

adeptly inferred by understanding the relative context of the patch. Zhao et al. [50] proposed a

GAN-based framework to enhance blurry fundus images. This GAN architecture does not

require actual low–high-quality training image pairs, and is suitable when data is limited.

However, the number of degradations that can be improved at one time is limited because the

latent space in GAN is uninterpretable and unmanipulable.

Since deep learning-based methods require substantial training data, synthesized images

can effectively supplement insufficient real training images [51]. Methods that model the deg-

radation factors are thus relevant in this context. Hide [52] introduced an atmospheric scatter-

ing model to explain the formation of haze, and this was further developed by other studies

[53, 54]. Xiong et al. [55] modeled a blurry fundus image, using the atmospheric scattering

model, suggesting a method for estimating the transmission map and background illuminance.

Shi et al. [56] applied γ–correction to the model and improved image illumination.

CNN architectures with attention

Here, we review relevant CNN architectures to our customized attention-based CNN network.

Attention within a CNN is an operation where the network learns to attend to particular fea-

ture values through adaptive scaling. Many attempts have been made to incorporate various

attention mechanisms into networks [57, 58]. The network learns to scale local features

through spatial attention. The network also learns to scale particular feature channels, corre-

sponding to important image characteristics, through channel attention.
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Oktay et al. [59] and Li et al. [60] proposed network structures that combined a spatial-

attention module with U-Net [38]. These studies learned the relative importance of spatial

between pixels of a feature map for performing segmentation of a target object in a medical

image. Rundo et al. [61] confirmed the importance of channel-wise recalibration of the feature

map in the segmentation task of MRI image, by inserting a Squeeze-and-Excitation (SE) mod-

ule [62], which was a channel-attention within a U-Net. Studies also combined the spatial-

attention and channel attention parallelly [63, 64] or sequentially [65]. Sun et al. [66] included

a parallel spatial and channel attention structure in the skip connections between the encoder

and decoder blocks in the U-Net. Zhao et al. [67] and Gu et al. [68] used a sequential spatial

and channel attention structure. Zhao et al. [67] noted that a spatial-attention module was

used at the network interface; whereas a channel-attention module was used to generate latent

representations and reduce computational complexity. Gu et al. [68] placed channel-attention

modules at every decoder block to learn to generate segmentation maps from the encoded

latent representation.

Methods

Data preprocessing

Registration. Given that fundus image pairs for the same patient at different times are

nonidentical due to the differences in camera viewpoint or patient pose, image registration is

required to ensure the local correspondence of LQ and HQ images during network training.

We used the SURF–PIIFD–RPM method, proposed by Wang et al. [69], using affine transfor-

mation or second-order polynomial transformation depending on the image, to perform

robust alignment for the image with rotation and scale-invariant SURF feature points [70]. We

manually annotated the corresponding points to guide the registration in the rare cases, where

SURF key point matches were obtained incorrectly. Fig 1 shows the registration results of a

sample image pair from the training dataset.

Patch generation. To adhere to the constraints in GPU memory, we used smaller patches

of size 320 × 320 × 3, cropped from the original images. For training, we chose 5 patches

around the macular, 10 patches around the crossing point of the vessels, and 5 patches ran-

domly across the entire fundus image. We tested our network on non-overlapping tiled

patches of the whole image.

Fig 1. Registration for fundus photograph. (a) Low-quality (LQ) image before registration. (b) High-quality (HQ) image before

registration. (c) Checkerboard image before registration with grayscale LQ image and color HQ image. (d) Checkerboard image after

registration with grayscale LQ image and color HQ image. The vertical and horizontal dotted lines on (a) and (b) are crossing over singular

points (where the blood vessel line diverges) that exist in common in LQ and HQ images.

https://doi.org/10.1371/journal.pone.0282416.g001
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Augmentation. We supplemented the limited number of images in our dataset using data

augmentation. We considered five different augmentation factors: i) rotation, ii) linear inter-

polation, iii) blur, iv) haze, and v) illumination.

For rotation, we added three rotated versions of images with angles of 90˚, 180˚, and 270˚.

