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Abstract

Introduction/Purpose

Physical activity studies often utilize wearable devices to measure participants’ habitual

activity levels by averaging values across several valid observation days. These studies

face competing demands–available resources and the burden to study participants must be

balanced with the goal to obtain reliable measurements of a person’s longer-term average.

Information about the number of valid observation days required to reliably measure tar-

geted metrics of habitual activity is required to inform study design.

Methods

To date, the number of days required to achieve a desired level of aggregate long-term reli-

ability (typically 0.80) has often been estimated by applying the Spearman-Brown Prophecy

formula to short-term test-retest reliability data from studies with single, relatively brief

observation windows. Our work, in contrast, utilizes a resampling-based approach to quan-

tify the long-term test-retest reliability of aggregate measures of activity in a cohort of 79 par-

ticipants who were asked to wear a FitBit Flex every day for approximately one year.

Results

The conventional approach can produce reliability estimates that substantially overestimate

the actual test-retest reliability. Six or more valid days of observation for each participant

appear necessary to obtain 0.80 reliability for the average amount of time spent in light phys-

ical activity; 8 and 10 valid days are needed for sedentary time and moderate/vigorous activ-

ity respectively.
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Conclusion

Protocols that result in 7–10 valid observation days for each participant may be needed to

obtain reliable measurements of key physical activity metrics.

Introduction

Studies that use wearable devices often produce daily summary metrics like time spent in sed-

entary, light (LPA), and moderate to vigorous physical activity (MVPA), in order to quantify

daily physical activity for study participants. Recognizing that there is day-to-day variability in

activity within participants, individual daily observations are usually aggregated by averaging

across days to obtain better, more robust estimates of each person’s average daily physical

activity. While it is clear that averaging over a greater number of days of observation will yield

a more stable estimate of an individual’s daily average, it is not well known how many days of

observation are “enough”–that is, what number of days will be sufficient to produce an aggre-

gate measure that reflects actual habitual activity levels. Previous studies have framed this as a

question of test-retest reliability, and used related methods to estimate the number of observa-

tion days needed to meet a pre-specified reliability threshold [1–5]. However, it is not obvious

that one can generalize from consecutive day-to-day measurements to longer-term test-retest

reliability of a person’s average physical activity, and no studies to our knowledge have used

long-term follow-up data to determine the actual long-term test-retest reliability of aggregate

measures provided by data collected over a pre-specified observation period.

Measurement reliability was originally introduced and is the subject of a rich literature in

the field of psychometrics, and has since seen applications in a variety of other areas [6–10].

The framework used in the context of physical activity metrics assumes that each participant

has an underlying true value, with measurements differing from this true value due to inde-

pendent, identically distributed random deviations. This assumes, for example, that each par-

ticipant has his or her own true habitual sedentary time, and each day’s measurement is a

completely random deviation from that true time. Given multiple daily measurements on par-

ticipants for an outcome of interest (e.g. total sedentary minutes for each participant and day

over a week), reliability is defined as the ratio of between-person variability to total variability,

ranging from 0 to 1 [11]. Reliability is high when the magnitude of the random deviations is

small relative to the differences between participants. A generally accepted standard for good

reliability is 0.80, and measurements with lower reliability may contain more random variabil-

ity than desired for subsequent analysis.

Somewhat counter-intuitively, reliability describes a feature of a single measurement–what

information a single day’s sedentary time would contain if no other days were available–even

though it requires multiple observations to estimate. In the context of physical activity, it is fur-

ther desirable to consider the reliability of an observation obtained through aggregating/aver-

aging multiple repeat measurements. Given an estimated reliability for a single observation,

the Spearman-Brown prophecy formula is designed to determine the number of observations

per person which, if averaged, would result in a pre-specified level of reliability for this average,

which we refer to as “aggregate reliability”. Based on application of the prophecy formula to

data from a number of previous studies, current recommended practice for the determination

of habitual physical activity via accelerometry is to aggregate measurements from 3–5 days

among adults, and 4–9 days among children [12, 13]. Accordingly, 7-day accelerometer proto-

cols have become conventional in the field to meet these goals while allowing for some non-

wear days [14–18].
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There are a number of limitations to providing an estimated number of days needed to

achieve an aggregate reliability of 0.80 based on the prophecy formula. First, the number of

days derived from the prophecy formula is an estimated value, but variability in this estimate

