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Abstract

At present, the applications of multiple unmanned aerial vehicles (UAVs) are becoming

more and more widespread, covering many civil and military fields. When performing tasks,

UAVs will form a flying ad hoc network (FANET) to communicate to each other. However,

subject to high mobility, dynamic topology, and limited energy of FANETs, maintaining sta-

ble communication performance is a challenging task. As a potential solution, the clustering

routing algorithm divides the entire network into multiple clusters to achieve strong network

performance. Meanwhile, the accurate localization of UAV is also strongly required when

FANETs are applied in the indoor scenario. In this paper, we propose a firefly swarm intelli-

gence based cooperative localization (FSICL) and automatic clustering (FSIAC) for

FANETs. Firstly, we combine the firefly algorithm (FA) and Chan algorithm to better cooper-

ative locate the UAVs. Secondly, we propose the fitness function consisting of link survival

probability, node degree-difference, average distance, and residual energy, and take it as

the light intensity of the firefly. Thirdly, the FA is put forward for cluster-head (CH) selection

and cluster formation. Simulation results indicate that the proposed FSICL algorithm

achieves the higher localization accuracy faster, and the FSIAC algorithm achieves the

higher stability of clusters, longer link expiration time (LET), and longer node lifetime, all of

which improve the communication performance for indoor FANETs.

Introduction

Recently, unmanned aerial vehicle (UAV) has attracted growing interests and emerged as the

state-of-the-art technology for data collection and been widely deployed in many applications

such as the Internet of Things (IoT) and smart cities because of its advantages of fast deploy-

ment, high coverage and high mobility [1]. Managing a large number of UAVs to realize a

large-scale UAV autonomous swarm, self-organized UAV formation is proposed as a promis-

ing network structure, which is also called flying ad hoc networks (FANETs) or UAV ad hoc

networks (UANETs) [2–4]. FANETs are special form of mobile ad hoc networks (MANETs)
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and vehicular ad hoc networks (VANETs), which use UAVs carrying multiple sensors as net-

work nodes to transmit data to each other, and UAVs can negotiate to complete the collabora-

tive operation and build the network independently. FANETs are not limited to the network

structure centered on the control base station and can achieve high-speed sharing and auton-

omy of information due to the rapid deployment, flexible configuration and strong maneuver-

ability of UAVs. FANETs not only have the characteristics of centerless, self-organizing and

dynamic topology of mobile self-organizing network, but also face new challenges, such as fre-

quent topology update under high dynamics, limited node energy, and fragile network security

[5–8]. In the case of large-scale and high-speed FANETs, ensuring stable communication is a

challenging task.

When the UAV swarm performs indoor tasks, such as person rescue, the FANET will be

applied in an indoor environment. In this case, the high-precision location information is a

mean to support UAV swarm formation, and it is also an important prerequisite for stable

UAV swarm communication. Due to the poor indoor performance of global positioning sys-

tem (GPS), a more accurate indoor localization method is extremely important in the indoor

FANET. Many researchers have proposed some improved algorithms [9]. However, these

algorithms cannot improve the measurement accuracy by using redundant measurement data,

and it is difficult to find the optimal solution. At the same time, they require highly accurate

initial solutions, and the performances deteriorate seriously in the case of large measurement

noise. The above localization algorithms generally assume that the measurement error follows

the Gaussian distribution, therefore the analytical expression of the likelihood function can be

obtained, which can be solved by using the maximum likelihood method.

In recent years, the clustering algorithm is a hot research topic in ad hoc networks which

divides the entire network into clusters by adopting optimal strategies to achieve stronger net-

work performance. With the help of the good performance of localization, the clustering rout-

ing algorithm can be deployed as it is one of the effective methods to eliminate data

redundancy, promote data fusion within the network, reduce traffic and communication dis-

tance, and save network resources and node energy [10].

The clustering algorithm in the FANET divides the UAVs into several clusters, with each

cluster composed of a cluster head (CH) and a number of cluster members (CMs), and an allo-

cation algorithm is needed to assign several finite number of objects to the cluster according to

the task [11–13]. In such a configuration, only the CH takes responsibility for intra-cluster and

inter-cluster communication in a higher level network, while the CMs in the cluster only need

to complete the intra-cluster communication in a lower level network [10]. This hierarchical

structure has high scalability and robustness by constructing different level networks. The

communication burden of the CHs, however, are heavier since they have to transmit data

between clusters and manage changes in CMs [14]. In addition, the unevenly distributed CMs

also leads to a decrease in the lifetime and communication stability of the entire network.

Therefore, in the process of clustering, CH selection and cluster formation are important tasks

for establishing the cluster structure. There were various clustering algorithms proposed in the

literature, however, most of them only considered the CH selection and manual clustering,

and did not take into account the CM trajectories and automatic clustering.

In order to solve the localization and clustering problems, in this paper, we first propose a

firefly swarm intelligence based cooperative localization (FSICL) algorithm which combines

the computational ability of the Chan algorithm and the swarm search ability of the firefly

algorithm (FA) to cooperative locate UAVs. Secondly, we propose a firefly swarm intelligence

based automatic clustering (FSIAC) algorithm which formulates a more appropriate fitness

function for CH selection and design the movement mechanism of UAVs for cluster forma-

tion. Compared with the existing works, this paper not only considers the localization of
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UAVs, but also considers the CH selection and flight trajectories of UAVs for building clusters

with more stable intra-cluster communication in a 3-D area.

The main contributions of this paper are summarized as follows:

1. Aiming at the problem of inaccurate indoor GPS localization, we combine the computing

ability of the Chan algorithm and the swarm search ability of the FA to locate UAVs more

accurately. The first solution of location is obtained by the Chan algorithm, the FA then is

used to obtain a more accurate solution in the limited cube search zone centered on the

first solution;

2. Considering the high mobility, dynamic topology and limited energy of UAVs in FANETs,

we formulate a more reasonable fitness function consisting of link survival probability,

node degree-difference, average distance and residual energy for the CH selection;

3. Inspired by the social behavior of fireflies, we take the fitness value of the UAV as the light

intensity of the firefly, and the UAV with highest light intensity in the cluster is selected as

the CH. Then the FA is employed to spontaneously generate optimized clusters for robust

transmission which allows CMs adjust their locations on the basis of their fitness values to

automatically track the motion of CHs in the UAV swarm, which makes the topology

within the cluster more stable;

4. Extensive simulation results verify the network performance gains of the proposed scheme

compared with several existing algorithms. Specifically, the proposed FSICL algorithm esti-

mates locations of UAVs more accurate in less time. With the help of the accurate localiza-

tion, FSIAC algorithm achieves the higher cluster stability, longer LET, and longer node

lifetime. All simulation results prove that the proposed FSICL and FSIAC algorithms could

be utilized in practice as a new localization and clustering algorithm respectively for indoor

FANETs.