With the additional rotations, the network can learn rotation-agnostic features, such as vessels

or macular patterns, which must be consistently enhanced, invariant to image orientation.

For linear interpolation, we generated new LQ images, LI,new using linear interpolation

between the LQ, LI and HQ, HI images as follows:

LI;new ¼ ðHI � LIÞlþ LI; ð1Þ

where we assigned four different values for the scalar variable λ = (0.2, 0.4, 0.6, 0.8), which con-

trols the degree of interpolation. This augmentation enables the network to consistently

enhance images with intermediate qualities between the LQ and HQ images [71].

For the blur, we generated new LQ images LI,new using Gaussian blur [72] as follows:

LI;newðx; yÞ ¼ SiSjHIðx � i; y � iÞKði; jÞ; ð2Þ

where HI is the patch from the original HQ image, and K is a gaussian kernel for convolution.

Here, we used a Gaussian blur kernel of size 5 × 5.

For haze, we applied the atmospheric scattering model [52] to synthesize new LQ hazy

images LI,new assuming a homogeneous transmission map and several manually crafted depth

maps d(x), as shown in Fig 2. This model is formulated as follows:

LI;newðxÞ ¼ HIðxÞtðxÞ þ ð1 � tðxÞÞA; ð3Þ

where t(x) is the transmission map; HI(x) is the original HQ image, and A is the atmospheric

light vector in the RGB domain. We can assume that the transmission map is homogeneous,

and t(x) is represented as follows:

tðxÞ ¼ e� bdðxÞ; ð4Þ

where β is the medium extinction coefficient, and d(x) is the depth between the objects and the

camera.

Finally, for illumination, we used γ–correction, which is a nonlinear transformation that

adjusts the brightness of the image [56] to generate the unevenly illuminated LQ image LI,new.

This model is formulated as follows:

LI;newðx; yÞ ¼ HIðx; yÞ
1
g; ð5Þ

Fig 2. Synthesizing hazy image. (a) Original HQ image. (b) Manually crafted depth map. (c) Created hazy image.

https://doi.org/10.1371/journal.pone.0282416.g002
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where the γ value, in the range of 0< γ< 1, darkens the image and simulates low

illumination.

Proposed network architecture

Our customized network is a convolutional neural network (CNN) with an encoder-decoder

structure similar to U-Net [38], as depicted in Fig 3. While this structure has been found to

work well for general image enhancement [73], we include an additional layer that incorpo-

rates parallel operations within a channel attention framework, so that specific aspects of the

enhancement corresponding to the given image can adaptively emphasized.

The encoding and decoding blocks, denoted as EncBlks and DecBlks, respectively, have

nearly identical structures, except for the first 3 × 3conv and 3 × 3deconv layers, because

EncBlks must downscale the input size and DecBlks must upscale the downsampled input. We

used the parallel layer and adaptive attention mechanisms to selectively apply suitable opera-

tions for the given input [74], as AttOpBlk.

We applied five parallel operations in AttOpBlk: {1 × 1conv, 3 × 3conv, 5 × 5conv,

7 × 7conv, 3 × 3maxpool}, and a channel-wise attention layer to compute the attention weight,

indicating the importance of each operation. The attention layer computes the attention

weight through a 3-Layer-MLP with a channel-wise average of the input feature map and finds

the optimal operation to be used in the corresponding EncBlk and DecBlk, considering various

factors such as feature map size, degradation factors, the severity of degradation, and layer

depth. As shown in Fig 4, at AttOpBlk l, the attention weight Al is expressed as follows:

Al ¼ FrðUlClÞ; ð6Þ

where Ul 2 RjOjjCl j is the learnable matrix; |O| is the number of operations in the attention

layer; Fr is the ReLU function, and Cl is the per-channel spatial average of input Xl as follows.

Cl;c ¼
1

H �W

XjHj

i¼1

XjWj

j¼1

Xlði; j; cÞ; ð7Þ

where H and W refer to the height and width of the input feature map Xl, and c denotes the

channel of the input feature map Xl. We used the per-channel average as the input of the chan-

nel-wise attention layer because the absolute intensity of the pixel map of the input feature has

a significant impact in determining the degradation factor and its severity.

