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Abstract

Problem

Low-quality fundus images with complex degredation can cause costly re-examinations of
patients or inaccurate clinical diagnosis.

Aim
This study aims to create an automatic fundus macular image enhancement framework to
improve low-quality fundus images and remove complex image degradation.

Method

We propose a new deep learning-based model that automatically enhances low-quality reti-
nal fundus images that suffer from complex degradation. We collected a dataset, comprising
1068 pairs of high-quality (HQ) and low-quality (LQ) fundus images from the Kangbuk Sam-
sung Hospital’s health screening program and ophthalmology department from 2017 to
2019. Then, we used these dataset to develop data augmentation methods to simulate
major aspects of retinal image degradation and to propose a customized convolutional neu-
ral network (CNN) architecture to enhance LQ images, depending on the nature of the deg-
radation. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), r-
value (linear index of fuzziness), and proportion of ungradable fundus photographs before
and after the enhancement process are calculated to assess the performance of proposed
model. A comparative evaluation is conducted on an external database and four different
open-source databases.

Results

The results of the evaluation on the external test dataset showed an significant increase in
PSNR and SSIM compared with the original LQ images. Moreover, PSNR and SSIM
increased by over 4 dB and 0.04, respectively compared with the previous state-of-the-art
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methods (P < 0.05). The proportion of ungradable fundus photographs decreased from
42.6% 10 26.4% (P=0.012).

Conclusion

Our enhancement process improves LQ fundus images that suffer from complex degrada-
tion significantly. Moreover our customized CNN achieved improved performance over the
existing state-of-the-art methods. Overall, our framework can have a clinical impact on
reducing re-examinations and improving the accuracy of diagnosis.

Introduction

Retinal fundus photography is an invaluable examination tool in ophthalmology for diagnos-
ing and monitoring retinal disease. It is important because of its reliability, non-invasiveness,
low maintenance, and inexpensiveness. It enables clinicians to observe the retina in detail
through high-quality and high-resolution images. Retinal fundus photography is one of the
most basic imaging modalities, and it is used to diagnose major retinal diseases, such as age-
related macular degeneration and diabetic retinopathy.

An increase in life expectancy globally [1] is likely to increase chronic age-related eye dis-
eases. Thus, the demand for high-quality fundus photography is expected to rise accordingly.
In the Republic of Korea, regular systemic health screening is mandatory for adults 40 years
and above. In 2015, 76.1% of adults in this age category received an annual health examination
(National Health Screening Statistical Yearbook, National Health Insurance Corporation,
2016) [2], and fundus photography was one of the optional screening tools.

Despite that the retinal cameras used for eye screening achieve state-of-the-art technology
for fundus images, the quality of each fundus image may vary depending on the environment,
the operator, or the patient. For instance, motion blur can occur if the patient moves, or the
image may contain occlusions or have insufficient illumination if the patient blinks. Thus, the
clinician may face challenges in conducting an effective diagnosis, and the issue may make
these fundus images ungradable. In this case, the patients must be re-examined to acquire
accurate fundus photography results, leading to unnecessary costs and time delay.

Recently, deep learning models have had a huge impact on image classification [3, 4], image
segmentation [5, 6], and successful application to retinal fundus images [7-10]. Many deep-
learning models have also been proposed to improve degraded images. Convolutional neural
networks (CNN) for image and video deblurring [11-13] and super-resolution [14-16] have
achieved state-of-the-art performance. CNNs are trained in a supervised learning framework,
depending on the training images and their corresponding ground truth (GT) images. Train-
ing pairs of low-quality (LQ) and high-quality (HQ) images are vital to developing a CNN
model for fundus image enhancement.

However, it is very difficult to physically construct a dataset of corresponding training
images because it is difficult to control or reproduce complex image degradation. Several data-
sets for image enhancement have been collected manually [17] or by synthesizing a particular
image degradation [18, 19]. Previous studies that synthesized training images tended to model
only a single aspect of image degradation [20, 21]. However, simulating the compounded fac-
tors into complex degradation is challenging.

Thus, we developed a new deep learning-based model to enhance LQ retinal fundus images
that suffer from complex degradation. Specifically, we developed a new supervised learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0282416 March 16, 2023 2/21


https://doi.org/10.1371/journal.pone.0282416

PLOS ONE

A deep learning-based framework for retinal fundus image enhancement

framework, comprising new processes for dataset construction, data augmentation, and a new
model for supervised learning. To this end, we established a process to construct a dataset of
LQ and HQ image pairs.

LQ images contain various degradation, such as blur, haze, low illumination, and artifacts
such as eyelashes or tears. Moreover, we include various abnormal images with diseases and
normal images without disease within the LQ and HQ image pairs so that the framework is
unbiased toward normal images. Based on this dataset, we propose a framework for data aug-
mentation and a novel CNN structure that can enhance images depending on the degradation.
We conducted comparative quantitative and qualitative evaluations using private and public
datasets to demonstrate the effectiveness of the proposed method.