The rest of this article is organized as follows. In Section “Related work”, we analyze the

related work. In Section “Preliminaries”, we present the system model, FA, UWB localization

and Chan algorithm. In Section “Proposed algorithms”, we introduce our proposed FSICL and

FSIAC algorithms in detail. In Section “Simulation results”, we present the performance evalu-

ation results for the proposed algorithms. Finally, we conclude the paper in Section

“Conclusion”.

Related work

Ultra wideband (UWB) is one of the most popular technologies adopted for indoor localiza-

tion. In UWB localization systems, the time difference of arrival (TDOA) is usually used as it

does not directly use the arrival time of the signal, but uses the time difference of the signals

received by multiple base stations to determine the location of the mobile station. Compared

with the time of arrival (TOA) algorithm, significantly fewer communications are required to

complete a localization, and the localization accuracy is also improved [15–17].

The core of localization based on TDOA is to solve the nonlinear localization equations and

there were three main methods researched, the first is analytical method, such as Fang algo-

rithm [18] and Chan algorithm [19]; the second is iterative method, such as Taylor algorithm

[20]; the third is intelligent method, such as particle swarm optimization (PSO) algorithm

[21]. Among them, the Fang algorithm obtains the location of the unknown UAV by lineariz-

ing the hyperbola with the help of three and only three base stations. The Chan algorithm

obtains the location by solving the non-recursive hyperbolic equation, and localization accu-

racy increases with the increase of base stations. However, for measurements with large errors

PLOS ONE Cooperative localization and automatic clustering for indoor FANETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0282333 March 30, 2023 3 / 29

https://doi.org/10.1371/journal.pone.0282333


in the real environment, such as in the presence of non-visual propagation, this algorithm’s

performance is significantly degraded. The above two analytical algorithms have the advan-

tages of simple principle and low computational complexity. As an iterative method of Taylor

algorithm, it obtains the initial iteration value based on Taylor series expansion to perform

least squares estimation, and then the local least squares solution of the location estimation

error is solved to update the location of the UAV. The disadvantage of this algorithm is that it

is computationally intensive and easily to fall into the local minimum if the initial target loca-

tion is poorly chosen. Compared with the above two mathematical methods, the PSO algo-

rithm can calculate the location faster and is less affected by noise, but it also faces the problem

of easily falling into the local optimum.

Based on the good performance of localization, the clustering routing algorithm can be

deployed to better manage the network topology. There were various typical clustering algo-

rithms proposed in the literature, e.g. the lowest-ID clustering algorithm (LIC) [22], the high-

est-connectivity clustering algorithm (HCC) [23] and the weight-based clustering algorithm

(WCA) [24]. In the LIC, each UAV in the network corresponds to a unique ID number, and

the UAV with the smallest ID number among the adjacent UAVs will be selected as the CH.

Different from the LIC, the HCC is clustered based on the degree of connectivity. By calculat-

ing the number of neighbor UAVs, the UAV with the largest number of neighbor UAVs is

selected as the CH. In comparison to the LIC and HCC algorithms, the WCA algorithm does

not consider a single factor, but integrates multiple factors together, such as node degree,

mobility, residual energy, distance from neighbor UAVs. In this way, it can better adapt to

different scenarios. An energy and mobility-aware stable and safe clustering (EMASS) algo-

rithm was proposed based on the WCA in [25], which considers three parameters of mobil-

ity, stability, and safety to provide stable routing and efficient data collection in FANETs.

However, the computation process takes too long and does not take into account the node

degree.

Several swarm intelligence and machine learning-based clustering schemes were also pro-

posed in recent years. An improved grey wolf based clustering optimization algorithm

(GWCOA) was proposed in [26]. It imitates the leadership hierarchy and hunting mecha-

nism of grey wolves to create efficient clusters. However, the parameter of link quality in the

fitness function for CH selection is not considered in this paper. A clustering strategy was

presented by [27], which uses the K-means algorithm to quickly cluster the entire network,

and then implement a CH selection algorithm based on deep Q-learning (DQN) in each

cluster. In this paper, the reinforcement learning is used to adaptively to select the most

appropriate CH, but the authors allocates the clusters manually without considering auto-

matic clustering. A bio-inspired mobility-aware clustering (BIMAC) algorithm was pro-

posed in [28], which ameliorates the model of physarum polycephalum for CH selection to

adapt to mobile ad hoc networks. The algorithm combines with the mobility characteristics

of UAVs, so it can effectively establish and maintain clusters, and improves the average LET

and average CH holding time. But the algorithm does not take into account the flight trajec-

tories of UAVs. In [29], an intelligent clustering routing approach (ICRA) algorithm was

proposed which takes four factors into account to calculate the utility of a UAV, including

the residual energy of the UAV, the degree centrality of the UAV, the velocity similarity, and

the link holding time. The reinforcement learning was utilized to help clustering strategy

adjustment module learn the benefits brought by adopting different strategies to calculate

the UAVs utility in a specific network state and determine the optimal clustering strategy

accordingly. However, the authors does not consider the trajectories of CMs, which may

cause the UAVs acting as CMs to change too fast and the topology of the intra-cluster to be

unstable.
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In this paper, inspired by the swarm intelligence algorithms proposed in [30–34], we pro-

pose FSICL and FSIAC algorithms to make UAV localization more accurate and communica-

tion of UAV swarm more stable. Compared with several algorithms, the proposed algorithms

estimates locations of UAVs more accurately, and achieves the higher cluster stability, longer

LET, and longer node lifetime in the indoor FANET.

Preliminaries

System model

For a scenario of target resuce, we consider a typical network model deployed by N small ran-

dom moving UAVs with different battery power flying at different altitudes and 1 ground sta-

tion (GS) shown in Fig 1. All UAVs are equipped with long-distance and short-distance

wireless communication protocols. To improve the dynamic network performance, the UAVs

are organized into several clusters, and each cluster is composed of a CH and CMs. CHs work

in 2.4GHz frequency band and are responsible for intra-communication and inter-communi-

cation, while CMs work in 5GHz frequency band and only need to complete the intra-cluster

communication. The task of the UAV swarm is to search the indoor area and transmit infor-

mation of the target person back to the GS through single/multi-hop routing on the premise of

ensuring the communication quality.

We define that UAVs in the communication range R form a cluster. All UAVs are equipped

with UWB localization system and aware of locations of themselves and neighbors by sending

Hello message to their neighbor UAVs within R after every T seconds period.

Fig 1. Clustering model in FANETs.

https://doi.org/10.1371/journal.pone.0282333.g001
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Firefly algorithm

In our work, the FA is first considered as it is a novel swarm intelligence method. The FA is

proposed by [34] as a heuristic algorithm inspired by the blinking behavior of fireflies. The

main purpose of a firefly’s flash is to act as a signaling system to attract other fireflies.