Subsequently, vector A is normalized into �A such that the sum of the elements of attention

weight is 1, and Zl is the result of the element-wise multiplication of �A and Yl, the results of

applying each operation in the operation set to the input feature map of the layer. This process

is formulated as follows:

�Al;i ¼
eAl;i

P
je

Al;j
; ð8Þ

Zl ¼ Yl �
�Al; ð9Þ

where� denotes the element-wise multiplication, and Yl = O(Xl) is the result of applying oper-

ations in the operation set on the input feature map Xl.

The input feature map Xl is concatenated with the sum of the Zl to retain the knowledge

learned in the previous layer, This connection is also interpreted as a residual connection [75]

between the input and output of the layer that enables the gradient to be propagated into the

input of the layer through backpropagation. Finally, a 1 × 1conv operation is placed at the end
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of the layer to adjust the channel of the output feature map of the AttOpBlk, and the output of

the AttOpBlk l, Sl is computed as follows:

Sl ¼ FcðGl � XlÞ; ð10Þ

Gl ¼
XjOj

o¼1

Zl;o; ð11Þ

where |O| is the number of operations in the operation set; Fc denotes 1 × 1 convolution, and

� denotes channel-wise concatenation of two matrices.

As shown in Fig 3, the entire network is structured following a composition of EncBlks and

DecBlks. The width and height of the feature map are downsampled from the image by 24, and

the feature dimension becomes 210 after the encoding portion in the first half of the network.

Fig 3. The overall architecture of the proposed method. The first half of the network encodes the fundus image to latent representation; whereas the

second half decodes it again to reconstruct the enhanced fundus image. The whole symmetric network is trained in an end-to-end manner.

https://doi.org/10.1371/journal.pone.0282416.g003

Fig 4. Structure of AttOpBlk. The attention vector Al learned using the channel-wise average of the input feature map is multiplied with Yl, the result

of applying the operations in the operation set on the input feature map. The attention layer can learn the optimal operation according to the

degradation characteristics of the input feature map.

https://doi.org/10.1371/journal.pone.0282416.g004
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For example, a latent feature representation of size 20 × 20 × 1024 results from an input image

of size 320 × 320 × 3. In the decoding portion of the second half of the network, the latent fea-

tures are upsampled and reconfigured to become an output of size 320 × 320 × 3, identical to

the input.

To train the network, we use the following loss function:

L ¼
1

N

XNbatch

i¼1

kŷi � yik1 þ
l

2
kWnetk

2
; ð12Þ

where y is the output of the network; ŷ is the reference image; Nbatch is the number of images

in the minibatch, and Wnet is the weight parameters of the network. The first term is the pixel-

wise difference term to supervise the network output to be similar to the ground truth (the HQ

image), while the second term is the L2 norm for the trainable weights of the network, which is

a commonly used regularization term [76]. We used the L1 distance for the pixel-wise differ-

ence. Unlike other tasks, L2 distance may over-penalize the values in pixels with uneven illu-

mination [77], given that our training dataset contained numerous dark LQ images and bright

HQ image pairs. The parameter λ, set at λ = 0.1, controls the relative importance between the

two terms.

Datasets

We sampled the training dataset comprising 1068 pairs of LQ and HQ fundus photographs of

patients, acquired from the Kangbuk Samsung Hospital Ophthalmology Department

(KBSMC) between 2017 and 2019, and denoted this as the KBSMC dataset. LQ images were

taken either in the health screening process or from a preoperative examination. Correspond-

ing HQ images are from the same patient, acquired after pupil dilation or surgery, from which

accurate diagnosis can be achieved.

In Fig 5, we depict two examples from the KBSMC dataset where improvements in image

quality facilitate better diagnosis. We can observe regions (in the red boxes) where lesions

become visible in the HQ images (small round hole and drusen for the first and second exam-

ple, respectively). The majority of eye diseases are found in the peripheral region of the retina.

