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Abstract

Background

Reducing the duration of intraoperative hypoxemia in pediatric patients by means of rapid

detection and early intervention is considered crucial by clinicians. We aimed to develop

and validate a machine learning model that can predict intraoperative hypoxemia events 1

min ahead in children undergoing general anesthesia.

Methods

This retrospective study used prospectively collected intraoperative vital signs and parame-

ters from the anesthesia ventilator machine extracted every 2 s in pediatric patients under-

going surgery under general anesthesia between January 2019 and October 2020 in a

tertiary academic hospital. Intraoperative hypoxemia was defined as oxygen saturation

<95% at any point during surgery. Three common machine learning techniques were

employed to develop models using the training dataset: gradient-boosting machine (GBM),

long short-term memory (LSTM), and transformer. The performances of the models were

compared using the area under the receiver operating characteristics curve using randomly

assigned internal testing dataset. We also validated the developed models using temporal

holdout dataset. Pediatric patient surgery cases between November 2020 and January

2021 were used. The performances of the models were compared using the area under the

receiver operating characteristic curve (AUROC).

Results

In total, 1,540 (11.73%) patients with intraoperative hypoxemia out of 13,130 patients’ rec-

ords with 2,367 episodes were included for developing the model dataset. After model

development, 200 (13.25%) of the 1,510 patients’ records with 289 episodes were used for

holdout validation. Among the models developed, the GBM had the highest AUROC of

0.904 (95% confidence interval [CI] 0.902 to 0.906), which was significantly higher than

that of the LSTM (0.843, 95% CI 0.840 to 0.846 P < .001) and the transformer model (0.885,
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95% CI, 0.882–0.887, P < .001). In holdout validation, GBM also demonstrated best perfor-

mance with an AUROC of 0.939 (95% CI 0.936 to 0.941) which was better than LSTM

(0.904, 95% CI 0.900 to 0.907, P < .001) and the transformer model (0.929, 95% CI 0.926 to

0.932, P < .001).

Conclusions

Machine learning models can be used to predict upcoming intraoperative hypoxemia in real-

time based on the biosignals acquired by patient monitors, which can be useful for clinicians

for prediction and proactive treatment of hypoxemia in an intraoperative setting.

Introduction

Intraoperative hypoxemia is an urgent clinical situation warranting immediate intervention to

prevent permanent complications such as hypoxic brain injury [1]. Hypoxemia is more preva-

lent in pediatric patients owing to their significant physiologic limitations concerning apnea

tolerance [2]. Children have a smaller functional capacity and increased metabolic require-

ments and oxygen consumption, resulting in faster progression of hypoxemia and slower

recovery [1, 2]. In previous studies, the reported prevalence of intraoperative hypoxemia (oxy-

gen saturation [SpO2]<95%) during general anesthesia in children aged <16 years was 11.1–

22%, and the reported incidences were considerably higher in the younger age group [2–6].

Although the incidence of mortality associated with anesthesia-related cardiac arrest in

children has been reduced over the past few decades, 27% of perioperative arrests are attrib-

uted to respiratory causes according to the Pediatric Perioperative Cardiac Arrest registry [7–

9]. Anesthesia-related risk factors and several clinical features, such as age�3 years, higher

American Society of Anesthesiologists physical status, morbid obesity, and preexisting pulmo-

nary disorder are validated for intraoperative hypoxemia prediction [4]. However, predicting

the occurrence of hypoxemic events in real time during general anesthesia, even in children

without any known risk factors, is still challenging [3].

Recent advances in machine learning techniques enable the construction of accurate pre-

diction models for various medical applications [10–14]. Such techniques identify hidden

patterns in large datasets and analyze correlations among variables or features. In previous

studies, machine learning techniques have been used to predict clinical outcomes, such as sep-

sis, delirium, acute kidney injury, and intraoperative hypotension using arterial pressure wave-

forms [13, 15–17]. However, to the best of our knowledge, no study has investigated the use of

machine learning algorithms for predicting intraoperative hypoxemia in children.