Overall, our main contributions are as follows:

« We establish a unique training dataset that includes LQ and HQ image pairs, consisting of
various abnormal features for major eye diseases, which differs from that of other studies
that apply a single diagnosis (for example, diabetic retinopathy). We trained the framework
to preserve all the clinically important features during the enhancement process because
approximately 50% of our dataset has at least two or more diagnoses of diseases such as age-
related macular degeneration, diabetic retinopathy, and epiretinal membrane.

o We propose data augmentation methods to simulate major aspects of retinal image degrada-
tion, including blur, haze, and low illumination to reduce the limitations in the dataset
collection.

o We present a customized CNN architecture that incorporate attention layers into the U-net
structure, resulting in improved performance in quantitative and qualitative evaluations.

Related works

Deep learning-based methods for retinal fundus images

Recently, advanced deep learning-based systems have achieved significant performance in the
grading and classification of retinal fundus images and in detecting specific landmarks (mainly
vessels) or diseases, such as diabetic retinopathy.

Several works [22-25] have proposed automatic retinal fundus image grading systems
using a CNN as the backbone to generate feature vectors that are given as the input of a classi-
fier. These methods may be the basis of more automated clinical procedures compared to
existing traditional procedures for retinal diseases where doctors performed the jobs manually.
A study [26] has shown that the extracted retinal image feature can be used as an input for
recurrent neural networks to generate a detailed clinical description.

Many recent studies have stressed that using simple CNN architecture to extract features
from retinal fundus images can effectively improve the performance of the vessel segmentation
task [27-31]. Other studies [32, 33] proposed to apply dilated convolution to overcome the
limited information with a fixed-sized receptive field of conventional CNN architectures to
better estimate the vessels in the retinal fundus image. In the work of Jiang et al. [34], a multi-
scale information fusion module is added to the dilated CNN architecture to enlarge the recep-
tive field of the CNN.

Some studies have shown the effectiveness of using attention mechanisms with multiscale
operations or enlarged receptive fields. Zhang et al. [35] proposed an attention-guided filter to
recover spatial information and merge structural information from the various resolution lev-
els by filtering the low-resolution feature maps with high-resolution feature maps. Jiang et al.
[36] also proposed a residual attention module to highlight important areas in fundus images,
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filter noise from the background, and solve the problem of information loss caused by down-
sampling. In Mou et al. [37], both the 2-dimensional spatial attention and channel attention
modules were used to enrich contextual dependencies over local feature representations, and
exploit the interdependencies of channel maps, resulting in improved vessel segmentations.

Many other studies have particularly based on the U-Net [38] architecture. Gao et al. [39]
formulated the vessel segmentation task as a multi-label problem and combined the Gaussian
matched filter with U-Net to generate a blood vessel segmentation framework. Alom et al. [40]
proposed the Recurrent CNN (RUNet) and Recurrent Residual CNN model (R2U-Net) archi-
tectures for segmentation tasks. Kamran et al. [41] proposed a multiscale generative architec-
ture for accurate retinal vessel segmentation and to alleviate the inability of the decoder to
recover lost information from the encoder of the U-Net.

Enhancement of retinal fundus images

Several methods have been proposed that recover details of the vessels or the macula from
degraded LQ images by enhancing the brightness, contrast, or luminance of images. Zhou
etal. [42] and Palanisamy et al. [43] revealed that luminance and contrast were improved with
y—correction and contrast-limited adaptive histogram equalization. Reddy et al. [44] used tex-
ture histogram equalization. Foracchia et al. [45] and Leahy et al. [46] proposed methods
based on the estimation of degradation features, such as luminance, contrast, or illumination
to achieve enhancement. Kubecka et al. [47] proposed the optimization of parameters of the B-
spline shading model using Shannon’s entropy. Mustafa et al. [48] proposed a normalization
of the background image using a low pass filter and a gaussian filter. These methods are based
on local pixel statistics, and applicable without prior learning from ground truth (GT) images.
However, this also leads to limited adaptability or generalizability, depending on the complex
degradation factors in the fundus image.

Many studies have also been proposed on fundus image enhancement using deep learning.
Savelli et al. [49] devised a structurally serialized CNN for correcting illumination. Even with a
simple CNN structure, information on degradation characteristics on the fundus image is
adeptly inferred by understanding the relative context of the patch. Zhao et al. [50] proposed a
GAN-based framework to enhance blurry fundus images. This GAN architecture does not
require actual low-high-quality training image pairs, and is suitable when data is limited.
However, the number of degradations that can be improved at one time is limited because the
latent space in GAN is uninterpretable and unmanipulable.