Thus, these examples show how the peripheral region of the retinal fundus image is as impor-

tant as the central field, and how well our KBSMC dataset is designed to train our model for

various degradations on the retinal fundus image.

Fundus photographs were taken with various manufacturers’ nonmydriatic fundus cam-

eras, including TRC-NW300, TRC-50IX, TRC-NW200 and TRC-NW8 (Topcon, Tokyo,

Japan), CR6-45NM and CR-415NM (Canon, Tokyo, Japan), and VISUCAM 224 (Carl Zeiss

Meditec, Jena, Germany). Digital images of the fundus photographs were analyzed using a pic-

ture archiving and communication system (INFINITT, Seoul, Korea). All images were of a res-

olution of 3600 × 3600.

For evaluation, we constructed a test dataset from images, acquired from the ophthalmol-

ogy department of Seoul National University Hospital (SNUH), denoted as the SNUH dataset.

This dataset comprised 68 pairs of fundus photographs collected before and after cataract sur-

gery, of which 29 (42.6%) of the pre-surgery LQ images were ungradable. Here, all images

were of a resolution of 2400 × 2400.

Since we were unable to share the private datasets due to privacy issues, we also used the

publicly available DRIVE [78], STARE [79], CHASE_DB1 [80] and DIARETDB1 [81] datasets,

comprising 40, 397, 28, and 89 images, respectively, as additional test datsaets. We chose the

DRIVE [78], STARE [79] and CHASE_DB1 [80] datasets because they are commonly used by

studies, focusing on retinal fundus images and the evaluation of retinal vessel segmentation
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methods. The DIARETDB1 [81] dataset was chosen because many of its images have poor illu-

mination and thus are suitable for the proposed method.

This study adhered to the tenets of the Declaration of Helsinki, and the protocol was

reviewed and approved by the Institutional Review Boards (IRB) of Kangbuk Samsung Hospi-

tal (No. KBSMC 2019-08-031) and Seoul National University Hospital (C-2007-003-1137).

Our study is a retrospective of medical records, and our data were fully anonymized before

processing. The IRB waived the requirement for informed consent.

Experimental results

Evaluation settings and metrics

Training was performed using the entire KBSMC dataset, whereas testing was performed on

the external SNUH dataset and publicly available DRIVE [78], STARE [79], CHASE_DB1

[80], and DIARETDB1 [81] datasets. Additionally, we performed five-fold cross-validation on

the KBSMC dataset to serve as a reference when there is no domain shift.

We used three metrics to assess the quality of the enhanced image and to evaluate the pro-

posed framework: i) PSNR [82], ii) SSIM [83], iii) r (linear index of fuzziness) [84, 85]. For the

SNUH dataset, we also measure the proportion of ungradable fundus images before and after

the enhancement process.

Both PSNR and SSIM are reference metrics, used to measure the quality when compared

with the reference GT. PSNR may not correspond to human intuition of overall image quality

given that PSNR is based solely on the pixel-wise mean-squared error (MSE) between the

Fig 5. Examples of enabling diagnosis. Each row depicts images sampled from LQ and HQ samples, where lesions

that were unnoticeable in LQ image are clarified in the corresponding HQ image. (a) LQ images. (b) HQ images

corresponding to (a).

https://doi.org/10.1371/journal.pone.0282416.g005
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output image and GT. For example, a blurred output may lead to a lower MSE than a similar

but slightly misaligned texture for high-frequency texture details [86]. Thus, we also used

SSIM, which measures degradation as the relative change in perceived structural information.

r is independent of the GT and can be measured solely from the output image. We primarily

applied this metric to the public datasets that lacked the GT HQ images to serve as references.

For PSNR or SSIM, higher values indicate that the enhanced image is closer to the GT image;

whereas, for r, a lower value indicates a less noisy image and thus better performance. (This

metric is originally denoted as γ by [84, 85]. However, we denote this as r to avoid confusion

with the γ in γ-correction).