In this study, we hypothesized that machine learning model and complex feature extraction

techniques could be utilized to predict intraoperative hypoxemia events 1 minute ahead in

children undergoing surgery under general anesthesia. Unlike previous machine learning

model approaches integrating large datasets into a single risk, continuous performance using

not only static data, such as patient and procedure features, but also including high-fidelity

real-time data is important for determining targeted interventions in a clinical setting. Thus,

we aimed to develop a machine learning model that predicts hypoxia 1 min ahead during gen-

eral anesthesia in pediatric patients and verify the performance of our model using a pediatric

vital signs registry dataset.
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Materials and methods

Data source and ethics

This retrospective study was approved by the Institutional Review Board (IRB) of Seoul

National University Hospital, Seoul, Korea, (number 2011-208-1179; Chairperson, Byung-joo

Park; Date of approval, 15 December 2020); the requirement for written informed patient con-

sent was waived by the IRB owing to the retrospective nature of the study.

Data collection

A retrospective analysis of prospectively collected intraoperative vital sign registry (VitalDB)

data was performed. A total of 13,130 patients aged�18 years, including newborns and pre-

mature infants, who underwent surgery under general anesthesia between January 2019 and

October 2020 at a tertiary referral center, Seoul National University Children’s Hospital, Seoul,

South Korea, were included in this study. The exclusion criteria were 1) aged�19 years, 2)

surgery performed with only regional or local anesthesia, peripheral nerve block, or monitored

anesthesia care, 3) patients undergoing cardiac surgery using cardiopulmonary bypass, 3)

those who needed one-lung ventilation for surgery, 4) inevitable apneic time during surgical

procedure, such as airway surgery including tracheal resection, and 5) preoperative SpO2

of< 95%.

Demographic data such as age, sex, height, and weight were collected from the patients’

electronic medical records. The intraoperative vital signs data used in this study were col-

lected using various medical devices during general anesthesia using the Vital Recorder Pro-

gramme (available at https://vitaldb.net; accessed March 4, 2021). Data on noninvasive blood

pressure or arterial pressure (if possible), electrocardiography, photoplethysmography, cap-

nography waveform, and parameters from the anesthesia ventilator machine were used to

identify genuine hypoxemic events. Changes in ventilator parameters included increases in

peak inspiratory pressure (PIP), decreases in tidal volume (TV), abrupt changes of end tidal

carbon dioxide concentration (EtCO2) and changes of fraction of inspired oxygen (FiO2).

The ventilator machine parameters included The SpO2, EtCO2, FiO2, TV, and PIP measure-

ment were extracted every 2 s as an instantaneous value.

Data preparation

Hypoxemia was defined as SpO2 less than 95% during general anesthesia regardless of the

duration. The limit of 95% was selected in line with the definition of hypoxemia of periopera-

tive respiratory adverse events [5]. All 13,130 vitalDB records were manually checked for the

detection of hypoxic episodes by an anesthesiologist. The data retrieved from the VitalDB

database were rechecked manually by the second anesthesiologist for quality control. The

observed events were marked and annotated in all the databases. The true hypoxemia was

verified by SpO2 value, electronic medical records, vital signs, including heart rate, blood

pressure, arterial blood pressure waveform, and pulse oximetry, plethysmographic wave-

form, and ventilator parameters, including EtCO2 curve, PIP, and TV. Genuine hypoxemic

events were discriminated using the following exclusion criteria: 1) when the measured pulse

oximetry pulse rate differed by more than 20% from the electrocardiogram heart rate, the

associated SpO2, [2] 2) when anesthesiologists in charge recorded inaccurate measurement

of oxygen saturation, and 3) when plethysmogram waveforms were severely distorted owing

to position change or external pressure so that the signal quality reported in the monitor was

severely low [2]. Artifacts that were mostly caused by motion, positioning, electrocautery,

sensor dislodgement, and low peripheral perfusion were not annotated as hypoxemia and
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were retained in the dataset without further processing. Periods of hypoxemic episodes,

divided into induction, maintenance, and emergence, were annotated in each database to

determine the incidence of intraoperative hypoxemia in each period. We also investigated

the total time of hypoxemia, duration from the minimum saturation to recovery until the sat-

uration recovered to the initial value where saturation began to gradually decrease, and the

cause of the hypoxemia episode suggested by the anesthesiologists based on various indica-

tors. Patients were assigned to one of the four groups to confirm the incidence of the hypox-

emic episodes stratified by age: 0–28 days (neonate), 29 days to 12 months (infant), 1–7

years, and 8–18 years [2]. Demographic data including age, sex, height, and weight were ana-

lyzed in each group.