The firefly with the higher luciferin is brighter than others, and therefore, has the higher

light intensity. Each firefly will move towards a brighter one within its vision range (i.e., com-

munication range) R, which is set according to the maximum communication radius of the

UAV. Thus, if two fireflies are far apart, the brighter firefly will not attract the darker one,

which leads to the fact that the entire swarm can automatically divide into several clusters and

the darker fireflies will track the brighter fireflies. It is similar to the case that UAVs need to

gather around the CHs to form stable clusters. If the swarm size is much larger than the num-

ber of clusters, this enables all UAVs to efficiently find both global and local optimums simul-

taneously, where the global optimum is the optimum of all the local optimums.

In the simplest case for maximum optimization problems, the light intensity I of a firefly at

a particular location x can be chosen as I(x(t))/ f(x(t)), where f(�) is objective function value

at t time. Attractiveness β of firefly n can be defined as:

bðnÞ ¼ b0e� md
2
nm ð1Þ

where dnm is the distance from firefly n to firefly m, β0 is the attractiveness at r = 0. μ is a fixed

light absorption coefficient. For instance, the distance between any two fireflies n and m at

their respective locations xn = (xn, yn, zn) and xm = (xm, ym, zm), is the Cartesian distance:

dnm ¼ kxn � xmk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxn � xmÞ
2
þ ðyn � ymÞ

2
þ ðzn � zmÞ

2

q
ð2Þ

where xn, yn, zn is the 3-D coordinates of the nth firefly.

Firefly n will move in the direction of other fireflies m that are brighter than it:

xn ¼ xn þ b0e� md
2
nmðxm � xnÞ þ lðrand �

1

2
Þ ð3Þ

where the second term is due to the attraction while the third term is randomization with λ
being the randomization parameter. rand is a random number generator uniformly distrib-

uted in [0, 1].

It should be noticed that when μ equals 0, the FA is the same as the PSO, and when μ equals

1, the FA is the same as random search algorithm. The biggest difference between the FA and

PSO is that the FA can find the global optimum and local optimums at the same time, and it is

more difficult to fall into the local optimum. In the cluster, each CH represents a local opti-

mum which allows their CMs to automatically follow to perform the task. This mechanism

considers the flight trajectories of UAVs and its benefit is that it builds a more stable topology

within the cluster and thus achieve the more stable intra-cluster communication. Therefore,

the FA with these characteristics is more suitable for simulating the clustering process in

FANETs.

UWB localization based on TDOA

Due to the high data transmission rate (up to 1Gbit/s), strong anti-multipath interference abil-

ity, and low power consumption, UWB communication becomes one of the most popular

technologies adopted for indoor localization. TDOA is one of the common localization meth-

ods which can achieve centimeter-level localization accuracy. In a UWB localization based on

TDOA system for UAV swarm, a number of spatially separated receivers (i.e., anchors)
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capture the UWB signals emitted by the UAV with UWB sensors and estimate TDOAs to

locate the UAV (i.e., tag) in an indoor environment.

The basic principle of TDOA algorithm is to firstly measure the arrival time difference

between the UAV signal to each known anchor, then multiply the electromagnetic wave prop-

agation speed to obtain the distance difference with which some hyperbola equations are

constructed.

Assume there are A anchors placed in a 3-D localization zone, the location of the anchor i is

xa
i ; i ¼ 1; 2; :::AðA � 4Þ, and the location of the UAV is xn. The UAV sends a UWB signal

once in a 3-D indoor area, and all anchors within the UAV localization distance receive the

wireless signal. Ri is the distance from the UAV to the anchor i, and Ri is defined as:

Ri ¼ kxa
i � xnk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxai � xnÞ
2
þ ðyai � ynÞ

2
þ ðzai � znÞ

2

q
ð4Þ

Ri,1 represents the difference between the distance from the UAV to anchor 1 and to anchor

i:

Ri;1 ¼ sti;1 ¼ Ri � R1 þ sri;1 ð5Þ

where s stands for the speed of UWB radio wave, τi,1 stands for the TDOA from the UAV to

anchor 1 and anchor i, and ri,1 is the additive white gaussian noise (AWGN) with zero-mean

and variance η = E[|ri,1|2] = σ2. Based on Eqs (4) and (5), we can get:

R2
i � R2

1
¼ 2½Xi;1 Yi;1 Zi;1�½xn yn zn�

T
þ Ki � K1

ð6Þ

where Xi;1 ¼ xai � x1;Yi;1 ¼ yai � y1;Zi;1 ¼ zai � z1, and Ki ¼ xai 2þ yai 2þ zai 2.

Solving Eq (6) gives the location of the UAV which is not an easy task because the equations

involved are nonlinear. The Chan algorithm is one of the methods to tackle this problem.

Chan algorithm

The Chan algorithm uses the weighted least squares (WLS) method twice to solve the Eq (6),

in which the initial nonlinear equations are converted into linear equations with relevant

TDOA data firstly, then the first WLS gives an initial solution, and the second WLS makes use

of the known constraint between the UAV coordinates and the extra variable, gives an

improved location estimate. For more specific calculation results and formula derivation,

please refer to [19].

In general, the Chan algorithm is a typical localization algorithm which has high localiza-

tion accuracy when the TDOA error obeys the Gaussian distribution and the variance of noise

is small.

Proposed algorithms

Firefly swarm intelligence based cooperative localization

At present, the most commercially available UAV localization method is GPS [35]. This com-

monly used localization method has high localization accuracy in an outdoor unobstructed

environment, but it is susceptible to interference and the signal is unstable in a more complex

indoor environment. Therefore, a stable localization method is needed to more accurately

locate the UAV indoors.

As analyzed in the last section, the Chan algorithm is a typical localization algorithm which

has high localization accuracy when the TDOA error obeys the Gaussian distribution and the

variance of noise is small. However, due to the complexity of the indoor environment and the
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nonlinear problem of localization estimation, the Chan algorithm has a large error when noise

power is large.

The TDOA estimation problem is a nonlinear and non-convex optimization problem as

well. As a random search algorithm of SI, the FA is simple in principle and easy to implement

which is an effective method for solving nonlinear equations. However, the FA is prone to fall

into the local optimum solution and premature convergence.

In this paper, we utilize their respective advantages and propose a cooperative localization

based on the Chan algorithm and FA to obtain more precise locations of UAVs.