To measure ungradable images, we define LQ images as ungradable following Fleming

et al. [87] as: i) Images in which the third-generation branches cannot be identified within one

optic disc diameter of the macular. ii) Images with various artifacts. iii) Images in which at

least one of the macular, optic disc, superior temporal arcade, or inferior temporal arcade are

incomplete. iv) Images in which the diagnosis cannot be obtained because of the degradation.

We also conducted a comparative evaluation, where we presented the PSNR, SSIM, and r
results of three different algorithms, developed by Zhou et al. [42], Gaudio et al. [88], and Dai

et al. [89], respectively along with the P-values of the proposed method.

Evaluation of private datasets

Table 1 shows the quantitative comparative evaluations of the KBSMC and SNUH test data-

sets, demonstrating that the proposed method achieves the best results for both datasets.

When compared with the original input LQ image, the proposed method achieves an average

increase of 8.74 dB in PSNR, a 0.29 increase in SSIM, and a 0.51 decrease in r values for the

KBSMC test dataset, a 7.26 dB increase in PSNR, 0.20 increase in SSIM, and 0.29 decrease in r
values for the SNUH dataset. Furthermore, when compared with the method with the next

best result, the proposed method achieves an average of 5.15 dB increase in PSNR, a 0.03

increase in SSIM, and a 0.07 decrease in r values for the KBSMC test dataset, a 4.31 dB increase

in PSNR, 0.04 increase in SSIM, and 0.17 decrease in r values for the SNUH dataset.

Fig 6 provides qualitative comparisons of sample images with the KBSMC test dataset.

Based on a visual comparison with the HQ GT, the proposed method seems to recover more

of the characteristics lost from the degradation compared with those recovered by other meth-

ods. Fig 7 shows the qualitative comparisons of the sample images with the SNUH test set.

We also compared the change in the proportion of ungradable fundus photographs with

the SNUH dataset, based on our method. Among the 68 images from the SNUH datsaet, the

Table 1. Quantitative comparison on private datasets.

KSH test set (n = 100) SNUH test set (n = 68)

Methods PSNR(dB) " (P value) SSIM " (P value) r # (P value) PSNR(dB) " (P value) SSIM " (P value) r # (P value)

Input LQ image 21.83 ± 2.18 0.61 ± 0.08 0.83 ± 0.07 20.02 ± 1.87 0.65 ± 0.1 0.57 ± 0.14

Zhou et al. [42] 23.81 ± 1.25 (< 0.001) 0.87 ± 0.04 (< 0.001) 0.68 ± 0.16 (< 0.001) 19.28 ± 1.73 (< 0.001) 0.79 ± 0.02 (< 0.001) 0.59 ± 0.12 (< 0.001)

Gaudio et al. [88] 19.23 ± 0.99 (< 0.001) 0.67 ± 0.12 (< 0.001) 0.39 ± 0.06 (< 0.001) 21.4 ± 0.97 (< 0.001) 0.7 ± 0.06 (< 0.001) 0.45 ± 0.12 (< 0.001)

Dai et al. [89] 25.42 ± 1.97 (< 0.001) 0.83 ± 0.02 (< 0.001) 0.43 ± 0.13 (< 0.001) 22.97 ± 1.48 (< 0.001) 0.81 ± 0.05 (< 0.001) 0.49 ± 0.13 (< 0.001)

Ours 30.57 ± 1.67 0.90 ± 0.03 0.32 ± 0.11 27.28 ± 0.76 0.85 ± 0.03 0.28 ± 0.12

Values are mean ± standard deviation.

For PSNR and SSIM, larger values, and for r, smaller values indicate better performance, respectively.Bold values denote the most effective method, corresponding to

each evaluation metric.

The P-value represents the statistical significance of our enhancement approach, compared with other methods.

https://doi.org/10.1371/journal.pone.0282416.t001

PLOS ONE A deep learning-based framework for retinal fundus image enhancement

PLOS ONE | https://doi.org/10.1371/journal.pone.0282416 March 16, 2023 11 / 21

https://doi.org/10.1371/journal.pone.0282416.t001
https://doi.org/10.1371/journal.pone.0282416


ungradable images were reduced from 29 (42.6%) to 18 (26.4%), with a statistical significance

of P = 0.012, computed from McNemar’s test.