Several parameters, such as SpO2, EtCO2, FiO2, TV, and PIP included in 1-minute length

of segments from the determined hypoxemia episodes to the corresponding 1 minute ahead,

were extracted. If a hypoxemic event defined as SpO2 dropping below 95%, in the upcoming 1

min was observed, the target was assigned as 1; it was assigned 0 otherwise. Note that target 1

was assigned for the segment where the input SpO2 was less than 95% while being included in

the hypoxemia episode. Moreover, the patient’ demographic information (age, sex, height, and

weight) was extracted corresponding to the segment and the target.

Model training

Hypoxemia predictions were made for a window of 1 minute into the future. A positive label

was considered if SpO2 was <95% at any point, otherwise it was considered negative. The

machine learning algorithm was trained using these training labels at all time points in time.

The patients were randomly categorized into the training dataset (80%) and testing dataset

(20%). Note that each dataset had a completely disjointed set of patients. For model training,

patient demographics (age, sex, height, and weight) and 2 second interval data (SpO2, EtCO2,

FiO2, TV, and PIP) were used as the input segment and the upcoming hypoxemia event was

used as the output.

We considered three machine learning or deep learning algorithms: Gradient-boosting

machine (GBM), long short-term memory (LSTM), and transformer. Each algorithm was

searched with candidates of its own hyperparameters. The hyperparameters for the three

machine learning or deep learning model were as follows. GBM, the most representative tree-

based ensemble machine learning technique, was evaluated using the hyperparameters of

{number of trees [2000], max depth: [3,4,5], subsampling rate: [0.5, 0.8]}. LSTM was searched

using the hyperparameters of {number of hidden layers: [1,2], number of hidden nodes: [16,

32, 64], number of dense nodes: [16, 32, 64, 128], dropout rate: [0.2, 0.5]}. We assessed the

transformer architecture using the hyperparameters of {number of filters: [16, 32, 64], number

of heads: [2,3,4], embedded dimension: [16, 32, 64], number of convolutional layers: [1,2,3,4],

number of transformer layers: [1,2,3], dropout rate: [0.1, 0.2]}.

GBM performs tree-based residual fitting and is known to function well even with many

types of variables. Owing to its intrinsic limitations of not being able to consider time-series

data, only the first event of each case was used for training and testing. We considered the

LSTM-based deep learning model to exploit the full time-series data. This model is composed

of recurrent paths and memory cells, such that the feature information of past data can be

preserved to the same extent as the input length considered. LSTM was trained with intact

input variables consisting of patient demographics and 2-second interval data. Lastly, the

transformer-based deep learning model was developed, which is being touted as a good deep

learning architecture for various data types [18–22]. Transformer-based deep learning model

was trained using whole input variables as in the LSTM model training.
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The input segment corresponding to a hypoxemia event is extremely rare; therefore, the

collected data could be imbalanced. Since the machine learning models are only as good as

the data quality that it is based on, it is necessary to handle the imbalance of the collected

data. Machine learning models perform optimization on a given loss function for training.

In the presence of imbalanced data such as the ratio of positive and negative of 1:99, the

model can obtain 99% accuracy by merely negative prediction with a sufficiently good loss

value. Since this is not desired, we added class weight to scale the importance of loss function

of the positive label. Since the ratio of the hypoxemia and non-hypoxemia event differed

by approximately 100 times in our dataset, we added class weight of 100 for the hypoxemia

event.

Five-fold cross validation was performed to identify the optimal hyperparameter and the

optimal combination of input variables. The training set was divided into five subsets and the

model was trained sequentially using the remaining subsets with the exception of one, and

model performance was evaluated using the mean area under the receiver operating character-

istic curve (AUROC) using the excluded subset. Finally, the hyperparameter and variable com-

bination with the largest mean AUROC was selected.

Model holdout validation

Model holdout validation was performed on the holdout dataset that was not used for train-

ing or testing. Note that the final model was produced using training, validation, testing

dataset from eligible 1540 patients, and additional holdout validation were performed with

finalized model to prove our model’s reliability (Fig 1). A total of 1,510 vitalDB datasets

between November 2020 and January 2021 from Seoul National University Children’s Hos-

pital were used to evaluate the predictive power of our models on unseen separate holdout

and temporal validation sets. Finally, 200 eligible patients were used for holdout validation.

The data for holdout validation were extracted using the same rule for training dataset (see

Data preparation section), except the filtering rule for the segment already having hypox-

emia. The input segments that have SpO2 lower than 95% were filtered out to exclude cases

that are easy to predict because patients who already have hypoxemia are more likely to have

hypoxemia after 1 minute. The performances of each of the final models were assessed in the

validation cohort.