The maximum likelihood method is used to estimate the coordinates of the UAV (xn, yn,

zn). We set the TDOA vector is τ = [τ2,1, τ3,1, � � �, τA,1]T, which obeys the A−1 dimensional

Gaussian distribution, and the distance mean vector is:

DR ¼ ½r2;1; r3;1; � � � ; rA;1�
T

ð7Þ

The actual distance vector r from UAV to anchor i and the actual distance vector r1 from

UAV to anchor 1 are set as r = [r2, r3. � � �,rA−1]T and r1 = [r1, r1. � � �,r1]T respectively. According

to the previous assumptions, The variables in ΔR are independent identically distributed

Gaussian random variables with a mean value of ri − r1.

Therefore, we have the likelihood function:

l ¼ ð
1
ffiffiffiffiffiffi
2p
p

s
Þ
A� 1expð�

1

2s2
ðDR � rþ r1Þ

T
ðDR � rþ r1ÞÞ ð8Þ

where σ is the variance of additive white gaussian noise (AWGN). Thus, the estimated location

closest to the actual location is equal to the coordinates value that maximizes the likelihood

function for the FA:

ðxn; yn; znÞ ¼ argmaxð� ðDR � r þ r1Þ
T
ðDR � r þ r1ÞÞ ð9Þ

We can see this equation is a very complex nonlinear function, and the maximum likeli-

hood estimate can be obtained by searching the coordinates of the UAV corresponding to the

minimum value of this function, but the computation of direct search is very high. Therefore,

we use the FA to search the optimal solution in the whole potential solution space to determine

the location of the UAV, taking advantage of the fact that the FA basically has no restriction on

the optimization function [34].

Combining the computational ability of the Chan algorithm and the swarm search ability

of the FA, we propose a cooperative localization algorithm as shown in Fig 2. The first solution

is obtained by the Chan algorithm, the FA then is used to obtain a more accurate solution in

the limited cube search zone centered on the first solution. Since each firefly in the space repre-

sents a localization estimation and search zone is narrowed, the probability of the FA falling

into the local optimum solution is reduced, the convergence speed is raised, and the localiza-

tion accuracy is increased. The process of cooperative localization algorithm is described as

follows:

1. The first solution xc
n=(xcn, ycn, zcn) is calculated by the Chan algorithm, and the Rc

i;1 from the

solution to each anchor is obtained, which is defined as:

Rc
i;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xcnÞ
2
þ ðyi � ycnÞ

2
þ ðzi � zcnÞ

2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � xcnÞ
2
þ ðy1 � ycnÞ

2
þ ðz1 � zcnÞ

2

q ð10Þ
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We define the difference between Ri1 � Rc
i1 for the Chan algorithm as:

a ¼
XA� 1

i¼2

kRi;1 � Rc
i;1k2 ð11Þ

2. A search zone that is too small may cause the UAV solution to be excluded from the space,

while a search zone that is too large will increase the search time and be more likely to fall

into a local optimum solution. Based on the change of α as shown in Fig 3, we can infer that

the distance between the estimated location and the actual location of the UAV is less than

αγ, where γ is the empirical coefficient. Thus, we then set up a cube search zone with side

length 2αγ centered on the first solution xc
n for firefly swarm search, and the TDOA Rf

i;1

from the solution xf
n ¼ ðx

f
n, yfn, zfn) obtained by the FA to each anchor is obtained, which is

defined as:

Rf
i;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xfnÞ2 þ ðyi � yfnÞ2 þ ðzi � zfnÞ2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � xfnÞ2 þ ðy1 � yfnÞ2 þ ðz1 � zfnÞ2
q ð12Þ

Fig 2. Diagram of the proposed cooperative localization.

https://doi.org/10.1371/journal.pone.0282333.g002
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We define the difference between Ri;1 � Rf
i;1 for the FA as:

d ¼
XA� 1

i¼2

kRi;1 � Rf
i;1k2 ð13Þ

3. When the limited max iterations of the FA are reached, the solution of the FA is the final

location of the UAV if δ� α; whereas, the solution of the Chan algorithm is the final loca-

tion of the UAV.

The cooperative localization algorithm with O(MaxIteration * N2) computational complex-

ity is shown in Algorithm 1, and the flowchart of this algorithm is shown in Fig 4.

Algorithm 1 FSICL Algorithm
Input: Swarm size N, TDOAs τ
Output: location xn
1: /* Initialization Phase 1*/
2: Initialize A anchors in the 3-D search zone
3: Initialize a UAV at location xn
4: /* Computation Phase 1*/
5: while (t�MaxIteration)
6: Use the Chan algorithm to obtain the first solution xcn
7: Calculate α(t), and set a cube space with side length 2α centered
on xcn
8: /* Initialization Phase 2*/

Fig 3. α v.s. the variance of measurement noise.

https://doi.org/10.1371/journal.pone.0282333.g003
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Fig 4. The flowchart of the FSICL algorithm.

https://doi.org/10.1371/journal.pone.0282333.g004
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9: Initialize N fireflies in the 2α × 2α × 2α area
10: /* Computation Phase 2*/
11: for n = 1: N
12: Calculate fitness function In = l(τ;x) using Eq (34)
13: for m = 1: N
14: Calculate fitness function Im = l(τ;x) using Eq (34)
15: if (In > Im)
16: Move firefly m towards n.
17: end if
18: Update location and evaluate new light intensity
19: end for m
20: end for n
21: Rank the fireflies and find the current brightest I∗n at location
xfn
22: Calculate δ(t) by xfn
23: end while

24: if (
PMaxIteration

t¼1

dðtÞ �
PMaxIteration

t¼1

aðtÞ)

25: xn ¼ xf
n

26: else if (
PMaxIteration

t¼1

dðtÞ �
PMaxIteration

t¼1

aðtÞ)

27: xn ¼ xc
n

28: end if

Firefly swarm intelligence based automatic clustering

For a large-scale, high-speed FANET, clustering is one of the effective methods for UAV topol-

ogy control. The process of CH selection and cluster formation are key steps to stabilize net-

work structure, improve communication reliability, and increase UAV lifetime. In this

section, we analyze and describe the proposed FSIAC clustering algorithm, including CH

selection and clusters formation.

Cluster head selection. Aiming at the characteristics of FANETs, we propose a fitness

function consists of four parameters, namely the link survival probability, node degree-differ-

ence, average distance, and residual energy for CH selection. In order to obtain the fitness

value, the UAV will send the Hello message containing the location, velocity information to

their neighbor UAVs within R.

• Link survival probability
Based on the highly dynamic topology of the network, the link survival probability is pro-

posed to better describe the mobility of UAVs.

With the help of the accurate location obtained by the FSICL algorithm, the current UAV n
receives the Hello message containing the location and velocity information sent by its neigh-

bor UAV m twice consecutively within the period time T from location b to location c, location

d is the relative location of m to n, and we assume that within T, the relative moving speed and

direction of the UAV remain unchanged.