Since deep learning-based methods require substantial training data, synthesized images
can effectively supplement insufficient real training images [51]. Methods that model the deg-
radation factors are thus relevant in this context. Hide [52] introduced an atmospheric scatter-
ing model to explain the formation of haze, and this was further developed by other studies
[53, 54]. Xiong et al. [55] modeled a blurry fundus image, using the atmospheric scattering
model, suggesting a method for estimating the transmission map and background illuminance.
Shi et al. [56] applied y-correction to the model and improved image illumination.

CNN architectures with attention

Here, we review relevant CNN architectures to our customized attention-based CNN network.
Attention within a CNN is an operation where the network learns to attend to particular fea-
ture values through adaptive scaling. Many attempts have been made to incorporate various
attention mechanisms into networks [57, 58]. The network learns to scale local features
through spatial attention. The network also learns to scale particular feature channels, corre-
sponding to important image characteristics, through channel attention.
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Oktay et al. [59] and Li et al. [60] proposed network structures that combined a spatial-
attention module with U-Net [38]. These studies learned the relative importance of spatial
between pixels of a feature map for performing segmentation of a target object in a medical
image. Rundo et al. [61] confirmed the importance of channel-wise recalibration of the feature
map in the segmentation task of MRI image, by inserting a Squeeze-and-Excitation (SE) mod-
ule [62], which was a channel-attention within a U-Net. Studies also combined the spatial-
attention and channel attention parallelly [63, 64] or sequentially [65]. Sun et al. [66] included
a parallel spatial and channel attention structure in the skip connections between the encoder
and decoder blocks in the U-Net. Zhao et al. [67] and Gu et al. [68] used a sequential spatial
and channel attention structure. Zhao et al. [67] noted that a spatial-attention module was
used at the network interface; whereas a channel-attention module was used to generate latent
representations and reduce computational complexity. Gu et al. [68] placed channel-attention
modules at every decoder block to learn to generate segmentation maps from the encoded
latent representation.

Methods
Data preprocessing

Registration. Given that fundus image pairs for the same patient at different times are
nonidentical due to the differences in camera viewpoint or patient pose, image registration is
required to ensure the local correspondence of LQ and HQ images during network training.
We used the SURF-PIIFD-RPM method, proposed by Wang et al. [69], using affine transfor-
mation or second-order polynomial transformation depending on the image, to perform
robust alignment for the image with rotation and scale-invariant SURF feature points [70]. We
manually annotated the corresponding points to guide the registration in the rare cases, where
SUREF key point matches were obtained incorrectly. Fig 1 shows the registration results of a
sample image pair from the training dataset.

Patch generation. To adhere to the constraints in GPU memory, we used smaller patches
of size 320 x 320 x 3, cropped from the original images. For training, we chose 5 patches
around the macular, 10 patches around the crossing point of the vessels, and 5 patches ran-
domly across the entire fundus image. We tested our network on non-overlapping tiled

patches of the whole image.

(®) © (d)

Fig 1. Registration for fundus photograph. (a) Low-quality (LQ) image before registration. (b) High-quality (HQ) image before
registration. (c) Checkerboard image before registration with grayscale LQ image and color HQ image. (d) Checkerboard image after
registration with grayscale LQ image and color HQ image. The vertical and horizontal dotted lines on (a) and (b) are crossing over singular
points (where the blood vessel line diverges) that exist in common in LQ and HQ images.

https://doi.org/10.1371/journal.pone.0282416.9001
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Augmentation. We supplemented the limited number of images in our dataset using data
augmentation. We considered five different augmentation factors: i) rotation, ii) linear inter-
polation, iii) blur, iv) haze, and v) illumination.

For rotation, we added three rotated versions of images with angles of 90°, 180°, and 270°.
With the additional rotations, the network can learn rotation-agnostic features, such as vessels
or macular patterns, which must be consistently enhanced, invariant to image orientation.

For linear interpolation, we generated new LQ images, L; ,.,,, using linear interpolation
between the LQ, L; and HQ, H; images as follows:

L = (HI _LJ);“+LD (1)

1,new
where we assigned four different values for the scalar variable A = (0.2, 0.4, 0.6, 0.8), which con-
trols the degree of interpolation. This augmentation enables the network to consistently
enhance images with intermediate qualities between the LQ and HQ images [71].

For the blur, we generated new LQ images L ,,.,, using Gaussian blur [72] as follows:

Ll.nzw(x7y) = ZiszI(x —iy— i>K(i7j)7 (2)

where H; is the patch from the original HQ image, and K is a gaussian kernel for convolution.
Here, we used a Gaussian blur kernel of size 5 x 5.