Model training, testing, and holdout validation were performed using Python 3.8.0 pro-

gramming language with XGBoost v1.5.0 and TensorFlow v2.7.0.

Statistical analysis and model development

Normality was assessed using the Shapiro–Wilk W-test. Data are expressed as the mean and

standard deviation for parametric variables and as frequencies/percentages for nonpara-

metric variables. Comparisons of baseline demographics were performed using Pearson’s

chi-square test for categorical variables and the Mann–Whitney U-test for continuous

variables.

A receiver-operative characteristic curve analysis with 95% confidence intervals (CIs) and

precision-recall curves was performed to assess model performance. The AUROC and area

under precision-recall curve (AUPRC) were calculated for comparison. The performance of

the AUROC was considered high (AUROC > 0.9), moderate (AUROC = 0.7–0.9), or low

(AUROC = 0.5–0.7) [23]. The testing area under the curve (AUC) values corresponding to the

different models were compared using a paired Delong test [15]. Moreover, sensitivity and

specificity were evaluated for each model. The sensitivity of the model refers to the ability of
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the model to correctly identify those patients within hypoxemia:

Sensitivity ¼
True positive

True positiveþ False negative

The specificity of the model refers to the ability of the test to correctly identify those patients

without hypoxemia:

Specif icity ¼
True negative

False positiveþ True negative
”

A calibration plot was visualized to evaluate the agreement of the predictions and observa-

tions within a range of percentiles of the predicted values using the three models [24].

Fig 1. Flow chart presenting patient selection and data analysis. PIP, Peak Inspiratory Pressure; EtCO2 End tidal CO2; FiO2, Fraction of inspired

oxygen.

https://doi.org/10.1371/journal.pone.0282303.g001
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Statistical analyses were performed using the Python 3.8 programming language and R soft-

ware (version 3.6.3; R Foundation for Statistical Computing). P<0.05 was considered statisti-

cally significant.

Results

Baseline characteristics

Of the 13,130 patient records identified, the records of 1,540 (11.73%) patients with 2,367 epi-

sodes of intraoperative hypoxemia were included in the model development (Fig 1). The base-

line patient characteristics are shown in Table 1. The patient demographics, including age, sex,

height, and weight, were comparable between the training, test, and holdout validation

datasets.

The incidence of hypoxemia was higher among younger patients. Twenty-five of 58

(43.10%) neonates, 382 of 1,443 (26.47%) infants, 717 of 6,888 (10.41%) patients aged 1–7

years, and 416 of 4,741 (8.77%) children aged 8–16 years experienced hypoxemic events in the

intraoperative period.

Of the 2,367 episodes of intraoperative hypoxemia, 1,166 (49.26%) occurred during emer-

gence from anesthesia, 772 (32.62%) during anesthesia maintenance, and 429 (18.12%) during

the induction period. Further, 232 patients (15.06%) experienced hypoxemic events more than

twice during surgery. The median duration of hypoxemia per episode was 55 s (95% CI 43 to

67 s).

In total, 200 patients’ records out of 289 hypoxemia episodes were used for holdout inde-

pendent validation dataset. Five of 12 (41.67%) neonates, 36 of 159 (22.64%) infants, 84 of 663

(12.67%) patients aged 1–7 years, and 75 of 672 (11.16%) children aged 8–16 years had a hyp-

oxemic event during the intraoperative period. During each of the three time intervals, which

are induction, maintenance, and emergence, 48 (16.61%), 44 (15.22%), and 197 (68.17%) epi-

sodes, respectively were identified. Patients with intraoperative hypoxemia events in the hold-

out dataset had a median duration of a hypoxemic event of 50 s (95% CI 45 to 55 s).

Model performance in predicting hypoxemia

After the hyperparameter search of each machine learning and deep learning algorithm, the

optimal hyperparameters for each model were as follows: GBM: {number of trees: [2000], max

depth: [5], subsampling rate: [0.5]}, LSTM: {number of hidden layers: [1], number of hidden

Table 1. Baseline characteristics in the dataset.