Evaluation of public datasets

We applied our trained model to four public datasets (DRIVE [78], STARE [79], CHASE_DB1

[80] and DIARETDB1 [81]) to demonstrate how effectively the proposed data augmentation

Fig 6. Qualitative comparison of three LQ image samples from the KBSMC private test dataset. (a) Input LQ images, and results using

the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], (e) the proposed method, and (f) GT of (a).

https://doi.org/10.1371/journal.pone.0282416.g006

Fig 7. Qualitative comparison of three LQ image samples from SNUH private test dataset. (a) Input LQ images, and results using the

methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], (e) the proposed method, and (f) GT of (a).

https://doi.org/10.1371/journal.pone.0282416.g007
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method synthesized various degradations, and how our pre-trained model improved the LQ

image, sampled from the out-of-distribution datasets.

Table 2 shows the quantitative evaluation of each dataset, based on the average r values,

revealing whether P-values are within the level of statistical significance of 0.001. Although the

proposed method produces the lowest r values for the DRIVE [78], STARE [79] and CHAS-

E_DB1 [80] datasets, it produces a higher r value than the Gaudio et al. [88] method for the

DIARETDB1 [81] dataset. This could be associated with the characteristics of Gaudio et al.

[88] method, which maximizes the underlying pattern of the fundus image after amplifying

the pixel color. However, the image may be unrealistic after drastically altering the appearance

of the original image. Figs 8–Fig 11 provide qualitative comparisons of sample images from

the DRIVE [78], STARE [79], CHASE_DB1 [80] and DIARETDB1 [81] datasets, respectively.

The proposed method improves the image, makes its content visible more clearly, and mini-

mizes unwanted changes.

Implementation details

For the hyperparameters, we used a mini-batch size of 16, an initial learning rate of α = 0.01

and decay rate of 0.9, as shown by [75] for 1000 epochs, each of which has approximately 300

iterations.

For comparative evaluations of three algorithms, we implemented our version based on the

Zhou et al. [42] and Dai et al. [89] methods, following their descriptions of network architec-

ture and hyperparameter settings. Moreover, we used the official implementation of Gaudio

et al. [88] with the sA + sB + SC+ sX option.

Each experiment with different datasets using our CNN-based network is performed on a

single NVIDIA GeForce GTX 2080Ti GPU, which takes about 0.91 second per 320 × 320 × 3

scaled image, while the three algorithms developed by Zhou et al. [42], Gaudio et al. [88], and

Dai et al. [89] were evaluated on a single Intel Xeon Gold 6248R CPU.

Statistical analysis was conducted using SPSS 24 (IBM SPSS Statistics 24, IBM Corporation,

Armonk, NY, USA).

Discussions

Limitations

The proposed image enhancement framework is beneficial for most ungradable fundus

images. However, two main limitations are identified that must be addressed. First is the

Table 2. Quantitative comparison on public datasets.

DRIVE database (n = 40) STARE database (n = 397) CHASE_DB1 database (n = 28) DIARETDB1 database (n = 89)

Methods r # P value r # P value r # P value r # P value

Input LQ image 0.43 ± 0.08 0.47 ± 0.11 0.27 ± 0.09 0.28 ± 0.12

Zhou et al. [42] 0.59 ± 0.05 < 0.001 0.57 ± 0.06 < 0.001 0.51 ± 0.09 < 0.001 0.63 ± 0.07 < 0.001

Gaudio et al. [88] 0.36 ± 0.09 < 0.001 0.49 ± 0.06 < 0.001 0.51 ± 0.12 < 0.001 0.17 ± 0.08 < 0.001

Dai et al. [89] 0.35 ± 0.04 < 0.001 0.40 ± 0.09 < 0.001 0.22 ± 0.11 < 0.001 0.59 ± 0.02 < 0.001

Ours 0.24 ± 0.01 0.35 ± 0.05 0.21 ± 0.06 0.23 ± 0.01

Values are mean ± standard deviation.

Smaller r values indicate better performance.

Bold values denote the most effective method, corresponding to each evaluation metric.