(e.g., a confidence interval) has been underreported. Second, the underlying statistical assump-

tions surrounding the estimation of reliability, including the independence of measurement

days within participants and the homogeneity of variances of deviations both within and

across participants, may be unmet in practice. Finally, just as multiple observations are needed

to understand the reliability of a single observation, it is necessary to obtain multiple indepen-

dent aggregate measures to empirically demonstrate their reliability; without that follow-up, it

is unclear if multi-day averages achieve their prophesied reliability. If the actual reliability is

lower than the prophesied reliability, estimates of the relationship of physical activity with

other variables are likely to be attenuated and studies based on a presumed reliability of 0.80

may be underpowered.

The purpose of this work is to better understand the variability associated with estimating

reliability in practice, the corresponding results of applying the prophecy formula, and the

actual reliability of aggregate measures. We use data from a long-term follow-up study that col-

lected device-measured physical activity data for up to 365 consecutive days, and design an

empirical study of single-measure and aggregate reliability. We consider several observation

windows when examining aggregate reliability, which may inform best practice recommenda-

tions regarding accelerometer protocol lengths.

Materials and methods

Ethics

The study protocol was approved by the Institutional Review Board of the Columbia Univer-

sity Irving Medical Center. Data on student participants was collected after informed written

consent; additional consent for the secondary analysis of deidentified data in this study was

waived.

Study design

The motivating data for our evaluation come from a 12-month randomized controlled trial,

conducted at the Center for Behavioral Cardiovascular Health at the Columbia University

Irving Medical Center, which sought to better understand the bi-directional relationship

between physical activity and stress. Participants were recruited using fliers posted throughout

the Columbia University Irving Medical Center; were 18 years or older; reported only inter-

mittent engagement in exercise; did not have comorbidities that would prevent or compromise

engagement in physical activity; did not have work demands requiring vigorous activity; and

would be available during the following continuous 12 months [19].

The 79 participants in this study were asked to wear an activity monitor (Fitbit Flex) on

their wrist every day for approximately one year. After six months of data collection, partici-

pants were randomized to receive either general information about their exercise and reported

stress or a personalized ‘stress-exercise fingerprint’ detailing 2–4 personal predictors of engag-

ing in exercise identified from the initial 6 months of observational data [19, 20]. As discussed

below, the majority of data used in the primary analysis (and all data used in the sensitivity

analysis) were collected prior to the intervention, and for that reason should be considered

observational in nature.
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Device-based measurement of physical activity

Physical activity was measured using a wrist-based model of the Fitbit (Fitbit Flex; Fitbit, Inc.,

San Francisco, CA). The Fitbit Flex is a microelectromechanical triaxial accelerometer that has

been demonstrated to be valid and reliable for measuring physical activity and sedentary

behavior in adults [21–23]. Data from the device automatically uploads to the Fitbit website

whenever the device is within 15 feet of a smartphone with the accompanying Fitbit applica-

tion installed or a base station, which for this study was plugged into the participant’s own

computer. Participants were instructed to sync and charge their device every 5–7 days to

ensure no loss of activity data. The Fitbit Flex was selected because it is simple to use and more

convenient than research-grade accelerometers which require the participant to return to the

study office for syncing and battery charging/replacement.

The minute-by-minute activity data were extracted from the manufacturer’s website using

the Fitabase software. Our analysis focuses on the typical waking hours of 8:00am to 10:00pm.

Any two-hour period where no steps were observed was considered to be nonwear [24], and

we required a minimum of 10 hours of wear time over the 14-hour observation period for a

given day to be considered valid and therefore included in our analysis. For each participant,

we excluded the first 14 days of observation as a run-in period to allow for the possibility that

an individual’s activity may differ during this time due to device reactivity [25]. After discard-

ing the run-in period, we selected the next 60 valid days of observation for each participant;

this provides a period that is long enough to obtain multiple non-overlapping observation win-

dows to study reliability, but short enough that habitual activity levels were unlikely to be

affected by substantial behavioral changes.