Total (n = 1540) Training set (n = 1273) Testing set (n = 267) Validation set (n = 200) p-Value

Age 5.30 ± 4.73 5.32 ± 4.72 5.21 ± 4.79 5.39 ± 4.91 0.76

0–28 d 25 (1.62%) 57 (4.48%) 15 (5.62%) 5 (2.5%)

29 d–12 mo 382 (24.81%) 258 (20.27%) 59 (22.10%) 36 (18%)

1–7-y 717 (46.56%) 561 (44.07%) 111 (41.57%) 84 (42%)

8–18 y 416 (27.01%) 397 (31.19%) 82 (30.71%) 75 (37.5%)

Sex Males 889 (57.72%) 732 (57.50%) 157 (58.80%) 117 (58.5%) 0.80

Females 651(42.27%) 541 (42.50%) 110 (41.20%) 83 (41.5%)

Weight (kg) 23.74 ± 19.09 23.71 ± 18.86 23.92 ± 20.23 29.41 ± 21.77 0.87

Height (cm) 105.02 ± 36.02 105.27 ± 35.88 103.89 ± 36.81 113.38 ± 37.02 0.57

Data are presented as number (%) and median ± standard deviation.

D, days; mo, months

https://doi.org/10.1371/journal.pone.0282303.t001
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nodes: [64], number of dense nodes: [16], dropout rate: [0.5]}, Transformer: {number of filters:

[64], number of heads: [3], embedded dimension: [32], number of convolutional layer: [1],

number of transformer layers: [3], dropout rate: [0.2]}. The models were evaluated using the

best performing settings.

ROC curves for the ability of each model to predict hypoxemia 60 s prior to the measure-

ment point are presented in Fig 2(A). Table 2 describes the predictive performance of the

three modeling approaches. Patient weight, SpO2, EtCO2, FiO2, TV, and PIP were used as

input variables for performance implementation (S1 Fig). All three models demonstrated good

predictive ability (AUROC�0.7). Among the developed models, the GBM model had the

highest AUROC value of 0.934 (95% CI 0.902 to 0.906), which was significantly higher than

that of the LSTM model (0.851, 95% CI 0.840 to 0.846, P<0.001) and the transformer model

(0.875, 95% CI 0.882 to 0.887, P<0.001).

The best performing models were also evaluated on an independent holdout validation

cohort. Hypoxemic events were identified in the records of 200 (13.25%) patients with 289 epi-

sodes out of 1,510 patients in the holdout validation cohort. Similar to our model develop-

ment, GBM also demonstrated best performance with an AUROC of 0.939 (95% CI 0.936 to

0.941, sensitivity of 0.855, and specificity of 0.807), which was better than LSTM (AUROC of

0.904, 95% CI, 0.900–0.907, sensitivity of 0.798, specificity of 0.775, P<0.001) and transformer

(AUROC of 0.929, 95% CI 0.926 to 0.932, sensitivity of 0.849, specificity of 0.784, P<0.001). In

Fig 2. Comparison of area under the receiver operating characteristic curves for the machine learning models for predicting intraoperative

hypoxemia in pediatric patients in (A) test dataset (B) holdout validation dataset. GBM, Gradient-boosting model; LSTM, Long short-term memory;

AUROC, Area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0282303.g002

Table 2. Ability of models in predicting intraoperative hypoxemia in pediatric patients.

Models Test dataset (model development) Holdout validation dataset

AUROC [CI] AUPRC P-value AUROC [CI] AUPRC P-value

GBM 0.904 [0.902–0.906] 0.225 0.939 [0.936–0.941] 0.235

LSTM 0.843 [0.840–0.846] 0.106 <0.05 0.904 [0.900–0.907] 0.124 <0.05

Transformer 0.897 [0.882–0.887] 0.121 <0.05 0.929 [0.926–0.932] 0.145 <0.05

Abbreviations: AUROC, area under the receiver operating curve; AUPRC, area under the precision-recall curve; CI, confidence interval; GBM, gradient-boosting

model; LSTM, long short-term memo

https://doi.org/10.1371/journal.pone.0282303.t002
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the calibration plot analysis in the holdout validation cohort (Fig 3), the GBM model showed

the best calibration performance among the three models; however, the models demonstrated

overestimated risks. Overall, as indicated in Fig 2(B), all the three models were highly predic-

tive of intraoperative hypoxemia in the validation cohort (AUROC values�0.7), with the

AUROCs ranging from 0.904 to 0.939. Moreover, in both the assessments, GBM model

showed better AUPRC score than the other methods and confirmed that they worked well in

imbalanced hypoxemia predictions as shown in Table 2.