For haze, we applied the atmospheric scattering model [52] to synthesize new LQ hazy
images Ly ,,.,, assuming a homogeneous transmission map and several manually crafted depth
maps d(x), as shown in Fig 2. This model is formulated as follows:

Ly (%) = Hy(x)(x) + (1 — £(x))4, (3)

where #(x) is the transmission map; Hj(x) is the original HQ image, and A is the atmospheric
light vector in the RGB domain. We can assume that the transmission map is homogeneous,
and #(x) is represented as follows:

t(x) = e P9 (4)

where S is the medium extinction coefficient, and d(x) is the depth between the objects and the
camera.

Finally, for illumination, we used y-correction, which is a nonlinear transformation that
adjusts the brightness of the image [56] to generate the unevenly illuminated LQ image Ly .-
This model is formulated as follows:

L, (x,7) = Hy(x,y), (5)

@ (b) ©

Fig 2. Synthesizing hazy image. (a) Original HQ image. (b) Manually crafted depth map. (c) Created hazy image.
https://doi.org/10.1371/journal.pone.0282416.9002
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where the y value, in the range of 0 < ¥ < 1, darkens the image and simulates low
illumination.

Proposed network architecture

Our customized network is a convolutional neural network (CNN) with an encoder-decoder
structure similar to U-Net [38], as depicted in Fig 3. While this structure has been found to
work well for general image enhancement [73], we include an additional layer that incorpo-
rates parallel operations within a channel attention framework, so that specific aspects of the
enhancement corresponding to the given image can adaptively emphasized.

The encoding and decoding blocks, denoted as EncBlks and DecBlks, respectively, have
nearly identical structures, except for the first 3 x 3conv and 3 x 3deconv layers, because
EncBlks must downscale the input size and DecBlks must upscale the downsampled input. We
used the parallel layer and adaptive attention mechanisms to selectively apply suitable opera-
tions for the given input [74], as AttOpBIk.

We applied five parallel operations in AttOpBlk: {1 x 1conv, 3 x 3conv, 5 X 5conv,

7 x 7conv, 3 x 3maxpool}, and a channel-wise attention layer to compute the attention weight,
indicating the importance of each operation. The attention layer computes the attention
weight through a 3-Layer-MLP with a channel-wise average of the input feature map and finds
the optimal operation to be used in the corresponding EncBlk and DecBIk, considering various
factors such as feature map size, degradation factors, the severity of degradation, and layer
depth. As shown in Fig 4, at AttOpBlk J, the attention weight A, is expressed as follows:

A, =F,(UG), (6)
where U, € RI9I4! is the learnable matrix; |O| is the number of operations in the attention
layer; F, is the ReLU function, and C; is the per-channel spatial average of input X as follows.

1 |H| W]

C.= H x WZZXI(i’j7 c), (7)

i=1 j=1

where H and W refer to the height and width of the input feature map X), and ¢ denotes the
channel of the input feature map X;. We used the per-channel average as the input of the chan-
nel-wise attention layer because the absolute intensity of the pixel map of the input feature has
a significant impact in determining the degradation factor and its severity.

Subsequently, vector A is normalized into A such that the sum of the elements of attention
weight is 1, and Z; is the result of the element-wise multiplication of A and Y}, the results of
applying each operation in the operation set to the input feature map of the layer. This process
is formulated as follows:

_ el

A P ) 8
I, ZjeA,_j ( )

Z,=Y0 An (9)

where ©® denotes the element-wise multiplication, and Y; = O(X)) is the result of applying oper-
ations in the operation set on the input feature map X;.

The input feature map X; is concatenated with the sum of the Z; to retain the knowledge
learned in the previous layer, This connection is also interpreted as a residual connection [75]
between the input and output of the layer that enables the gradient to be propagated into the
input of the layer through backpropagation. Finally, a 1 x 1conv operation is placed at the end
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Output

Input(LQ)

Encoder-Decoder

[: Feature extraction layer []: Down-sampling layer (3x3Conv) []: Up-sampling layer (3x3Deconv) []: Attention branch []: Channel calibration (1x1Conv) : Residual connection

(a) The overall structure of the network

EncBlk DecBlk

Output feature map

Input feature map || Inputfeature map | S U
— Output feature map —

ARt z HERE z

H = ) iy H SlsS o 2H
IRME B > B &

—W SIRIE & 2z 7 = 213 al ow
—————————————————————————————— ie
2
r ~ 7 : Attention branch I~ 7 : Attention branch
(b) The schematic of EncBlk (c) The schematic of DecBlk

Fig 3. The overall architecture of the proposed method. The first half of the network encodes the fundus image to latent representation; whereas the
second half decodes it again to reconstruct the enhanced fundus image. The whole symmetric network is trained in an end-to-end manner.

https://doi.org/10.1371/journal.pone.0282416.9003

of the layer to adjust the channel of the output feature map of the AttOpBIk, and the output of
the AttOpBIk [, S; is computed as follows:

S = Fc(Gl D Xl)a (10)

o]

G = Zzz,oa (11)
o=1

where |O| is the number of operations in the operation set; F,. denotes 1 x 1 convolution, and
@® denotes channel-wise concatenation of two matrices.