For each valid day we used the device step counts for each 1-minute epoch (e.g. step

cadence) to determine the total number of sedentary (steps = 0 for a given 1-minute epoch),

light (0 < steps < 100 for a given 1-minute epoch), and moderate/vigorous (steps� 100 for a

given 1-minute epoch) minutes of activity. We used step counts in our definition of intensity,

rather than device-produced intensities, due to some lack of information regarding the

device’s intensity algorithm, the implausibility of some of the produced values, and its corre-

sponding validity for distinguishing physical activity intensity (particularly for sedentary and

LPA time). Our choice of thresholds uses an established approach to defining intensity based

on per minute step counts to infer step cadence [26, 27]. Adjustment for day-to-day variability

in total wear time between 8:00am and 10:00pm was done via a linear model weartime correc-

tion, with a single model used for the full cohort [28].

Statistical analyses

Review of prior approaches to assessing reliability. Reliability quantifies the degree of

similarity of observations within a person, with the implicit assumption that measurements

are taken in unchanging conditions. It is assumed that individual measurements are the com-

bination of a true person-level value and random deviations from that. The model assumed to

generate an observed measurement X is

X ¼ T þ e ð1Þ

where T is the underlying true value intended to be measured and e is a random deviation

from that value. It is assumed that T has mean μ and between-person variance s2
T while e is a

mean zero residual with constant variance s2
e that is the same within and between participants;

the residual has mean zero under the assumption that the measurements are unbiased for the

true value. Further, it is assumed that T and e are independent and that the e are uncorrelated

with each other both within and between participants (r(etj, etk) = 0 for all j 6¼ k). The reliability
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of a single measurement R1, then, is defined as the percentage of overall variability that is due

to true person-to-person differences:

R1 ¼
varðTÞ
varðXÞ

¼
s2
T

s2
T þ s

2
e

: ð2Þ

This framework emphasizes that, conceptually, reliability depends on partitioning individ-

ual measurements into true scores and noise and similarly partitioning the total variance into

the variance of the true scores (between-person variance) and the variance of the random devi-

ations (within-person variance).

In practice, estimating reliability depends on data with multiple measurements per person,

giving rise to observations

Xij ¼ Ti þ �ij ð3Þ

with participants i = 1,. . .,n and replicates j = 1,. . .,J. Given such data, measurement reliability

R1 can be estimated using a mixed effects model with a random intercept for each person (in

this setting, R1 is widely known as the intraclass correlation coefficient, or ICC). The mixed

model produces estimates ŝ2
T and ŝ2

e , which in turn can be used to estimate the reliability R̂1.

It is well known that the average of a set of independent and identically distributed mea-

surements of the same quantity provides a more accurate estimate of the underlying true value

of interest. Given independent and identically distributed replicate measurements for each

person, the aggregate reliability of the average of J measurements (�Xi ¼
1

J

PJ
j¼1

Xij) is given by

R�J ¼
varðTiÞ

varð�XiÞ
¼

s2
T

s2
T þ s

2
e=J

: ð4Þ

As the number of replicates J increases, there is a corresponding increase in aggregate reli-

ability R�J . This relationship can be reexpressed as a function of the reliability of a single mea-

surement via

R�J ¼
JR1

1þ ðJ � 1ÞR1

: ð5Þ

The preceding is known as the Spearman-Brown prophecy formula, which relates the reli-

ability of a single measurement, R1, and the reliability of the average of J measurements, R�J .

The prophecy formula has been utilized in physical activity studies to obtain an estimate Ĵ of

the number of days J that are necessary to produce a desired level of aggregate reliability, most

typically R�J ¼ 0:80, for activity metrics like average daily sedentary, LPA, and MVPA time.