Discussion

This study aimed to develop a machine learning model that predicts hypoxia 1 min prior dur-

ing general anesthesia in pediatric patients and verify the performance of our model using a

pediatric vital signs registry dataset. Our results demonstrated that hypoxemia in pediatric

patients undergoing general anesthesia can be predicted with a deep learning model using

pulse oximetry data and ventilator parameters. All the three trained machine learning models

exhibited high prediction performance, while GBM showed the best performance.

Respiratory complications derived from intraoperative desaturation are the most fre-

quent adverse events in pediatric anesthesia [2]. Highly variable incidences of intraoperative

Fig 3. Calibration plot of the prediction in the holdout validation cohort. GBM, Gradient-boosting model; LSTM, Long short-term memory.

https://doi.org/10.1371/journal.pone.0282303.g003
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hypoxemia in pediatric patients have been reported (1–22%) [2, 25, 26]. A previous study

estimated the incidence of intraoperative hypoxemia (SpO2�95%) in pediatric surgical

patients aged 0–16 years to be 10%, which is comparable to our study [5]. A recent prospec-

tive observational study demonstrated the crude overall incidence for desaturation (SpO2

�95%) in pediatric surgical patients to be 23.8% [3]. Our study results are consistent with

previous reports that the probability of desaturation episodes is increased in younger age

groups and during the emergence period [3]. Compared to other studies, a relatively low

proportion of hypoxemic incidents occurred during induction [3]. This difference is

derived from the characteristics of the study setting, i.e., a general tertiary teaching hospital,

intravenous induction in most cases. First, in our institution, most children undergo intra-

venous induction, except for patients with failed intravenous cannulation in the ward or

day center. According to a previous randomized controlled trial study and meta-analysis,

children receiving intravenous induction agents were significantly less likely to experience

perioperative respiratory adverse events, including desaturation (SpO2 < 95%), compared

to those who received inhalational anesthesia induction [27, 28]. Second, our center com-

mences induction in the setting of FiO2 1.0; thus, the low proportion of induction-related

hypoxemia compared to other institutions cannot be ruled out. Moreover, as intraoperative

hypoxemia is known to occur more often in the induction period, a greater number of pedi-

atric anesthesiologists with >2 years’ experience in pediatric anesthesia are involved in that

period to ensure more meticulous management in our institute [8, 29]. On the other hand,

during the emergence period, a single anesthesiologist is usually in charge owing to the

busy schedule in the hospital; thus, the response to hypoxemia is considered relatively inad-

equate. The difference presumably occurs in terms of preventing hypoxemia in induction

period since greater manpower is involved in solving the hypoxemia at the time of emer-

gence. Lastly, unlike other studies reporting intraoperative hypoxemia, the duration of hyp-

oxemia was not considered in this study; our study defined hypoxemia as peripheral oxygen

saturation below 95% regardless of its duration [2, 6, 29]. Thus, we carefully suggest that the

high incidence of hypoxemia during the emergence period could be underreported for a

very brief hypoxemia episodes in previous studies [2, 6, 29].

Perioperative respiratory adverse events are common in pediatric anesthesia, which could

result in hypoxemia [30]. However, no standardized definition of perioperative respiratory

adverse events exists in the literature; nevertheless, perioperative hypoxemia is often defined as

the drop of the value of SpO2 under 95% [29]. Therefore, we set 95% as a threshold point for

the risk of hypoxemia in children considering the provision of a relatively high FiO2 during

general anesthesia, the faster progression of hypoxemia relative to that in adults, and our pur-

pose of developing a predictive model for rapid recognition of the risk of further desaturation

and more applicable intervention in clinical setting.

In our study, we adopted EtCO2, FiO2, TV, and PIP as input variables for machine learning

performance improvement. In many cases, hypoxemic events in children in general anesthesia

setting tend to be associated with extrinsic events, such as challenging intubation, circuit dis-

connection, accidental one-lung ventilation, large amount of secretions or tube kinking, inad-

vertent extubation, and laryngospasm. These situations generally cause a change in the

ventilator parameters, which are mostly elevated airway pressure, reduced TV, and abrupt

change of EtCO2. Moreover, the higher probability of occurrence and faster onset of a desa-

turation events were observed at a lower FiO2 compared to when the FiO2 is 1.0 [31]. This

model using interpretable input variables provides the detection of subtle changes that clini-

cians could not be easily aware of and comprehensive integration of high-fidelity operating

room data. Although relatively low AUPRC of our models would have resulted in multiple

false positive predictions, reducing the risk of exposure to hypoxemia, thereby outweighing
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the alarm fatigues experienced by anesthesiologists. Ultimately, predictive models using

machine learning techniques could be developed to build real-time guided additional instruc-

tions for intraoperative hypoxemia management.