Fig 5 shows the relative movement models of the current UAV n and its neighbor UAV m
at speed vn and vm respectively. Fig 5(a) represents the UAV m is approaching UAV n and Fig

5(b) represents the UAV m is leaving UAV n. UAV m sends 2 consecutive Hello messages

respectively at the first location b and the second location c. For two continuous received Hello
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messages, the coordinates change of UAV m in time T can be expressed as:

Dxm ¼ xmðt þ TÞ � xmðtÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
mðt þ TÞ þ y2

mðt þ TÞ þ z2
mðt þ TÞ

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
mðtÞ þ y2

mðtÞ þ z2
mðtÞ

p

ð14Þ

The movement speed of the UAV m can be obtained by Eq (14):

vm ¼
Dxm

T
¼ ðvmcosa; vmcosb; vmcosgÞ ð15Þ

where

cosa ¼
xnðt þ TÞ � xnðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDxn2 � ðznðt þ TÞ � znðtÞÞ
2
Þ

q ð16Þ

cosb ¼
ðynðt þ TÞ � ynðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDxn
2 � ðznðt þ TÞ � znðtÞÞ

2
Þ

q ð17Þ

cosg ¼
ðznðt þ TÞ � znÞ

Dxn
ð18Þ

Fig 5. Relative movement models. (a) Approaching model: UAV m is approaching UAV n from location b to location c. (b) Leaving model: UAV m is leaving UAV n
from location b to location c.

https://doi.org/10.1371/journal.pone.0282333.g005
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Similarly, the movement speed of the UAV n can also be obtained:

vn ¼
Dxn

T
¼ ðvn cos a

0

; vn cosb
0

; vn cos g
0

Þ ð19Þ

Accordingly, the relative speed between UAV m and n can be expressed as:

vnm ¼ vm � vn

¼ ðvm cos a � vn cos a
0

; vm cosb � vn cosb
0

;

vm cos g � vn cos g
0

Þ

ð20Þ

Then coordinates of location e is:

x∗m ¼ vnm � T þ xm ð21Þ

vnm can be seen as the direction vector of the line fg, then we can calculate the lengths of

line de and eg respectively as:

de ¼
ðxn � x∗mÞ � vnm

jvnmj

eg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag 2 � ae2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � ðad2 � de2Þ

q
ð22Þ

We define the change of distance difference between UAV m and n in period T as:

Ddnm ¼ dnmðt þ TÞ � dnmðtÞ ð23Þ

In the approaching and leaving models as shown in Fig 5, we can find out Δdnm< 0 in the

approaching model, while Δdnm> 0 in the leaving model.

The link survival probability between UAV n and m is related to the relative speed and the

distance between them. Therefore, the link survival probability can be expressed as:

Linkmn ¼

egþed
jvnm jtmax

; Ddnm < 0

eg � ed
jvnm jtmax

; Ddnm > 0

1; vnm ¼ 0

8
>>>>>><

>>>>>>:

ð24Þ

where tmax is the normalization factor which is defined as:

tmax ¼
2R
vnm

ð25Þ

Consequently, the total link survival probability of UAV n can be obtained:

W1
n ¼

XMn

m2Mn

Linkmn ð26Þ

The bigger the link survival probability, the more stable the network topology, and the

lower CHs update frequency. Therefore, UAV n with a bigger W1
n is more likely to be selected

as a CH.

• Node degree-difference

PLOS ONE Cooperative localization and automatic clustering for indoor FANETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0282333 March 30, 2023 14 / 29

https://doi.org/10.1371/journal.pone.0282333


Each UAV acts as a node in the FANET, and due to the limited network bandwidth

resources, the number of UAVs in a cluster should be controlled. A large node degree reduces

the number of clusters, but it may cause network congestion and affect service quality, while a

small node degree causes a serious waste of valuable network bandwidth resource. In the net-

work, the node n can transmit Hello message to its neighbors to obtain the node degree, which

is defined as:

Degreen ¼
XMn

m2Mn

Connectivitymn ð27Þ

The optimal number of UAVs in a network is affected by the intra-cluster and inter-cluster

communication bandwidth and the number of UAVs in the entire network. According to

[36], let B1 represent the bandwidth of intra-cluster communication, B2 represent the band-

width of inter-cluster communication, the optimum number of UAVs in a cluster is:

Degreeideal ¼
B2

B1

ffiffiffiffi
N
p

ð28Þ

The node degree-difference of UAV n is the degree of similarity between the actual node

number and the theoretical optimal node number, which is defined as:

Differencen ¼ kDegreen � Degreeidealk ð29Þ

The parameter W2
n is defined as:

W2
n ¼ � Differencen ð30Þ

UAV n with a bigger W2
n is more likely to be selected as a CH.

• Average distance
Since the FANET is a dynamic network, and the distance between UAVs is constantly

changing. When two UAVs are far apart, the connection between them is unreliable, so the

average distance between UAVs is one of the factors that should be considered. The average

distance between UAV n and all its neighbor UAVs Distancen as:

Distancen ¼

XMn

m2Mn

dnm

jMnj

ð31Þ

The parameter W3
n is defined as:

W3
n ¼ � Distancen ð32Þ

UAV n with a bigger W3
n is more likely to be selected as a CH.

• Residual energy
This paper proposes the calculation method of UAV residual energy, considering the influ-

ence of node degree on energy consumption when the node acts as a CH and a CM at different

speed, making the calculation method more reasonable. Assuming that the initial energy of the

UAV n is E, the residual energy is W4
n . When the UAV acts as a CM, the energy consumed per

node degree per unit time is e1, and when it acts as a CH, the energy consumed per node

degree per unit time is e2, and when it is hovering, the energy consumed per unit time is eh,
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then the residual energy of the UAV n after a period of time is:

W4
n ¼ E �

Xi

0

e1Degreeniti �
Xj

0

e2Degreenjtj

� ehth �
Xi;j

i¼0;j¼0

Gnvnðti þ tjÞ

ð33Þ

where i is the number of times the UAV n acts as a CM, Degreeni is the node degree of the

UAV n is acting as a CM for the i-th time, ti is the time during the UAV acts as a CM for the i-
th time. j is the number of times the UAV acts as a CH, Degreenj is the node degree of the UAV

n is acting as a CH for the j-th time, tj is the time during the UAV acts as a CH for the j-th

time, th is the hovering time of UAV, Gn is the weight of UAV n.

As a special node in the cluster, the CH not only consumes the energy to process the data of

CMs uploaded in the cluster, but also undertakes the heavy data transmission task. Compared

to the CH, the CM only needs less power to send data to the CH that are closer, not to the GS

that may be farther away. Therefore, The higher the residual energy of UAV n, the more rea-

sonable it is to be selected as a CH.