This validity of this application of the prophecy formula to extrapolate from short-term

consistency to long-term aggregate reliability rests on model assumptions described above that

may not hold in practice. In short, it is assumed the observations Xij are independent, both

within and across participants; that the residual variance s2
e is constant across repeated obser-

vations and the same for all participants; and that a person’s true underlying value is constant

and reflects habitual activity. However, it is unlikely that activity across consecutive days are

truly independent within a person. Further, the residual variability may differ across partici-

pants and also within a person over time. Finally, it is unclear whether it is reasonable to

assume a habitual level of activity, or over what timeframe this might be valid. For these rea-

sons, the direct use of Eq 1 and the prophecy formula may be inappropriate for physical activ-

ity measurements. When applied to activity data, violations of these assumptions can produce

inaccurate estimates of reliability R1 and, by extension, R�J .
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Recall that to accurately assess the reliability R1 of a measurement X, it is necessary to obtain

several independent observations across multiple participants. A similar argument applies to

the reliability R�J of an aggregate measure �X : although the Spearman-Brown formula is valid

when all assumptions are met, it is prudent to estimate the reliability of the aggregate measure

directly by obtaining and analyzing independent replicates of the aggregate measure. A

marked difference between the value obtained this way and the one derived from the prophecy

formula would suggest that the observed data are not consistent with one or more of the

assumptions underlying the prophecy formula. To our knowledge, however, a direct examina-

tion of R�J for measures of sedentary, light and moderate/vigorous physical activity has not

been conducted.

Resampling strategy to evaluate reliability. We addressed two specific aspects of mea-

surement reliability for physical activity data. First, we evaluated the estimation of reliability

and the use of the prophecy formula when replicate measurements are observed over a single

period. Second, we assessed the reliability of the average of several observations by taking such

averages in two distinct observation windows. The first analysis was intended to provide more

insight into how reliability has been estimated in existing work based on single observation

periods, and the second analysis was intended to clarify the relationship between prophesied

and actual reliability. Through addressing these specific aspects, the present study also informs

how many valid days of wear are needed to obtain reliable (>0.80) assessments of the different

physical activity metrics via wearable devices.

For the first set of analyses, we evaluated the variability of estimates of both R1 and the num-

ber of days needed to obtain an aggregate reliability of 0.80 according to the Spearman-Brown

prophecy formula. This sampling variability was quantified by randomly selecting an observa-

tion window for each person of J days and calculating the single-measurement reliability R̂1

associated with sedentary, LPA, and MVPA time. Given the estimated reliability R̂1, the Spear-

man-Brown prophecy formula was then applied to estimate the number of days Ĵ 0:80 which

would need to be averaged to achieve an aggregate reliability R�J ¼ 0:80. This process mimics

the estimation of reliability and the application of the prophecy formula used in previous stud-

ies. These steps were repeated 200 times, each time selecting a new observation window for

each participant, for J = 2,3,. . .,10 valid days in order to obtain a sampling distribution of R̂1

and Ĵ 0:80. Fig 1 contains a conceptual diagram of this process when performed for sedentary

time.

Next, we determined the actual reliability for the averages of J valid days. We investigated

this by first selecting two distinct periods of J days per person and averaging sedentary, LPA,

and MVPA time within both periods. We additionally required that the two periods be at least

7 days apart; this reduces potential within-person correlation between the two distinct periods,

although days within periods may still be correlated. In this way, we obtained two independent

average measures of each activity metric, with averages based on observation windows of J
days. Using these averages we then estimated R̂�J directly as the intraclass correlation of the two

averages. This process was repeated 200 times each for J = 2,3,. . .,10 days.

Results

Of the seventy-nine participants recruited for the original study, ten did not have at least 60

valid days of observation and were excluded from our analysis. Table 1 contains demographic

characteristics of the sample used for primary analysis.

The mean sedentary and LPA hours per day were 9.7 (SD = 1.4) and 3.9 (SD = 1.4), respec-

tively, and distributions of these values were roughly symmetric within individuals. The
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median MVPA hours per day was 0.32 (IQR = [0.10, 0.53]). The median number of days required

to achieve 60 valid days of observation was 81 (range = [60, 330]; IQR = [72, 98]). The resulting

dataset is illustrated in the top row of panels in Fig 2, which shows each individual’s activity met-

rics over the 60 days of observation. This Figure highlights that there is both day-to-day variation

within a participant and person-to-person variation, both of which affect measurement reliability.