As shown in Fig 3, the entire network is structured following a composition of EncBlks and
DecBlks. The width and height of the feature map are downsampled from the image by 2*, and
the feature dimension becomes 2' after the encoding portion in the first half of the network.

AttOpBIk

Xl Yl M Sl

F (G®X;)

HxXWx2C w

== : Operation layer F, :Softmax
— : Attention layer Fca: Channel-wise average
1x1xC 1x1x|0| —> : Residual connection F,,: Operation-wise average

Fig 4. Structure of AttOpBIk. The attention vector A, learned using the channel-wise average of the input feature map is multiplied with Y}, the result
of applying the operations in the operation set on the input feature map. The attention layer can learn the optimal operation according to the
degradation characteristics of the input feature map.

https://doi.org/10.1371/journal.pone.0282416.9004
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For example, a latent feature representation of size 20 x 20 x 1024 results from an input image
of size 320 x 320 x 3. In the decoding portion of the second half of the network, the latent fea-
tures are upsampled and reconfigured to become an output of size 320 x 320 x 3, identical to
the input.

To train the network, we use the following loss function:

Npatch

1 ) A
L=5D 15 = nlh + 51,7, (12
i=1

where y is the output of the network; y is the reference image; Nj,., is the number of images
in the minibatch, and W,,,, is the weight parameters of the network. The first term is the pixel-
wise difference term to supervise the network output to be similar to the ground truth (the HQ
image), while the second term is the L2 norm for the trainable weights of the network, which is
a commonly used regularization term [76]. We used the L1 distance for the pixel-wise differ-
ence. Unlike other tasks, L2 distance may over-penalize the values in pixels with uneven illu-
mination [77], given that our training dataset contained numerous dark LQ images and bright
HQ image pairs. The parameter A, set at A = 0.1, controls the relative importance between the
two terms.

Datasets

We sampled the training dataset comprising 1068 pairs of LQ and HQ fundus photographs of
patients, acquired from the Kangbuk Samsung Hospital Ophthalmology Department
(KBSMC) between 2017 and 2019, and denoted this as the KBSMC dataset. LQ images were
taken either in the health screening process or from a preoperative examination. Correspond-
ing HQ images are from the same patient, acquired after pupil dilation or surgery, from which
accurate diagnosis can be achieved.

In Fig 5, we depict two examples from the KBSMC dataset where improvements in image
quality facilitate better diagnosis. We can observe regions (in the red boxes) where lesions
become visible in the HQ images (small round hole and drusen for the first and second exam-
ple, respectively). The majority of eye diseases are found in the peripheral region of the retina.
Thus, these examples show how the peripheral region of the retinal fundus image is as impor-
tant as the central field, and how well our KBSMC dataset is designed to train our model for
various degradations on the retinal fundus image.

Fundus photographs were taken with various manufacturers’ nonmydriatic fundus cam-
eras, including TRC-NW300, TRC-50IX, TRC-NW200 and TRC-NW8 (Topcon, Tokyo,
Japan), CR6-45NM and CR-415NM (Canon, Tokyo, Japan), and VISUCAM 224 (Carl Zeiss
Meditec, Jena, Germany). Digital images of the fundus photographs were analyzed using a pic-
ture archiving and communication system (INFINITT, Seoul, Korea). All images were of a res-
olution of 3600 x 3600.

For evaluation, we constructed a test dataset from images, acquired from the ophthalmol-
ogy department of Seoul National University Hospital (SNUH), denoted as the SNUH dataset.
This dataset comprised 68 pairs of fundus photographs collected before and after cataract sur-
gery, of which 29 (42.6%) of the pre-surgery LQ images were ungradable. Here, all images
were of a resolution of 2400 x 2400.

Since we were unable to share the private datasets due to privacy issues, we also used the
publicly available DRIVE [78], STARE [79], CHASE_DB1 [80] and DIARETDBI [81] datasets,
comprising 40, 397, 28, and 89 images, respectively, as additional test datsaets. We chose the
DRIVE [78], STARE [79] and CHASE_DBI [80] datasets because they are commonly used by
studies, focusing on retinal fundus images and the evaluation of retinal vessel segmentation
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@ (b)

Fig 5. Examples of enabling diagnosis. Each row depicts images sampled from LQ and HQ samples, where lesions
that were unnoticeable in LQ image are clarified in the corresponding HQ image. (a) LQ images. (b) HQ images
corresponding to (a).

https://doi.org/10.1371/journal.pone.0282416.9005

methods. The DIARETDBI [81] dataset was chosen because many of its images have poor illu-
mination and thus are suitable for the proposed method.