• Fitness function
Eventually, based on the preceding discussions, the link survival probability W1

n , the node

degree-difference W2
n , the average distance W3

n and the residual energy parameter W4
n of UAV

n of the UAV can be obtained, and known by all neighbors. Combining these four parameters,

a fitness function can be formed as the light intensity In in the proposed clustering algorithm

and the UAV n is selected as a CH with the highest fitness value, which is described as:

In ¼ w1 �W1
n þ w2 �W2

n þ w3 �W3
n þ w4 �W4

n ð34Þ

where w1, w4, w3, w4 are the weights of 4 parameters respectively, and w1 + w2 + w3 + w4 = 1.

Their values can be determined according to the task. In this paper, we treat the 4 parameters

as equally important, i.e., w1=w4=w3=w4=0.25.

Cluster formation. In the FANET, the fast UAV movement makes UAVs to join or leave

the clusters frequently, which is more likely to cause greater routing overhead and increase

computing load. Cluster formation of FSIAC is performed to add new UAVs, delete UAVs

and change the CHs where every UAV is treated as a firefly. A darker UAV tracks a brighter

UAV within its field of view, which causes the whole UAV swarm to be automatically divided

into several clusters. The light intensity of each UAV updates based on the fitness function,

and CH manages the cluster by receiving the location and velocity information of all UAVs

within the communication range and constantly updating the topology table. CMs need to

adjust their locations spontaneously to track the motion of the CH, thus prolonging the CH

holding time and reducing the CH handover rate, improving the clustering stability. Algo-

rithm 2 shows the proposed FSIAC algorithm with O(MaxIteration * N *Mn) computational

complexity, and the flowchart of this algorithm is shown in Fig 6.

Algorithm 2 FSIAC Algorithm
Input: Swarm size N
Output: Clusters C
1: /* Initialization Phase*/
2: Initialize N UAVs in the search area
3: Assign randomly location for N UAVs
4: Assign different moving speed for N UAVs
5: /* Computation Phase*/
6: while (t�MaxIteration)
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Fig 6. The flowchart of the FSIAC algorithm.

https://doi.org/10.1371/journal.pone.0282333.g006
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7: for n = 1: N
8: Calculate fitness function In using Eq (34)
9: for m = 1: Mn
10: Calculate fitness function Im using Eq (34)
11: if (In � Im)
12: UAV n declares itself as a CH through a Hello message and UAV
m moves towards UAV n.
13: else, UAV m declares itself as a CH through a Hello message
and moves by the task.
14: end if
15: Update location and evaluate new fitness value
16: end for m
17: end for n
18: end while

Simulation results

In this section, the performance of the proposed FSICL and FSIAC algorithms are evaluated

via simulation in Matlab (R2021b) in a 64-bit computer with a AMD Ryzen R5 3400G proces-

sor and 16 GB RAM. Table 1 lists out main simulation parameters. Fig 7 shows the initial dis-

tribution of 100 UAVs with moving directions and fitness values and 3-D spherical

communication radii of UAVs.

Localization performance

Location estimation. Fig 8 visually shows localization results with 6 anchors when the

variance of noise is 1 Watt. We can see that the 1000 estimated locations by the proposed

FSICL are closer to the actual location of the UAV than the Chan algorithm as shown in Fig 8

(a) and 8(b). We further demonstrate the localization result in terms of estimated locations of

UAVs versus actual locations of the UAVs as shown in Fig 8(c) and 8(d). We can see that there

are five UAVs with large localization error by the Chan algorithm while there is only one UAV

with large localization error by FSICL. In this case, the proposed FSICL algorithm has higher

localization accuracy than the Chan algorithm.

Convergence. Fig 9 shows the proposed FSICL converges to a bigger fitness value faster

the Chan algorithm and PSO, which means the proposed FSICL uses less time to get a more

accurate location of the UAV than the Chan algorithm and PSO. This is because the FSICL

works in the smaller space around the first estimated location by the Chan algorithm, which

Table 1. Simulation parameters.

Parameters Values

Network area 1000m × 1000m × 1000m

Movement model Random direction model

Number of UAVs 100

Communication radius R 300m

Moving speed 1–4m/s

Initial energy E 20J

Randomization α 0.3

light absorption coefficient μ 0.2

Hello message period T 0.1s

The number of fireflies in FSICL 1000

Localization iteraion 1000

https://doi.org/10.1371/journal.pone.0282333.t001
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helps to narrow search zone and search time of the FA. It should be noted that, the fitness val-

ues obtained by the FA and PSO are smaller than that obtained by the FSICL, which can be

explained as that both the FA and PSO algorithms converge to their local optimums. Further-

more, the value obtained by the PSO is smaller than that obtained by the FA, which represents

the FA is less likely to fall into the local optimum than the PSO due to its advantage of finding

both the global optimum and the local optimums.

Fig 7. Initial distribution and communication radii of UAVs. (a) Initial locations and moving directions of UAVs

(the arrow line represents the moving direction). (b) Initial communication radii of UAVs (the yellow sphere with the

UAV as the center represents the communication range of the UAV).

https://doi.org/10.1371/journal.pone.0282333.g007
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Root mean square error. Fig 10(a) shows the average root mean square error (RMSE)

varies with the variance of measurement noise. RMSE is a measure of the deviation between

the estimated location and actual location. The lower the RMSE, the higher the localization

accuracy. We can see that RMSEs of all localization algorithms increase with the increase of

measurement noise. In these algorithms, the proposed FSICL achieves the lowest RMSE. This

is because the proposed FSICL algorithm directly searches for the solution of Eq (9) from the

maximum likelihood method, and the noise has little effect on it. Therefore, the proposed algo-

rithm has better performance in terms of noise resistance. Fig 10(b) presents the RMSE with

varying the number of anchors. We can see RMSEs of all algorithms decrease with the increase

of the number of anchors, this is due to the increase in the number of anchors, which increases

more redundant information and improves the localization performance accordingly. In addi-

tion, since the FSICL algorithm combines the computing ability of the Chan algorithm and

swarm search ability of the FA to locate UAVs, the proposed FSICL achieves the lowest RMSE

compared with the other three algorithms.

Fig 8. Localization results with 6 anchors when the variance of noise is 1 Watt. (a) 1000 estimated locations of a UAV by the Chan algorithm. (b) 1000 estimated

locations of a UAV by FSICL. (c) Average estimated locations of 100 UAVs of 1000 iterations by the Chan algorithm. (d) Average estimated locations of 100 UAVs of

1000 iterations by FSICL.

https://doi.org/10.1371/journal.pone.0282333.g008

PLOS ONE Cooperative localization and automatic clustering for indoor FANETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0282333 March 30, 2023 20 / 29

https://doi.org/10.1371/journal.pone.0282333.g008
https://doi.org/10.1371/journal.pone.0282333


Clustering performance

Connectivity. Fig 11(a) and 11(b) intuitively display the connectivity of UAVs at the

speed of 1m/s after different iterations. We can see that the distribution of CMs after ten itera-

tions is more balanced than the initial distribution and the communication burden of each CH

is allocated more evenly. This is because we consider the node degree when selecting the CHs.