Visual inspection of Fig 2 also suggests that any systematic temporal changes within participants,

if they exist, are small relative to the within- and between-person variation.

Estimate variability

The results in Fig 3 emphasize that there is considerable sampling variability in the estimates

of R1 and J, especially for lower numbers of observation days. As expected, with a larger

Fig 1. Framework for creating sampled datasets. Each row represents a single sampled dataset. The left column contains all of the observed activity

trajectories in the motivating data, with the red segments representing the selection of days J which were selected for a given sample. The second column shows

the estimated reliability R̂^
1 based on the previous selection of days. The final column shows the subsequent prophecy estimate of the number of replicates Ĵ^

required to achieve a reliability of 0.8. The histograms at the bottom of the second and third columns represent the distributions of R̂^
1 and Ĵ^ across all 200

samples generated in this way.

https://doi.org/10.1371/journal.pone.0282162.g001
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number of days we see decreased variability in the estimation of both values. Across the activ-

ity metrics, reliability is highest for LPA time; correspondingly, the estimated number of

required replicates Ĵ indicated by the prophecy formula is smallest for LPA time. For example,

the top center panel of Fig 3 shows that given 7 days of observation per person, the median

reliability estimate for LPA time was 0.51 (IQR = [0.47, 0.54]), with a minimum observed reli-

ability of 0.40 and a maximum of 0.64. The bottom center panel then shows that given 7 days

of observation per person, the median number of replicates, J, required to achieve RJ = 0.80

based on the prophecy formula was 3.8 (IQR = [3.4, 4.5]) with a minimum of 2.3 and maxi-

mum of 5.9. In contrast, the reliability R̂1 for MVPA obtained from a single sampled dataset is

often lower than 0.4, and values for Ĵ 0:80 are higher than 6. The values for J obtained across

sampled datasets are more variable for MVPA than for LPA or sedentary time, which may

derive from the heterogeneity within and across participants seen in Fig 1.

Direct estimation of aggregate reliability

Fig 4 provides the results of our second analysis, in which two separate periods of J days were

averaged for each participant to directly estimate the test-retest reliability of R̂�J .

As expected, the aggregate reliability R̂�J increased as the number of observation days J
increased and the variability in R̂�J decreased. Aggregate reliability was highest for LPA time,

with the center panel of Fig 4 showing that for 7 days of observation the median R̂�7 was 0.83

(IQR = [0.80, 0.85]), with a minimum of 0.72 and a maximum of 0.89, with 77% of R̂�J � 0:80.

Aggregate reliability for Sedentary time was somewhat lower: 7 days of observation resulted in a

median R̂�7 of 0.79 (IQR = [0.76, 0.83]). Aggregate reliability was lowest for MVPA time, with a

median R̂�7 of 0.75 (IQR = [0.71, 0.79]) for 7 days of observation, and only 22.5% of R̂�J � 0:80.

For sedentary time, 8 days were required in order to achieve a median reliability�0.80

across our sampled datasets. Six and 10 days were needed in order to achieve a median reliabil-

ity�0.80 for LPA and MVPA time, respectively.

Sensitivity analysis

The number of days required to achieve 60 valid days of observation was high for some partici-

pants, and substantial behavioral changes affecting reliability may be more likely for these peo-

ple. We therefore conducted a sensitivity analysis that included only the 53 participants who

Table 1. Demographics in analytical sample.

Characteristics Mean (SD) or N (%)

Average age, y 32.3 (9.8)

BMI (kg/m2) 26.8 (5.3)

Gender

Men 29 (42.0%)

Women 40 (58.0%)

Race

Asian 15 (21.7%)

Black/African American 10 (14.5%)

Native Hawaiian/Pacific Islander 1 (1.4%)

White 28 (40.6%)

2 or more 3 (4.3%)

Unknown/Declined (mostly Hispanic) 12 (17.4%)

https://doi.org/10.1371/journal.pone.0282162.t001
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achieved 60 valid observation days in 100 days or fewer; 16 participants included in the prior

analyses were excluded. The results of these sensitivity analyses are consistent with our pri-

mary findings; versions of Figs 2–4 using only this subset are shown in Supporting

Information.