This study adhered to the tenets of the Declaration of Helsinki, and the protocol was
reviewed and approved by the Institutional Review Boards (IRB) of Kangbuk Samsung Hospi-
tal (No. KBSMC 2019-08-031) and Seoul National University Hospital (C-2007-003-1137).
Our study is a retrospective of medical records, and our data were fully anonymized before
processing. The IRB waived the requirement for informed consent.

Experimental results
Evaluation settings and metrics

Training was performed using the entire KBSMC dataset, whereas testing was performed on
the external SNUH dataset and publicly available DRIVE [78], STARE [79], CHASE_DBI1
[80], and DIARETDBI [81] datasets. Additionally, we performed five-fold cross-validation on
the KBSMC dataset to serve as a reference when there is no domain shift.

We used three metrics to assess the quality of the enhanced image and to evaluate the pro-
posed framework: i) PSNR [82], ii) SSIM [83], iii)  (linear index of fuzziness) [84, 85]. For the
SNUH dataset, we also measure the proportion of ungradable fundus images before and after
the enhancement process.

Both PSNR and SSIM are reference metrics, used to measure the quality when compared
with the reference GT. PSNR may not correspond to human intuition of overall image quality
given that PSNR is based solely on the pixel-wise mean-squared error (MSE) between the
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output image and GT. For example, a blurred output may lead to a lower MSE than a similar
but slightly misaligned texture for high-frequency texture details [86]. Thus, we also used
SSIM, which measures degradation as the relative change in perceived structural information.
ris independent of the GT and can be measured solely from the output image. We primarily
applied this metric to the public datasets that lacked the GT HQ images to serve as references.
For PSNR or SSIM, higher values indicate that the enhanced image is closer to the GT image;
whereas, for r, a lower value indicates a less noisy image and thus better performance. (This
metric is originally denoted as y by [84, 85]. However, we denote this as r to avoid confusion

with the y in y-correction).
To measure ungradable images, we define LQ images as ungradable following Fleming
etal. [87] as: i) Images in which the third-generation branches cannot be identified within one
optic disc diameter of the macular. ii) Images with various artifacts. iii) Images in which at
least one of the macular, optic disc, superior temporal arcade, or inferior temporal arcade are
incomplete. iv) Images in which the diagnosis cannot be obtained because of the degradation.
We also conducted a comparative evaluation, where we presented the PSNR, SSIM, and r
results of three different algorithms, developed by Zhou et al. [42], Gaudio et al. [88], and Dai
et al. [89], respectively along with the P-values of the proposed method.

Evaluation of private datasets

Table 1 shows the quantitative comparative evaluations of the KBSMC and SNUH test data-
sets, demonstrating that the proposed method achieves the best results for both datasets.
When compared with the original input LQ image, the proposed method achieves an average
increase of 8.74 dB in PSNR, a 0.29 increase in SSIM, and a 0.51 decrease in  values for the
KBSMC test dataset, a 7.26 dB increase in PSNR, 0.20 increase in SSIM, and 0.29 decrease in r
values for the SNUH dataset. Furthermore, when compared with the method with the next
best result, the proposed method achieves an average of 5.15 dB increase in PSNR, a 0.03
increase in SSIM, and a 0.07 decrease in r values for the KBSMC test dataset, a 4.31 dB increase
in PSNR, 0.04 increase in SSIM, and 0.17 decrease in r values for the SNUH dataset.

Fig 6 provides qualitative comparisons of sample images with the KBSMC test dataset.
Based on a visual comparison with the HQ GT, the proposed method seems to recover more
of the characteristics lost from the degradation compared with those recovered by other meth-
ods. Fig 7 shows the qualitative comparisons of the sample images with the SNUH test set.

We also compared the change in the proportion of ungradable fundus photographs with
the SNUH dataset, based on our method. Among the 68 images from the SNUH datsaet, the

Table 1. Quantitative comparison on private datasets.

Methods PSNR(dB) T (P value)
21.83+£2.18
23.81 + 1.25 (< 0.001)
19.23 + 0.99 (< 0.001)
25.42 + 1.97 (< 0.001)

30.57 + 1.67

Input LQ image
Zhou et al. [42]
Gaudio et al. [88]
Dai et al. [89]

Ours

Values are mean + standard deviation.