We developed three applicable machine learning algorithms with good performance

regardless of the patient’s age and periods of anesthesia (induction, maintenance, and emer-

gence). The extracted features of vital sign and ventilator parameters from operating room

data have a variety of complex nonlinear interactions, which is necessary to build a model with

significant flexibility. GBM is an ensemble forward learning model that is a nonparametric

model comprising an ensemble of weak prediction models for the development of a final

model. It has the ability to incorporate these large amounts of disparate data into a unified

algorithm, which is similar to the principle and decision making process of anesthesiologists

do in clinical practices [32]. Moreover, large datasets can boost the prediction performance of

GBM by imploring an additional classifier [33]. LSTM is a type of recurrent neural network

(RNN) models which deal with time series analysis that processes inputs and outputs as data

units of related sequences [34]. The model was selected and developed with the goal of real-

time prediction of hypoxemia through time series analysis using input signals of vital signs

and ventilator parameters in a clinical setting. Transformer processes entire sequence of data

and uses self-attention mechanisms to learn dependencies in the sequence. It is known to have

potential to learn complex dependencies of various length from time series data, which showed

moderate performance of predicting intraoperative hypoxemia [35].

Recently, machine learning techniques analyzing biosignal waveforms have been increas-

ingly developed for the clinical prediction of medical conditions [13, 16, 36]. A previous group

reported the development of a machine learning-based intraoperative hypoxemia prediction

system for adult patients during general anesthesia [14]. However, this study was limited since

the authors used minute-by-minute intervals for the model training [14]. In our study, bio-

signal waveforms were used for the dataset from Vital Recorder, thus providing real-time

graphical capnography, and the ventilator parameters reflect the clinical changes per second.

This high-fidelity and large second-by-second datasets could help improve the accuracy of

hypoxemia prediction models. This analysis enables more rapid detection of upcoming hypox-

emia, which is particularly important in children. Considering that the median duration of

intraoperative hypoxemia was 55 s, i.e., <1 min, it is believed that a prediction model using an

input dataset with as short as possible time interval would have greater clinical significance.

However, the present study had several limitations. First, although we screened over 14,000

surgical cases, intraoperative hypoxemia is a relatively rare event, which limited the number

of cases included in the final analysis. In addition, we only included pediatric patients who

underwent surgery under general anesthesia at a single center and thereby could not externally

validate the data. However, our institution accounts for the largest number of pediatric surger-

ies in the country each year, which makes it possible to obtain a large number of data for devel-

oping applicable algorithms. Moreover, all the three machine learning models developed in

this study showed high performance in the holdout validation cohort based on the AUROC.

Furthermore, the calibration plot performance from all machine learning models were poor

with an overestimated risk, which might results in overtreatment. The main cause of poor cali-

bration is the lack of data, which could be solved by using more datasets [24]. Further valida-

tion in other centers is warranted to ensure the consistency and robustness of our findings.

Moreover, we excluded various types of high-risk surgeries associated with a higher incidence

of hypoxemia, such as cardiothoracic surgery. Furthermore, risk stratification for children

who had significant comorbidities and were prone to encounter desaturation events was not

considered. Several clinical diagnoses associated with intraoperative hypoxemia, such as acci-

dental one-lung ventilation, tracheal balloon leak, endotracheal tube obstruction, and patient
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factors including pulmonary disease, are not directly observable and are strongly subjective;

thus, they are difficult to transit into datasets that can be directly utilized [14]. We did not

identify and stratify factors showing a predictive role for intraoperative hypoxemia during gen-

eral anesthesia in children. Finally, the potential benefits of prediction using machine learning

techniques to anesthesiologists in the operating room were not evaluated.

Conclusion

The machine learning algorithm using demographic, vital sign, and other ventilatory data

can predict hypoxemia in children under general anesthesia. If machine learning-based predic-

tion models are successfully applied in clinical practice, patient outcomes would be improved

by acquiring more time for patient management and implementation of earlier management.

Future studies focusing on whether the use of machine learning-based prediction in the clini-

cal workflow achieves superior performance compared to practicing anesthesiologists are

warranted.
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