Discussion

Studies that use wearable devices to assess physical activity face a number of constraints that

limit the number of observation days that can be gathered for each participant. In order to

Fig 2. Activity metric distributions in the motivating data set. The left column of panels shows the heatmaps for

each metric and participant over the 60 days of observation included in the present analysis. The right column shows

boxplots of sedentary, light, and MVPA time for each participant over the course of the study, sorted based on the

median value for each metric separately. Individual boxes show bars at the median value, hinges at the 25% and 75%

quantile, and whiskers extending to observed values within (hinge ± 1.5 � IQR). Data points outside the range of

whiskers are shown.

https://doi.org/10.1371/journal.pone.0282162.g002
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design these studies, researchers seek to collect sufficient data to ensure that resulting aggre-

gate measurements provide reliable estimates of participants’ habitual activity. Current recom-

mendations were established by applying the Spearman-Brown prophecy formula to estimated

reliability values obtained from a single observation window. Our work had two primary

goals, which were made possible through a long-term study of physical activity. First, we

sought to use the long-term nature of our data to better understand the properties of reliability

and the prophecy formula as they have been used in the past. Second, we sought to assess

aggregate reliability directly, through the use of multiple independent aggregate measurements

obtained from each participant.

The results of our first investigation wherein we used the conventional approach to estimate

reliability values via the prophecy formula are broadly consistent with previous recommenda-

tions. Application of the prophecy formula to the present data suggests that 3–5 days of obser-

vation would be adequate to provide an aggregate reliability of 0.80 for sedentary and LPA

time, and that 6–8 days of observation would be reasonable for MVPA time. Our work gives

additional insight into the uncertainty in estimating reliability and the number of days neces-

sary to obtain 0.80 aggregated reliability in a future study. Our results also highlight that these

conclusions are dependent on the activity metric of interest.

Fig 3. Estimated reliability and number of days. The top row shows the empirical distribution of estimated reliability R̂^
1 for

sedentary, LPA, and MVPA time. Each panel shows the distribution of reliability estimates R̂^
1 based on observation periods of

between 2 and 10 days with individual points showing the results for a single generated dataset. The bottom row shows the

corresponding empirical distribution of the number of replicates Ĵ^0:80 based on the prophecy formula required to achieve RJ =

0.80 for each activity metric and observation window. Solid red circles indicate the median across 200 sampled datasets.

https://doi.org/10.1371/journal.pone.0282162.g003
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The results of our second investigation, however, suggest that the current approach to

assessing reliability is flawed. In particular, the actual test-retest reliability of an aggregate mea-

sure based on 3–5 valid days is markedly lower than 0.80. Indeed, 6 observation days were

needed to achieve a median reliability�0.80 for LPA time, and 10 observation days were

needed for MVPA time. These results indicate that a 7-day observation protocol may be insuf-

ficient for sedentary and MVPA time, particularly when allowing for non-compliance or

invalid observation days. Longer studies will be necessary to achieve an expected reliability

�0.80 across physical activity metrics.

The contrast between results from our first and second approaches for assessing reliability

may not be as surprising as they initially appear. Application of the Spearman-Brown prophecy

formula is appropriate when the assumptions of the data generating model in Eq 1 are valid.

Extending this framework to sequential measurements of activity over time is imperfect, likely

due to a lack of independence of the repeated within-person measurements, non-constant var-

iance across participants, and the possibility of an evolving “true value” over time. When

assumptions are not met in practice, estimates of reliability based on single observation win-

dows may be biased and overly optimistic. By constructing aggregate measures in two distinct

time windows, we were able to obtain independent averages and assess aggregate reliability

directly.