KSH test set (n = 100)
SSIM 1 (P value)
0.61 + 0.08
0.87 + 0.04 (< 0.001)
0.67 +0.12 (< 0.001)
0.83 +0.02 (< 0.001)
0.90 = 0.03

r | (P value)
0.83 £ 0.07
0.68 £ 0.16 (< 0.001)
0.39 + 0.06 (< 0.001)
0.43 +0.13 (< 0.001)
0.32+0.11

PSNR(dB) | (P value)
20.02 + 1.87
19.28 + 1.73 (< 0.001)
21.4 £ 0.97 (< 0.001)
22.97 +1.48 (< 0.001)
27.28 £0.76

SNUH test set (n = 68)
SSIM 1 (P value)
0.65 £ 0.1
0.79 + 0.02 (< 0.001)
0.7 + 0.06 (< 0.001)
0.81 +0.05 (< 0.001)
0.85 + 0.03

r | (P value)
0.57 £ 0.14
0.59 + 0.12 (< 0.001)
0.45 + 0.12 (< 0.001)
0.49 + 0.13 (< 0.001)
0.28 + 0.12

For PSNR and SSIM, larger values, and for r, smaller values indicate better performance, respectively.Bold values denote the most effective method, corresponding to

each evaluation metric.

The P-value represents the statistical significance of our enhancement approach, compared with other methods.

https://doi.org/10.1371/journal.pone.0282416.t001
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Fig 6. Qualitative comparison of three LQ image samples from the KBSMC private test dataset. (a) Input LQ images, and results using
the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], (e) the proposed method, and (f) GT of (a).

https:/doi.org/10.1371/journal.pone.0282416.9006

ungradable images were reduced from 29 (42.6%) to 18 (26.4%), with a statistical significance
of P =0.012, computed from McNemar’s test.

Evaluation of public datasets

We applied our trained model to four public datasets (DRIVE [78], STARE [79], CHASE_DBI1
[80] and DIARETDBI [81]) to demonstrate how effectively the proposed data augmentation

(d) ®

Fig 7. Qualitative comparison of three LQ image samples from SNUH private test dataset. (a) Input LQ images, and results using the
methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], (e) the proposed method, and (f) GT of (a).

https://doi.org/10.1371/journal.pone.0282416.g007
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method synthesized various degradations, and how our pre-trained model improved the LQ
image, sampled from the out-of-distribution datasets.

Table 2 shows the quantitative evaluation of each dataset, based on the average r values,
revealing whether P-values are within the level of statistical significance of 0.001. Although the
proposed method produces the lowest r values for the DRIVE [78], STARE [79] and CHAS-
E_DBI [80] datasets, it produces a higher r value than the Gaudio et al. [88] method for the
DIARETDBI [81] dataset. This could be associated with the characteristics of Gaudio et al.
[88] method, which maximizes the underlying pattern of the fundus image after amplifying
the pixel color. However, the image may be unrealistic after drastically altering the appearance
of the original image. Figs 8-Fig 11 provide qualitative comparisons of sample images from
the DRIVE [78], STARE [79], CHASE_DB1 [80] and DIARETDBI [81] datasets, respectively.
The proposed method improves the image, makes its content visible more clearly, and mini-
mizes unwanted changes.

Implementation details

For the hyperparameters, we used a mini-batch size of 16, an initial learning rate of o = 0.01
and decay rate of 0.9, as shown by [75] for 1000 epochs, each of which has approximately 300
iterations.

For comparative evaluations of three algorithms, we implemented our version based on the
Zhou et al. [42] and Dai et al. [89] methods, following their descriptions of network architec-
ture and hyperparameter settings. Moreover, we used the official implementation of Gaudio
et al. [88] with the sA + sB + SC+ sX option.

Each experiment with different datasets using our CNN-based network is performed on a
single NVIDIA GeForce GTX 2080Ti GPU, which takes about 0.91 second per 320 x 320 x 3
scaled image, while the three algorithms developed by Zhou et al. [42], Gaudio et al. [88], and
Dai et al. [89] were evaluated on a single Intel Xeon Gold 6248R CPU.

Statistical analysis was conducted using SPSS 24 (IBM SPSS Statistics 24, IBM Corporation,
Armonk, NY, USA).

Discussions
Limitations

The proposed image enhancement framework is beneficial for most ungradable fundus
images. However, two main limitations are identified that must be addressed. First is the

Table 2. Quantitative comparison on public datasets.

DRIVE database (n = 40) STARE database (n = 397) CHASE_DBI database (1 =28) | DIARETDBI database (n = 89)
Methods rl P value r] P value rl Pvalue rl Pvalue
Input LQ image 0.43 +0.08 0.47 £ 0.11 0.27 £ 0.09 0.28 £ 0.12
Zhou et al. [42] 0.59 + 0.05 < 0.001 0.57 £ 0.06 < 0.001 0.51 = 0.09 < 0.001 0.63 £ 0.07 < 0.001
Gaudio et al. [88] 0.36 = 0.09 < 0.001 0.49 + 0.06 < 0.001 0.51 £ 0.12 < 0.001 0.17 + 0.08 < 0.001
Dai et al. [89] 0.35+0.04 < 0.001 0.40 = 0.09 < 0.001 0.22 £ 0.11 < 0.001 0.59 + 0.02 < 0.001
Ours 0.24 + 0.01 0.35 + 0.05 0.21 + 0.06 0.23 £ 0.01

Values are mean + standard deviation.