The UAV with an appropriate number of node degree is more likely to be selected a CH,

which leads to a certain distance between CHs. In addition, CMs will adjust their locations on

the basis of their fitness values to automatically track the motion of CHs, which makes the dis-

tribution of UAVs more evenly.

Stability. Fig 12 shows the variance of the number of UAVs in clusters after different iter-

ations with different speeds. The variance of clusters at time t is defined as:

VarðtÞ ¼

XN

n¼1

ðDegreenðtÞ �
1

N
�
XN

n¼1

Degreenðt � 1ÞÞ
2

N

ð35Þ

The smaller the variance, the more stable the number of CMs are in the cluster. We can see

that variance is greater when speed is faster. This is because the high mobility of network

UAVs leads to the faster updating of network topology and disconnection of communication

links, resulting in more frequent cluster updates. The faster the speed, the more time it takes to

achieve lower variance. When the moving speed of UAV is 1m/s, the swarm can stabilize faster

than the other speeds, the faster the communication routing is stabilized.

Fig 13 reflects the influence of the speed of UAV on the handover rate of CHs in the swarm.

The handover rate of CHs is defined as the number of the CHs update in unit time divided by

the total number of the network UAVs. With the continuous increase of the moving speeds of

UAVs in the network, the handover rate is on the rise. This is because the high mobility of

Fig 9. Fitness value v.s. iteration.

https://doi.org/10.1371/journal.pone.0282333.g009
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Fig 10. Average RMSE results after 1000 iterations. (a) RMSE v.s. the variance of noise. (b) RMSE v.s. the number of

anchor.

https://doi.org/10.1371/journal.pone.0282333.g010
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network UAVs will lead to the faster updating of network topology and communication links.

Since the proposed FSIAC algorithm comprehensively considers the firefly inspired movement

mechanism that CMs are willing to track the CH in the cluster, the handover rate of the pro-

posed FSIAC algorithm is lower than the other five clustering algorithms, which achieves the

best stability of CHs.

LET. Fig 14 shows the average LET of different clustering algorithms when moving speeds

of UAVs are 1m/s. The LET is the average of the time from the connection of the link to the

disconnection of the link between the CH and the CMs. The longer the LET, the more stable

Fig 11. Connectivity of UAVs after different iterations. (a) First itration. (b) Tenth itration.

https://doi.org/10.1371/journal.pone.0282333.g011
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Fig 12. The variance of the number of UAVs in clusters v.s. iteration.

https://doi.org/10.1371/journal.pone.0282333.g012

Fig 13. The handover rates of the clusters v.s. UAV moving speed.

https://doi.org/10.1371/journal.pone.0282333.g013
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the intra-cluster communication. We can see from this figure that with the increase of the

UAV number, the average LET of the above five algorithms decreases. This is because the net-

work topology changes are more and more frequent due to the increase of the moving UAVs,

and the average LET general decreases. With the change of the UAV number, the proposed

FSIAC algorithm has the longest LET compared with the LIC, HCC, WCA, EMASS and ICRA

algorithms. This is because the proposed FSIAC algorithm considers the link survival probabil-

ity in fitness function for CH selection, and CMs will adjust their locations to automatically

track the CH, which makes the LET longer and intra-communication more stable.

Node lifetime. The node lifetime is defined as the time for a node from being active to

inactive, and each UAV is regard as a node in the network. When a clustering scheme executes,

the fitness values of CHs and CMs decrease over time and the node is no longer active after it

runs out of battery power. As indicated in Fig 15, the minimum node lifetime decreases when

more UAVs are introduced to the network. This is because when the UAV swarm is larger, the

changes of the network topology become more frequent, which increases the cost of maintain-

ing the topology and energy consumption of the CHs, thus shortening the lifetime of the UAV

swarm. Regardless of the increase or decrease of UAV number, our proposed FSIAC algorithm

achieves the longest node lifetime compared with the other five algorithms. This is because we

consider a more reasonable fitness function to enable timely switching between CHs and CMs,

leading to the extension of the entire network lifetime.

Summary

The summary and comparison of the proposed FSICL and FSIAC algorithms with the other

algorithms are listed in Tables 2 and 3.

Fig 14. Link expiration time of the clusters v.s. UAV number.

https://doi.org/10.1371/journal.pone.0282333.g014
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We can see that the proposed FSICL algorithm achieves the fastest convergence speed and

highest localization accuracy, and the proposed FSIAC algorithm achieves the highest stability

of clusters, longest LET and longest node lifetime.

Conclusion

The FANET is a special application of the MANET in the field of UAV. It not only has the

characteristics of centerless and easy to deploy, but also faces the more severe problem of high-

speed mobile UAVs, which brings instability to the topology and communication. In this

paper, we propose novel FSICL and FSIAC algorithms for FANETs that use the FA to locate

UAVs, complete CH selection and cluster formation. The FSICL first combines the FA and

Chan algorithm to cooperative locate UAVs based on UWB TDOA technique, which narrows

the search zone of the FA based on the initial solution obtained by the Chan algorithm. Then

the FSIAC algorithm uses a more appropriate objective function which consists of link survival

probability, node degree-difference, average distance and residual energy, and take it as the

Table 2. Performances of different localization algorithms.

Algorithms Convergence speed Accuracy

Chan algorithm lowest

PSO medium low

FA slowest high

FSICL fastest highest

https://doi.org/10.1371/journal.pone.0282333.t002

Fig 15. Minimum node lifetime v.s. UAV number.

https://doi.org/10.1371/journal.pone.0282333.g015
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light intensity of a firefly. The FA finally is used again for CH selection and cluster formation,

enabling UAVs to spontaneously cluster around their CHs by tracking them.

The proposed FSICL has been tested in terms of location estimation, convergence, and

RMSE of localization. Meanwhile, the proposed FSIAC has been tested in terms of distribution

of UAVs, stability of clusters, intra-cluster communication, and node lifetime. The results

show the proposed FSICL algorithm effectively achieves the higher localization accuracy in

less time, and with the help of the FSICL, the proposed FSIAC algorithm achieves higher sta-

bility of clusters, longer LET and longer node lifetime, all of which improve communication

performance of the FANET. With the salient performance and technical merits, the proposed

FSICL and FSIAC algorithms may serve as practical solutions for indoor FANETs.