We note several important limitations of our analysis. We focus on a single long-term fol-

low-up cohort consisting of young, healthy, mostly sedentary participants from a relatively

homogeneous population. Reliability, by definition, is a population-specific measure; different

results and guidelines should be expected for different or more heterogenous cohorts. Our

analysis was based on a sample of 69 participants, and larger sample sizes would reduce some

of the sampling variability we observed in Figs 3 and 4. That said, the median values of R1, J,
and R�J and our conclusions about the duration of follow-up are unlikely to be substantially

affected by the sample size. Participants generally complied with the study protocol, but our

results could be confounded by factors that affect weartime and activity. Although there were

few obvious changes in participants’ habitual activity, even small changes could impact mea-

sures of reliability. We suspect that issues of within-person correlation and non-constant

Fig 4. Direct estimation of aggregate reliability. Results of the investigation into aggregate reliability of the average

daily activity for each activity metric, estimated as the test-retest reliability (intraclass correlation) of the averages from

two separate periods of between 2 and 10 days selected for each participant. The solid red circle indicates the median

across 200 sampled datasets.

https://doi.org/10.1371/journal.pone.0282162.g004
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variance across participants, together with fluctuations in habitual activity, are the main driv-

ers behind the gap between prophesied and actual test-retest aggregate reliability. Analytic

methods that account for these might improve estimation of R1 and J in data based on a single

observation window and help close the observed gap. Lastly, we used step count data from a

wrist-worn commercial device, and more work is needed to assess the reliability of other physi-

cal activity monitors and metrics, and for wearable devices that measure different biological

processes.

This study focused on better understanding the framework that has been used for assessing

the reliability of sedentary, LPA, and MVPA time. Our results suggest a mismatch between the

assumptions underlying classic reliability theory and the Spearman-Brown prophecy formula

and the real-world data generated in studies of physical activity. These may be addressed

through improved analytic methods, but other critiques of the general approach will remain.

Reliability R1 can be a difficult quantity to interpret in the context of physical activity, and

aggregate reliability R�J even more so. Intuitively, a measurement with high (aggregate) reliabil-

ity is likely to be similar across repeated observation: a reliable measurement of a participant’s

average MVPA, for example, would be expected to vary relatively little from one observation

period to another. More formally, measurements are reliable when most of the variation across

participants is due to true systematic differences in their habitual physical activity. Because this

definition of reliability depends on the ratio of between-person to total variability, the same

measurement could be more or less reliable as the population in question changes. Finally,

even reliable measurements will not reflect the underlying quantity in question if the measure-

ment is not valid (i.e. if it does not measure the true physical activity or behavior of interest) or

not accurate (i.e. if it consistently over- or under-estimates the phenomenon of interest). Tools

and techniques that produce reliable, valid, and accurate measurements of physical activity are

therefore necessary for the advancement of our understanding of the impacts of both seden-

tary behavior and physical activity on individuals’ health.

Past applications of the Spearman-Brown prophecy formula have found that the number of

monitoring days that need to be averaged in order to achieve 0.80 reliability is between 3–5

and 6–8 for sedentary/LPA and MVPA time, respectively. However, our results suggest that

the reliability of measurements averaged over monitoring periods of these durations will typi-

cally not result in an aggregate reliability of 0.80. In practice, a protocol that produces at least 8

valid days of observation is needed to assert that 0.80 reliability is likely to be met in terms of

sedentary time, with protocols producing 6 and 10 valid observation days needed for LPA and

MVPA time respectively. Significantly longer protocol lengths should be considered to confi-

dently assert that a reliability of 0.80 has been (or will be) achieved.

Supporting information

S1 Fig. Activity metric distributions. The left column of panels shows the heatmaps for each

metric and participant over the 60 days of observation for the sensitivity analysis. This can be

compared to Fig 2 in the main manuscript.

(PDF)

S2 Fig. Estimated reliability and number of days in sensitivity analysis. The top row shows

the empirical distribution of estimated reliability R̂1 for sedentary, LPA, and MVPA time. The

bottom row shows the corresponding empirical distribution of the number of replicates Ĵ 0:80

based on the prophecy formula required to achieve RJ = 0.80 for each activity metric and

observation window. This can be compared to Fig 3 in the main manuscript.

(PDF)
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S3 Fig. Direct estimation of aggregate reliability in sensitivity analysis. Results of the inves-

tigation into aggregate reliability of the average daily activity for each activity metric, estimated

as the test-retest reliability (intraclass correlation) of the averages from two separate periods of

between 2 and 10 days selected for each participant. This can be compared to Fig 4 in the main

manuscript.

(PDF)
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