Smaller r values indicate better performance.

Bold values denote the most effective method, corresponding to each evaluation metric.

The P-value represents the statistical significance of our enhancement approach, compared with other methods.

https://doi.org/10.1371/journal.pone.0282416.t002
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Fig 8. Qualitative comparison of two LQ image samples from the DRIVE database. (a) Input LQ images, and results
using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.9008

Fig 9. Qualitative comparison of two LQ image samples from the STARE database. (a) Input LQ images, and results
using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.9g009

Fig 10. Qualitative comparison of two LQ image samples from the CHASE_DBI1 database. (a) Input LQ images,
and results using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed
method.

https://doi.org/10.1371/journal.pone.0282416.9010
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@ (b) (d)

Fig 11. Qualitative comparison of two LQ image samples from the DIARETDBI1 database. (a) Input LQ images, and
results using the methods of (b) Zhou et al. [42], (c) Gaudio et al. [88], (d) Dai et al. [89], and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0282416.9011

accuracy of GT images. Although all corresponding LQ and HQ fundus photograph pairs are
from the same patients, factors that can be detrimental when determining the GT fundus
image are the time interval between image acquisitions, the differences in positions or angles,
inconsistent alignment between LQ and HQ fundus images after registration, and ungradable
images or images with unknown diagnoses. We addressed these issues by i) minimizing the
time interval between image pair acquisitions, ii) attaining accurate registration using the
SURF-PITFD-RPM method [69], and iii) using fundus images with a confirmed ophthalmic
diagnosis, following a dilated fundus examination conducted by ophthalmologists.

The disparity in the training and test datasets’ characteristics or the domain shift between
datasets is the second limitation. The PSNR and SSIM values for the SNUH test dataset, in
which the training and test datasets are from different domains, are lower than those of the
KBSMC test dataset, which is from the same domain with training samples. In Fig 12, we show

@

(b) ©

Fig 12. Failure cases. (a) Input LQ image. (b) Enhancement result of (a). (c) Original HQ image.

https://doi.org/10.1371/journal.pone.0282416.g012
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the failure cases of the SNUH test dataset. These examples illustrate the limitations of our
image enhancement framework because the input image has a very low illumination. We note
that the SNUH test set contains more severe cases of ungradable fundus images compared
with the KBSMC dataset. Thus, the proposed framework may not work for test images with
degradations, with different or more severe than those of the training images.

Clinical application

Experimental results on the SNUH dataset demonstrate that the proposed method can be used
to reduce ungradable images. Thus, we plan to apply our method to images acquired during
health screening. Our goal is to reduce unnecessary re-examinations and save the patient’s
time, money, and effort. Our framework can increase the diagnostic accuracy for LQ fundus
photography, crucial for the ophthalmologist.

Our framework can also be used as a preprocessing step in other automated tasks, such as
retinal vessel segmentation. Thus, the clarity of retinal blood vessels improves considerably
after enhancement, as well as the results of vessel segmentation. Fig 13 depicts examples where
the vessel segmentation are improved, using the iterative pixel thresholding method [90]. Two
sampled ungradable fundus images and corresponding segmentation results also improved
after enhancement.

Conclusion

This study proposed a comprehensive framework for deep learning image enhancement of
fundus images, comprising dataset collection, data augmentation, and customized network
architecture. Pairs of LQ with many image degradation factors and corresponding HQ images
were collected under a protocol, including clinical diagnosis by ophthalmologists and detailed
analysis of the enhancement effect on pathological features within the fundus images. Based
on our novel dataset, we proposed an optimal CNN structure for retinal fundus image
enhancement that could effectively handle complex degradation factors with an attention
module. The proposed framework was evaluated on internal and external validation datasets,

@ T m T © (d)

Fig 13. Segmentation of both LQ image and enhanced image. (a) Input LQ image. (b) Segmentation result corresponding
to (a). (c) Enhancement result of (a). (d) Segmentation results corresponding to (c).

https://doi.org/10.1371/journal.pone.0282416.9013
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as well as on DRIVE (78], STARE [79], CHASE_DBI1 [80] and DIARETDBI [81] databases.
Among various poor image etiologies, our study provides a significant improvement in reduc-
ing the proportion of ungradable fundus photographs. Overall, our work is expected to have a
clinical impact by lowering the rate of re-examinations among patients and by improving the
accuracy of diagnosis.
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