The P-value represents the statistical significance of our enhancement approach, compared with other methods.

https://doi.org/10.1371/journal.pone.0282416.t002
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Fig 8. Qualitative comparison of two LQ image samples from the DRIVE database. (a) Input LQ images, and results

using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.g008

Fig 9. Qualitative comparison of two LQ image samples from the STARE database. (a) Input LQ images, and results

using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.g009

Fig 10. Qualitative comparison of two LQ image samples from the CHASE_DB1 database. (a) Input LQ images,

and results using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed

method.

https://doi.org/10.1371/journal.pone.0282416.g010
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accuracy of GT images. Although all corresponding LQ and HQ fundus photograph pairs are

from the same patients, factors that can be detrimental when determining the GT fundus

image are the time interval between image acquisitions, the differences in positions or angles,

inconsistent alignment between LQ and HQ fundus images after registration, and ungradable

images or images with unknown diagnoses. We addressed these issues by i) minimizing the

time interval between image pair acquisitions, ii) attaining accurate registration using the

SURF–PIIFD–RPM method [69], and iii) using fundus images with a confirmed ophthalmic

diagnosis, following a dilated fundus examination conducted by ophthalmologists.

The disparity in the training and test datasets’ characteristics or the domain shift between

datasets is the second limitation. The PSNR and SSIM values for the SNUH test dataset, in

which the training and test datasets are from different domains, are lower than those of the

KBSMC test dataset, which is from the same domain with training samples. In Fig 12, we show

Fig 11. Qualitative comparison of two LQ image samples from the DIARETDB1 database. (a) Input LQ images, and

results using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.g011

Fig 12. Failure cases. (a) Input LQ image. (b) Enhancement result of (a). (c) Original HQ image.

https://doi.org/10.1371/journal.pone.0282416.g012
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the failure cases of the SNUH test dataset. These examples illustrate the limitations of our

image enhancement framework because the input image has a very low illumination. We note

that the SNUH test set contains more severe cases of ungradable fundus images compared

with the KBSMC dataset. Thus, the proposed framework may not work for test images with

degradations, with different or more severe than those of the training images.

Clinical application

Experimental results on the SNUH dataset demonstrate that the proposed method can be used

to reduce ungradable images. Thus, we plan to apply our method to images acquired during

health screening. Our goal is to reduce unnecessary re-examinations and save the patient’s

time, money, and effort. Our framework can increase the diagnostic accuracy for LQ fundus

photography, crucial for the ophthalmologist.

Our framework can also be used as a preprocessing step in other automated tasks, such as

retinal vessel segmentation. Thus, the clarity of retinal blood vessels improves considerably

after enhancement, as well as the results of vessel segmentation. Fig 13 depicts examples where

the vessel segmentation are improved, using the iterative pixel thresholding method [90]. Two

sampled ungradable fundus images and corresponding segmentation results also improved

after enhancement.

Conclusion

This study proposed a comprehensive framework for deep learning image enhancement of

fundus images, comprising dataset collection, data augmentation, and customized network

architecture. Pairs of LQ with many image degradation factors and corresponding HQ images

were collected under a protocol, including clinical diagnosis by ophthalmologists and detailed

analysis of the enhancement effect on pathological features within the fundus images. Based

on our novel dataset, we proposed an optimal CNN structure for retinal fundus image

enhancement that could effectively handle complex degradation factors with an attention

module. The proposed framework was evaluated on internal and external validation datasets,

Fig 13. Segmentation of both LQ image and enhanced image. (a) Input LQ image. (b) Segmentation result corresponding

to (a). (c) Enhancement result of (a). (d) Segmentation results corresponding to (c).

https://doi.org/10.1371/journal.pone.0282416.g013
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as well as on DRIVE [78], STARE [79], CHASE_DB1 [80] and DIARETDB1 [81] databases.

Among various poor image etiologies, our study provides a significant improvement in reduc-

ing the proportion of ungradable fundus photographs. Overall, our work is expected to have a

clinical impact by lowering the rate of re-examinations among patients and by improving the

accuracy of diagnosis.
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