With the high localization accuracy of the FSICL algorithm, the verifications of indoor

UAVs applications can be well supported by only carrying UWB devices, but it is difficult to

deploy UWB anchors in actual tasks. Therefore, in the future, we will study semantics-aware

visual localization and the engineering design of the Hello message to realize the real applica-

tion of the proposed FSIAC algorithm.
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17. Poulose A, Emeršič Ž, Eyobu OS, Han DS. An accurate indoor user position estimator for multiple

anchor uwb localization. In: 2020 international conference on information and communication technol-

ogy convergence (ICTC). IEEE; 2020. p. 478–482.

18. T FB. Simple solutions for hyperbolic and related position fixes. IEEE transactions on aerospace and

electronic systems.1990; 26(5):748–753. https://doi.org/10.1109/7.102710

19. Chan YT, Ho K. A simple and efficient estimator for hyperbolic location. IEEE Transactions on signal

processing. 1994; 42(8):1905–1915. https://doi.org/10.1109/78.301830

20. Foy WH. Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and

Electronic Systems.1976;(2):187–194. https://doi.org/10.1109/TAES.1976.308294

21. Arafat MY, Moh S. Localization and clustering based on swarm intelligence in UAV networks for emer-

gency communications. IEEE Internet of Things Journal. 2019; 6(5):8958–8976. https://doi.org/10.

1109/JIOT.2019.2925567

22. Gerla M, Tzu-Chieh Tsai J. Multicluster, mobile, multimedia radio network. Wireless networks. 1995; 1

(3):255–265. https://doi.org/10.1007/BF01200845

23. Parekh AK. Selecting routers in ad-hoc wireless networks. In: Proceedings of the SBT/IEEE Interna-

tional Telecommunications Symposium. vol. 204; 1994.

24. Chatterjee M, Das SK, Turgut D. An on-demand weighted clustering algorithm (WCA) for ad hoc net-

works. In: Globecom’00-IEEE. Global Telecommunications Conference. Conference Record (Cat. No.

00CH37137). vol. 3. IEEE; 2000. p. 1697–1701.

PLOS ONE Cooperative localization and automatic clustering for indoor FANETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0282333 March 30, 2023 28 / 29

https://doi.org/10.1049/cmu2.12291
https://doi.org/10.3390/s20010038
http://www.ncbi.nlm.nih.gov/pubmed/31861637
https://doi.org/10.23919/JCC.2022.01.014
https://doi.org/10.23919/JCC.2022.01.014
https://doi.org/10.1109/ACCESS.2018.2885539
https://doi.org/10.1631/FITEE.1900712
https://doi.org/10.1109/TSP.2018.2879622
https://doi.org/10.1109/TSP.2018.2879622
https://doi.org/10.1109/JSEN.2021.3117496
https://doi.org/10.1016/j.neucom.2021.12.074
https://doi.org/10.1016/j.neucom.2021.12.074
https://doi.org/10.3390/app10186290
https://doi.org/10.1109/7.102710
https://doi.org/10.1109/78.301830
https://doi.org/10.1109/TAES.1976.308294
https://doi.org/10.1109/JIOT.2019.2925567
https://doi.org/10.1109/JIOT.2019.2925567
https://doi.org/10.1007/BF01200845
https://doi.org/10.1371/journal.pone.0282333


25. Aissa M, Abdelhafidh M, Mnaouer AB. EMASS: a novel energy, safety and mobility aware-Based clus-

tering algorithm for FANETs. IEEE Access. 2021; 9:105506–105520. https://doi.org/10.1109/ACCESS.

2021.3097323

26. Zhang R, Gao Y, Ding Y. Research on clustering optimization algorithm for UAV cluster network. In:

2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT).

IEEE; 2021. p. 88–92.

27. Wang J, Zhang Q, Feng G, Qin S, Zhou J, Cheng L. Clustering strategy of UAV network based on deep

Q-learning. In: 2020 IEEE 20th International Conference on Communication Technology (ICCT). IEEE;

2020. p. 1684–1689.

28. Yu Y, Ru L, Fang K, Jia X. Bio-inspired clustering algorithm for highly dynamic mobile ad hoc networks.

ACTA ELECTONICA SINICA. 2018; 46(4):918.

29. Guo J, Gao H, Liu Z, Huang F, Zhang J, Li X, et al. ICRA: An intelligent clustering routing approach for

UAV ad hoc networks. IEEE Transactions on Intelligent Transportation Systems. 2022;.

30. Mahajan S, Abualigah L, Pandit AK, Altalhi M. Hybrid Aquila optimizer with arithmetic optimization algo-

rithm for global optimization tasks. Soft Computing. 2022; 26(10):4863–4881. https://doi.org/10.1007/

s00500-022-06873-8

31. Mahajan S, Mittal N, Pandit AK. Image segmentation approach based on adaptive flower pollination

algorithm and type II fuzzy entropy. Multimedia Tools and Applications. 2022; p. 1–23.

32. Mahajan S, Abualigah L, Pandit AK. Hybrid arithmetic optimization algorithm with hunger games search

for global optimization. Multimedia Tools and Applications. 2022; p. 1–24.

33. Mahajan S, Abualigah L, Pandit AK, Nasar A, Rustom M, Alkhazaleh HA, et al. Fusion of modern meta-

heuristic optimization methods using arithmetic optimization algorithm for global optimization tasks. Soft

Computing. 2022; p. 1–15.

34. Yang X. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algo-

rithms. Springer; 2009. p. 169–178.

35. White AM, Gardner WP, Borsa AA, Argus DF, Martens HR. A review of GNSS/GPS in hydrogeodesy:

Hydrologic loading applications and their implications for water resource research. Water Resources

Research. 2022; 58(7):e2022WR032078. https://doi.org/10.1029/2022WR032078 PMID: 36247691

36. Liu D, Xu Y, Shen L, Xu Y. Self-organising multiuser matching in cellular networks: a score-based mutu-

ally beneficial approach. Iet Communications. 2016; 10(15):1928–1937. https://doi.org/10.1049/iet-

com.2016.0129

PLOS ONE Cooperative localization and automatic clustering for indoor FANETs

PLOS ONE | https://doi.org/10.1371/journal.pone.0282333 March 30, 2023 29 / 29

https://doi.org/10.1109/ACCESS.2021.3097323
https://doi.org/10.1109/ACCESS.2021.3097323
https://doi.org/10.1007/s00500-022-06873-8
https://doi.org/10.1007/s00500-022-06873-8
https://doi.org/10.1029/2022WR032078
http://www.ncbi.nlm.nih.gov/pubmed/36247691
https://doi.org/10.1049/iet-com.2016.0129
https://doi.org/10.1049/iet-com.2016.0129
https://doi.org/10.1371/journal.pone.0282333

